-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_mapping.py
333 lines (274 loc) · 14.4 KB
/
train_mapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import math
from datetime import datetime
import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
from plyfile import PlyData, PlyElement
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(BASE_DIR) # model
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import tf_util
import part_dataset
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--log_dir', default='log_mapping_3losses', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1000, help='Point Number [default: 1000]')
parser.add_argument('--max_epoch', type=int, default=2501, help='Epoch to run [default: 201]')
parser.add_argument('--best_edge_ae_epoch', type=int, default=49, help='Epoch to run [default: 201]')
parser.add_argument('--best_shape_ae_epoch', type=int, default=23, help='Epoch to run [default: 201]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=466*32*200, help='Decay step for lr decay [default: 200000]')# 1000000
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--no_rotation', action='store_true', help='Disable random rotation during training.')
FLAGS = parser.parse_args()
EPOCH_CNT = 0
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module("model_edge_ae") # import network module
MODEL2 = importlib.import_module("model_shape_ae") # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'model_edge_ae.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.1
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP =466*32*200
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
DATA_PATH = "data/sliced"
EDGES_PATH = "data/template.ply"
TRAIN_DATASET = part_dataset.Dataset(root=DATA_PATH, npoints=NUM_POINT, split='train',edges= EDGES_PATH)
TEST_DATASET = part_dataset.Dataset(root=DATA_PATH, npoints=NUM_POINT, split='val',edges=EDGES_PATH)
MODEL_PATH = "log_edge_ae/best_model_epoch_{:03d}.ckpt".format(FLAGS.best_edge_ae_epoch)
MODEL_PATH2 = "log_shape_ae/best_model_epoch_{:03d}.ckpt".format(FLAGS.best_shape_ae_epoch)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate_base = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate_base, 0.000001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay =tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default() as g:
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
is_training_false = tf.constant(False)
latent_pl = tf.placeholder(tf.float32, shape=(1, 256))
print(is_training_pl)
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
def to_pc_translator(net):
net = tf_util.fully_connected(net, 256, bn=False, is_training=is_training_pl, scope='to_pc_1', bn_decay=None)
net = tf_util.fully_connected(net, 256, bn=False, is_training=is_training_pl, scope='to_pc_2', bn_decay=None)
net = tf_util.fully_connected(net, 256, activation_fn=None, scope='to_pc_3')
return net
def to_edge_translator(net):
net = tf_util.fully_connected(net, 256, bn=False, is_training=is_training_pl, scope='to_edge_1', bn_decay=None)
net = tf_util.fully_connected(net, 256, bn=False, is_training=is_training_pl, scope='to_edge_2', bn_decay=None)
net = tf_util.fully_connected(net, 256, activation_fn=None, scope='to_edge_3')
return net
plydata = PlyData.read(EDGES_PATH)
faces = plydata['face']
faces = np.array([faces[i][0] for i in range(faces.count)])
# cycle through shape_ae from edge_ae
with tf.variable_scope("edge_ae"):
label_edge_lengths = MODEL.compute_edge_lengths(labels_pl, faces)
end_points = {}
latent_repr_edge = MODEL.get_fc_encoder(tf.expand_dims(label_edge_lengths, -1), is_training_false, None, label_edge_lengths.shape[1],32, end_points)
with tf.variable_scope("to_pc"):
from_edge_latent0= to_pc_translator(latent_repr_edge)
with tf.variable_scope("to_edge"):
from_pc_latent0 = to_edge_translator(from_edge_latent0)
with tf.variable_scope("edge_ae"):
edge_pred = MODEL.get_decoder(from_pc_latent0, is_training_false, None, label_edge_lengths.shape[1], BATCH_SIZE)
# cycle through edge_ae from shape_ae
with tf.variable_scope("reconstruction_pc"):
latent_repr_pc = MODEL2.get_encoder(tf.expand_dims(labels_pl, -1), 3, is_training_false, None, NUM_POINT,32, end_points)
with tf.variable_scope("to_edge"):
from_pc_latent1 = to_edge_translator(latent_repr_pc)
with tf.variable_scope("to_pc"):
from_edge_latent1 = to_pc_translator(from_pc_latent1)
with tf.variable_scope("reconstruction_pc"):
pc_recons = MODEL2.get_decoder(from_edge_latent1, is_training_false, None, NUM_POINT, BATCH_SIZE)
edge_pc = MODEL.compute_edge_lengths(pc_recons, faces)
diff_pc = tf.reduce_mean(tf.square(pc_recons - MODEL2.ICP(labels_pl, pc_recons, NUM_POINT)))
diff_edge_from_pc = tf.reduce_mean(tf.square(label_edge_lengths - edge_pc))
diff_edge = tf.reduce_mean(tf.square(label_edge_lengths - edge_pred))
recons_loss_alpha = 100.0
diff_edge_alpha = 800.0
diff_edge_from_pc_alpha = 2000.0
tf.summary.scalar('recons_pc', diff_pc)
tf.summary.scalar('recons_pc_alpha', diff_pc*recons_loss_alpha)
tf.summary.scalar('recons_edge', diff_edge)
tf.summary.scalar('recons_edge_alpha', diff_edge_alpha*diff_edge)
tf.summary.scalar('recons_edge_from_pc', diff_edge_from_pc)
tf.summary.scalar('recons_edge_from_pc_alpha', diff_edge_from_pc*diff_edge_from_pc_alpha)
print("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
# loss map 1 edge
#total_loss = diff_edge_alpha*diff_edge +diff_edge_from_pc*diff_edge_from_pc_alpha
# loss map 1 pc
#total_loss = diff_edge_alpha*diff_edge +diff_pc*recons_loss_alpha
# loss map 1 pc + edge
total_loss = diff_edge_alpha*diff_edge +diff_pc*recons_loss_alpha +diff_edge_from_pc*diff_edge_from_pc_alpha
tf.summary.scalar("total_loss",total_loss)
pc_var = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='reconstruction_pc')
edge_var = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='edge_ae')
saver_pretrain_edge= tf.train.Saver(var_list = edge_var)
saver_pretrain_pc= tf.train.Saver(var_list = pc_var)
update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS)
trans_var = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='to_pc')+ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='to_edge')
with tf.control_dependencies(update_ops):
init_op = optimizer.minimize(total_loss, global_step=batch,var_list = trans_var)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
saver_pretrain_edge.restore(sess, MODEL_PATH)
saver_pretrain_pc.restore(sess, MODEL_PATH2)
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'init_op': init_op,
'total_loss':total_loss,
'merged': merged,
'step': batch,
'end_points': end_points
}
best_loss = 1e20
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer,ops['init_op'])
epoch_loss = eval_one_epoch(sess, ops, test_writer)
if epoch_loss < best_loss:
best_loss = epoch_loss
save_path = saver.save(sess, os.path.join(LOG_DIR, "best_model_epoch_%03d.ckpt"%(epoch)))
log_string("Model saved in file: %s" % save_path)
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
def get_batch(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_data = np.zeros((bsize, NUM_POINT, 3))
batch_data_shuffled = np.zeros((bsize, NUM_POINT, 3))
for i in range(bsize):
ps_shuffled,ps = dataset[idxs[i+start_idx]]
batch_data[i,...] = ps
batch_data_shuffled[i,...] = ps_shuffled
return batch_data_shuffled,batch_data
def train_one_epoch(sess, ops, train_writer, train_op):
""" ops: dict mapping from string to tf ops """
is_training = False
# Shuffle train samples
train_idxs = np.arange(0, len(TRAIN_DATASET))
np.random.shuffle(train_idxs)
num_batches = len(TRAIN_DATASET)//BATCH_SIZE
log_string(str(datetime.now()))
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data_shuffled,batch_data = get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx)
# Augment batched point clouds by rotation
if FLAGS.no_rotation:
aug_data = batch_data_shuffled
aug_data_unshuffled = batch_data
else:
aug_data, aug_data_unshuffled = part_dataset.rotate_point_cloud(batch_data_shuffled, batch_data )
feed_dict = {ops['pointclouds_pl']: aug_data,
ops['labels_pl']: aug_data_unshuffled,
ops['is_training_pl']: is_training,
}
summary, step, _, total_loss_val, = sess.run([ops['merged'], ops['step'],train_op, ops['total_loss']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
loss_sum+=total_loss_val
if (batch_idx+1)%10 == 0:
log_string(' -- %03d / %03d --' % (batch_idx+1, num_batches))
log_string('mean loss: %f' % (loss_sum / 10))
loss_sum = 0
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_DATASET))
num_batches = len(TEST_DATASET)//BATCH_SIZE
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data_shuffled, batch_data = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx)
feed_dict = {ops['pointclouds_pl']: batch_data_shuffled,
ops['labels_pl']: batch_data,
ops['is_training_pl']: is_training}
summary, step, loss_val = sess.run([ops['merged'], ops['step'],
ops['total_loss']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
#print('iso loss val {}'.format(iso_loss_val))
loss_sum += loss_val
log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
EPOCH_CNT += 1
return loss_sum/float(num_batches)
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()