forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_compile.py
57 lines (43 loc) · 1.82 KB
/
_compile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
APIs related to torch.compile which lazily import torch._dynamo to avoid
circular dependencies.
"""
import functools
from typing import Callable, Literal, Optional, overload, TypeVar, Union
from typing_extensions import ParamSpec
_T = TypeVar("_T")
_P = ParamSpec("_P")
@overload
def _disable_dynamo(
fn: Callable[_P, _T], recursive: bool = True
) -> Callable[_P, _T]: ...
@overload
def _disable_dynamo(
fn: Literal[None] = None, recursive: bool = True
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]: ...
def _disable_dynamo(
fn: Optional[Callable[_P, _T]] = None, recursive: bool = True
) -> Union[Callable[_P, _T], Callable[[Callable[_P, _T]], Callable[_P, _T]]]:
"""
This API should be only used inside torch, external users should still use
torch._dynamo.disable. The main goal of this API is to avoid circular
imports issues that is common while using _dynamo.disable inside torch
itself.
This API avoids it by lazily importing torch._dynamo from the import time to
the invocation of the decorated function.
"""
if fn is not None:
@functools.wraps(fn)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> _T:
# cache this on the first invocation to avoid adding too much overhead.
disable_fn = getattr(fn, "__dynamo_disable", None)
if disable_fn is None:
import torch._dynamo
disable_fn = torch._dynamo.disable(fn, recursive)
fn.__dynamo_disable = disable_fn # type: ignore[attr-defined]
return disable_fn(*args, **kwargs)
return inner
else:
# decorator usage like @_disable_dynamo(recursive=False). The resulting
# object expects the original decorated function as the arg.
return functools.partial(_disable_dynamo, recursive=recursive)