-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_joint.py
163 lines (140 loc) · 7.79 KB
/
main_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import model_manager
import torch
import os
import datasets
import cnn_models.conv_forward_model as convForwModel
import cnn_models.help_fun as cnn_hf
import quantization
import pickle
import copy
import quantization.help_functions as qhf
import functools
import helpers.functions as mhf
import argparse
import numpy as np
parser = argparse.ArgumentParser(description = 'LMA for Model Compression')
parser.add_argument('-batch_size', type = int, default=64)
parser.add_argument('-init_lr', type = float, default=1e-2)
parser.add_argument('-epochs', type = int, default=200)
parser.add_argument('-stud_act', type = str, default='relu')
parser.add_argument('-num_bins', type = int, default=8)
parser.add_argument('-plot_title', type=str, default='test')
parser.add_argument('-train_teacher', action='store_true')
parser.add_argument('-train_student', action='store_true')
parser.add_argument('-manager', type = str, default='model_manager_cifar10')
parser.add_argument('-stModel', type = int, default=0)
parser.add_argument('-data', type = str, default='cifar10')
parser.add_argument('-seed', type = int, default=1)
parser.add_argument('-numBits', type = str, default='8')
args = parser.parse_args()
args.plot_title = 'summary/'+args.plot_title+'_seed_'+str(args.seed)
args.numBits = [int(x) for x in args.numBits.split(',')]
datasets.BASE_DATA_FOLDER = 'datas'
SAVED_MODELS_FOLDER = 'models'
MANAGER_FOLDER = 'manager'
USE_CUDA = torch.cuda.is_available()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
#Define the architechtures we want to try
smallerModelSpec0 = {'spec_conv_layers': [(75, 5, 5), (50, 5, 5), (50, 5, 5), (25, 5, 5)],
'spec_max_pooling': [(1, 2, 2), (3, 2, 2)],
'spec_dropout_rates': [(1, 0.2), (3, 0.3), (4, 0.4)],
'spec_linear': [500], 'width': 32, 'height': 32}
smallerModelSpec1 = {'spec_conv_layers': [(50, 5, 5), (25, 5, 5), (25, 5, 5), (10, 5, 5)],
'spec_max_pooling': [(1, 2, 2), (3, 2, 2)],
'spec_dropout_rates': [(1, 0.2), (3, 0.3), (4, 0.4)],
'spec_linear': [400], 'width': 32, 'height': 32}
smallerModelSpec2 = {'spec_conv_layers': [(25, 5, 5), (10, 5, 5), (10, 5, 5), (5, 5, 5)],
'spec_max_pooling': [(1, 2, 2), (3, 2, 2)],
'spec_dropout_rates': [(1, 0.2), (3, 0.3), (4, 0.4)],
'spec_linear': [300], 'width': 32, 'height': 32}
smallerModelSpecs = [smallerModelSpec0, smallerModelSpec1, smallerModelSpec2]
print('CUDA_VISIBLE_DEVICES: {}'.format(os.environ['CUDA_VISIBLE_DEVICES']))
try:
os.mkdir(datasets.BASE_DATA_FOLDER)
except:pass
try:
os.mkdir(SAVED_MODELS_FOLDER)
except:pass
try:
os.mkdir(MANAGER_FOLDER)
except:pass
manager_path = os.path.join(MANAGER_FOLDER, args.manager+'.tst')
create_new = True
if os.path.exists(manager_path):
create_new = False
Manager = model_manager.ModelManager(manager_path,
args.manager,
create_new_model_manager=create_new)
modelsFolder = os.path.join(SAVED_MODELS_FOLDER, args.data)
# for x in Manager.list_models():
# if Manager.get_num_training_runs(x) >= 1:
# print(x, Manager.load_metadata(x)[1]['predictionAccuracy'][-1])
try:
os.mkdir(modelsFolder)
except:pass
epochsToTrainCIFAR = args.epochs
USE_BATCH_NORM = True
AFFINE_BATCH_NORM = True
if args.data == 'cifar10':
data = datasets.CIFAR10()
elif args.data == 'cifar100':
data = datasets.CIFAR100()
train_loader, test_loader = data.getTrainLoader(args.batch_size), data.getTestLoader(args.batch_size)
# Teacher model
model_name = args.manager+'_%s_teacher'%args.data
teacherModelPath = os.path.join(modelsFolder, model_name)
teacherModel = convForwModel.ConvolForwardNet(**convForwModel.teacherModelSpec,
# teacherModel = convForwModel.ConvolForwardNet(**smallerModelSpec0,
# activation=args.act,
useBatchNorm=USE_BATCH_NORM,
useAffineTransformInBatchNorm=AFFINE_BATCH_NORM)
if USE_CUDA: teacherModel = teacherModel.cuda()
print('Parameters number of teacher model: '+str(sum(p.numel() for p in teacherModel.parameters())))
if not model_name in Manager.saved_models:
Manager.add_new_model(model_name, teacherModelPath,
arguments_creator_function={**convForwModel.teacherModelSpec,
# arguments_creator_function={**smallerModelSpec0,
# 'activation':args.act,
'useBatchNorm':USE_BATCH_NORM,
'useAffineTransformInBatchNorm':AFFINE_BATCH_NORM})
if args.train_teacher:
Manager.train_model(teacherModel, model_name=model_name,
train_function=convForwModel.train_model,
arguments_train_function={'epochs_to_train': epochsToTrainCIFAR,
'initial_learning_rate': args.init_lr,
'plot_path': args.plot_title+model_name},
train_loader=train_loader, test_loader=test_loader)
teacherModel.load_state_dict(Manager.load_model_state_dict(model_name))
# cnn_hf.evaluateModel(teacherModel, test_loader, k=5)
#train normal distilled
model_name = args.manager + '_%s_smaller_distilled_'%args.data + args.stud_act + '_s_' + str(args.stModel) + 'tmp'
if args.train_student:
for numBit in args.numBits:
model_name = model_name + '_distil_quantized{}bits'.format(numBit)
quantized_model_path = os.path.join(modelsFolder, model_name)
quantized_model = convForwModel.ConvolForwardNet(**smallerModelSpecs[args.stModel],
activation=args.stud_act,
numBins=args.num_bins,
useBatchNorm=USE_BATCH_NORM,
useAffineTransformInBatchNorm=AFFINE_BATCH_NORM)
if USE_CUDA: quantized_model = quantized_model.cuda()
print('Parameters number of student model: '+str(sum(p.numel() for p in quantized_model.parameters())))
Manager.remove_model(model_name)
Manager.add_new_model(model_name, quantized_model_path,
arguments_creator_function={**smallerModelSpecs[args.stModel],
'activation':args.stud_act,
'numBins':args.num_bins,
'useBatchNorm':USE_BATCH_NORM,
'useAffineTransformInBatchNorm':AFFINE_BATCH_NORM})
Manager.train_model(quantized_model, model_name=model_name,
train_function=convForwModel.train_model,
arguments_train_function={'epochs_to_train': epochsToTrainCIFAR,
'quantizeWeights':True,
'numBits':numBit,
'bucket_size':256,
'use_distillation_loss': True,
'plot_path': args.plot_title+model_name,
'teacher_model': teacherModel,
'quantize_first_and_last_layer':False},
train_loader=train_loader, test_loader=test_loader)