forked from vansky/neural-complexity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
412 lines (385 loc) · 18.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
""" Module for handling data files """
import gzip
import os
import torch
import re
re_sentend = re.compile(r'(?<!\b[A-Z]\.)(?<!\b[Mm]rs\.)(?<!\b[MmDdSsJj]r\.)(?<=[\.\?\!])[ \n\t](?!["\'])|(?<!\b[A-Z]\.)(?<!\b[Mm]rs\.)(?<!\b[MmDdSsJj]r\.)(?<=[\.\?\!] ["\'])[ \n\t]+')
def sent_tokenize(instr):
return(re.split(re_sentend,instr))
def isfloat(instr):
""" Reports whether a string is floatable """
try:
_ = float(instr)
return(True)
except:
return(False)
class Dictionary(object):
""" Maps between observations and indices """
def __init__(self):
self.word2idx = {}
self.idx2word = []
def add_word(self, word):
""" Adds a new obs to the dictionary if needed """
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
class SentenceCorpus(object):
""" Loads train/dev/test corpora and dictionary """
def __init__(self, path, vocab_file, test_flag=False, interact_flag=False,
checkpoint_flag=False, predefined_vocab_flag=False, lower_flag=False,
collapse_nums_flag=False,multisentence_test_flag=False,generate_flag=False,
trainfname='train.txt',
validfname='valid.txt',
testfname='test.txt'):
self.lower = lower_flag
self.collapse_nums = collapse_nums_flag
if not (test_flag or interact_flag or checkpoint_flag or predefined_vocab_flag or generate_flag):
# training mode
self.dictionary = Dictionary()
self.train = self.tokenize(os.path.join(path, trainfname))
self.valid = self.tokenize_with_unks(os.path.join(path, validfname))
try:
# don't require a test set at train time,
# but if there is one, get a sense of whether unks will be required
self.test = self.tokenize_with_unks(os.path.join(path, testfname))
except:
pass
self.save_dict(vocab_file)
else:
# load pretrained model
if vocab_file[-3:] == 'bin':
self.load_dict(vocab_file)
else:
self.dictionary = Dictionary()
self.load_dict(vocab_file)
if test_flag:
# test mode
if multisentence_test_flag:
self.test = self.tokenize_with_unks(os.path.join(path, testfname))
else:
self.test = self.sent_tokenize_with_unks(os.path.join(path, testfname))
elif checkpoint_flag or predefined_vocab_flag:
# load from a checkpoint
self.train = self.tokenize_with_unks(os.path.join(path, trainfname))
self.valid = self.tokenize_with_unks(os.path.join(path, validfname))
def save_dict(self, path):
""" Saves dictionary to disk """
if path[-3:] == 'bin':
# This check actually seems to be faster than passing in a binary flag
# Assume dict is binarized
import dill
with open(path, 'wb') as file_handle:
torch.save(self.dictionary, file_handle, pickle_module=dill)
else:
# Assume dict is plaintext
with open(path, 'w') as file_handle:
for word in self.dictionary.idx2word:
file_handle.write(word+'\n')
def load_dict(self, path):
""" Loads dictionary from disk """
assert os.path.exists(path), "Bad path: %s" % path
if path[-3:] == 'bin':
# This check actually seems to be faster than passing in a binary flag
# Assume dict is binarized
import dill
with open(path, 'rb') as file_handle:
fdata = torch.load(file_handle, pickle_module=dill)
if isinstance(fdata, tuple):
# Compatibility with old pytorch LM saving
self.dictionary = fdata[3]
self.dictionary = fdata
else:
# Assume dict is plaintext
with open(path, 'r') as file_handle:
for line in file_handle:
self.dictionary.add_word(line.strip())
def tokenize(self, path):
""" Tokenizes a text file. """
assert os.path.exists(path), "Bad path: %s" % path
# Add words to the dictionary
if path[-2:] == 'gz':
with gzip.open(path, 'rb') as file_handle:
tokens = 0
first_flag = True
for fchunk in file_handle.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
if self.lower:
for word in words:
if isfloat(word) and self.collapse_nums:
self.dictionary.add_word('<num>')
else:
self.dictionary.add_word(word.lower())
else:
for word in words:
if isfloat(word) and self.collapse_nums:
self.dictionary.add_word('<num>')
else:
self.dictionary.add_word(word)
# Tokenize file content
with gzip.open(path, 'rb') as file_handle:
ids = torch.IntTensor(tokens)
token = 0
first_flag = True
for fchunk in file_handle.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
if self.lower:
for word in words:
if isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.add_word(word.lower())
token += 1
else:
for word in words:
if isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.add_word(word)
token += 1
else:
with open(path, 'r') as file_handle:
tokens = 0
first_flag = True
for fchunk in file_handle:
for line in sent_tokenize(fchunk):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
if self.lower:
for word in words:
if isfloat(word) and self.collapse_nums:
self.dictionary.add_word('<num>')
else:
self.dictionary.add_word(word.lower())
else:
for word in words:
if isfloat(word) and self.collapse_nums:
self.dictionary.add_word('<num>')
else:
self.dictionary.add_word(word)
# Tokenize file content
with open(path, 'r') as file_handle:
ids = torch.IntTensor(tokens)
token = 0
first_flag = True
for fchunk in file_handle:
for line in sent_tokenize(fchunk):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
if self.lower:
for word in words:
if isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.add_word(word.lower())
token += 1
else:
for word in words:
if isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.add_word(word)
token += 1
return ids
def tokenize_with_unks(self, path):
""" Tokenizes a text file, adding unks if needed. """
assert os.path.exists(path), "Bad path: %s" % path
if path[-2:] == 'gz':
# Determine the length of the corpus
with gzip.open(path, 'rb') as file_handle:
tokens = 0
first_flag = True
for fchunk in file_handle.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
# Tokenize file content
with gzip.open(path, 'rb') as file_handle:
ids = torch.IntTensor(tokens)
token = 0
first_flag = True
for fchunk in file_handle.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
if self.lower:
for word in words:
# Convert OOV to <unk>
if word.lower() not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
elif isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.word2idx[word.lower()]
token += 1
else:
for word in words:
# Convert OOV to <unk>
if word not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
elif isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.word2idx[word]
token += 1
else:
# Determine the length of the corpus
with open(path, 'r') as file_handle:
tokens = 0
first_flag = True
print(file_handle)
for fchunk in file_handle:
for line in sent_tokenize(fchunk):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
# Tokenize file content
with open(path, 'r') as file_handle:
ids = torch.IntTensor(tokens)
token = 0
first_flag = True
for fchunk in file_handle:
for line in sent_tokenize(fchunk):
if line.strip() == '':
# Ignore blank lines
continue
if first_flag:
words = ['<eos>'] + line.split() + ['<eos>']
first_flag = False
else:
words = line.split() + ['<eos>']
if self.lower:
for word in words:
# Convert OOV to <unk>
if word.lower() not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
elif isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.word2idx[word.lower()]
token += 1
else:
for word in words:
# Convert OOV to <unk>
if word not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
elif isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.word2idx[word]
token += 1
return ids
def sent_tokenize_with_unks(self, path):
""" Tokenizes a text file into sentences, adding unks if needed. """
assert os.path.exists(path), "Bad path: %s" % path
all_ids = []
sents = []
if path[-2:] == 'gz':
with gzip.open(path, 'rb') as file_handle:
for fchunk in file_handle.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if line.strip() == '':
# Ignore blank lines
continue
sents.append(line.strip())
words = ['<eos>'] + line.split() + ['<eos>']
ids = self.convert_to_ids(words)
all_ids.append(ids)
else:
with open(path, 'r') as file_handle:
for fchunk in file_handle:
for line in sent_tokenize(fchunk):
if line.strip() == '':
# Ignore blank lines
continue
sents.append(line.strip())
words = ['<eos>'] + line.split() + ['<eos>']
ids = self.convert_to_ids(words)
all_ids.append(ids)
return (sents, all_ids)
def online_tokenize_with_unks(self, line):
""" Tokenizes an input sentence, adding unks if needed. """
all_ids = []
sents = [line.strip()]
words = ['<eos>'] + line.strip().split() + ['<eos>']
ids = self.convert_to_ids(words)
all_ids.append(ids)
return (sents, all_ids)
def convert_to_ids(self, words, tokens=None):
if tokens is None:
tokens = len(words)
# Tokenize file content
ids = torch.IntTensor(tokens)
token = 0
if self.lower:
for word in words:
# Convert OOV to <unk>
if word.lower() not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
elif isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.word2idx[word.lower()]
token += 1
else:
for word in words:
# Convert OOV to <unk>
if word not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
elif isfloat(word) and '<num>' in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<num>")
else:
ids[token] = self.dictionary.word2idx[word]
token += 1
return(ids)