-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_methods.m
executable file
·605 lines (477 loc) · 25.1 KB
/
eval_methods.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
% evaluate methods to solve the Burgers equation
% Volterra polynomial vs. fractional steps method
%
% author: Martin F. Schiffner
% date: 2009-04-14
% modified: 2020-05-11
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% clear workspace
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
close all;
clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% physical parameters (distilled water, atmospheric pressure, 20 °C)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% independent
%--------------------------------------------------------------------------
mu = 1.002 * 10^-3; % shear viscosity (Pa s) (from "Acoustics" by A. D. Pierce, p. 514)
mu_B_over_mu = 2.9; % bulk viscosity over shear viscosity 3.0 - 2.7 (1) (from "Acoustics" by A. D. Pierce, p. 553)
c_0 = 1482.87; % small-signal sound speed (m / s) (?) (from http://www.springerlink.com/content/v04n231880311050/fulltext.pdf)
rho_0 = 998; % ambient mass density (kg / m^3) (?) (from http://www.efunda.com/materials/common_matl/show_liquid.cfm?matlname=waterdistilled4c)
B_over_A = 5.0; % measure of nonlinear effects (1) (from "Nonlinear Acoustics" by Mark F. Hamilton, p. 34)
beta = 1 + B_over_A / 2; % coefficient of nonlinearity (1)
gamma = 1.0079; % ratio of specific heats (from "Acoustics" by A. D. Pierce, p. 34)
Pr = 7; % Prandtl number mu * c_p / kappa (from "Acoustics" by A. D. Pierce, p. 514)
%--------------------------------------------------------------------------
% dependent
%--------------------------------------------------------------------------
nu = mu / rho_0; % kinematic viscosity (m^2 / s)
delta = nu * (4/3 + mu_B_over_mu + (gamma - 1) / Pr); % sound diffusivity (m^2 / s) (from "Nonlinear Acoustics" by Mark F. Hamilton)
a = delta / (2 * c_0^3); % factor a in Burgers' equation
b = beta / (rho_0 * c_0^3); % factor b in Burgers' equation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% signal processing parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f_s = 1e9; % sampling rate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% define modulated Gaussian pulse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% independent parameters
%--------------------------------------------------------------------------
amplitudes = [ 2.5e5; 5e5; 7.5e5 ]; % amplitudes of the acoustic pressure (Pa)
f_c = 3.5e6; % center frequency (Hz)
frac_bw = 1; % fractional bandwidth (power ratios) (1)
atten_bw = 6; % attenuation at bandwidth bounds (dB)
atten_td = 100; % attenuation in time-domain which marks end of Gaussian pulse (dB)
%--------------------------------------------------------------------------
% dependent parameters
%--------------------------------------------------------------------------
N_amplitudes = numel( amplitudes );
t_cut = gauspuls( 'cutoff', f_c, frac_bw, -atten_bw, -atten_td ); % cutoff time (s)
M_samples = ceil( t_cut * f_s ); % symmetric number of samples (1)
tau_axis = ( -M_samples:M_samples ) / f_s; % axis of retarded time (s)
N_samples = 2 * M_samples + 1; % number of samples (1)
%--------------------------------------------------------------------------
% compute pulse
%--------------------------------------------------------------------------
pressure_input_temp = gauspuls( tau_axis, f_c, frac_bw, -atten_bw );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% compute reference waveforms (fractional steps method w/ small step size)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% 1.) specify parameters
%--------------------------------------------------------------------------
% independent
delta_z_ref = 5e-4; % propagation distance per step (m)
z_stop = 0.5; % total propagation distance (m)
% dependent
N_steps_prop = floor( z_stop / delta_z_ref );
%--------------------------------------------------------------------------
% 2.) compute reference waveforms
%--------------------------------------------------------------------------
% allocate memory for results
pressure_reference = cell( N_amplitudes, N_steps_prop + 1 );
N_steps_nonlin = zeros( N_amplitudes, N_steps_prop + 1 );
% iterate amplitudes
for k = 1:N_amplitudes
% print status
time_start = tic;
fprintf( 'processing amplitude %d of %d (%d kPa)... ', k, N_amplitudes, amplitudes( k ) / 1e3 );
% define initial pressure waveform
pressure_reference{ k, 1 } = amplitudes( k ) * pressure_input_temp;
% compute waveforms for each propagation step
for l = 1:N_steps_prop
% print progress in percent
N_bytes = fprintf( '%5.1f %%', ( l - 1 ) / N_steps_prop * 1e2 );
% call fractional steps method
%[pressure_reference{k, l + 1}, N_steps_nonlin(k, l + 1)] = burgers_frac_steps(pressure_reference{k, l}, f_s, delta_z_ref, a, b, 0);
pressure_reference{ k, l + 1 } = fractional_steps.step( pressure_reference{ k, l }, f_s, delta_z_ref, a, b, 1 );
% erase progress in percent
fprintf( repmat( '\b', [ 1, N_bytes ] ) );
end % for l = 1:N_steps_prop
% infer and print elapsed time
time_elapsed = toc( time_start );
fprintf( 'done! (%f s)\n', time_elapsed );
end % for k = 1:N_amplitudes
% save results
% str_filename = sprintf( 'pressure_reference_%d.mat', z_stop * 100 );
% save( str_filename, 'pressure_reference', 'delta_z_ref', 'f_s', 'amplitudes', 'z_stop' );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% compute waveforms (Volterra system)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% 1.) specify parameters
%--------------------------------------------------------------------------
% independent
delta_z = 5e-3; % propagation distance per step (m)
orders_N = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; % orders of Volterra polynomials (1)
% dependent
N_steps_prop = floor( z_stop / delta_z ); % number of required propagation steps
N_orders = numel( orders_N );
%--------------------------------------------------------------------------
% 2.) compute waveforms
%--------------------------------------------------------------------------
% allocate memory for results
pressure_volterra = cell( N_amplitudes, N_orders, N_steps_prop + 1 );
% iterate amplitudes
for k = 1:N_amplitudes
% print status
time_start = tic;
fprintf( 'processing amplitude %d of %d (%d kPa)...\n', k, N_amplitudes, amplitudes( k ) / 1e3 );
% iterate polynomial orders
for l = 1:N_orders
% print status
fprintf( '\tprocessing polynomial degree %d of %d (%d)\n', l, N_orders, orders_N( l ) );
% define initial pressure waveform
pressure_volterra{ k, l, 1 } = amplitudes( k ) * pressure_input_temp;
% compute waveforms for each propagation step
for m = 1:N_steps_prop
% call Volterra method
pressure_volterra{ k, l, m + 1 } = volterra.polynomial( pressure_volterra{ k, l, m }, f_s, delta_z, a, b, orders_N( l ) );
end % for m = 1:N_steps_prop
end % for l = 1:N_orders
% infer and print elapsed time
time_elapsed = toc( time_start );
fprintf( 'done! (%f s)\n', time_elapsed );
end % for k = 1:N_amplitudes
% save results
% str_filename = sprintf( 'pressure_volterra_%.1f.mat', delta_z * 1000 );
% save( str_filename, 'pressure_volterra', 'orders_N', 'delta_z', 'f_s', 'amplitudes', 'z_stop', 'N_steps_prop' );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% compute waveforms (fractional steps method)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% 1.) specify parameters
%--------------------------------------------------------------------------
% see Volterra system
%--------------------------------------------------------------------------
% 2.) compute waveforms
%--------------------------------------------------------------------------
% allocate memory for results
pressure_frac_steps = cell( N_amplitudes, N_steps_prop + 1 );
% iterate amplitudes
for k = 1:N_amplitudes
% print status
time_start = tic;
fprintf( 'processing amplitude %d of %d (%d kPa)... ', k, N_amplitudes, amplitudes( k ) / 1e3 );
% define initial pressure waveform
pressure_frac_steps{ k, 1 } = amplitudes( k ) * pressure_input_temp;
% compute waveforms for each propagation step
for l = 1:N_steps_prop
% print progress in percent
N_bytes = fprintf( '%5.1f %%', ( l - 1 ) / N_steps_prop * 1e2 );
% call fractional steps method
% [ pressure_reference{ k, l + 1 }, N_steps_nonlin( k, l + 1 ) ] = burgers_frac_steps( pressure_reference{ k, l }, f_s, delta_z_ref, a, b, 0 );
pressure_frac_steps{ k, l + 1 } = fractional_steps.step( pressure_frac_steps{ k, l }, f_s, delta_z, a, b, 1 );
% erase progress in percent
fprintf( repmat( '\b', [ 1, N_bytes ] ) );
end % for l = 1:N_steps_prop
% infer and print elapsed time
time_elapsed = toc( time_start );
fprintf( 'done! (%f s)\n', time_elapsed );
end % for k = 1:N_amplitudes
% save results
% str_filename = sprintf( 'pressure_frac_steps_%.1f.mat', delta_z * 1000 );
% save( str_filename, 'pressure_frac_steps', 'delta_z', 'f_s', 'amplitudes', 'z_stop', 'N_steps_prop' );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% compute error metrics:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% error metrics
l2_norm = @(x) sqrt(sum(x.^2));
linfty_norm = @(x) max(abs(x));
correlation_coefficient = @(x,y) xcov(x, y, 0) / (N_samples * sqrt(var(x) * var(y)));
rel_error_l2 = @(p_ref,p_eval) l2_norm(p_ref-p_eval) / l2_norm(p_ref);
% allocate memory for results
error_rel_norm_volterra = zeros( N_amplitudes, N_orders, N_steps_prop );
error_rel_norm_frac_steps = zeros( N_amplitudes, N_steps_prop );
error_rel_max_volterra = zeros( N_amplitudes, N_orders, N_steps_prop );
error_rel_max_frac_steps = zeros( N_amplitudes, N_steps_prop );
coefficient_correlation_volterra = zeros( N_amplitudes, N_orders, N_steps_prop );
coefficient_correlation_frac_steps = zeros( N_amplitudes, N_steps_prop );
% iterate amplitudes
for k = 1:N_amplitudes
%----------------------------------------------------------------------
% a) Volterra system vs reference
%----------------------------------------------------------------------
% iterate polynomial orders
for l = 1:N_orders
% iterate steps
for m = 1:N_steps_prop
pressure_comparison = pressure_reference{ k, m * round( delta_z / delta_z_ref ) + 1 };
error = pressure_comparison - pressure_volterra{ k, l, m + 1 };
error_rel_norm_volterra( k, l, m ) = l2_norm( error ) / l2_norm( pressure_comparison );
error_rel_max_volterra( k, l, m ) = linfty_norm( error ) / linfty_norm( pressure_comparison );
coefficient_correlation_volterra( k, l, m ) = correlation_coefficient( pressure_volterra{ k, l, m + 1 }, pressure_comparison );
end % for m = 1:N_steps_prop
end % for l = 1:N_orders
%----------------------------------------------------------------------
% b) fractional steps vs reference
%----------------------------------------------------------------------
% iterate steps
for m = 1:N_steps_prop
pressure_comparison = pressure_reference{ k, m * round( delta_z / delta_z_ref ) + 1 };
error = pressure_comparison - pressure_frac_steps{ k, m + 1 };
error_rel_norm_frac_steps( k, m ) = l2_norm( error ) / l2_norm( pressure_comparison );
error_rel_max_frac_steps( k, m ) = linfty_norm( error ) / linfty_norm( pressure_comparison );
coefficient_correlation_frac_steps( k, m ) = correlation_coefficient( pressure_frac_steps{ k, m + 1 }, pressure_comparison );
end % for m = 1:N_steps_prop
end % for k = 1:N_amplitudes
% save results
% str_filename = sprintf( 'errors_%.1f.mat', delta_z * 1000 );
% save( str_filename, 'error_rel_norm_volterra', 'error_rel_norm_frac_steps', 'coefficient_correlation_volterra', 'delta_z', 'f_s', 'amplitudes', 'z_stop', 'N_steps_prop' );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% plot results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% plot error vs. propagation steps for both methods
%--------------------------------------------------------------------------
str_legend = cell(1, N_orders + 1);
for l = 1:N_orders
str_legend{1, l} = sprintf('M = %d', orders_N(l));
end
str_legend{1, N_orders + 1} = 'frac steps';
for k = 1:N_amplitudes
%----------------------------------------------------------------------
% relative error
%----------------------------------------------------------------------
figure( 2 * k - 1 );
hdl_line = semilogy( (1:N_steps_prop), reshape( error_rel_norm_volterra( k, :, : ), N_orders, N_steps_prop )', (1:N_steps_prop), error_rel_norm_frac_steps( k, : ) );
set( hdl_line( end ), 'LineStyle', '--' );
set(gcf, 'Units', 'centimeters');
set(gcf, 'Position', [10, 10, 15.5, 9]);
set(gca, 'Units', 'centimeters');
set(gca, 'Position', [1.5, 1, 10, 7]);
set(gca, 'XGrid', 'on');
set(gca, 'YGrid', 'on');
title( sprintf( 'max pressure: %g kPa, \\Delta z = %d mm', amplitudes( k ) / 1e3, delta_z * 1000 ) );
xlabel( '# propagation steps (1)' );
ylabel( 'relative error' );
hdl_lgnd = legend( str_legend, 'Location', 'eastoutside' );
% leg_pos = get( hdl_lgnd, 'Position' );
% set( hdl_lgnd, 'Position', [ 12, 8 - leg_pos( 4 ), leg_pos( 3 ), leg_pos( 4 ) ] );
% save figure to file
% str_filename_emf = sprintf('errors_deltaz_%d_ampl_%d.emf', delta_z * 1000, amplitudes(k));
% print(gcf, '-r600', '-dmeta', str_filename_emf);
%----------------------------------------------------------------------
% correlation coefficient
%----------------------------------------------------------------------
figure( 2*k );
hdl_line = semilogy( (1:N_steps_prop), reshape( coefficient_correlation_volterra( k, :, : ), N_orders, N_steps_prop )', (1:N_steps_prop), coefficient_correlation_frac_steps( k, : ) );
set( hdl_line( end ), 'LineStyle', '--' );
set(gcf, 'Units', 'centimeters');
set(gcf, 'Position', [10, 10, 15.5, 9]);
set(gca, 'Units', 'centimeters');
set(gca, 'Position', [1.5, 1, 10, 7]);
set(gca, 'XGrid', 'on');
set(gca, 'YGrid', 'on');
title(sprintf('max pressure: %g kPa, \\Delta z = %d mm', amplitudes( k ) / 1e3, delta_z * 1000));
xlabel('# propagation steps (1)');
ylabel('correlation coefficient');
hdl_lgnd = legend( str_legend, 'Location', 'eastoutside' );
% leg_pos = get(hdl_lgnd, 'Position');
% set(hdl_lgnd, 'Position', [12, 8 - leg_pos(4), leg_pos(3), leg_pos(4)]);
end
%--------------------------------------------------------------------------
% plot error vs. order of Volterra polynomial
%--------------------------------------------------------------------------
str_legend_2 = cell(1, N_amplitudes);
for l = 1:N_amplitudes
str_legend_2{1, l} = sprintf('%d kPa', amplitudes(l) / 1e3);
end
figure( 2*N_amplitudes + 1 );
hdl_line = semilogy( orders_N, error_rel_norm_volterra( :, :, N_steps_prop )', orders_N, repmat( error_rel_norm_frac_steps( :, N_steps_prop ), [ 1, numel( orders_N ) ] ) );
set( hdl_line( (end - N_amplitudes + 1):end ), 'LineStyle', '--' );
set(gcf, 'Units', 'centimeters');
set(gcf, 'Position', [10, 10, 15.5, 9]);
set(gca, 'Units', 'centimeters');
set(gca, 'Position', [1.5, 1, 10, 7]);
set(gca, 'XGrid', 'on');
set(gca, 'YGrid', 'on');
title(sprintf('z = %d mm', N_steps_prop * delta_z * 1000));
xlabel( 'Degree of Volterra polynomial (1)' );
ylabel( 'Relative RMSE (1)' );
hdl_lgnd = legend( str_legend_2, 'Location', 'eastoutside' );
% leg_pos = get(hdl_lgnd, 'Position');
% set(hdl_lgnd, 'Position', [12, 8 - leg_pos(4), leg_pos(3), leg_pos(4)]);
%save figure to file
% str_filename_emf = sprintf('errors_deltaz_%d_final.emf', delta_z * 1000);
% print(gcf, '-r600', '-dmeta', str_filename_emf);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% create movie
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
index_figure = 2 * N_amplitudes + 2;
index_amplitude = 3; % select amplitude
index_order = 10; % order of Volterra polynomial
indices_steps_draw = (1:1:N_steps_prop + 1);
N_steps_draw = numel( indices_steps_draw );
N_dft = 8192;
index_shift = ceil( N_dft / 2 );
f_axis = f_s * (0:(index_shift - 1)) / N_dft;
%--------------------------------------------------------------------------
% geometrical parameters
%--------------------------------------------------------------------------
scale = 1;
N_plots_x = 2;
N_plots_y = 1;
width_axis_x = 8 * scale;
width_axis_y = 7 * scale;
spacing_axis_x = 1.5 * ones( 1, N_plots_x - 1 );
spacing_axis_y = 0.75;
axis_x_offset = 1.5;
axis_y_offset = 1.5;
delta_lgd = 0.4;
height_lgd = 0.75;
text_size = 10;
%--------------------------------------------------------------------------
% axis limits and ticks
%--------------------------------------------------------------------------
limits_tau = [ -0.6, 0.6 ];
limits_p = [ -0.5, 1.1 ];
limits_f = [ 0, 20 ];
limits_dB = [ -40, 0 ];
tau_tick = (-0.6:0.1:0.6);
p_tick = (-0.5:0.25:1.1);
f_tick = (0:1:20);
dB_tick = (-40:5:0);
ticks_font = 'Times';
ticks_size = text_size;
ticks_color = 'k';
%--------------------------------------------------------------------------
% axis labels
%--------------------------------------------------------------------------
label_font = 'Times';
label_size = text_size + 2;
label_color = 'k';
label_tau_str = 'Retarded time (us)';
label_p_str = 'Acoustic pressure (MPa)';
label_f_str = 'Normalized frequency (1)';
label_dB_str = 'Spectrum (dB)';
%--------------------------------------------------------------------------
% titles
%--------------------------------------------------------------------------
title_font = 'Times';
title_size = text_size + 4;
title_color = 'k';
title_factor_shift_x = 0;
title_factor_shift_y = -0.075;
%--------------------------------------------------------------------------
% legend
%--------------------------------------------------------------------------
legend_font = 'Times';
legend_size = label_size;
%--------------------------------------------------------------------------
% dependent parameters
%--------------------------------------------------------------------------
pos_x = zeros( 1, N_plots_x );
pos_y = zeros( 1, N_plots_y );
for index_x = 1:N_plots_x
pos_x( index_x ) = axis_x_offset + ( index_x - 1 ) * width_axis_x + sum( spacing_axis_x( 1:( index_x - 1 ) ) );
end
for index_y = 1:N_plots_y
pos_y( index_y ) = axis_y_offset + ( N_plots_y - index_y ) * ( width_axis_y + spacing_axis_y );
end
paper_size_x = pos_x( end ) + width_axis_x + 0.5;
paper_size_y = pos_y( 1 ) + width_axis_y + delta_lgd + height_lgd + 0.5;
% create a video writer object for the output video file and open the object for writing
str_filename = 'burgers_propagation_hp.gif';
% video = VideoWriter( 'burgers_propagation_hp.avi', 'Motion JPEG AVI' );
% video.FrameRate = 10;
% open( video );
%--------------------------------------------------------------------------
% create figure
%--------------------------------------------------------------------------
figure( index_figure );
set( gcf, 'Units', 'centimeters');
set( gcf, 'Position', [ 10, 10, paper_size_x, paper_size_y ] );
set( gcf, 'PaperSize', [ paper_size_x, paper_size_y ] );
set( gcf, 'PaperPositionMode', 'auto');
axes_hdl = zeros( 1, N_plots_x * N_plots_y );
for k = 1:N_steps_draw
%----------------------------------------------------------------------
% plot waveform
%----------------------------------------------------------------------
axes_hdl( 1 ) = subplot( 1, 2, 1 );
plot( tau_axis * 1e6, pressure_volterra{ index_amplitude, 1, indices_steps_draw( k ) } / 1e6, ...
tau_axis * 1e6, pressure_volterra{ index_amplitude, index_order, indices_steps_draw( k ) } / 1e6 );
%----------------------------------------------------------------------
% plot spectrum
%----------------------------------------------------------------------
axes_hdl( 2 ) = subplot( 1, 2, 2 );
pressure_reference_dft = abs( fft( pressure_volterra{ index_amplitude, 1, indices_steps_draw( k ) }, N_dft ) );
pressure_reference_dft_dB = 20 * log10( pressure_reference_dft / max( pressure_reference_dft ) );
pressure_volterra_dft = abs( fft( pressure_volterra{ index_amplitude, index_order, indices_steps_draw( k ) }, N_dft ) );
pressure_volterra_dft_dB = 20 * log10( pressure_volterra_dft / max(pressure_volterra_dft ) );
plot( f_axis / f_c, pressure_reference_dft_dB( 1:index_shift ), f_axis / f_c, pressure_volterra_dft_dB( 1:index_shift ) );
%----------------------------------------------------------------------
% legend
%----------------------------------------------------------------------
leg_hdl = legend( { 'linear', 'nonlinear' }, 'Orientation', 'horizontal', 'Units', 'centimeters' );
set( leg_hdl, 'FontName', legend_font, 'FontSize', legend_size );
set( leg_hdl, 'Position', [ pos_x( 2 ), pos_y( 1 ) + width_axis_y + delta_lgd, width_axis_x, height_lgd ] );
%----------------------------------------------------------------------
% format plots
%----------------------------------------------------------------------
for index_axis = 1:numel( axes_hdl )
% size and position
set( axes_hdl( index_axis ), 'Units', 'centimeters' );
set( axes_hdl( index_axis ), 'FontName', ticks_font, 'FontSize', ticks_size );
set( axes_hdl( index_axis ), 'Position', [ pos_x( index_axis ), pos_y( 1 ), width_axis_x, width_axis_y ] );
% axes limits and ticks
if index_axis == 1
xlim( axes_hdl( index_axis ), limits_tau );
ylim( axes_hdl( index_axis ), limits_p );
set( axes_hdl( index_axis ), 'XTick', tau_tick );
set( axes_hdl( index_axis ), 'YTick', p_tick );
else
xlim( axes_hdl( index_axis ), limits_f );
ylim( axes_hdl( index_axis ), limits_dB );
set( axes_hdl( index_axis ), 'XTick', f_tick );
set( axes_hdl( index_axis ), 'YTick', dB_tick );
end
set( axes_hdl( index_axis ), 'XGrid', 'on' );
set( axes_hdl( index_axis ), 'YGrid', 'on' );
% labels
if index_axis == 1
xlbl_hdl = xlabel( axes_hdl( index_axis ), label_tau_str, 'FontName', label_font, 'FontSize', label_size, 'Color', label_color );
xlbl_pos = get( xlbl_hdl, 'Position' );
set( xlbl_hdl, 'Position', xlbl_pos + [0, 0, 0] );
else
xlbl_hdl = xlabel( axes_hdl( index_axis ), label_f_str, 'FontName', label_font, 'FontSize', label_size, 'Color', label_color );
% set(xlbl_hdl, 'Position', xlbl_pos + [0, 0, 0]);
end
if index_axis == 1
ylbl_hdl = ylabel( axes_hdl( index_axis ), label_p_str, 'FontName', label_font, 'FontSize', label_size, 'Color', label_color );
ylbl_pos = get( ylbl_hdl, 'Position' );
set(ylbl_hdl, 'Position', ylbl_pos + [0, 0, 0]);
else
ylbl_hdl = ylabel( axes_hdl( index_axis ), label_dB_str, 'FontName', label_font, 'FontSize', label_size, 'Color', label_color );
% set(ylbl_hdl, 'Position', ylbl_pos + [0, 0, 0]);
end
% titles
if index_axis == 1
set( gcf, 'currentaxes', axes_hdl( index_axis ) );
tit_pos_x = limits_tau( 1 ) + title_factor_shift_x * diff( limits_tau );
tit_pos_y = limits_p( 2 ) - title_factor_shift_y * diff( limits_p );
tit_hdl = text( tit_pos_x, tit_pos_y, sprintf( 'Propagation distance: %.1f cm', ( indices_steps_draw( k ) - 1 ) * delta_z * 1e2 ), 'Units', 'data', 'FontName', title_font, 'FontSize', title_size, 'Interpreter', 'none', 'Color', title_color, 'FontWeight', 'bold', 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'left' );
end
end % for index_axis = 1:numel( axes_hdl )
%----------------------------------------------------------------------
% write figure to movie
%----------------------------------------------------------------------
% write current figure as frame
frame = getframe( gcf );
% writeVideo( video, frame );
image = frame2im( frame );
[ imind, cm ] = rgb2ind( image, 256 );
% write to the GIF File
if k == 1
imwrite( imind, cm, str_filename, 'gif', 'Loopcount', inf);
else
imwrite( imind, cm, str_filename, 'gif', 'WriteMode', 'append');
end
end % for k = 1:N_steps_draw
% close video object
% close( video );