-
Notifications
You must be signed in to change notification settings - Fork 351
/
Copy pathaudioTranscript_gui.py
388 lines (318 loc) · 14.4 KB
/
audioTranscript_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import sys
import os
import time
import logging
import traceback
import numpy as np
import wavTranscriber
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *
import shlex
import subprocess
# Debug helpers
logging.basicConfig(stream=sys.stderr,
level=logging.DEBUG,
format='%(filename)s - %(funcName)s@%(lineno)d %(name)s:%(levelname)s %(message)s')
class WorkerSignals(QObject):
'''
Defines the signals available from a running worker thread.
Supported signals are:
finished:
No data
error
'tuple' (ecxtype, value, traceback.format_exc())
result
'object' data returned from processing, anything
progress
'object' indicating the transcribed result
'''
finished = pyqtSignal()
error = pyqtSignal(tuple)
result = pyqtSignal(object)
progress = pyqtSignal(object)
class Worker(QRunnable):
'''
Worker Thread
Inherits from QRunnable to handle worker thread setup, signals and wrap-up
@param callback:
The funtion callback to run on this worker thread.
Supplied args and kwargs will be passed through the runner.
@type calllback: function
@param args: Arguments to pass to the callback function
@param kwargs: Keywords to pass to the callback function
'''
def __init__(self, fn, *args, **kwargs):
super(Worker, self).__init__()
# Store the conctructor arguments (re-used for processing)
self.fn = fn
self.args = args
self.kwargs = kwargs
self.signals = WorkerSignals()
# Add the callback to our kwargs
self.kwargs['progress_callback'] = self.signals.progress
@pyqtSlot()
def run(self):
'''
Initialise the runner function with the passed args, kwargs
'''
# Retrieve args/kwargs here; and fire up the processing using them
try:
transcript = self.fn(*self.args, **self.kwargs)
except:
traceback.print_exc()
exctype, value = sys.exc_info()[:2]
self.signals.error.emit((exctype, value, traceback.format_exc()))
else:
# Return the result of the processing
self.signals.result.emit(transcript)
finally:
# Done
self.signals.finished.emit()
class App(QMainWindow):
dirName = ""
def __init__(self):
super().__init__()
self.title = 'Deepspeech Transcriber'
self.left = 10
self.top = 10
self.width = 480
self.height = 400
self.initUI()
def initUI(self):
self.setWindowTitle(self.title)
self.setGeometry(self.left, self.top, self.width, self.height)
layout = QGridLayout()
layout.setSpacing(10)
self.microphone = QRadioButton("Microphone")
self.fileUpload = QRadioButton("File Upload")
self.browseBox = QLineEdit(self, placeholderText="Wave File, Mono @ 16 kHz, 16bit Little-Endian")
self.modelsBox = QLineEdit(self, placeholderText="Directory path for output_graph and scorer")
self.textboxTranscript = QPlainTextEdit(self, placeholderText="Transcription")
self.browseButton = QPushButton('Browse', self)
self.browseButton.setToolTip('Select a wav file')
self.modelsButton = QPushButton('Browse', self)
self.modelsButton.setToolTip('Select deepspeech models folder')
self.transcribeWav = QPushButton('Transcribe Wav', self)
self.transcribeWav.setToolTip('Start Wav Transcription')
self.openMicrophone = QPushButton('Start Speaking', self)
self.openMicrophone.setToolTip('Open Microphone')
layout.addWidget(self.microphone, 0, 1, 1, 2)
layout.addWidget(self.fileUpload, 0, 3, 1, 2)
layout.addWidget(self.browseBox, 1, 0, 1, 4)
layout.addWidget(self.browseButton, 1, 4)
layout.addWidget(self.modelsBox, 2, 0, 1, 4)
layout.addWidget(self.modelsButton, 2, 4)
layout.addWidget(self.transcribeWav, 3, 1, 1, 1)
layout.addWidget(self.openMicrophone, 3, 3, 1, 1)
layout.addWidget(self.textboxTranscript, 5, 0, -1, 0)
w = QWidget()
w.setLayout(layout)
self.setCentralWidget(w)
# Microphone
self.microphone.clicked.connect(self.mic_activate)
# File Upload
self.fileUpload.clicked.connect(self.wav_activate)
# Connect Browse Button to Function on_click
self.browseButton.clicked.connect(self.browse_on_click)
# Connect the Models Button
self.modelsButton.clicked.connect(self.models_on_click)
# Connect Transcription button to threadpool
self.transcribeWav.clicked.connect(self.transcriptionStart_on_click)
# Connect Microphone button to threadpool
self.openMicrophone.clicked.connect(self.openMicrophone_on_click)
self.openMicrophone.setCheckable(True)
self.openMicrophone.toggle()
self.browseButton.setEnabled(False)
self.browseBox.setEnabled(False)
self.modelsBox.setEnabled(False)
self.modelsButton.setEnabled(False)
self.transcribeWav.setEnabled(False)
self.openMicrophone.setEnabled(False)
self.show()
# Setup Threadpool
self.threadpool = QThreadPool()
logging.debug("Multithreading with maximum %d threads" % self.threadpool.maxThreadCount())
@pyqtSlot()
def mic_activate(self):
logging.debug("Enable streaming widgets")
self.en_mic = True
self.browseButton.setEnabled(False)
self.browseBox.setEnabled(False)
self.modelsBox.setEnabled(True)
self.modelsButton.setEnabled(True)
self.transcribeWav.setEnabled(False)
self.openMicrophone.setStyleSheet('QPushButton {background-color: #70cc7c; color: black;}')
self.openMicrophone.setEnabled(True)
@pyqtSlot()
def wav_activate(self):
logging.debug("Enable wav transcription widgets")
self.en_mic = False
self.openMicrophone.setStyleSheet('QPushButton {background-color: #f7f7f7; color: black;}')
self.openMicrophone.setEnabled(False)
self.browseButton.setEnabled(True)
self.browseBox.setEnabled(True)
self.modelsBox.setEnabled(True)
self.modelsButton.setEnabled(True)
@pyqtSlot()
def browse_on_click(self):
logging.debug('Browse button clicked')
options = QFileDialog.Options()
options |= QFileDialog.DontUseNativeDialog
self.fileName, _ = QFileDialog.getOpenFileName(self, "Select wav file to be Transcribed", "","All Files (*.wav)")
if self.fileName:
self.browseBox.setText(self.fileName)
self.transcribeWav.setEnabled(True)
logging.debug(self.fileName)
@pyqtSlot()
def models_on_click(self):
logging.debug('Models Browse Button clicked')
self.dirName = QFileDialog.getExistingDirectory(self, "Select deepspeech models directory")
if self.dirName:
self.modelsBox.setText(self.dirName)
logging.debug(self.dirName)
# Threaded signal passing worker functions
worker = Worker(self.modelWorker, self.dirName)
worker.signals.result.connect(self.modelResult)
worker.signals.finished.connect(self.modelFinish)
worker.signals.progress.connect(self.modelProgress)
# Execute
self.threadpool.start(worker)
else:
logging.critical("*****************************************************")
logging.critical("Model path not specified..")
logging.critical("*****************************************************")
return "Transcription Failed, models path not specified"
def modelWorker(self, dirName, progress_callback):
self.textboxTranscript.setPlainText("Loading Models...")
self.openMicrophone.setStyleSheet('QPushButton {background-color: #f7f7f7; color: black;}')
self.openMicrophone.setEnabled(False)
self.show()
time.sleep(1)
return dirName
def modelProgress(self, s):
# FixMe: Write code to show progress here
pass
def modelResult(self, dirName):
# Fetch and Resolve all the paths of model files
output_graph, scorer = wavTranscriber.resolve_models(dirName)
# Load output_graph, alphabet and scorer
self.model = wavTranscriber.load_model(output_graph, scorer)
def modelFinish(self):
# self.timer.stop()
self.textboxTranscript.setPlainText("Loaded Models, start transcribing")
if self.en_mic is True:
self.openMicrophone.setStyleSheet('QPushButton {background-color: #70cc7c; color: black;}')
self.openMicrophone.setEnabled(True)
self.show()
@pyqtSlot()
def transcriptionStart_on_click(self):
logging.debug('Transcription Start button clicked')
# Clear out older data
self.textboxTranscript.setPlainText("")
self.show()
# Threaded signal passing worker functions
worker = Worker(self.wavWorker, self.fileName)
worker.signals.progress.connect(self.progress)
worker.signals.result.connect(self.transcription)
worker.signals.finished.connect(self.wavFinish)
# Execute
self.threadpool.start(worker)
@pyqtSlot()
def openMicrophone_on_click(self):
logging.debug('Preparing to open microphone...')
# Clear out older data
self.textboxTranscript.setPlainText("")
self.show()
# Threaded signal passing worker functions
# Prepare env for capturing from microphone and offload work to micWorker worker thread
if (not self.openMicrophone.isChecked()):
self.openMicrophone.setStyleSheet('QPushButton {background-color: #C60000; color: black;}')
self.openMicrophone.setText("Stop")
logging.debug("Start Recording pressed")
logging.debug("Preparing for transcription...")
sctx = self.model[0].createStream()
subproc = subprocess.Popen(shlex.split('rec -q -V0 -e signed -L -c 1 -b 16 -r 16k -t raw - gain -2'),
stdout=subprocess.PIPE,
bufsize=0)
self.textboxTranscript.insertPlainText('You can start speaking now\n\n')
self.show()
logging.debug('You can start speaking now')
context = (sctx, subproc, self.model[0])
# Pass the state to streaming worker
worker = Worker(self.micWorker, context)
worker.signals.progress.connect(self.progress)
worker.signals.result.connect(self.transcription)
worker.signals.finished.connect(self.micFinish)
# Execute
self.threadpool.start(worker)
else:
logging.debug("Stop Recording")
'''
Capture the audio stream from the microphone.
The context is prepared by the openMicrophone_on_click()
@param Context: Is a tuple containing three objects
1. Speech samples, sctx
2. subprocess handle
3. Deepspeech model object
'''
def micWorker(self, context, progress_callback):
# Deepspeech Streaming will be run from this method
logging.debug("Recording from your microphone")
while (not self.openMicrophone.isChecked()):
data = context[1].stdout.read(512)
context[0].feedAudioContent(np.frombuffer(data, np.int16))
else:
transcript = context[0].finishStream()
context[1].terminate()
context[1].wait()
self.show()
progress_callback.emit(transcript)
return "\n*********************\nTranscription Done..."
def micFinish(self):
self.openMicrophone.setText("Start Speaking")
self.openMicrophone.setStyleSheet('QPushButton {background-color: #70cc7c; color: black;}')
def transcription(self, out):
logging.debug("%s" % out)
self.textboxTranscript.insertPlainText(out)
self.show()
def wavFinish(self):
logging.debug("File processed")
def progress(self, chunk):
logging.debug("Progress: %s" % chunk)
self.textboxTranscript.insertPlainText(chunk)
self.show()
def wavWorker(self, waveFile, progress_callback):
# Deepspeech will be run from this method
logging.debug("Preparing for transcription...")
inference_time = 0.0
# Run VAD on the input file
segments, sample_rate, audio_length = wavTranscriber.vad_segment_generator(waveFile, 1)
f = open(waveFile.rstrip(".wav") + ".txt", 'w')
logging.debug("Saving Transcript @: %s" % waveFile.rstrip(".wav") + ".txt")
for i, segment in enumerate(segments):
# Run deepspeech on the chunk that just completed VAD
logging.debug("Processing chunk %002d" % (i,))
audio = np.frombuffer(segment, dtype=np.int16)
output = wavTranscriber.stt(self.model[0], audio, sample_rate)
inference_time += output[1]
f.write(output[0] + " ")
progress_callback.emit(output[0] + " ")
# Summary of the files processed
f.close()
# Format pretty, extract filename from the full file path
filename, ext = os.path.split(os.path.basename(waveFile))
title_names = ['Filename', 'Duration(s)', 'Inference Time(s)', 'Model Load Time(s)', 'Scorer Load Time(s)']
logging.debug("************************************************************************************************************")
logging.debug("%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
logging.debug("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, self.model[1], self.model[2]))
logging.debug("************************************************************************************************************")
print("\n%-30s %-20s %-20s %-20s %s" % (title_names[0], title_names[1], title_names[2], title_names[3], title_names[4]))
print("%-30s %-20.3f %-20.3f %-20.3f %-0.3f" % (filename + ext, audio_length, inference_time, self.model[1], self.model[2]))
return "\n*********************\nTranscription Done..."
def main(args):
app = QApplication(sys.argv)
w = App()
sys.exit(app.exec_())
if __name__ == '__main__':
main(sys.argv[1:])