This repository has been archived by the owner on Feb 2, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 37
/
mfcc_rev.py
228 lines (199 loc) · 7.92 KB
/
mfcc_rev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2006 Carnegie Mellon University
#
# You may copy and modify this freely under the same terms as
# Sphinx-III
#
# Source : http://www.cs.cmu.edu/%7Edhuggins/Projects/pyphone/sphinx/mfcc.py
#
# Plus snippet from main repository and some fixes
"""Compute MFCC coefficients.
This module provides functions for computing MFCC (mel-frequency
cepstral coefficients) as used in the Sphinx speech recognition
system.
"""
__author__ = "David Huggins-Daines <dhuggins@cs.cmu.edu>"
__version__ = "$Revision$"
import numpy, numpy.fft
import math
def mel(f):
return 2595. * numpy.log10(1. + f / 700.)
def melinv(m):
return 700. * (numpy.power(10., m / 2595.) - 1.)
class MFCC(object):
def __init__(self, nfilt=40, ncep=13,
lowerf=133.3333, upperf=6855.4976, alpha=0.97,
samprate=16000, frate=100, wlen=0.0256,
nfft=512):
# Store parameters
self.lowerf = lowerf
self.upperf = upperf
self.nfft = nfft
self.ncep = ncep
self.nfilt = nfilt
self.frate = frate
self.samprate = samprate
self.fshift = float(samprate) / frate
# Build Hamming window
self.wlen = int(wlen * samprate)
self.win = numpy.hamming(self.wlen)
# Prior sample for pre-emphasis
self.prior = 0
self.alpha = alpha
# Build mel filter matrix
self.filters = numpy.zeros((nfft/2+1,nfilt), 'd')
dfreq = float(samprate) / nfft
if upperf > samprate/2:
raise(Exception,
"Upper frequency %f exceeds Nyquist %f" % (upperf, samprate/2))
melmax = mel(upperf)
melmin = mel(lowerf)
dmelbw = (melmax - melmin) / (nfilt + 1)
# Filter edges, in Hz
filt_edge = melinv(melmin + dmelbw * numpy.arange(nfilt + 2, dtype='d'))
for whichfilt in range(0, nfilt):
# Filter triangles, in DFT points
leftfr = round(filt_edge[whichfilt] / dfreq)
centerfr = round(filt_edge[whichfilt + 1] / dfreq)
rightfr = round(filt_edge[whichfilt + 2] / dfreq)
# For some reason this is calculated in Hz, though I think
# it doesn't really matter
fwidth = (rightfr - leftfr) * dfreq
height = 2. / fwidth
if centerfr != leftfr:
leftslope = height / (centerfr - leftfr)
else:
leftslope = 0
freq = int(leftfr + 1)
while freq < centerfr:
self.filters[freq,whichfilt] = (freq - leftfr) * leftslope
freq = freq + 1
if freq == centerfr: # This is always true
self.filters[freq,whichfilt] = height
freq = freq + 1
if centerfr != rightfr:
rightslope = height / (centerfr - rightfr)
while freq < rightfr:
self.filters[freq,whichfilt] = (freq - rightfr) * rightslope
freq = freq + 1
# print("Filter %d: left %d=%f center %d=%f right %d=%f width %d" %
# (whichfilt,
# leftfr, leftfr*dfreq,
# centerfr, centerfr*dfreq,
# rightfr, rightfr*dfreq,
# freq - leftfr))
# print self.filters[leftfr:rightfr,whichfilt]
# Build DCT matrix
self.s2dct = s2dctmat(nfilt, ncep, 1./nfilt)
self.dct = dctmat(nfilt, ncep, numpy.pi/nfilt)
def sig2s2mfc(self, sig):
nfr = int(len(sig) / self.fshift + 1)
mfcc = numpy.zeros((nfr, self.ncep), 'd')
fr = 0
while fr < nfr:
start = round(fr * self.fshift)
end = min(len(sig), start + self.wlen)
frame = sig[start:end]
if len(frame) < self.wlen:
frame = numpy.resize(frame,self.wlen)
frame[self.wlen:] = 0
mfcc[fr] = self.frame2s2mfc(frame)
fr = fr + 1
return mfcc
def sig2s2mfc_energy(self, sig):
nfr = int(len(sig) / self.fshift + 1)
mfcc = numpy.zeros((nfr, self.ncep + 2), 'd')
fr = 0
while fr < nfr:
start = int(round(fr * self.fshift))
end = min(len(sig), start + self.wlen)
frame = sig[start:end]
if len(frame) < self.wlen:
frame = numpy.resize(frame,self.wlen)
frame[self.wlen:] = 0
mfcc[fr,:-2] = self.frame2s2mfc(frame)
mfcc[fr, -2] = math.log(1 + numpy.mean(numpy.power(frame.astype(float), 2)))
mid = 0.5 * (start + end - 1)
mfcc[fr, -1] = mid / self.samprate
fr = fr + 1
return mfcc
def sig2logspec(self, sig):
nfr = int(len(sig) / self.fshift + 1)
mfcc = numpy.zeros((nfr, self.nfilt), 'd')
fr = 0
while fr < nfr:
start = round(fr * self.fshift)
end = min(len(sig), start + self.wlen)
frame = sig[start:end]
if len(frame) < self.wlen:
frame = numpy.resize(frame,self.wlen)
frame[self.wlen:] = 0
mfcc[fr] = self.frame2logspec(frame)
fr = fr + 1
return mfcc
def pre_emphasis(self, frame):
# FIXME: Do this with matrix multiplication
outfr = numpy.empty(len(frame), 'd')
outfr[0] = frame[0] - self.alpha * self.prior
for i in range(1,len(frame)):
outfr[i] = frame[i] - self.alpha * frame[i-1]
self.prior = frame[-1]
return outfr
def frame2logspec(self, frame):
frame = self.pre_emphasis(frame) * self.win
fft = numpy.fft.rfft(frame, self.nfft)
# Square of absolute value
power = fft.real * fft.real + fft.imag * fft.imag
return numpy.log(numpy.dot(power, self.filters).clip(1e-5,numpy.inf))
def frame2s2mfc(self, frame):
logspec = self.frame2logspec(frame)
return numpy.dot(logspec, self.s2dct.T) / self.nfilt
def s2dctmat(nfilt,ncep,freqstep):
"""Return the 'legacy' not-quite-DCT matrix used by Sphinx"""
melcos = numpy.empty((ncep, nfilt), 'double')
for i in range(0,ncep):
freq = numpy.pi * float(i) / nfilt
melcos[i] = numpy.cos(freq * numpy.arange(0.5, float(nfilt)+0.5, 1.0, 'double'))
melcos[:,0] = melcos[:,0] * 0.5
return melcos
def logspec2s2mfc(logspec, ncep=13):
"""Convert log-power-spectrum bins to MFCC using the 'legacy'
Sphinx transform"""
nframes, nfilt = logspec.shape
melcos = s2dctmat(nfilt, ncep, 1./nfilt)
return numpy.dot(logspec, melcos.T) / nfilt
def dctmat(N,K,freqstep,orthogonalize=True):
"""Return the orthogonal DCT-II/DCT-III matrix of size NxK.
For computing or inverting MFCCs, N is the number of
log-power-spectrum bins while K is the number of cepstra."""
cosmat = numpy.zeros((N, K), 'double')
for n in range(0,N):
for k in range(0, K):
cosmat[n,k] = numpy.cos(freqstep * (n + 0.5) * k)
if orthogonalize:
cosmat[:,0] = cosmat[:,0] * 1./numpy.sqrt(2)
return cosmat
def dct(input, K=13):
"""Convert log-power-spectrum to MFCC using the orthogonal DCT-II"""
nframes, N = input.shape
freqstep = numpy.pi / N
cosmat = dctmat(N,K,freqstep)
return numpy.dot(input, cosmat) * numpy.sqrt(2.0 / N)
def dct2(input, K=13):
"""Convert log-power-spectrum to MFCC using the normalized DCT-II"""
nframes, N = input.shape
freqstep = numpy.pi / N
cosmat = dctmat(N,K,freqstep,False)
return numpy.dot(input, cosmat) * (2.0 / N)
def idct(input, K=40):
"""Convert MFCC to log-power-spectrum using the orthogonal DCT-III"""
nframes, N = input.shape
freqstep = numpy.pi / K
cosmat = dctmat(K,N,freqstep).T
return numpy.dot(input, cosmat) * numpy.sqrt(2.0 / K)
def dct3(input, K=40):
"""Convert MFCC to log-power-spectrum using the unnormalized DCT-III"""
nframes, N = input.shape
freqstep = numpy.pi / K
cosmat = dctmat(K,N,freqstep,False)
cosmat[:,0] = cosmat[:,0] * 0.5
return numpy.dot(input, cosmat.T)