-
Notifications
You must be signed in to change notification settings - Fork 4k
/
Copy pathimport_fisher.py
executable file
·284 lines (235 loc) · 9.83 KB
/
import_fisher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python
import codecs
import fnmatch
import os
import random
import subprocess
import sys
import unicodedata
import librosa
import pandas
import soundfile # <= Has an external dependency on libsndfile
from deepspeech_training.util.importers import validate_label_eng as validate_label
# Prerequisite: Having the sph2pipe tool in your PATH:
# https://www.ldc.upenn.edu/language-resources/tools/sphere-conversion-tools
def _download_and_preprocess_data(data_dir):
# Assume data_dir contains extracted LDC2004S13, LDC2004T19, LDC2005S13, LDC2005T19
# Conditionally convert Fisher sph data to wav
_maybe_convert_wav(data_dir, "LDC2004S13", "fisher-2004-wav")
_maybe_convert_wav(data_dir, "LDC2005S13", "fisher-2005-wav")
# Conditionally split Fisher wav data
all_2004 = _split_wav_and_sentences(
data_dir,
original_data="fisher-2004-wav",
converted_data="fisher-2004-split-wav",
trans_data=os.path.join("LDC2004T19", "fe_03_p1_tran", "data", "trans"),
)
all_2005 = _split_wav_and_sentences(
data_dir,
original_data="fisher-2005-wav",
converted_data="fisher-2005-split-wav",
trans_data=os.path.join("LDC2005T19", "fe_03_p2_tran", "data", "trans"),
)
# The following files have incorrect transcripts that are much longer than
# their audio source. The result is that we end up with more labels than time
# slices, which breaks CTC.
all_2004.loc[
all_2004["wav_filename"].str.endswith("fe_03_00265-33.53-33.81.wav"),
"transcript",
] = "correct"
all_2004.loc[
all_2004["wav_filename"].str.endswith("fe_03_00991-527.39-528.3.wav"),
"transcript",
] = "that's one of those"
all_2005.loc[
all_2005["wav_filename"].str.endswith("fe_03_10282-344.42-344.84.wav"),
"transcript",
] = "they don't want"
all_2005.loc[
all_2005["wav_filename"].str.endswith("fe_03_10677-101.04-106.41.wav"),
"transcript",
] = "uh my mine yeah the german shepherd pitbull mix he snores almost as loud as i do"
# The following file is just a short sound and not at all transcribed like provided.
# So we just exclude it.
all_2004 = all_2004[
~all_2004["wav_filename"].str.endswith("fe_03_00027-393.8-394.05.wav")
]
# The following file is far too long and would ruin our training batch size.
# So we just exclude it.
all_2005 = all_2005[
~all_2005["wav_filename"].str.endswith("fe_03_11487-31.09-234.06.wav")
]
# The following file is too large for its transcript, so we just exclude it.
all_2004 = all_2004[
~all_2004["wav_filename"].str.endswith("fe_03_01326-307.42-307.93.wav")
]
# Conditionally split Fisher data into train/validation/test sets
train_2004, dev_2004, test_2004 = _split_sets(all_2004)
train_2005, dev_2005, test_2005 = _split_sets(all_2005)
# Join 2004 and 2005 data
train_files = train_2004.append(train_2005)
dev_files = dev_2004.append(dev_2005)
test_files = test_2004.append(test_2005)
# Write sets to disk as CSV files
train_files.to_csv(os.path.join(data_dir, "fisher-train.csv"), index=False)
dev_files.to_csv(os.path.join(data_dir, "fisher-dev.csv"), index=False)
test_files.to_csv(os.path.join(data_dir, "fisher-test.csv"), index=False)
def _maybe_convert_wav(data_dir, original_data, converted_data):
source_dir = os.path.join(data_dir, original_data)
target_dir = os.path.join(data_dir, converted_data)
# Conditionally convert sph files to wav files
if os.path.exists(target_dir):
print("skipping maybe_convert_wav")
return
# Create target_dir
os.makedirs(target_dir)
# Loop over sph files in source_dir and convert each to 16-bit PCM wav
for root, dirnames, filenames in os.walk(source_dir):
for filename in fnmatch.filter(filenames, "*.sph"):
sph_file = os.path.join(root, filename)
for channel in ["1", "2"]:
wav_filename = (
os.path.splitext(os.path.basename(sph_file))[0]
+ "_c"
+ channel
+ ".wav"
)
wav_file = os.path.join(target_dir, wav_filename)
print("converting {} to {}".format(sph_file, wav_file))
subprocess.check_call(
["sph2pipe", "-c", channel, "-p", "-f", "rif", sph_file, wav_file]
)
def _parse_transcriptions(trans_file):
segments = []
with codecs.open(trans_file, "r", "utf-8") as fin:
for line in fin:
if line.startswith("#") or len(line) <= 1:
continue
tokens = line.split()
start_time = float(tokens[0])
stop_time = float(tokens[1])
speaker = tokens[2]
transcript = " ".join(tokens[3:])
# We need to do the encode-decode dance here because encode
# returns a bytes() object on Python 3, and text_to_char_array
# expects a string.
transcript = (
unicodedata.normalize("NFKD", transcript)
.encode("ascii", "ignore")
.decode("ascii", "ignore")
)
segments.append(
{
"start_time": start_time,
"stop_time": stop_time,
"speaker": speaker,
"transcript": transcript,
}
)
return segments
def _split_wav_and_sentences(data_dir, trans_data, original_data, converted_data):
trans_dir = os.path.join(data_dir, trans_data)
source_dir = os.path.join(data_dir, original_data)
target_dir = os.path.join(data_dir, converted_data)
if not os.path.exists(target_dir):
os.makedirs(target_dir)
files = []
# Loop over transcription files and split corresponding wav
for root, dirnames, filenames in os.walk(trans_dir):
for filename in fnmatch.filter(filenames, "*.txt"):
trans_file = os.path.join(root, filename)
segments = _parse_transcriptions(trans_file)
# Open wav corresponding to transcription file
wav_filenames = [
os.path.splitext(os.path.basename(trans_file))[0]
+ "_c"
+ channel
+ ".wav"
for channel in ["1", "2"]
]
wav_files = [
os.path.join(source_dir, wav_filename) for wav_filename in wav_filenames
]
print("splitting {} according to {}".format(wav_files, trans_file))
origAudios = [
librosa.load(wav_file, sr=16000, mono=False) for wav_file in wav_files
]
# Loop over segments and split wav_file for each segment
for segment in segments:
# Create wav segment filename
start_time = segment["start_time"]
stop_time = segment["stop_time"]
new_wav_filename = (
os.path.splitext(os.path.basename(trans_file))[0]
+ "-"
+ str(start_time)
+ "-"
+ str(stop_time)
+ ".wav"
)
new_wav_file = os.path.join(target_dir, new_wav_filename)
channel = 0 if segment["speaker"] == "A:" else 1
_split_and_resample_wav(
origAudios[channel], start_time, stop_time, new_wav_file
)
new_wav_filesize = os.path.getsize(new_wav_file)
transcript = validate_label(segment["transcript"])
if transcript != None:
files.append(
(os.path.abspath(new_wav_file), new_wav_filesize, transcript)
)
return pandas.DataFrame(
data=files, columns=["wav_filename", "wav_filesize", "transcript"]
)
def _split_audio(origAudio, start_time, stop_time):
audioData, frameRate = origAudio
nChannels = len(audioData.shape)
startIndex = int(start_time * frameRate)
stopIndex = int(stop_time * frameRate)
return (
audioData[startIndex:stopIndex]
if 1 == nChannels
else audioData[:, startIndex:stopIndex]
)
def _split_and_resample_wav(origAudio, start_time, stop_time, new_wav_file):
frameRate = origAudio[1]
chunkData = _split_audio(origAudio, start_time, stop_time)
soundfile.write(new_wav_file, chunkData, frameRate, "PCM_16")
def _split_sets(filelist):
"""
randomply split the datasets into train, validation, and test sets where the size of the
validation and test sets are determined by the `get_sample_size` function.
"""
random.shuffle(filelist)
sample_size = get_sample_size(len(filelist))
train_beg = 0
train_end = len(filelist) - 2 * sample_size
dev_beg = train_end
dev_end = train_end + sample_size
test_beg = dev_end
test_end = len(filelist)
return (
filelist[train_beg:train_end],
filelist[dev_beg:dev_end],
filelist[test_beg:test_end],
)
def get_sample_size(population_size):
"""calculates the sample size for a 99% confidence and 1% margin of error
"""
margin_of_error = 0.01
fraction_picking = 0.50
z_score = 2.58 # Corresponds to confidence level 99%
numerator = (z_score ** 2 * fraction_picking * (1 - fraction_picking)) / (
margin_of_error ** 2
)
sample_size = 0
for train_size in range(population_size, 0, -1):
denominator = 1 + (z_score ** 2 * fraction_picking * (1 - fraction_picking)) / (
margin_of_error ** 2 * train_size
)
sample_size = int(numerator / denominator)
if 2 * sample_size + train_size <= population_size:
break
return sample_size
if __name__ == "__main__":
_download_and_preprocess_data(sys.argv[1])