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Introduction

At the entry for Mathematical analysis, our modern source of truth
– Wikipedia – says

Mathematical analysis is the branch of mathematics dealing with
limits and related theories, such as differentiation, integration,
measure, infinite series, and analytic functions.

These theories are usually studied in the context of real numbers
and functions. Analysis evolved from calculus, which involves the
elementary concepts and techniques of analysis. Analysis may be
distinguished from geometry; however, it can be applied to any
space of mathematical objects that has a definition of nearness (a
topological space) or specific distances between objects (a metric
space).

In this sense, our course will focus on generalizing the concepts
of differentiation, integration and, up to some extent, differen-
tial equations on spaces that are more general than the standard
Euclidean space.

This said, the Euclidean space Rn is the prototype of all mani-
folds: it won’t just be our simplest example, we will see that locally
every manifold looks like a Euclidean space.

Euclidean spaces, and the Riemannian charts that you encoun-
tered in the Geometry course, have a very strong property: they
can be described with a set of global coordinates. Even though this
means that all computations are explicit, it does make it harder to
distinguish intrinsic1 concepts. Manifolds will force our hand to 1 I.e. independent from the choice of

coordinates.work in a coordinate-free setting. We will see that this will unleash
a surprising power that will allow us to lay the foundation for a lot
of the mathematics that will come in the rest of the curriculum.

These notes will focus on fundamental methods of differential
geometry, in particular we will discuss manifolds, differential forms,
integration, geometry of submanifolds, real and complex vector
bundles, connections. Throughout the course and the text, I will try
to give particular emphasis on the usefulness of these topics in the
mathematical theories of classical and quantum mechanics.

If the time permits it, we will give a brief tour of Riemannian
metrics and the notion of curvature or of distributions and Frobe-
nius theorem, depending on the preferences expressed in class. This
part of the material will not necessarily be part of the lecture notes2. 2 I will update this paragraph, if

needed, in due course.The course relies heavily on your knowledge of linear and multi-
linear algebra, multivariable analysis3 and dynamical systems. This 3 Make sure to review the material

of Multivariable Analysis before the
course begins

http://www.rolandvdv.nl/G20/
http://www.rolandvdv.nl/M19/
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should not come as a surprise: differential geometry and classical
mechanics were born together as unique discipline, part of mathe-
matical physics, before the various communities started diverging
on their own paths.

An old mathematical joke says that

differential geometry is the study of properties that are invariant
under change of notation.

Sadly, this is funny because it is alarmingly close to the truth4 You 4 Cit. Lee [Lee13].

will soon see that different references use different notations. I’ll
try to stick to the ones you used in the past courses when possible,
falling back to [Lee13] and [Tu11] and to my personal preference
when the latter disagree. In addition to the reference books,

these lecture notes have found deep
inspiration from [Mer19; Teu13; Hit14]
(all freely downloadable from the
respective authors’ websites), and from
the book [AMR04].

These lecture notes are by no means comprehensive. As a
reference you can use to the former course textbook [Tu11] or
you can refer to [Lee13]: it is an incredibly good textbook and
contains all the material of the course and much more. I have
requested for [Tu11] book to be freely available via SpringerLink
using the university proxy but this will take some time to become
active. However, you can already freely access Lee’s book via the
University proxy on SpringerLink and it will provide a very good
and extensive reference for this and other future courses. The
book [McI13] is a nice compact companion that develops most of
this course concept in the specific case of Rn and could provide
further examples and food for thoughts. A colleague recently
mentioned also [Lan02]. I don’t know this book but from a brief
look it seems to follow a similar path as these lecture notes, so
might provide an alternative reference after all.

The idea for the cut that I want to give to this course was in-
spired by the online Lectures on the Geometric Anatomy of Theo-
retical Physics by Frederic Schuller, by the lecture notes of Stefan
Teufel’s Classical Mechanics course [Teu13] (in German), by the
classical mechanics book by Arnold [Arn89] and by the Analysis
of Manifold chapter in [Thi03]. In some sense I would like this
course to provide the introduction to geometric analysis that I wish
was there when I prepared my first edition of the Hamiltonian
mechanics course.

I am extremely grateful to Martijn Kluitenberg for his careful
reading of the notes and his useful comments and corrections.
Many thanks also to Huub Bouwkamp, Bram Brongers, Mollie Ja-
goe Brown, Nicolás Moro, Luuk de Ridder, Jordan van Ekelenburg,
Hanneke van Harten and Dave Verweg for reporting a number of
misprints and corrections.

https://link.springer.com/book/10.1007/978-1-4419-9982-5
https://www.video.uni-erlangen.de/course/id/242
https://www.video.uni-erlangen.de/course/id/242
https://www.mseri.me/lecture-notes-hamiltonian-mechanics/


Einstein summation convention

As will become clear soon, sums of the type
ř

i xiei are unavoidably
appearing all over the place when working on manifolds. Therefore,
throughout these notes we will apply the Einstein summation
convention: if the same index5 appears exactly twice in a monomial 5 For example, i in the summation

ř

i xiei .term, once in the lower and once in the upper index position, then
that term is understood to be summed over all possible values of
that index6. 6 Usually from 1 to the dimension of

the space in question.For instance, the expression

aijbk
l eiek

is a shorthand for
ÿ

i,k

aijbk
l eiek.

In general, we will use lower indices for basis of vector spaces7, 7 E.g., pe1, . . . , enq could be the standard
basis of Rn.and upper indices for the components of a vector with respect to a

basis8. 8 E.g., the ith-coordinate xi of x P Rn.

Since the coordinates of a point x P Rn

are also its components with respect
to the standard basis pe1, . . . , enq, for
consistency they will be denoted
px1, . . . , xnq with upper indices.

Note that an upper index “in the denominator” is regarded as a
lower index, so the following are to be considered equivalent:

ÿ

i

ai B

Bxi “ ai B

Bxi .

In fact, the expressions below are all equivalent and commonly
used in the differential geometry literature:

ÿ

i

ai B

Bxi “ ai B

Bxi “ aiBxi “ aiBi.





1
Manifolds

In the first two years of your mathematical education, you have
become familiar with calculus for functions and vector fields on Rn.
As I mentioned in the introduction, euclidean spaces will be our
prototypical example. However, the generalization of calculus to
curved spaces will require us to carefully isolate the mathematical
structures associated to the various concepts. This process will
help us to discover the rich geometric structure that lies at the
root of derivation and integration, which ultimately is of great
mathematical interest and has revolutionized mathematical physics.

If you think carefully, this abstraction step was already in the air.
Think about the concept of continuity.

1. (High school) A function f : R Ñ R is continuous if you
can draw it without lifting your pen from the page. Then, the
derivative f 1pxq of f at a point x is just the slope of the function f
at the point x.

2. (Analysis) A function is continuous if its left and right limits at
each point exist and have the same value. Then, f : R Ñ R is
differentiable at a point x if the limit

f 1pxq :“ lim
hÑ0

f px` hq ´ f pxq
h

exists, and is continuously differentiable if x ÞÑ f 1pxq is itself a
continuous function.

3. (Multivariable analysis) You generalized the concepts to func-
tions with more than one variable. Continuity is practically
unchanged but, now, a continuous function f “ p f 1, . . . , f mq :
Rn Ñ Rm is differentiable at x “ px1, . . . , xnq P Rn if there is a
linear map1 T : Rn Ñ Rm such that 1 That is, T is a mˆ n matrix with

respect to some chosen basis.

lim
}h}Ñ0

} f px` hq ´ f pxq ´ Th}
}h}

“ 0. (1.1)

The map D f pxq :“ T is the total derivative2 of f and is nothing 2 This is sometimes called (total)
differential in multivariable analysis,
but this terminology may become a
source of confusion for us.
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else than the Jacobian matrix of f at the point x, that is

D f pxq “

¨

˚

˚

˝

B f 1

Bx1 pxq ¨ ¨ ¨
B f 1

Bxn pxq
...

. . .
...

B f m

Bx1 pxq ¨ ¨ ¨
B f m

Bxn pxq

˛

‹

‹

‚

. (1.2)

The notion of continuous differentiability is unchanged3, and in 3 Note how the spaces are changing
though: since it takes values in the
space of mˆ n matrices, the differential
x ÞÑ D f pxq is in fact a mapping of
Rn Ñ Rmˆn.

fact for m “ n “ 1 it coincides with the one you gave for real
functions.

4. (Metric and topological spaces) A map f : X Ñ Y between
topological spaces is continuous if preimages of open sets under
f are open. More explicitly, f is continuous if for every open set
O Ă Y, f´1pOq Ă X is an open set.

If X and Y are metric spaces, then this reduces to the definition
given above. But how can we make sense of differentiability in
this case?

If you have taken a course on calculus of variations, you know
that you can make sense of (1.1) and give a notion of differen-
tiability in the case X and Y are Banach spaces4. In general, a 4 Complete normed vector spaces.

topological space is not a vector space: there is no notion of
adding points and, least of all, one of linearity.

This is where differential geometry comes into play. The rest
of this chapter will be devoted to the introduction of smooth
manifolds, which are a class of topological spaces on which it is
possible to make sense of the notion of differentiation even though
they are not necessarily vector spaces. We will do this in two stages.
First we will introduce topological manifolds, which are topological
spaces that locally look like euclidean spaces. Then we will endow
topological manifolds with a so-called smooth structure. This will
allow us to define differentiability and smooth manifolds5. 5 These will just be topological mani-

folds with a smooth structure.Without further ado, let’s get started.

1.1 Topological manifolds

Since to speak of continuity we need topological spaces,
it may be a good idea to remind you what they are and set some
notation. I will be very brief: if you need a more extensive reminder,
you can refer to Appendix A of either [Tu11] or [Lee13].

Definition 1.1.1. Let M be some set and T a set of subsets of M. A
pair pM, T q is a topological space6 if 6 In such case the elements O P T of

T are all subsets of M called open
subsets and T is a topology on M.(i) M and H are open, i.e., M P T and H P T ;

(ii) arbitrary unions of families of open subsets are open;

(iii) the intersection of finitely many7 open subsets is open. 7 It is equivalent to require the inter-
section of any two open subsets to be
open. (Why?)♦
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With topological spaces at hand, we can give a definition of
continuity and introduce a way to compare topological spaces.

Definition 1.1.2. A map f : X Ñ Y between two topological spaces
pX, T q and pY,Uq is called:

• continuous if U P U implies that f´1pUq P T , that is, preimages
of open sets under f are open;

• homeomorphism if it is bijective8 and continuous with continu- 8 I.e., a one to one correspondence.
Formally it means that it is both
injective and surjective.

ous inverse.

The existence of a homeomorphism
between two spaces can be thought
as those spaces being equivalent in
a loose sense: they can be deformed
continuously into each other.

♦

Definition 1.1.3. A topological space pX, T q is Hausdorff if every
two distinct points admit disjoint open neighbourhoods. That is, for
every pair x ‰ y of points in X, there exist open subsets Ux, Uy P T
such that x P Ux, y P Uy and Ux XUy “ H. ♦

Topological spaces are extremely general, as such they may have
very inconvenient – someone would say nasty – properties. You can
see this for yourself with the following exercise.

Exercise 1.1.4. Let X be an arbitrary set. Show that T :“ tH, Xu
defines a topology on X, called the trivial topology. Show that on
pX, T q any sequence in X converges to every point of X, and every
map from a topological space into X is continuous.

Hausdorff spaces are still rather general: in particular, any metric
space with the metric topology9 is Hausdorff.

9 Recall that in a metric space X the
metric topology is defined in the
following way: a set U Ă X is called
open if for any x P U there exists ε ą 0
such that U fully contains the ball of
radius ε around x.

Definition 1.1.5. A topological space pX, T q is second countable if
there exists a countable set B Ă T such that any open set can be
written as a union of sets in B. In such case, B is called a (count-
able) basis for the topology T . ♦

Exercise 1.1.6 (Euclidean space Rn). Let’s consider on Rn the metric
topology10 induced by the Euclidean metric d : Rn ˆRn Ñ r0,`8q, 10 See comment above.

dpx, yq :“
b

řn
i“1pxi ´ yiq2. Show that the topological space defined

on Rn is Hausdorff and second countable.

Definition 1.1.7 (Topological manifold). A topological space11 M is 11 From now on, if we say that X is a
topological space we are implying that
there is a topology T defined on X.

a topological manifold of dimension n, or topological n-manifold, if
it has the following properties:

Note that the finite dimensionality
is a somewhat artificial restriction:
manifolds can be infinitely dimen-
sional [Lan99]. For example, the space
of continuous functions between mani-
folds is a so-called infinite-dimensional
Banach manifold.

(i) M is a Hausdorff space;

(ii) M is second countable;

(iii) M is locally euclidean of dimension n, that is12, for any point

12 In words, any point p P M has a
neighbourhood that is homeomorphic
to an open subset of Rn.

p P M there exist an open subset U Ă M with p P U, and open
subset V Ă Rn and a homeomorphism ϕ : U Ñ V.

♦
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Notation 1.1.8. Reusing the notation of the definition above, we call
(coordinate) chart the pair pU, ϕq of a coordinate neighbourhood U
and an associated coordinate map13 ϕ : U Ñ V onto an open subset 13 Or coordinate system.

V “ ϕpUq Ď Rn of Rn. Furthermore, we say that a chart is centred
at p P U if ϕppq “ 0. ♦

Don’t get scared by the first two conditions: they are only
needed to make sure that there are not too few open sets (Haus-
dorff) and not too many (second countable).

Example 1.1.9. With our definition, a countable collections of points
with the discrete topology is a 0-dimensional topological manifold.
An uncountable collection of points with the discrete topology,
however, is not! ♦

Example 1.1.10. Rn is trivially14 a topological manifold of dimension 14 Use Exercise 1.1.6 and the global
chart pRn, idRn q, where idRn pxq :“ x is
the identity on Rn.

n. More generally, any n-dimensional vector space15 is a topological

15 In fact, any open subset of a n-
dimensional vector space.

n-manifold. ♦

Exercise 1.1.11 (The line with two origins). Even though Rn with
the euclidean topology is Hausdorff, being Hausdorff does not
follow from being locally euclidean. A famous counterexample is
the following16. 16 See also [Lee13, Problem 1-1] and

[Tu11, Problem 5.1].

Figure 1.1: A locally euclidean space
which is not Hausdorff.

Let A1, A2 be two points not on the real line R and define M :“
pRzt0uq Y tA1, A2u. Induce a topology on M by taking as basis the
collection of all open intervals in R that do not contain 0, along
with all the sets of the form p´a, 0q Y tA1u Y p0, aq and p´a, 0q Y
tA2u Y p0, aq, for a ą 0.

1. Check that this forms a basis17 for a topology on M. 17 That is, the basis elements cover M
and for any B1, B2 on the basis, for all
x P I “ B1 X B2, there is an element
B3 of the basis such that x P B3 and
B3 Ă I.

2. Define the two charts

ϕj : pRzt0uq Y tAju Ñ R, ϕjpxq “

$

&

%

x if x ‰ Aj

0 if x “ Aj
, j “ 1, 2.

Show that ϕ1 and ϕ2 are homeomorphisms with respect to the
aforementioned topology.

3. Show that M is locally euclidean and second countable but not
Hausdorff.

Example 1.1.12. The closed unit ball D1p0q, where similarly as before

Drpxq :“ tz P Rn | dpz, xq ď ru,

is not a topological manifold of dimension n. Can you see why? In
fact, this is an example of a more general concept of manifold with
boundary that we will introduce later in Chapter 1.5. ♦

Example 1.1.13. Consider the set M :“ tx P R2 | |x1| “ |x2|u

with the topology induced by R2: this is not a topological manifold.
Since the number of connected components is invariant under
homeomorphisms, open connected neighbourhoods of p0, 0q P M
cannot be18 homeomorphically mapped to open connected sets in 18 A drawing of M is worth more than

a hundred words.R. ♦
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There is still an elephant in the room in need of a comment.
In our definition of topological manifolds, we are taking for granted
that the dimension of the manifold is well–defined, that is, if we
have two different charts, ϕ1 : U Ñ Rn and ϕ2 : U Ñ Rm,
then necessarily m “ n. Luckily this is true! The result is called
Invariance Domain Theorem and, since its proof requires advanced
concepts of algebraic topology, we will not pursue it further in the
course.

There is a caveat, the theorem holds for
connected components of a manifold.
If you consider two distinct connected
components, you can indeed have
different dimensions for each of them.

1.2 Differentiable manifolds

Before entering into the details of new definitions, let’s recall what
will be the most important tools throughout the rest of the course.

Definition 1.2.1. A map f : U Ñ V between open sets U Ă Rn

and V Ă Rm is in CrpU, Vq or of class Cr, if it is continuously
differentiable r-times. It is called a Cr-diffeomorphism19 if it is 19 With this definition a homeomor-

phism is a C0-diffeomorphismbijective and of class Cr with inverse of class Cr. We say that f is
smooth, or of class C8, if it is of class Cr for every r ě 1. ♦

Theorem 1.2.2 (Chain rule). Let U Ă Rn and V Ă Rk be open sets and
f : U Ñ Rk, g : V Ñ Rm two continuously differentiable functions such
that f pUq Ă V. Then, the following holds.

(i) The function g ˝ f : U Ă Rn Ñ Rm is continuously differentiable
and its total derivative (1.2) at a point x P U is given by

Dpg ˝ f qpxq “ Dpgp f pxqq ˝D f pxq.

(ii) Denote x “ px1, . . . , xnq P Rn and y “ py1, . . . , ykq P Rk the
coordinates on the respective euclidean spaces and f “ p f 1, . . . , f kq

and g “ pg1, . . . , gmq the components of the functions. Then the
partial derivatives of g ˝ f are given by

Bgi ˝ f
Bxj pxq “

k
ÿ

r“1

Bgi

Byr p f pxqq
B f r

Bxj pxq, 1 ď i ď m, 1 ď j ď n.

Using Einstein’s notation, this could be
written as

Bpgi ˝ f q
Bxj pxq “

Bgi

Byr p f pxqq
B f r

Bxj pxq.

Theorem 1.2.2 has some very deep consequences.

Exercise 1.2.3. Under the hypotheses of the previous theorem, prove
the following statements.

1. composition preserves the regularity: that is, the composition of
functions of class Cr is itself a function of class Cr;

2. if f : U Ă Rn Ñ V Ă Rm is a diffeomorphism, then n “ m.

Hint: is D f pxq an invertible matrix? If so, what is its inverse?

Since differentiability is a local property and topological mani-
folds are locally like euclidean spaces, it seems reasonable to expect
that we can lift the definitions directly from Rn using the charts to
obtain functions between euclidean spaces: for example, if we are
given a continuous map between two topological manifolds, we can
locally view it as a continuous map between two Euclidean spaces.
Generalizing this further, we could conceivably say that our original
map is differentiable if the local map is.
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As usual, the devil is in the details: a topological manifold
is only homeomorphic to a Euclidean space, and a different choice
of homeomorphism might affect whether the local map is differen-
tiable or not. We need to take extra care to ensure that these lifted
definitions keep making sense when we use different charts that
overlap.

The solution is to introduce a little more structure to the prob-
lem.

Definition 1.2.4. We say that two charts pU1, ϕ1q and pU2, ϕ2q on a
topological manifold M are compatible if either U1 XU2 “ H or if
the transition map20 20 Both the composition maps ϕ1 ˝ ϕ´1

2
and ϕ2 ˝ ϕ´1

1 are called transition
maps. Both maps are necessarily
homeomorphisms since ϕ1 and ϕ2 are.

ϕ1 ˝ ϕ´1
2 : ϕ2pU1 XU2q Ñ ϕ1pU1 XU2q

is a smooth diffeomorphism. ♦

Figure 1.2: Charts are compatible if
they coincide on the intersections of
their coordinate neighbourhoods.

With these at hand, let’s jump into the definition of smooth
manifolds.

Definition 1.2.5. A smooth atlas is a collection

A “ tϕα : Uα Ñ Vα | α P Au

of pairwise compatible charts that cover21 M. 21 I.e. such that M “ YαPAUα. One
calls the set tUα | α P Au, covering
M with open sets, an open cover of
M. Here A is some index set, not
necessarily countable.

Two smooth atlases are equivalent if their union is also a smooth
atlas. That is if any two charts in the atlases are compatible. ♦

Exercise 1.2.6. Show that the equivalence of atlases is really an
equivalence relation.
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The union of all atlases in a differen-
tiable structure is the unique maximal
atlas in the equivalence class. There
is a one-to-one correspondence be-
tween differentiable structures and
maximal differentiable atlases: for
convenience and to lighten the no-
tation, from now on, we will always
regard a differentiable structure as a
differentiable maximal atlas without
further comments.

Definition 1.2.7. A differentiable structure, or more precisely a
smooth structure, on a topological manifold is an equivalence class
of smooth atlases. ♦

Notation 1.2.8. By a chart pU, ϕq about p in a manifold M we mean a
chart in the differentiable structure of M such that p P U. ♦

Definition 1.2.9. A smooth manifold of dimension n is a pair pM,Aq
of a topological n-manifold M and a smooth structure A on M. ♦

There are no preferred coordinate
charts on a manifold: all coordinate
systems compatible with the differen-
tiable structure are on equal footing.

In colloquial language, a differentiable manifold is just a space
covered by charts with differentiable transition maps.

Notation 1.2.10. Whenever possible we will omit the differentiable
structure A from the notation and just write M. We may write Mn

when we want to emphasize the dimension n of M. ♦

Exercise 1.2.11. Show that on a second countable differentiable
manifold it is always possible to find a countable atlas.

Exercise 1.2.12. Rn with the standard smooth structure A “

pRn, idRnq is trivially a smooth manifold of dimension n. In fact,
any open subset U Ă Rn can be made into a smooth manifold in a
natural way with the atlas A “ pU, idRn |Uq.

In the same way, show that any open subset U of a smooth
manifold M is a smooth manifold. Which atlas would you choose?

More generally, if V is any n-dimensional real vector space,
then the standard smooth structure on V is the one induced by the
smooth atlas consisting of a single chart pV, Tq where T : V Ñ Rn is
some linear isomorphism. Why is this independent of the choice of
the isomorphism T?

This fact has a very interesting consequence. The space Matpnq
of n ˆ n-matrices can be identified with Rn2

by writing the ele-
ments of the matrix as a n2-vector. This gives to Matpnq a struc-
ture of differentiable manifold. The subset of invertible matrices
GLpnq “ tA P Matpnq | det A ‰ 0u, widely known as the general
linear group, being an open subset of Matpnq (why?) is itself a
differentiable manifold. Is such manifold connected? Why?

Notation 1.2.13. We will stick to the notation of [Tu11]. In the context
of manifolds, denote ri : Rn Ñ R, 1 ď i ď n, the standard
coordinates on Rn. With this notation, if ei denotes the ith standard
basis vector22 in Rn, then ripejq “ δi

j.
22 Identified with the point
p0, . . . , 0, 1

loomoon

ith component

, 0, . . . , 0q P Rn.

The Kronecker delta δi
j is defined by

δi
j “ 1 if i “ j and δi

j “ 0 otherwise.

If pU, ϕ : U Ñ Rnq is a chart of a manifold, then xi “ ri ˝ ϕ will
denote the i-th component of ϕ and denote ϕ “ px1, . . . , xnq and,
when convenient, pU, ϕq “ pU, x1, . . . , xnq.

Thus, for p P U, px1ppq, . . . , xnppqq is a point23 in Rn. The func-
23 By abuse of notation we sometimes
omit the p. Thus px1, . . . , xnq can stand
either for local coordinates or a point
in Rn: which one it is should be clear
from the context.

tions x1, . . . , xn are called (local) coordinates on U. ♦

An advantage of this new notation is that we can talk about
coordinates without the need to explicitly reference charts. In other
words, we can say
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Let p P M and choose local coordinates px1, . . . , xnq about p...

or even

Let x “ px1, . . . , xnq P M be a point in M...

dropping the distinction between p and x, both in place of

Let p P M and pU, ϕq a chart defined on a neighbourhood U of p. Let
xi “ ri ˝ ϕ denote the components of ϕ with respect to the standard
euclidean coordinates. . .

Example 1.2.14. The unit circle

S1 :“ tx P R2 | }x} “ 1u Ă R2

with the relative topology24 is a 1-dimensional topological manifold. 24 Let pX, T q be a topological space and
Y Ă X. The relative topology on Y is

V :“ tV Ă Y | DU P T s.t. V “ UXYu.
To provide the local homeomorphisms to R and define a smooth
structure for S1 it is enough to define the following four charts:

V1 :“ tx1 ą 0u, ϕ1 : V1 Ñ p´1, 1q, ϕ1pxq :“ x2,

V2 :“ tx1 ă 0u, ϕ2 : V2 Ñ p´1, 1q, ϕ2pxq :“ x2,

V3 :“ tx2 ą 0u, ϕ3 : V3 Ñ p´1, 1q, ϕ3pxq :“ x1,

V4 :“ tx2 ă 0u, ϕ4 : V4 Ñ p´1, 1q, ϕ4pxq :“ x1.

What do these charts look like?

Exercise 1.2.15. Show that the corresponding transition functions are
smooth.

♦

Exercise 1.2.16. Let tpUα, ϕαqu be the maximal atlas on a manifold M.
For any open set U Ď M and any point p P U, prove the existence of
a coordinate open set Uα such that p P Uα Ă U.

Exercise 1.2.17 ([homework 1]). Let f : Rn Ñ Rm be a smooth map.
Show that its graph

Γ f :“ tpx, f pxqq | x P Rnu Ă Rn`m

is a smooth manifold of dimension n.

Example 1.2.18. The definition of smooth manifold does not require
M to be embedded into some ambient space as in the examples
above. In fact, we can define the differentiable manifold S1 by
equipping the topological quotient space25 R{Z with the two charts

25 There is a standard way to induce a
topology on a quotient space. Let M
be a topological space and π : M Ñ N
surjective. The quotient topology on N
is given by defining U Ă N to be open
if and only if its preimage π´1pUq Ă
M is open. If „ is an equivalence
relation on M, the quotient space
M{„ is the set of equivalence classes
rps :“ tq P M | p „ qu and the
projection π : M Ñ M{„, πppq “ rps,
is a surjective map. Then U P M{ „
is open if YrpsPUrps Ă M is open.
Here R{Z denotes the quotient space
R{ „ where the equivalence relation
is induced by the canonical group
action of Z on R, that is, x „ y if and
only if x´ y P Z. This means that
rxs “ tx` k | k P Zu and each interval
rx0, x0 ` 1q of length 1 contains exactly
one representative per class. Note
that we are talking about topological
spaces: the quotient, in general, does
not preserve the Hausdorff property or
second countability.

ϕ1 : R{Zztr0su Ñ p0, 1q and ϕ2 : R{Zztr 1
2 su Ñ p´ 1

2 , 1
2 q

which map rxs P R{Z to its representation in r0, 1q or r´ 1
2 , 1

2 q

respectively. The manifold obtained in this way is diffeomorphic to
the one defined in Example 1.2.14. ♦

Example 1.2.19 (Product manifolds). Given two manifolds pM1,A1q

and pM2,A2q, we can define the product manifold M1 ˆ M2 by
equipping M1 ˆ M2 with the product topology26 and covering the

26 Open sets in the product are prod-
ucts of open sets from the respective
topological spaces.

space with the atlas tpU1 ˆU2, pϕ1, ϕ2qq | pU1, ϕ1q P A1, pU2, ϕ2q P

A2u. ♦
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Note that smooth manifolds do not yet have a metric structure:
distances between the points are not defined. However, they are
metrizable27: there exists some metric on the manifold that induces 27 In fact, all the topological mani-

folds are metrizable. This property
is far more general and harder to
prove [Mun00, Theorem 34.1 and
Exercise 1 of Chapter 4.36] or [nLa20].
Note that not all topological spaces are
metrizable, for example a space with
more than one point endowed with
the discrete topology is not. And even
if a topological space is metrizable,
the metric will be far from unique: for
example, proportional metrics generate
the same collection of open sets.

the given topology on it. This allows to always view manifolds as
metric spaces.

Example 1.2.20 (A different smooth structure on R). Consider the
homeomorphism ψ : R Ñ R, ψpxq “ x3. The atlas consisting of
the global chart pR, ψq defines a smooth structure on R. This chart
is not smoothly compatible with the standard smooth structure on
R since idR ˝ψ´1pyq “ y1{3 is not smooth at y “ 0. Therefore, the
smooth structure defined on R by ψ is different from the standard
one. You can adapt this idea to construct many different smooth
structures on topological manifolds provided that they at least have
one smooth structure. ♦

Exercise 1.2.21. Show that there exists a diffeomorphism between the
smooth structures pR, idRq and pR, ψq from the previous example.

Exercise 1.2.22 ([homework 1]). For r ą 0, let φr : R Ñ R be the map
given by

φrptq :“

$

&

%

t, if t ă 0,

rt, if t ě 0.

Let Ar denote the maximal atlas on R containing the chart pR, φrq.

1. Show that the differentiable structures on R defined by Ar

and As, 0 ă r ă s, are different. This shows that there are
uncountably many families of different differential structures on
R.

2. Let Mr be the manifold R equipped with the atlas Ar. Show that
Mr and Ms are diffeomorphic for r, s ą 0.

Remark 1.2.23. There exist examples of topological manifolds
without smooth structures. It is also known that smooth manifolds
of dimension n ă 4 have exactly one smooth structure (up to
diffeomorphisms) while ones of dimension n ą 4 have finitely
many28. The case n “ 4 is unknown: if you prove that there is only 28 A beautiful example of this is the

7-sphere S7 which is known to have 28

non-diffeomorphic smooth structures.
one smooth structure, you will have shown the smooth Poincaré
conjecture. ♦

Instead of always constructing a topological manifold and then
specify a smooth structure, it is often convenient to combine these
steps into a single construction. This is especially useful when
the initial set is not equipped with a topology. In this respect, the
following lemma provides a welcome shortcut: in brief it says that
given a set with suitable “charts” that overlap smoothly, we can use
those to define both a topology and a smooth structure on the set.

Lemma 1.2.24 (Smooth manifold lemma). Let M be a set. Assume
that we are given a collection tUα | α P Au of subsets of M together with
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bijections ϕα : Uα Ñ ϕpUαq Ď Rn, where ϕpUαq is an open subset of Rn.
Assume in addition that the following hold:

(i) For each α, β P A, the sets ϕαpUα XUβq and ϕβpUα XUβq are open
in Rn.

(ii) If Uα XUβ ‰ H, the map ϕβ ˝ ϕ´1
α : ϕαpUα XUβq Ñ ϕβpUα XUβq

is smooth.

(iii) Countably many of the sets Uα cover M.

(iv) If p ‰ q are points in M, either there exists α such that p, q P Uα or
there exist α, β with Uα XUβ “ H such that p P Uα and q P Uβ.

Then M has a unique smooth manifold structure such that each pUα, ϕαq

is a smooth chart.

Exercise 1.2.25. Prove Lemma 1.2.24.
Hint: declare all the ϕα to be homeomorphisms and use the hypotheses to check

the definition of a smooth manifold.

Example 1.2.26. Lemma 1.2.24 simplifies life a lot. Consider the
product manifolds from Example 1.2.19. Since both M and N are
smooth manifolds, the product manifold is a pm` nq-dimensional
smooth manifold with the atlas introduced in the example.

The proof of this fact is trivial in the sense that each of the maps
in the atlas satisfies all the properties of the lemma by construction,
after all they are already part of the differentiable structure of a
smooth manifold. ♦

Exercise 1.2.27. Prove that the n-dimensional torus

Tn :“ S1 ˆ ¨ ¨ ¨ ˆ S1
loooooomoooooon

n times

Ă R2n

is a smooth manifold of dimension n.

If M is a topological space and „ an equivalence relation we
have seen that it is sometimes possible to define smooth manifolds.
Since in general the quotient does not behave nicely it is conve-
nient to get a few tricks to check if the manifold structure can be
preserved.

In this case it is convenient to have some tools to check continu-
ity of functions. For a proof refer to [Tu11, Proposition

7.1] or [Lee11, Theorem 3.70].
Proposition 1.2.28. Assume F : X Ñ Y is a map between topological
spaces and „ is an equivalence relation on X. Let F be constant on each
equivalence class rps P X{„, and denote rF : X{„Ñ Y, rFprpsq :“ Fppq for
p P X, the map induced by F on the quotient.

Then, rF is continuous if and only if F is continuous.

Continuity of the projection implies that if M{ „ is Hausdorff,
then π´1pπpsqq “ rss is closed in M. If, additionally, π is open29 29 That is, it maps open sets to open

sets.then there is a stronger statement:

These statements are not hard to
prove, but their proofs will be omitted
here. You can refer to [Tu11, Chapters
7.1–7.5].

Theorem 1.2.29. If M is a topological space and „ an equivalence relation
such that π : M Ñ M{„ is open, then:
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• π maps a basis for the topology of M into a basis for the topology M{„,
thus if M is second countable, then M{„ is second countable;

• the quotient space M{ „ is Hausdorff if and only if the graph R of „,
i.e., the set

R :“ tpx, yq P MˆM | x „ yu,

is closed in MˆM.

In general, however, the class of quotient space is too large to
admit a good general theory of smooth manifolds. Yet, there is a
family of manifolds that has undergone lots of research and on
which a lot can be said: smooth manifolds with certain smooth Lie
group actions. Treating this will be far too much for the course, but
we will provide along the way most of the necessary ingredients
for you to be able to explore the topic on your own. For further
reference, you can look at [Lee13, Chapter 21].

Before moving on, below we are going to look at a couple of
simpler, notable, examples of quotient manifolds.

Example 1.2.30. Let RPn denote the n-dimensional real projective
space, that is, the space of lines in Rn`1 passing through the origin.
This is a notable example of quotient manifold: we are going to
show that RPn is a smooth manifold of dimension n.

We can define an equivalence relation on Rn`1
0 :“ Rn`1zt0u by

declaring that for any x, y P Rn`1
0

x „ y ðñ Dt ‰ 0 such that y “ tx,

that is, two points are equivalent if they lie on the same line passing
through the origin. Then, the real projective space is the quotient
space RPn :“ Rn`1

0 { „. For the sake of the example, let’s denote
the class of equivalence of a point x “ px0, . . . , xnq P Rn`1

0 by rxs “
rx0, . . . , xns and the projection to the quotient by π : Rn`1

0 Ñ RPn.
The classes of equivalence rxs are called homogeneous coordinates
on RPn.

Figure 1.3: The identification „ of
antipodal points maps the sphere to
a disk. Embedding Sn{ „ in Rn`1,
one can define a map πD that projects
the representative of rxs in the north
hemisphere orthogonally to the disk
Dn “ tx P Rn`1 | }x} ď 1, xn`1 “ 0u
(the equator is mapped to itself).

There is a nice interpretation of this construction in terms of
flattening spheres. Observe that a line through the origin always
intercepts a sphere Sn at two antipodal points and, conversely,
each pair of antipodal point determines a unique line through the
center. So we can define an equivalence relation on the sphere by
identifying the antipodal points: given x, y P Sn, x „1 y if and only
if x “ ˘y. This leads to the bijection RPn » Sn{ „1. Note that by
gluing antipodal points, we are identifying the north and south
hemispheres, thus essentially flattening the sphere to a disk.

Exercise 1.2.31. Show that the map n : Rn`1
0 Ñ Sn, npxq “ x

}x} ,
induces a homeomorphism n̂ : RPn Ñ Sn{„.

Hint: find an inverse map and show that both n̂ and its inverse are continuous.

Let’s first show that RPn
is a topological n-manifold.

The structure of topological manifold follows immediately from the
Theorem 1.2.29 and π being open, so let’s prove that.
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Let U Ă Rn`1
0 , since π is continuous by construction, πpUq is

open if π´1pπpUqq is open in Rn`1
0 . By definition

π´1pπpUqq “
ď

t‰0

tU “
ď

t‰0

ttp | p P Uu.

Since multiplication by t ‰ 0 is a homeomorphism of Rn`1
0 , the set

tU is open for any t, as is their union, RPn is both Hausdorff and
second-countable.

For each i “ 0, . . . , n, define rUi :“ tx P Rn`1
0 | xi ‰ 0u, the set

where the i-th coordinate is not 0, and let Ui “ πprUiq Ă RPn. Since
rUi is open, Ui is open. Define

ϕi : Ui Ñ Rn,

ϕiprx0, . . . , xnsq :“
ˆ

x0

xi , . . . ,
xi´1

xi ,
xi`1

xi , . . . ,
xn

xi

˙

,

e.g. ϕ0prx0, . . . , xnsq “ px1{x0, . . . , xn{x0q. This map is well–defined
because its value is unchanged by multiplying x by a non-zero
constant. Moreover, ϕi is continuous: the inverses can be computed
explicitly as

ϕ´1
i py1, . . . , ynq “

”

y1, . . . , yi´1, 1, yi`1, . . . , yn
ı

.

Since tU0, . . . , Unu is an open covering of RPn, this shows tht RPn

is locally euclidean of dimension n.

Let’s equip RPn
with a smooth structure. We are already

half-way through: we are going to show that the coordinate charts
pUi, ϕiq defined above are, in fact all smoothly compatible. Without
loss of generality, let’s assume i ą j. Then, a brief computation
shows

ϕj ˝ ϕ´1
i py1, . . . , ynq

“

ˆ

y1

yj , . . . ,
yj´1

yj ,
yj`1

yj , . . . ,
yi´1

yj ,
1
yj ,

yi`1

yj , . . . ,
yn

yj

˙

,

which is a diffeomorphism from ϕipUi XUjq to ϕjpUi XUjq since
xj ‰ 0 on Uj. The atlas defined by the collection tpUi, ϕiqu is called
standard atlas and makes RPn a smooth manifold. ♦

Exercise 1.2.32. Show that the real projective space RPn is compact.
Hint: use Exercise 1.2.31.

Exercise 1.2.33 (Stereographic projections [homework 1]). Let N
denote the north pole p0, . . . , 0, 1q P Sn Ă Rn`1 and let S denote
the south pole p0, . . . , 0,´1q. Define the stereographic projections
σ : SnztNu Ñ Rn by

σpx1, . . . , xn`1q :“
ˆ

x1

1´ xn`1 , . . . ,
xn

1´ xn`1

˙

,

and rσ : SnztSu Ñ Rn, rσpxq :“ ´σp´xq.
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1. For any x P SnztNu, show that σpxq “ u where pu, 0q is the
point of intersection of the line passing through N and x with
the hyperplane txn`1 “ 0u. Similarly, show that rσpxq is the point
where the line through S and x intersects the same hyperplane.

2. Show that σ is bijective and

σ´1puq “
ˆ

2u1

}u}2 ` 1
, . . . ,

2un

}u}2 ` 1
,
}u}2 ´ 1
}u}2 ` 1

˙

.

3. Compute the transition map rσ ˝ σ´1 and verify that the atlas
tpSnztNu, σq, pSnztSu,rσqu defines a smooth structure on Sn.

4. Let n “ 1. Show that this smooth structure is the same as the one
defined in Example 1.2.14.

The general definition of Cr-manifolds is mostly a matter
of replacing occurrences of “smooth” in the text with Cr.
The study of these more general structures is not dissimilar
from what we will see in this course, with the exception of
analytic and C0-manifolds, but it introduces an unnecessary
extra level of verbosity. In these notes we will only deal with
smooth manifolds.

1.3 Smooth maps and differentiability

With a well–defined differentiable structure and the idea of com-
patible charts, we have all the ingredients to lift the definition of
differentiable maps from the euclidean world.

Before considering the general definition of a differentiable
map, let’s look at the simpler example of differentiable functions
f : M Ñ R between a smooth manifold M and R.

Figure 1.4: A function is differentiable
if it is differentiable as a euclidean
function through the magnifying lens
provided by the charts.

Definition 1.3.1. A function f : M Ñ R from a smooth manifold
M of dimension n to R is smooth, or of class C8, if for any smooth
chart pϕ, Vq for M the map f ˝ ϕ´1 : ϕpVq Ă Rn Ñ R is smooth as
a euclidean function on the open subset ϕpVq Ă Rn. We denote the
space of smooth functions by C8pMq. ♦

This, colloquially speaking, means that a function is differen-
tiable if it is differentiable as a euclidean function through the
magnifying lens (see Figure 1.3) provided by the charts.

Exercise 1.3.2. Define the following operations on C8pMq. For any
f , g P C8pMq, c P R,

p f ` gqpxq :“ f pxq ` gpxq, p f gqpxq :“ f pxqgpxq, pc f qpxq :“ c f pxq.

Then, the space C8pMq endowed with the operations above is an
algebra30 over R. 30 I.e. a vector space where you can

also multiply two elements.
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The following theorem can be very convenient when you work
with smooth functions.

Proposition 1.3.3. Let M be a smooth n-manifold and f : M Ñ R a
real-valued function on M. Then, the following are equivalent:

(i) f P C8pMq;

(ii) M has an atlas A such that for every chart pU, ϕq P A, f ˝ ϕ´1 :
Rn Ą ϕpUq Ñ R is C8;

(iii) for every point p P M, there exists a smooth chart pV, ψq for M such
that p P V and the function f ˝ ψ´1 : Rn Ą ψpVq Ñ R is C8 on the
open subset ψpVq Ă Rn.

Exercise 1.3.4. Prove the proposition.
Hint: go cyclic, for example show piq ñ piiq, piiq ñ piiiq, piiiq ñ piq.

At this point, the generalization of smooth functions to smooth
maps between manifolds should not come as a surprise.

Definition 1.3.5. Let F : M1 Ñ M2 be a continuous map 31 between 31 Remember: continuity is not a prob-
lem since M1 and M2 are topological
spaces.

two smooth manifolds of dimension n1 and n2 respectively. We say
that F is smooth, or of class C8, if, for any chart pϕ1, V1q of M1 and
pϕ2, V2q of M2, the map

ϕ2 ˝ F ˝ ϕ´1
1 : U1 Ñ U2,

U1 :“ ϕ1pV1 X F´1pV2qq Ă Rn1 ,

U2 :“ ϕ2pFpV1q XV2q Ă Rn2 ,

is smooth as a euclidean function.

Differently from your calculus classes,
we are defining differentiability before
we define what the derivative is.
Getting to it will require some amount
of work, and will have to wait until the
next chapter.

We denote by C8pM1, M2q the set of all functions F : M1 Ñ M2

of class C8.
The map F̂ :“ ϕ2 ˝ F ˝ ϕ´1

1 is called the coordinate representation
of F with respect to the given coordinates. ♦

Figure 1.5: Maps are differentiable
when they are differentiable as maps
between euclidean spaces.
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For a very simple and familiar example, consider the real valued
function f px, yq “ x2 ` y2 defined on R2. In polar coordinates on
U “ tpx, yq P R2 | x ą 0u, f has the coordinate representation
f̂ pρ, θq “ ρ2. Very often, where there is no ambiguity, we will simply
identify f and f̂ and just write “in the local coordinates pρ, θq on U,
f pρ, θq “ ρ2”.

A first observation about our definition of smooth maps is that
as one would hope, smoothness implies continuity.

Exercise 1.3.6. Show that every smooth map is continuous.

Definition 1.3.7. A diffeomorphism F between two smooth mani-
folds M1 and M2 is a bijective map such that F P C8pM1, M2q and
F´1 P C8pM2, M1q. Two smooth manifolds M1 and M2 are called
diffeomporphic if there exists a diffeomorphism F : M1 Ñ M2

between them. ♦

Exercise 1.3.8. Any chart pV, ϕq of a manifold M is a diffeomorphism
between the manifolds V Ă M and ϕpVq Ă Rn.

Exercise 1.3.9. Prove the following propositions and aid your reason-
ing by drawing the relevant figures.

Proposition 1.3.10. Let M be a smooth manifold of dimension n. Then
F : M Ñ Rm is smooth iff for all smooth charts pU, ϕq of M, the function
F ˝ ϕ´1 : ϕpUq Ñ Rm is smooth.

Proposition 1.3.11. Let M be a smooth manifold of dimension n. Then
F : Rm Ñ M is smooth iff for all smooth charts pU, ϕq of M, the function
ϕ ˝ F : F´1pUq Ñ Rn is smooth.

Proposition 1.3.12. Let M, N, P be three smooth manifolds, and suppose
that F : M Ñ N and G : N Ñ P are smooth. Then G ˝ F P C8pM, Pq.

Proposition 1.3.13 (Smoothness is a local property). Let F : M Ñ N
be a continuous function and let tUiuiPI be an open cover for M. Then
F|Ui : Ui Ñ N is smooth for every i P I iff F : M Ñ N is smooth.

Exercise 1.3.14 ([homework 1]). Prove that R2ztp0, 0qu is a two-
dimensional manifold and construct a diffeomorphism from this
manifold to the circular cylinder

C :“ tpx, y, zq P R3 | x2 ` y2 “ 1u Ă R3.

The following corollary is just a restatement of Proposition 1.3.13,
but provides a useful perspective on the construction of smooth
maps.

Proposition 1.3.15 (Gluing lemma for smooth maps). Let M and N
be two smooth manifolds and let tUα | α P Au be an open cover of M.
Suppose that for each α P A we are given a smooth map Fα : Uα Ñ N
such that the maps agree on the overlaps: Fα|UαXUβ

“ Fβ|UαXUβ
for all

α, β P A. Then there exists a unique smooth map F : M Ñ N such that
F|Uα “ Fα for each α P A.
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In other words, if you can define a map in a neighbourhood of
each point in such a way that the locally defined maps all agree
where they overlap, then the local definitions piece together to yield
a global smooth map. We will use this construction repeatedly
throughout the course. Sometimes, however, the local definitions
are not guaranteed to agree. In this case one usually has to resort to
a different tool: partitions of unity. These allow to surgically patch
objects together and make sure that they still have the required
properties. In the next section we will look more deeply into this.

From now on, when we write manifold, chart, atlas, etc. we
always mean smooth manifold, smooth chart, smooth atlas,
etc..

1.4 Partitions of unity

Cutoff functions are a class of smooth functions that will be
of crucial importance throughout the course, and whose existence
cannot be given for granted. Since their definition and construction
does not require more than what we have just seen, let’s talk about
them now.

First of all, recall that the support of a smooth function f : M Ñ

R, denoted by suppp f q, is defined as

The bar over the set denotes its clo-
sure.

suppp f q :“ tp P M | f ppq ‰ 0u.

We will introduce those functions with a proposition, and will
spend the rest of this chapter proving it.

Proposition 1.4.1 (Cutoff functions). Let M be a smooth manifold and
K Ă U Ă M two subsets such that K is closed and U is open. Then, there
exists a smooth function χ : M Ñ R, called cutoff function, with the
following properties
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(i) 0 ď χ ď 1 for all p P M;

(ii) supppχq Ă U;

(iii) χppq “ 1 for all p P K.

The proof of this proposition involves a general result which
is quite technical and whose proof will be omitted. You can refer
to [Lee13; Tu11] if you are curious to see the details.

Instead, we will show a special case of Proposition 1.4.1. The
main reason is that it involves an explicit construction of the cutoff
which can be convenient to have at hand later on.

Lemma 1.4.2 (Cutoff functions, compact case). Let M be a smooth
manifold and K Ă U Ă M two subsets such that K is compact and U is
open. Then, there exists a smooth function χ : M Ñ R with the following
properties

(i) 0 ď χ ď 1 for all p P M;

(ii) supppχq Ă U;

(iii) χppq “ 1 for all p P K.

Proof. Part 1. To warm up, let’s do some first year analysis. For
any pair of real numbers r ă R there exists a smooth function
f : R Ñ r0, 1s such that f ptq “ 1 for t ď r, f ptq “ 0 for t ě R and
0 ă f ptq ă 1 for t P pr, Rq.

We can construct this explicitly by means of the function

h : R Ñ R, hptq :“

$

&

%

e´1{t, t ą 0,

0, t ď 0.

Exercise 1.4.3. Prove by induction that for t ą 0 and k ě 0, the kth
derivative hpkqptq is of the form p2kp1{tqe´1{t for some polynomial
p2kpxq of degree 2k in x. Use this to show that h P C8pRq and that
hpkqp0q “ 0 for all k ě 0.

The function f that we are seeking is then32 given by 32 Exercise: check that such function f
satisfies all the desired properties.

f ptq :“
hpR´ tq

hpR´ tq ` hpt´ rq
.

Part 2. Let’s extend f to Rn. Denote Br Ă Rn the open ball of
radius r around the origin. Then, for any 0 ă r ă R we seek a
function g : Rn Ñ R such that gpxq “ 1 for all x P Br, gpxq “ 0
for all x P RnzBR and 0 ă gpxq ă 1 for all x P BRzBr. This is
immediately achieved by defining gpxq :“ f p}x}q, where f is the
function defined in the previous step.

Part 3. Let’s now pick a point p P M and an arbitrary neighbour-
hood U of p. Choosing an appropriate chart about p, the previous
step implies that we can choose a smaller neighbourhood V Ă U
of p with V Ă U and such that there exists a smooth function
χ : M Ñ r0, 1s satisfying χppq “ 1 for all p P V and χppq “ 0 for all
p P MzU.
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Part 4. We are ready to complete the proof. For each point p P K,
choose two neighbourhoods Vp Ă Up such that Vp Ă K and Up Ă U.
Since K is compact, it admits a finite cover in terms of these sets: i.e.
there are finitely many points p1, . . . , pN P K such that K Ă

ŤN
i“1 Vpi .

For each i, choose χi : M Ñ r0, 1s as in the previous step: χippq “ 1
for all p P Vpi and χippq “ 0 for all p P MzUpi . The proof is
completed by defining

χ :“ 1´
N
ź

i“1

p1´ χippqq.

We are not there yet. To extend this result to our needs will need
a new tool, which will be useful throughout the course and in many
courses to come.

Definition 1.4.4. Let M be a smooth manifold. A partition of unity
is a collection tρα | α P Au of functions ρα : M Ñ R such that

(i) 0 ď ρα ď 1 for all p P M and α P A;

(ii) the collection tρα | α P Au is locally finite, that is, for any
p P M there are at most finitely many α P A such that p P
supppραq;

(iii) for all p P M one has
ř

αPA ραppq “ 1. For any p,
ř

αPA ραppq is a finite sum
by ii. Thus, the function defined by the
sum ρ :“

ř

ρα is a well define smooth
function on M. We call such sum a
locally finite sum.

♦

Remark 1.4.5. Note that the existence of a partition of unity is a dis-
tinguished feature of differentiable manifolds: stronger structures,
like analytic or holomorphic ones, in general fail to have one. ♦

Throughout the course we will be mostly interested in partitions
of unity tρα | α P Au which are subordinate to an open cover
tUα | α P Au, that is, such that suppαpραq Ă Uα for each α P A.

We are going to omit the proof of this
theorem, for its details you can refer
to [Tu11, Proposition 13.6] or [Lee13,
Theorem 2.23].

Theorem 1.4.6. Let M be a smooth manifold. For any open cover tUα |

α P Au of M, there exists a partition of unity tρα | α P Au subordinate to
tUα | α P Au.

With this result at hand, Proposition 1.4.1 can be shown very
easily.

Proof of Proposition 1.4.1. Consider the open cover of M given by
C :“ tMzK, Uu. Then Theorem 1.4.6 implies that there exists a
partition of unity tρU , ρMzKu adapted to C. The function χ :“ ρU is
our cutoff function.

1.5 Manifolds with boundary
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The definition of manifolds has a serious limitation,
even though it is perfectly good to describe curves33 and surfaces34, 33 E.g. the circle seen in Example 1.2.14.

34 E.g. the n2-spheres S2 from the
homework sheet.

it fails to describe many natural objects like a closed interval ra, bs P
R or the closed disk D1p0q of Example 1.1.12. Note that in each
of these cases, both the interior and the boundary are smooth
manifolds and their dimension differ by one35. 35 In the first case the interior pa, bq is a

1-manifold and the boundary, the set
Bra, bs “ ta, bu, is a 0-manifold. In the
second case the interior of D1p0q is the
open unit ball, a 2-manifold, and the
boundary BD1p0q is the 1-manifold S1.

Let’s do a step back and think about topological manifolds: since
both the closed interval and the closed disk are closed sets, we
have problems to make them locally euclidean in neighbourhoods
of their boundaries. Can we modify our local model to resemble
something with a boundary?

Of course this is a rhetorical question. We can generalize our
definition by considering the closed upper half-spaces

Hn “ tx “ px1, . . . , xnq P Rn | xn ě 0u,

with its pn´ 1q-dimensional boundary

BHn “ tx “ px1, . . . , xnq P Rn | xn “ 0u

and the topology inherited by Rn, as a replacement for our local
model Rn.

Definition 1.5.1. A topological space M is a topological manifold
with boundary of dimension n, or topological n-manifold with
boundary, if it has the following properties

(i) M is a Hausdorff space;

(ii) M is second countable;

(iii) M is locally homeomorphic to Hn, any point x P M has a
neighbourhood that is homeomorphic to a (relatively) open36 36 Recall that U Ă Hn is relatively open,

that is open with respect to the relative
topology, if there exist an open set
rU Ă Rn such that U “ rUXHn.

subset of Hn.

A chart on M is a pair pU, ϕq consisting of an open set U Ă M
and a homeomorphism ϕ : U Ñ ϕpUq Ă Hn. ♦

Example 1.5.2. A Möbius strip M is a connected 2-manifold with
boundary. As a topological space it is the quotient37 Rˆ r0, 1s via 37 Think of a strip of paper whose ends

have been glued with a twist.the identification px, yq „ px` 1, 1´ yq. The projection π : rpx, yqs ÞÑ
pcosp2πxq, sinp2πxqq is a continuous surjective map to S1. Given
x0 P R, we can choose charts rpx, yqs ÞÑ pex cospπyq, ex sinpπyqq for
x P px0 ´ ε, x0 ` εq and any ε ă 1{2. ♦ Note that BM is diffeomorphic to S1.

In fact, this is actually an example of
a non-trivial fiber bundle, something
that will make sense only a few
chapters from now. In this case, M is a
bundle of intervals over a circle.



24 analysis on manifolds

We saw in Proposition 2.8.12 that differentiability is a local
property, which means that is a property defined on open sets. To
clarify what it means to have differentiable structures on manifolds
with boundary, we will thus need to clarify what it means for a
function defined on Hn to be differentiable at points on BHn. As it
turns out, this is a minor modification of our previous definition
that stems directly from the definition of the induced topology.

Definition 1.5.3. Let U Ă Hn be a relatively open set. A map
f : U Ñ Rm is r-times continuously differentiable, or of class Cr, if
there exists an open set rU P Rn and a map rf P CrprU, Rmq such that
U Ă rU and rf |U “ f . The function f is said to be smooth, or of class
C8, if f is r-times continuously differentiable for all r ě 1. ♦

With such definition at hand, one can define compatibility,
smooth atlases and differentiable structures as in Definition 1.2.4,
Definition 1.2.5 and Definition 1.2.7 by considering charts taking
value in Hn.

Exercise 1.5.4. Explicitly state the definitions above in the case of
manifolds with boundary.

Remember that the differentiable
structure is an equivalence class of
smooth atlases.

Definition 1.5.5. A smooth manifold with boundary of dimension n
is a pair pM,Aq of a topological n-manifold with boundary M and a
smooth differentiable structure A “ tpUα, ϕαq | α P Au on M. The boundary BM as defined by (1.3)

can differ from its topological bound-
ary as a subset of another topological
space. For example the boundary BS1

of the circle as a manifold is empty,
but the boundary of the circle S1 as a
subset of R2 is S1 itself.

The boundary of M is defined as

BM :“
ď

αPA

ϕ´1
α pϕαpVαq X BHnq . (1.3)

♦

Proposition 1.5.6. The boundary BM is well–defined38. 38 In the sense that smooth charts
send boundary pieces to boundary
pieces.Note that the definition of
the boundary holds for topological
manifolds as well, but showing that
it is well–defined is much more
complicated and will be omitted.

Proof. The statement follows if we show that the transition maps
send boundary pieces to boundary pieces. It turns out that this
fact is more general: for any diffeomorphism f : U Ñ V, where
U, V Ă Hn are relatively open, it holds that x P U X BHn if and only
if f pxq P V X BHn.

Indeed, let x P U X pHnzBHnq be a point in the interior of U.
Expanding f in Taylor series up to the first order, we have

f px` hq “ f pxq `D f |xh`Op}h}q.

Since the total derivative D f at x is an isomorphism, there exist an
open neighbourhood O of x such that f pOq is open in Rn and thus
f pxq P V X pHn X BHnq.

Example 1.5.7. Let’s go back to the closed interval M “ ra, bs Ă R.
With the atlas

A “
 `

ra, bq, x ÞÑ x´ a
˘

,
`

pa, bs, x ÞÑ b´ x
˘(

it is a differentiable 1-manifold with boundary BM “ tau Y tbu “
ta, bu. ♦
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Let’s go back to our observation at the beginning of this section.
We started by observing that some objects seemed to be the “sum”
of a boundary manifold and an interior manifold. Can we make
sense of such observation using our newly introduced definition?

Proposition 1.5.8. Let M be a differentiable n-manifold with boundary.
Then M̊ :“ MzBM and BM inherit the structure of manifolds (without
boundary) of dimensions dimpM̊q “ n and dimpBMq “ n´ 1.

Proof. Let A “ tpUα, ϕαq | α P Au be an atlas for M. Then

A˝ :“
!´

Uα X M̊, ϕα|UαXM̊

¯

| α P A
)

is an atlas for M̊ where none of the charts contain points in BHn.
In a similar vein, an atlas for BM is given by

AB :“
 `

Uα X BM, ϕα|UαXBM
˘

| α P A
(

,

where
ϕα|UαXBM : pUα X BMq Ñ BHn » Rn´1

by the proof of Proposition 1.5.6.

Example 1.5.9. Consider the cone

C “ tp “ pp1, p2, p3q P R3 | pp1q2 ` pp2q2 “ pp3q2, 0 ă p3 ď 1u,

with boundary BC “ tp P C | p3 “ 1u.
We can describe the cone with the following atlas A “ tpUi, ϕiq |

i “ 1, 2, 3u:

• U1 :“ tp P C | p3 ă 1u with x “ px1, x2q “ ϕ1ppq “ pp1, p2 ` 1q,
thus

ϕ´1
1 pxq “

ˆ

x1, x2 ´ 1,
b

px1q2 ` px2 ´ 1q2
˙

.

• U2 “ tp P C | 1{2 ă p3 ď 1, pp1, p2q ‰ p0, p3qu with ϕ2 defined as
follows. Let

q “ ψppq “
ˆ

p1

p3 ,
p2

p3 , p3
˙

and σpqq “
ˆ

2q1

1´ q2 , 1´ q3
˙

,

then x “ ϕ2ppq “ pσ ˝ ψqppq and ϕ2pU2q “ Rˆ r0, 1{2q Ă H2.

• U3 “ tp P C | 1{2 ă p3 ď 1, pp1, p2q ‰ p0,´p3qu and ϕ3 defined
similarly as in the previous point.

Figure 1.6: Compare ϕ with the
stereographic projections from Ex-
ercise 1.2.33. Do you notice any
similarity?

The boundary is given by BC “ ϕ´1
2 pRˆ t0uq Y ϕ´1

3 pRˆ t0uq. ♦

Exercise 1.5.10. Explicitly define ϕ3 from the previous example. Why
is ϕ1 not appearing in BC?

Exercise 1.5.11 ([homework 1]). Let M “ D1 Ă Rn be the n-dimensional
closed unit ball from Example 1.1.12.

1. Show that M is a topological manifold with boundary in which
each point of BM “ Sn´1 is a boundary point and each point in
M̊ “ tx P Rn | }x} ă 1u is an interior point.
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2. Give a smooth structure to M such that every smooth interior
chart is a smooth chart for the standard smooth structure on M̊.
Hint: consider the map π ˝ σ´1 : Rn Ñ Rn where σ : Sn Ñ Rn is the
stereographic projection from Exercise 1.2.33 and π : Rn`1 Ñ Rn is a
projection that omits one of the first n coordinates.

Differentiable manifolds without boundary (cf. Defini-
tion 1.2.9) can be thought as a special case of differentiable
manifolds with boundary (cf. Definition 1.5.5) where the
boundary happens to be empty. Therefore, with the ex-
ception of the beginning of Chapter 2, we will no-longer
distinguish the two concepts: from now on, a manifold may
have or may not have a boundary.
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Tangent bundle

2.1 Let the fun begin!

We are left to define derivatives of functions between man-
ifolds. And, since we saw that euclidean spaces are manifolds, we
had better find a definition that coincides with the one you saw in
your analysis courses.

Figure 2.1: Tangent space to a point
of a sphere S2 embedded into the
ambient space R3.

In this chapter we will see how to associate to an n-dimensional
smooth manifold M an n-dimensional vector space, denoted by
Tx M, to each point x P M. Such vector space is called tangent space
to M at x and, for a manifold embedded into a euclidean ambient
space, it will coincide with the intuitive understanding of a tangent
hyperplane to the point on the manifold, see also Figure 2.1. As we
will see, there are various different definitions of tangent space but,
in the end, they all turn out to be equivalent.

Due to a certain amount of freedom in terms of different “per-
spectives” leading to different but equivalent definitions, there is
no unique way of introducing tangent spaces. Just to give you an
idea, all the following approaches lead to equivalent definitions (see
also [Lee13]):

• equivalence classes of curves through a point;

• transformation laws of the components of vectors with respect to
different charts;

• generalization of linear approximation into the idea of an ab-
stract derivation;

• derivations in the category of germs of functions;

It is also possible to “flip” the whole construction around, con-
structing differentials and cotangent spaces and using them to
introduce the tangent spaces. This is the approach taken by [Hit14]
and it is at least worth a look if you want to see a different perspec-
tive.

To avoid diverging from [Tu11] too much1, we will stick to 1 Since it used to be the compulsory
reading material in the previous years.derivations on the space of germs, which emphasizes the locality of

derivations to an extreme. The equivalence between our approach
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and the one based on charts will be left as homework, while we
will look into the equivalence with the speed of curves and with
derivations together.

2.2 Directional derivatives in euclidean spaces

Suppose that f : U Ă Rn Ñ Rk is a smooth map defined on an
open subset U Ă Rn. In multivariable calculus you have seen that if
x P U and v P Rn, then the vector D f pxqv can be interpreted as the
directional derivative2 of f : 2 Sometimes this is denoted Dv f pxq

instead.

D f pxqv “ lim
tÑ0

f px` tvq ´ f pxq
t

.

Then, the partial derivative is obtained as the particular case

Dj f pxq :“ D f pxqej “ lim
tÑ0

f px` tejq ´ f pxq
t

.

Of course, we can also look at the derivative by using the standard
euclidean coordinates r1, . . . , rn, in that case we would be deriving
ri ˝ f : Rn Ñ R.

Let’s take it slow, and compare all these various derivatives
next to each other. For f : U Ă Rn Ñ Rk and x P U, we have

• D f pxq, the Jacobian matrix, which is a kˆ n matrix;

• Dj f pxq, the jth column of the matrix D f pxq, which is an element
of Rk;

• Dpri ˝ f qpxq, a linear function from Rn Ñ R, which one can think
of as the ith row of the matrix D f pxq;

• Djpri ˝ f qpxq “ B f i

Bxj pxq, a number in R, which corresponds to the
pi, jqth element pD f pxqqij of the matrix D f pxq.

This notation using D instead of spelling out the partial deriva-
tives, comes with an important advantage. Let’s use it to rewrite the
chain rule from Proposition 1.2.2(ii):

Djpri ˝ g ˝ f qpxq “
k
ÿ

l“1

Dlpri ˝ gqp f pxqq Djprl ˝ f qpxq,

where 1 ď i ď m, 1 ď j ď n. As you can see, we do not need to

Using Einstein notation, since l is the
only index that appears both in lower
and upper position, Djpri ˝ g ˝ f qpxq “
Dlpri ˝ gqp f pxqq Djprl ˝ f qpxq.

explicitly spell out the derivatives in local coordinates on Rn or Rk

in this new formula. This will prove extremely convenient for the
development of the theory.

2.3 Germs and derivations



tangent bundle 29

To reach our goal of defining derivations on manifolds,
a direct extension of partial derivatives is not enough: we will need
to introduce some more levels of abstraction.

Definition 2.3.1. Let M be a smooth manifold. For some point
p P M, let U, V Ă M be two neighbourhoods of p. We say that
two functions f P C8pUq and g P C8pVq have the same germ
at p if there exists a neighbourhood W Ă U X V of p such that
f |W ” g|W . ♦

Germs define an equivalence relation on the set of smooth func-
tions defined on a neighbourhood of a point p: pU, f q „p pV, gq if
they have the same germ at p. Then, a germ r f sp, where pU, f q is
one representative for r f sp, is an equivalence class in the quotient
space

C8p pMq :“ C8pMq{„p .

Exercise 2.3.2. Show that „p defined above is an equivalence relation
in C8pMq.

For c P R and r f sp, rgsp germs with representatives pU, f q, pV, gq,
we have

• r f sp ` rgsp is the germ with representative pU XV, f ` gq;

• r f sprgsp is the germ with representative pU XV, f gq;

• cr f sp is the germ with representative pU, c f q.

Therefore, C8p pMq is also an algebra over R.

Exercise 2.3.3. Check that the operations above are well–defined.

Germs are the apotheosis of locality: a germ at p has a well–
defined value at p and nowhere else. This results in a map,

evalp : C8p pMq Ñ R, evalppr f spq :“ f ppq,

where pV, f q is any representative of r f sp.

Exercise 2.3.4. Check that the evalp map is well–defined.

We can now go back to our discussion of euclidean derivations
to motivate our definition of tangent vectors.

Example 2.3.5. Let U Ă Rn open3 and f P C8pUq. For x P U and 3 In what follows, we will think of U
as both an open subset of Rn and a
smooth manifold depending on what
is most convenient for us.

v P Rn we have seen that D f pxq can be interpreted as a matrix
that consumes the vector v to produce a number Dp f qv. In such
interpretation f is fixed and only x and v vary, however there is no
reason for this restriction.

Indeed, an alternative interpretation lets also f vary and consid-
ers the action of differentiation as a map

U ˆRn ˆ C8pUq Ñ R, px, v, f q ÞÑ D f pxqv.

And since we are flipping around all the ideas, let us consider x
and v fixed and instead only let f vary:

px, vq : C8pUq Ñ R, px, vqp f q :“ D f pxqv. (2.1)
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By the definition (1.1) of the euclidean differential, we know that it
is a local property: the value D f pxq only depends on the germ of
f at x. Thus we can rephrase (2.1) by saying that v defines a linear
map

v : C8x pUq Ñ R, vpr f sxq :“ D f pxqv.

In fact, this is not just a linear map, it also satisfies a derivation
property, in the sense that

vpr f sxrgsxq “ evalxpr f sxqvprgsxq ` evalxprgsxqvpr f sxq.

Which, rewritten in a more familiar form, is just a way to rewrite
the Leibniz rule:

Dp f gqpxqv “ f pxqDgpxqv` gpxqD f pxqv.

Note that we have now two different interpretations for v: it is
both a vector in Rn and a linear map C8x pUq Ñ R satisfying the
derivation property. ♦

Motivated by Example 2.3.5, we will define a tangent vector as a
derivation on the space of germs.

Definition 2.3.6. Let M a smooth manifold of dimension n and let
p P M. A tangent vector at p is a linear map Keep always in mind that the value

vpr f spq only depends on the value of f
around the point p.v : C8p pMq Ñ R (2.2)

which is also a derivation, i.e.

vpr f sprgspq “ evalppr f spqvprgspq ` evalpprgspqvpr f spq.

Since a tangent vector is a linear map from the vector space
C8p pMq to R, the set of all tangent vectors at a point p is itself a
vector space4 which we denote by Tp M. ♦ 4 Exercise: why is this true?

Let’s check that these vectors, at least satisfy the most elemen-
tary properties of derivations: one would expect the derivative of
constant functions to be zero, is that the case?

Lemma 2.3.7. Let M be a smooth manifold, let U Ă M be an open set
containing p and let v P Tp M. Denote by rcsp the germ of a constant
function pU, p ÞÑ cq. Then vprcspq “ 0.

Proof. Since rcsp “ cr1sp, by linearity we have vprcspq “ cvpr1spq.
Thus, it will be enough to show that vpr1spq “ 0. Since v is a
derivation, using the algebra properties of the space of germs we
get Keep this simple trick in mind, it will

be useful in the future.

vpr1spq “ vpr1spr1spq “ 2 evalppr1spqvpr1spq “ 2vpr1spq.

Thus, vpr1spq “ 0, concluding the proof.

As you can see, working with equivalence classes is doable but
unnecessarily cumbersome. As we did with atlases, we would like
to get it over with.
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Definition 2.3.8. Let M be a smooth manifold and p P M. Let
W Ď M be any neighbourhoods of p. A map w : C8pWq Ñ R is We are still talking about derivations of

functions at specific points, not to be
confused with the derivations of the
algebra C8pWq which we will introdce
later and will be maps of the kind
C8pWq Ñ C8pWq.

called a derivation of C8pWq at p if it is linear over R and satisfies
Leibniz rule

wp f gq “ f ppqwpgq ` gppqwp f q.

♦

If v P Tp M, then we already saw that v naturally defines a
derivation w of C8pWq for any open neighbourhood W of p. In this
case

wp f q :“ vpr f spq. (2.3)

Showing that the opposite is also true will require a bit of work.

Proposition 2.3.9. Let M be a smooth manifold, p P M and W any
neighbourhood of p. Then there is a linear isomorphism between Tp M and
the space of derivations of C8pWq at p.

Proof. To prove the theorem we need to invert (2.3) and define a
tangent vector in terms of of a derivation of C8pWq at p. We will
proceed in three steps.

Step I. Let w : C8pWq Ñ R be a derivation at p and suppose that
f P C8pWq is identically zero on a neighbourhood W0 Ă W of p. We
are going to show that wp f q “ 0.

By Proposition 1.4.1, we can find a cutoff function ρ : M Ñ R

such that ρppq “ 1 inside W0 and supppρq Ă W0. Consider now
g “ ρ f : W Ñ R. Then g is identically zero in the whole W, and
thus5 wpgq “ 0. Using Leibniz rule, the fact that ρppq “ 1 and 5 Follows by linearity, exactly as in

Lemma 2.3.7f ppq “ 0, we get

0 “ wpgq “ wpρ f q “ ρppqwp f q ` f ppqwpρq “ wp f q.

Step II. Let r f sp P C8p pMq. We want to show that it is always pos-
sible to find a representative for r f sp with domain W, that is, there
exists g P C8pWq Ñ R such that rgsp “ r f sp. Let pV, f q be any
representative of r f sp. Since germs are local, if necessary, we can
shrink V so that V Ă W. Here comes the tricky bit: we need to ex-
tend f to a function g defined on W which coincides with f in some
neighbourhood of p! To this end, choose6 a smaller neighbourhood 6 We can do this because topologi-

cal manifolds are locally compact
Hausdorff spaces, which implies that
every point has a neighbourhood with
compact closure. You can take it for
granted or have a look at e.g. [Lee11,
Lemma 4.65] or [Mun00].

U of p such that U Ă V Ă W. Again, Proposition 1.4.1 comes to the
rescue. Apply it with K “ U and “U”7 equal to V, and consider

7 Meaning the set that we called U in
Proposition 1.4.1.

g : W Ñ R, gpqq :“

$

&

%

ρpqq f pqq, q P V,

0, q P WzV.

Since g|U “ f , we have rgsp “ r f sp, proving the claim.

Step III. We can now complete the proof. Let w : C8pWq Ñ R be
a derivation at p. A tangent vector is a linear map v : C8p pMq Ñ R,
see (2.2), and a derivation. We would like to define one in terms of
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w. Given any r f sp P C8p pWq, the previous step guarantees that there
exists a representative pW, f q for it, so we can define

vpr f spq :“ wp f q, where pW, f q is any representative of r f sp.

Such v is a derivation by construction, so if it is well-defined, we are
done. To this end, assume that there exists a different representative
pW, gq for r f sp. Then, by definition, there exists a neighbourhood
V Ă W of p such that f |p “ g|p. By linearity, wp f q ´wpgq “ wp f ´ gq
and by the first step in the proof, wp f ´ gq “ 0.

The assignment w ÞÑ v inverts (2.3), completing the proof.

This seemingly innocent proposition, has some very important
consequences.

First of all, from now on we are free to interpret tangent vectors
in Tp M as derivations of C8pWq at p for any8 open W containing p. 8 In particular, it is often convenient to

have W coincide with the domain of a
chart or with the whole manifold M.

This enables us to give our first example of tangent vector.

Example 2.3.10. Let M be a smooth manifold of dimension n and
ϕ : U Ñ V Ă Rn a chart on U Ă M. As already mentioned, we write
xi “ ri ˝ ϕ for the local coordinates9 of ϕ. For any p P U, we can 9 See Notation 1.2.13.

define a derivation of C8pUq at p as

B

Bxi

ˇ

ˇ

ˇ

p
: C8pUq Ñ R,

B

Bxi

ˇ

ˇ

ˇ

p
p f q :“

B f
Bxi ppq :“ Dip f ˝ ϕ´1qpϕppqq.

From now on, it will get more and more convenient to draw com-
mutative diagrams to see “how things are moving around”:

M Ą U V Ă Rn

R

ϕ

f f˝ϕ´1

We will soon see that
"

B

Bxi

ˇ

ˇ

ˇ

p
| 1 ď i ď n

*

forms a basis for Tp M. ♦

Secondly, it provides us some very useful corollaries.

Corollary 2.3.11. Let M be a smooth manifold and let W Ă M be a
non-empty open set considered as a smooth manifold. Then, for any p P W
there is a canonical identification TpW “ Tp M.

Corollary 2.3.12. Let M be a smooth manifold and p P M. Let W Ď M be
an open neighbourhood of p. If f P C8pWq is constant in a neighbourhood
of p, then vp f q “ 0 for all v P Tp M.

With these new tools at hand, we are ready to state and prove an
important result on the size of the tangent spaces. As it turns out,
Tp M is a finite dimensional vector space, naturally isomorphic to
Rn.

Theorem 2.3.13. Let M be a smooth manifold of dimension n and p P M.
Then Tp M is a vector space of dimension n.
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The theorem will follow immediately once we construct a basis
for Tp M. To that end, we need a preliminary result from multivari-
able analysis.

Lemma 2.3.14. Let U Ă Rn, 0 P U, be a star-shaped10 open set and 10 An open set U Ă Rn containing the
origin, 0 P U, is called star-shaped if U
also contains the line segment from 0
to x for any x P U.

h P C8pUq. Then, there exists n smooth functions gi : U Ñ R, 1 ď i ď n,
such that gip0q “ Dihp0q and

h “ hp0q ` rigi

where ri are the coordinates introduced in Notation 1.2.13.

Ð This is our first use of Einstein
notation, this equation should be read
as hpxq “ hp0q `

řn
i“1 ripxqgipxq. Using

the global euclidean chart, xi “ ripxq
and hpxq “ hp0q `

řn
i“1 xi gipxq,

which you may recognize as the first
iteration of the usual Taylor-MacLaurin
formula.

Proof. Fix a point x “ px1, . . . , xnq P U. Let γx : r0, 1s Ñ U denote
the line segment from 0 to x, parametrized as γxptq “ tx.

By the chain rule,

d
dt
ph ˝ γxqptq “ pDihptxqq ¨

d
dt
ptxiq “ xiDihptxq.

The fundamental theorem of calculus then implies

Ð Again, due to Einstein notation,
the right hand side should be read as
řn

i“1 xi Dihptxq.

hpxq ´ hp0q “ ph ˝ γxqp1q ´ ph ˝ γxqp0q

“

ż 1

0

d
dt
ph ˝ γxqptq dt “ xi

ż 1

0
Dihptxq dt. Ð For one last time, due to Einstein

notation, the right hand side should be
read as

řn
i“1 xi ş1

0 Dihptxq dt.

Since xi “ ripxq by definition, the theorem follows by defining

gipxq :“
ż 1

0
Dihptxq dt.

Theorem 2.3.13 now follows from the next statement.

Proposition 2.3.15. Let M be a smooth manifold of dimension n and
p P M. Let ϕ : U Ñ V be a chart on M around p, i.e. p P U. Then any
tangent vector v P Tp M can be uniquely written as a linear combination

v “ vi B

Bxi

ˇ

ˇ

ˇ

p
, vi “ vpxiq.

Thus,
"

B

Bxi

ˇ

ˇ

ˇ

p
| 1 ď i ď n

*

is a basis of Tp M.

Ð Since we consider upper indices
in the denominator as lower indices,
the equation should be read as v “
řn

i“1 vi B
Bxi

ˇ

ˇ

ˇ

p
. If M “ Rn, what we are

saying here is that vp f q “ v ¨∇ f “
D f v, that is, v acts as the directional
derivative in its direction.

Proof. We may assume without loss of generality that ϕppq “ 0 and,
thanks to Corollary 2.3.11, that U is star-shaped. Let f P C8pUq. By
Lemma 2.3.14 with h “ f ˝ ϕ´1 we get

f “ f ppq ` xipgi ˝ ϕq, gip0q “ Dip f ˝ ϕ´1qp0q “
B

Bxi

ˇ

ˇ

ˇ

p
p f q.

Thus, for any derivation v, we obtain If we are careful with the meaning
of our notation, we could write more
succintly B f

Bxi
ppq in place of B

Bxi

ˇ

ˇ

pp f q in
the same fashion as in Example 2.3.10.

vp f q “ vp f ppqq ` vpxiqgip0q ` xippqvpgi ˝ ϕq “ vpxiq
B

Bxi

ˇ

ˇ

ˇ

p
p f q.

The right hand side is obtained observing that ϕppq “ 0, and
thus the components xippq “ 0 are all zero, and applying Corol-
lary 2.3.12 to the constant f ppq, which implies vp f ppqq “ 0.
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It follows that the set
"

B

Bxi

ˇ

ˇ

ˇ

p
| 1 ď i ď n

*

spans Tp M. We now

need to show that its elements are linearly independent. Observe
that

B

Bxi

ˇ

ˇ

ˇ

p
pxjq “

B

Bxi

ˇ

ˇ

ˇ

p
prj ˝ ϕq

“ Diprj ˝ ϕ ˝ ϕ´1qpϕppqq

“ Dirjpϕppqq “ δ
j
i .

Thus, if

v “ ai B

Bxi

ˇ

ˇ

ˇ

p
“ 0,

by letting v act on xj, j ď 1 ď n, we obtain pa1, . . . , anq “ 0, proving
the linear independence.

Remark 2.3.16 (Change of coordinates). Suppose ϕ and ψ are two
different charts about p, with corresponding coordinates xi :“ ri ˝ ϕ

and yi :“ ri ˝ ψ. Taking v “ B

Byj

ˇ

ˇ

ˇ

p
in the previous proposition implies

that
B

Byj

ˇ

ˇ

ˇ

p
“

B

Byj

ˇ

ˇ

ˇ

p
pxiq

B

Bxi

ˇ

ˇ

ˇ

p
.

Expanding the definitions, we get

If we start getting used to thinking of
these vectors as actual derivatives and
hide the dependence on p, then the
equation on the left can be rewritten as
B

Byj “
Bxi

Byj
B

Bxi .
B

Byj

ˇ

ˇ

ˇ

p
pxiq “ Djpxi ˝ ψ´1qpψppqq “ Djpri ˝ ϕ ˝ ψ´1qpψppqq,

which is the pi, jqth entry in the matrix Dpϕ ˝ ψ´1qpψppqq as dis-
cussed at the beginning of Section 2.2. In other words, Dpϕ ˝

ψ´1qpψppqq is the transition matrix from the basis
"

B

Byi

ˇ

ˇ

ˇ

p
| 1 ď i ď n

*

to the basis
"

B

Bxi

ˇ

ˇ

ˇ

p
| 1 ď i ď n

*

. ♦

Example 2.3.17. The transition map between the standard euclidean
coordinates and the polar coordinates on appropriate open sets in
R2 is given by px, yq “ pρ cospθq, ρ sinpθqq. Let p P R2 denote the
point with coordinates pρ, θq “ p3, πq and v P TpR2 the tangent
vector with polar coordinate representation

v “ 5
B

Bρ

ˇ

ˇ

ˇ

p
´
B

Bθ

ˇ

ˇ

ˇ

p
.

Applying the equations in Remark 2.3.16, we get

B

Bρ

ˇ

ˇ

ˇ

p
“ cospπq

B

Bx

ˇ

ˇ

ˇ

p
` sinpπq

B

By

ˇ

ˇ

ˇ

p
“ ´

B

Bx

ˇ

ˇ

ˇ

p

B

Bθ

ˇ

ˇ

ˇ

p
“ ´3 sinpπq

B

Bx

ˇ

ˇ

ˇ

p
` 3 cospπq

B

By

ˇ

ˇ

ˇ

p
“ ´3

B

By

ˇ

ˇ

ˇ

p
,

and thus, the vector v in standard coordinates is represented by

v “ ´5
B

Bx

ˇ

ˇ

ˇ

p
` 3

B

By

ˇ

ˇ

ˇ

p
.

♦
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Exercise 2.3.18. Let px, yq denote the standard coordinates on R2.

1. Show that prx, ryq, where

rx “ x and ry “ y` x3,

are global smooth coordinates in R2.

2. Let p “ p1, 0q P R2 in standard coordinates. Show that
B
Bx

ˇ

ˇ

ˇ

p
‰ B

Brx

ˇ

ˇ

ˇ

p
even though the respective coordinate functions

are identically equal.

This shows that the coordinate vectors in the tangent space de-
pend on the whole coordinate system and not just on the single
coordinate function they are associated to.

We already mentioned that there are multiple equivalent
definitions of the tangent space. In the following exercise you will
provide one in terms of charts and euclidean derivatives. Soon, we
will see yet another definition.

Exercise 2.3.19. Let tVα | α P Au be a family of vector spaces indexed
by a set A, let W be a fixed set and let Tα : Vα Ñ W be a bijection
for all α P A. Assume that for any α, β P A, the composition
T´1

β ˝ Tα : Vα Ñ Vβ is a linear isomorphism. Show that there is a
unique vector space structure on W such that each Tα is a linear
isomorphism.

Exercise 2.3.20 (Tangent vectors as equivalence classes of charts and
vectors). Let M be a smooth m-manifolds with maximal smooth atlas
Σ. For p P M, let Σp Ă Σ denote the set of charts ϕ P Σ such that p
lies in the image of ϕ.

1. Show that

pv, ϕq „ pw, ψq ðñ Dpψ ˝ ϕ´1qpϕppqqv “ w.

defines an equivalence relation on Rm ˆ Σp.

2. Let Tp denote the set of equivalence classes rpv, ϕqs P Rm ˆ Σp{„.
For ϕ P Σp, show that the map Tϕ : Rm Ñ Tp given by Tϕv :“
rpv, ϕqs is a bijection. Deduce11 that Tp admits a unique vector 11 Hint: use the previous exercise!

space structure such that each Tϕ is a linear isomorphism.

3. Let ϕ be a chart defined on a neighbourhood of p with local
coordinates xi “ ri ˝ ϕ and let T̂ϕ : Rm Ñ Tp M denote12 the linear 12 As it turns out, this is the same as

Tx defined in (2.4), however in this
exercise we use a different notation
to emphasize the dependence on the
chart.

isomorphism defined by T̂ϕei “
B

Bxi

ˇ

ˇ

p. Show that there exists a
linear isomorphism Sp : Tp Ñ Tp M which in addition satisfies
Sp ˝ Tϕ “ T̂ϕ for every chart ϕ about p.

2.4 The differential of a smooth map
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In the case of a smooth map between Euclidean spaces,
the total derivative of the map at a point (represented by its Ja-
cobian matrix) is a linear map that represents the best linear ap-
proximation to the map near the given point. In the manifold case
there is a similar linear map but, as we discussed, it makes no sense
to talk about a linear map between manifolds: we need to find a
suitable linear map between tangent spaces.

It should not come a surprise that with the constructions devel-
oped so far not only do we have one such map, but we can directly
relate it to a derivative.

Definition 2.4.1. Let F : M Ñ N be a smooth map between the
smooth manifolds M and N. Let p P M. The differential dFp of F at
p is the map13 13 In the differential geometry lit-

erature, the differential has many
names: you can find it called tangent
map, total derivative or derivative of
F. Since it “pushes” tangent vectors
forward from the domain manifold
to the codomain, it is also called the
pushforward. If that was not enough,
different authors use different nota-
tions for it: besides dFppvq, you can
find F̊ vp, F1ppq, Tp F, DFppqrvs or
variations thereof.

dFp : Tp M Ñ TFppqN, dFppvqp f q :“ vp f ˝ Fq, @ f P C8pNq.

♦

Indeed, v ÞÑ dFppvq is a linear map (why?) defining a derivation
at Fppq acting on functions in C8pNq (why?) and, as such, is also a
tangent vector in TFppqN.

Exercise 2.4.2. Answer the two (why?) above.

Theorem 2.4.3 (The chain rule on manifolds). Let M, N, P be smooth
manifolds and F : M Ñ N, G : N Ñ P be two smooth maps. Then The alternative D notation, in this case,

makes the relation to the usual chain
rule even more evident: DpG ˝ Fqppq “
DGpFppqq ˝DFppq.

dpG ˝ Fqp “ dGFppq ˝ dFp.

Proof. Since dFp : Tp M Ñ TFppqN and dGFppq : TFppqN Ñ TGpFppqqP,
the map dpG ˝ Fqp : Tp M Ñ TGpFppqqP has the right domain and
codomain. Take now v P Tp M and f P C8pPq. We get

dpG ˝ Fqppvqp f q “ vp f ˝ G ˝ Fq “ dFppvqp f ˝ Gq
p‹q
“ dGFppqpdFppvqqp f q “ dGFppq ˝ dFppvqp f q,

where in p‹q we used the fact that dFppvq P TFppqN.

Remark 2.4.4. The differential of the identity map idM : M Ñ M at
any point p P M is the identity map

idTp M : Tp M Ñ Tp M.

Indeed, dpidMqppvqp f q “ vp f ˝ idMq “ vp f q for any v P Tp M and any
f P C8pMq. ♦

The definition we gave seems quite abstract, let’s see what it
looks like in coordinates.

Proposition 2.4.5. Let F : Mm Ñ Nn be a smooth map between smooth
manifolds. Let p P M, and let ϕ : U Ñ ϕpUq be a chart on M about p
and ψ : V Ñ ψpVq be a chart on N about Fppq. If pxiq denotes the local
coordinates of ϕ and pyiq the ones of ψ, the matrix of dFp with respect to

the bases
!

B

Bxj

ˇ

ˇ

p | j “ 1, . . . , m
)

of Tp M and
!

B

Byj

ˇ

ˇ

Fppq | j “ 1, . . . , n
)

of TFppqN is given by the Jacobian matrix Dpψ ˝ F ˝ ϕ´1qpϕppqq.
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Proof. The proof follows from the following direct computation
after observing that the number Djpri ˝ ψ ˝ F ˝ ϕ´1qpϕppqq is the
pi, jq entry of the Jacobian matrix Dpψ ˝ F ˝ ϕ´1qpϕppqq. For any
j “ 1, . . . , m,

dFp

ˆ

B

Bxj

ˇ

ˇ

ˇ

p

˙

“ dFp

ˆ

B

Bxj

ˇ

ˇ

ˇ

p

˙

pyiq
B

Byi

ˇ

ˇ

ˇ

Fppq

“
B

Bxj

ˇ

ˇ

ˇ

p
pyi ˝ Fq

B

Byi

ˇ

ˇ

ˇ

Fppq

“ Djpri ˝ ψ ˝ F ˝ ϕ´1qpϕppqq
B

Byi

ˇ

ˇ

ˇ

Fppq
.

Exercise 2.4.6. Show that the matrix of dFp in terms of the coordinate
bases is

¨

˚

˚

˝

BF1

Bx1 ppq ¨ BF1

Bxn ppq
...

. . .
...

BFm

Bx1 ppq ¨ BFm

Bxn ppq

˛

‹

‹

‚

without using the Proposition above. Here BFi

Bxj ppq “
B

Bxj

ˇ

ˇ

ppF
iq,

where Fi is the ith component of F with respect to the chart with
coordinates yj.

Hint: show that dFp

´

B
Bxi

ˇ

ˇ

p

¯

p f q “
´

BFj

Bxi ppq BByj

ˇ

ˇ

Fppq

¯

p f q.

A particularly important consequence of this theorem is
that if we set M “ Rm and N “ Rn our definition coincides with
the euclidean notion. This is easily checked by taking ϕ “ idRm

and ψ “ idRn . Then the coordinates px1, . . . , xmq are the standard
euclidean coordinates for Rm and the coordinates py1, . . . , ynq the
ones for Rn.

Let f : U Ă Rm Ñ Rn be a smooth function and define the linear
isomorphisms

Tx : Rm Ñ TxRm, Txei “
B

Bxi

ˇ

ˇ

ˇ

x

Ty : Rn Ñ TyRn, Tye1i “
B

Byi

ˇ

ˇ

ˇ

y

, (2.4)

where te1, . . . , emu denotes the standard basis of Rm and te11, . . . , e1mu
denotes the standard basis of Rn.

On the one hand, we have the total derivative D f pxq : Rm Ñ Rn

from multivariable calculus: a linear map, the Jacobian matrix
of partial derivatives. On the other, we have the differential d fx :
TxRm Ñ Tf pxqR

m defined above: also a linear map, related to the
Jacobian matrix of partial derivatives by Proposition 2.4.5. In fact
we know more, since Proposition 2.4.5 tells us that the following
diagram commutes:

Rm Rn

TxRm Tf pxqR
n

D f pxq

Tx Tf pxq

d fx

.
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More generally, the same kind of reasoning shows the following
fact. For any smooth map F : Mm Ñ Nn between smooth manifolds,
if ϕ is a chart about x P M with coordinates pxiq and ψ is a chart
about y “ Fpxq P N with coordinates pyiq, the following diagram
commutes: Recall that the following commutes:

M N

Rm Rn

F

ϕ ψ

ψ˝F˝ϕ´1

.

Rm Rn

Tx M TFpxqN

Dpψ˝F˝ϕ´1qpϕpxqq

Tx TFpxq

dFx

,

where Tx and TFppq are defined as above.

An aspect of the construction above is particularly

disturbing: it forced us to fix a basis on the spaces; if this were
truly necessary it would defeat the purpose of this whole chapter.
Fortunately for us, the following exercise shows that, at any given
point, the tangent space to a vector space is canonically14 identified 14 That is, independently of the choice

of basis.with the vector space itself.

Exercise 2.4.7 ([homework 2]). Let V and W be finite-dimensional
vector spaces, endowed with their standard smooth structure (see
Exercise 1.2.12).

1. Fix a P V. For any vector v P V define a map Tapvq : C8pVq Ñ R

by

Tapvq f “
d
dt

ˇ

ˇ

ˇ

t“0
f pa` tvq.

Show that the map v ÞÑ Tapvq : V Ñ TaV is an isomorphism of
vector spaces.

2. Let L : V Ñ W be a linear map. Show for any a P V that the
following diagram commutes:

V W

TaV TLaW

L

Ta TLa

dLa

.

An important consequence of what we have seen so far is that
we can routinely identify tangent vectors to a finite-dimensional
vector space with elements of the space itself. More generally, if M
is an open submanifold of a vector space V, we can combine the
identifications Tp M » TpV » V to obtain a canonical identification
of each tangent space to M with V. For example, since GLnpRq is
an open submanifold of the vector space Matpnq, we can identify
its tangent space at each point X P GLnpRq with the full space of
matrices Matpnq.

Exercise 2.4.8 (Tangent space of a product manifold). Let M1, . . . , Mk

be smooth manifolds (without boundary15), and for each j let

15 The statement is true also if one
(only one!) of the Mi spaces is a
smooth manifold with boundary. If
there is more than one manifold with
boundary, the product space will have
“corners” that cannot be mapped to
half spaces and thus is not a smooth
manifold, as a simple example you can
consider the closed square r0, 1s ˆ r0, 1s.
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πj : M1 ˆ ¨ ¨ ¨ ˆ Mk Ñ Mj be the projection onto the Mj factor. For
any point p “ pp1, . . . , pkq P M1 ˆ ¨ ¨ ¨ ˆMk, the map

σ : TppM1 ˆ ¨ ¨ ¨ ˆMkq Ñ Tp M1 ˆ ¨ ¨ ¨ ˆ Tp Mk

σ : v ÞÑ
`

dpπ1qppvq, . . . , dpπkqppvq
˘

is an isomorphism.

Remark 2.4.9. When M is a smooth manifold with boundary and p
is an interior point, all the discussions above apply verbatim. In par-
ticular, the tangent space at a boundary point of an n-dimensional
manifold with boundary is also an n-dimensional real vector space
that can be identified (non-uniquely) with Rn using a chart contain-
ing that point.

For p P BM the only change that needs to be made is to substi-
tute Hn for Rn, with the understanding that the notation B

Bxi

ˇ

ˇ

ϕppq
can be used interchangeably to denote either an element of TϕppqR

n

or of TϕppqHn. In the latter case, the nth coordinate vector B
Bxn

ˇ

ˇ

p
should be interpreted as a one-sided derivative. ♦

In the next section we will give yet another alternative way of
defining tangent vectors: less elegant but easier to compute.

2.5 Tangent vectors as tangents to curves

Exercise 2.4.7 may have left some thoughts hanging in the air...
From the look of it, it seems that there is a relation between tangent
spaces and the velocity of a body moving with constant speed. In
this section we will further explore these thoughts.

Definition 2.5.1. If M is a manifold with or without boundary, we
define a (parametrized) curve in M to be a smooth16 map γ : I Ñ 16 Continuously differentiable would

be enough, but assuming it smooth
simplifies the exposition.

M, where I “ pa, bq Ď R is an interval. ♦

Conventionally, b “ ´a “ ε ą 0 (the
reason will be clear in a second) and
we denote the coordinate on R by t
and the derivative of γ at a point t
by γ1ptq. We say that a curve starts at
p P M if 0 P I and γp0q “ p.

Fix t P pa, bq. A priori we have two different ways to define the
velocity vector of γ at a time t, that is, an element γ1ptq P TγptqM:

(i) We can define a derivation on C8pMq at γptq by setting

γ1ptqp f q :“ p f ˝ γq1ptq, f P C8pMq. (2.5)

Exercise 2.5.2. Show that this is indeed a derivation on C8pMq.

(ii) If we think of γ as a smooth map between manifolds, we can
define the tangent vector via the differential dγt:

γ1ptq :“ dγt

ˆ

B

Bt

ˇ

ˇ

ˇ

t

˙

P TγptqM. (2.6)

Do these definition agree? One way to check is to pick a chart
ϕ : U Ñ ϕpUq in a neighbourhood of γptq, and compare the
expressions in local coordinates. Let pxiq denote the coordinates
of ϕ and define the curves γi :“ xi ˝ γ : I Ñ R. Let’s focus
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on (2.5). By definition, γ1ptqpxiq “ pxi ˝ γq1ptq “ pγiq1ptq, therefore by
Proposition 2.3.15 we get

γ1ptq “ γ1ptqpxiq
B

Bxi

ˇ

ˇ

ˇ

γptq
. (2.7)

Exercise 2.5.3. Show that applying Proposition 2.4.5 to (2.6) leads to
the same formula as (2.7).

Figure 2.2: The velocity of a curve

But how can this mapping between curves and tangent vector be
well–defined? Surely, there must be multiple curves with the same
speed at a point which differ outside a neighbourhood of the point.

Lemma 2.5.4. Let M be a smooth manifold and γ, δ : p´ε, εq Ñ M
two smooth curves with γp0q “ δp0q. Then, γ1p0q “ δ1p0q as elements
of Tγp0qM if and only if for some (and thus any) chart ϕ : U Ñ ϕpUq,
γp0q P U, we have pϕ ˝ γq1p0q “ pϕ ˝ δq1p0q.

Proof. Let pxiq denote the coordinates of ϕ. The condition pϕ ˝
γq1p0q “ pϕ ˝ δq1p0q is equivalent as stating that pγiq1p0q “ pδiq1p0q,
where γi “ xi ˝ γ and δi “ xi ˝ δ. Then, the claim follows from (2.7)
and the fact that

!

B

Bxi

ˇ

ˇ

γp0q

)

is a basis of Tγp0qM.

This seems to follow a pattern: until now, all the definitions of
tangent vectors where in terms of classes of equivalence. And it
would seem reasonable to identify curves that that have the same
tangent vector at 0. There is still a potential problem, though: we
don’t yet know if every tangent vector can be written as the velocity
vector of a curve.

Theorem 2.5.5. Let M be a smooth n-manifold, let p P M and let
v P Tp M. There exists a smooth curve γ : p´ε, εq Ñ M such that
γ1p0q “ v.

Proof. Let ϕ : U Ñ ϕpUq be a chart about p such that ϕppq “ 0. Let
pxiq denote the coordinates of ϕ, as usual, and assume that

v “
n
ÿ

i“1

ai B

Bxi

ˇ

ˇ

ˇ

p
, ai P R.

For ε small enough, by continuity the vector pta1, . . . , tanq P ϕpUq
for all |t| ă ε. Therefore, the curve

γ : p´ε, εq Ñ M, γptq :“ ϕ´1pta1, . . . , tanq,
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is well-defined, smooth, satisfies γp0q “ p and, by (2.7), γ1p0q “
v.

Figure 2.3: With this definition, the
coordinate tangent vectors Bxi P Tp M
become the tangent vectors defined by
the curve

t ÞÑ ϕ´1px1ppq, . . . , xippq ` t, . . . , xnppqq.

This means that we can actually give an alternative definition of
Tx M in terms of tangents to curves:

Definition 2.5.6. A tangent vector at p P M is an equivalence class
of smooth curves γ : p´ε, εq Ñ M such that γp0q “ p, where γ „ δ if
and only if pϕ ˝ γq1p0q “ pϕ ˝ δq1p0q for some chart ϕ centred about p
(see Lemma 2.5.4). ♦

In fact, it is possible to start the whole tangent space discussion
with the above definition. In that case, you would first need to
prove Exercise 2.3.19 and endow Tp M with a vector space struc-
ture17.

17 To get the analogue result as Proposi-
tion 2.3.15

To conclude this part, the next proposition shows that velocity
vectors behave well under composition with smooth maps and give
us a direct, explicit and effective way to compute differentials.

Proposition 2.5.7. Let F : M Ñ N be a smooth map between smooth
manifolds and γ : I Ñ M a smooth curve in M. Then

dFγptqpγ
1ptqq “ pF ˝ γq1ptq.

Proof. We are going to use (2.6) as definition of γ1ptq. Applying the
chain rule we obtain:

dFγptqpγ
1ptqq “ dFγptq ˝ dγt

ˆ

B

Bt

ˇ

ˇ

ˇ

t

˙

“ dpF ˝ γqt

ˆ

B

Bt

ˇ

ˇ

ˇ

t

˙

“ pF ˝ γq1ptq.

Exercise 2.5.8. Give an alternative proof of Proposition 2.5.7 us-
ing (2.5) as definition for γ1ptq.

Hint: use the definitions to rewrite the formula in different ways.

2.6 The tangent bundle

Instead of working separately with the various tangent spaces, we
can “glue” them together into a big manifold.

Definition 2.6.1. The tangent bundle TM of M is the disjoint union
of the tangent spaces

TM :“
ğ

pPM

`

tpu ˆ Tp M
˘

“ tpp, vq | p P M, v P Tp Mu.

♦

Elements in TM are pairs18 pp, vq of a base point p P M and a 18 We will often abuse notation and
identify Tp M with with its image
under the canonical injection v ÞÑ
pp, vq and use interchangeably any of
the notations v, vp or pp, vq for a vector
in Tp M (depending on how much
emphasis we need to put on the base
point).

tangent vector v P Tp M.
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To the tangent bundle we associate a surjective map π : TM Ñ

M, the projection (onto the base), which sends each vector in a
tangent space to the point at which it is tangent, that is, πpp, vq “ p.
The second component of the pre-image π´1ptpuq “ tpu ˆ Tp M, that
is Tp M itself, is called the fibre over p P M. We will come back to
this later on once we talk about vector bundles.

Example 2.6.2. Let M Ă Rn be an an open set. We can identify TM
in a natural way with MˆRn. Since MˆRn Ă R2n and thus is a
manifold, we can equip the tangent bundle TM with the structure
of a manifold induced by this identification. ♦

As it turns out, this is a particular instance of a more general
fact.

Theorem 2.6.3. Let M be a smooth n-manifold. The smooth structure
on M naturally19 induces a smooth structure on TM, making TM into a 19 In the sense that its definition does

not require to make any arbitrary
choices.

smooth manifold of dimension 2n. Moreover, the map π : TM Ñ M is
smooth.

In this proof you can see instances
of a typical abuse of notation: in the
expressions rxipxq we think of the rxi

as coordinate functions but we think
of the x as representing a point in
ϕpUXVq.

Proof. Step 1: extending charts from M to T M. Given a chart
pU, ϕq about p P M, the preimage π´1pUq Ă TM is the set of all
tangent vectors to M at points of U. If pxiq denotes the coordinate
functions of ϕ, we can define a map rϕ : π´1pUq Ñ ϕpUq ˆRn Ă R2n

by Keep in mind that

π´1pUq “ TU “
ğ

TpU Ă
ğ

Tp M “ TM.
rϕ

ˆ

vi B

Bxi

ˇ

ˇ

ˇ

p

˙

:“
´

x1ppq, . . . , xnppq, v1, . . . , vn
¯

. (2.8)

Since rϕ can be explicitly inverted as rϕ´1 `x1, . . . , xn, v1, . . . , vn˘ “

vi B
Bxi

ˇ

ˇ

ˇ

ϕ´1pxq
, it defines a bijection onto its image.

Step2: compatibility of the extended charts. Suppose we
have two smooth charts pU, ϕq, pV, ψq for M with the respective
local coordinates pxiq and pyiq. Let pπ´1pUq, rϕq, pπ´1pVq, rψq be
their extension20 to TM as in the previous step. By construction21, 20 These are called bundle charts.

21 They are both homeomorphisms.both rϕpπ´1pUq X π´1pVqq “ ϕpU X Vq ˆRn and rψpπ´1pUq X
π´1pVqq “ ψpU XVq ˆRn are open in R2n. Moreover, we can take
advantage of Remark 2.3.16 to write explicitly the transition map
rψ ˝ rϕ´1 : ϕpU XVq ˆRn Ñ ψpU XVq ˆRn as

rψ˝rϕ´1
´

x1, . . . , xn, v1, . . . , vn
¯

“

ˆ

y1ppq, . . . , ynppq,
By1

Bxj ppqv
j, . . . ,

Byn

Bxj ppqv
j
˙

,

where p “ φ´1pxq, which is clearly smooth.

Step3: TM is a manifold. With the procedure delineated above,
a countable smooth atlas tpUi, ϕiqu of M induces a countable atlas
tpπ´1pUiq, rϕiqu of TM. First of all, tpπ´1pUiqu provides a countable
covering of TM. We need to show that the topology induced by
those charts is Hausdorff and second countable.
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Figure 2.4: Coordinates for the tangent
bundle

Let pp1, v1q, pp2, v2q P TM be different points: either p1 ‰ p2, or
p1 “ p2 and v1 ‰ v2.

• In the first case, there are disjoint open sets V1, V2 Ă Ui (for some
i) containing respectively p1 and p2. Then rϕ´1

i pϕipV1q ˆRnq and
rϕ´1

i pϕipV2q ˆRnq are disjoint open sets containing respectively
pp1, v1q and pp2, v2q.

• In the second case, p “ p1 “ p2 but there are disjoint open
sets V1, V2 Ă Rn containing v1 and v2 respectively; again, the
preimages rϕ´1

i pϕipUiq ˆ V1q and rϕ´1
i pϕipU2q ˆ V2q (for some i

such that p P Ui) are disjoint open sets containing respectively
pp1, v1q and pp2, v2q.

The countable basis tUju is a countable basis for the topology
of M (which is second countable), taking a countable basis tWku

for the topology of Rn, we can define a countable basis for TM
as trϕ´1ppUi X Ujq ˆWkqu. The charts defined above make TM
automatically euclidean of dimension 2n.

Exercise 2.6.4. This part of the proof seems unnecessarily detailed.
Can you simplify it using Lemma 1.2.24?

Step4: π is smooth. With respect to the charts pU, ϕq for M
and pπ´1pUq, rϕq for TM, the coordinate representation of π is
πpx, vq “ x.

The coordinates pxi, viq defined by (2.8) are called natural (or
canonical) coordinates.

Exercise 2.6.5. Let f : M Ñ N be a smooth map between smooth
manifolds. Show that its differential d f : TM Ñ TN is a smooth
map between smooth manifolds (the respective tangent bundles).

Hint: use the natural differentiable structure on the tangent bundle described
above and the definition of smooth map.
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Remark 2.6.6. In classical mechanics, the configuration space is
usually a manifold M. The tangent bundle TM corresponds to
the state space, that is, the space of configurations and velocities.
In symbols x “ pq, vq is a pair of a configuration q “ πpxq and
a velocity v P Tq M. It turns out that the Lagrangian is a smooth
function on TM. ♦

2.7 Vector bundles

What we have seen here is our first example of vector bundle,
which is just a way to call a vector space depending continuously
(or smoothly) on some parameters, for example points on a mani-
fold.

Definition 2.7.1. A vector bundle of rank r on a manifold M is a
manifold E together with a smooth surjective map π : E Ñ M such
that, for all p P M, the following properties hold:

(i) the fibre over p, Ep :“ π´1ppq, has the structure of vector
space of dimension r;

(ii) there is a neighbourhood U Ă M of p and a diffeomorphism
ϕ : π´1pUq Ñ U ˆRr such that

(a) π1 ˝ ϕ “ π where π1 : U ˆRr Ñ U is the projection on the
first factor,

(b) for all q P U, ϕ
ˇ

ˇ

Eq
: Eq Ñ tqu ˆRr is an isomorphism of

vector spaces.

The space E is called the total space, the manifold M is the
base space, π its projection and each of the maps ϕ is called local
trivialisation.

If there exists a trivialisation defined on the whole manifold, that
is a map ϕ : M Ñ MˆRr, such map is called global trivialisation
and the vector bundle is said to be trivialisable. ♦

Example 2.7.2. • A simple example of vector bundle of rank r over
a manifold M is the product space E “ M ˆRr itself with the
projection on the first component π1 : E Ñ M. In this case the
bundle is clearly trivialisable.

• The tangent bundle TM with its projection to the base π : TM Ñ

M is a vector bundle. In this case the fibres are the tangent
spaces π´1ppq “ Tp M. If the tangent bundle of a manifold is
trivalisable, then its base manifold is said to be parallelisable.

• If πi : Ei Ñ Mi, i “ 1, 2, are vector bundles, then π “ pπ1, π2q :
E1 ˆ E2 Ñ M1 ˆ M2 is another vector bundle whose fibres are
the product of the fibres of the two original bundles. A particular
example of this is the tangent bundle TpM1 ˆ M2q, which is
diffeomorphic to TM1 ˆ TM2.
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• Other examples will appear throughout the course.
♦

Exercise 2.7.3. Show that dimpEq “ dimpMq ` r.

Exercise 2.7.4. Show that if π : E Ñ M is a vector bundle and U Ă M
is an open set, then π

ˇ

ˇ

π´1pUq : π´1pUq Ñ U is a vector bundle of the
same rank.

Example 2.7.5. Let π : E Ñ M be a vector bundle of rank r. Assume
that E itself is the base space of another vector bundle π1 : E1 Ñ E
of rank s. Then π ˝ π1 : E1 Ñ M is a vector bundle of rank r ` s
called the composite bundle. Indeed, if ϕ : π´1pUq Ñ U ˆRr is
a bundle diffeomorphism for E over U Ă M and ϕ1 : π´1

1 pU1q Ñ

U1 ˆRs is a bundle diffeomorphism for E1 over U1 Ă E such that
V :“ πpU1q XU ‰ H, then

Ψ :“ pϕ ˝ π1, ϕ1q : pπ ˝ π1q
´1pVq Ñ pU ˆRrq ˆ pU1 ˆRsq

is a bundle diffeomorphism for π ˝ π1 over W.
A particular example of this is the tangent bundle of the tan-

gent bundle: if M is a n-manifold, its tangent bundle TM is a
2n-manifold, and its tangent bundle TpTMq is a vector bundle over
M of rank 3n. ♦

To compare vector bundles it is useful to define the following
concept.

Definition 2.7.6. An isomorphim between two vector bundles πi :
Ei Ñ M, i “ 1, 2, over the same base space M is a homeomorphism
h : E1 Ñ E2 which maps every fiber π´1

1 ppq to the corresponding
fiber π´1

2 ppq by a linear isomorphism. ♦

Since an isomorphism preserves all the structure of a vector
bundle, isomorphic bundles are often regarded as the same.

Figure 2.5: A useful mnemonic to
remember what is a section, is to
imagine it as a cross-section of the
bundle.

Definition 2.7.7. A section of a vector bundle π : E Ñ M is a smooth
map S : M Ñ E such that π ˝ S “ idM. We denote the set of all
sections of E by ΓpEq.

If, in the definition, M is replaced by U Ă M, the section is
called local section. The set of local sections on U Ă M is denoted
ΓpE|Uq. ♦

Example 2.7.8. If E “ MˆRr, M Ă Rn, then for any smooth map
F : M Ñ Rr we have a section S P ΓpEq defined by Sppq “ pp, Fppqq.
This is a classical euclidean vector field: a map that associates
vectors to points.

Figure 2.6: A vector field “attaches”
vectors to points.

Notice, in particular, that functions f P C8pMq are sections of the
trivial bundle MˆR. ♦

One can sometimes distinguish non–isomorphic bundles by
looking at the complement of their zero section: since any vector
bundle isomorphism h : E1 Ñ E2 must map the zero section of E1

onto the zero section of E2, the complements of the zero sections in
E1 and E2 must be homeomorphic.
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If the bundles are differentiable manifolds, then the definition of
isomorphism nicely generalizes: they are diffeomorphic if fibres are
mapped to fibres diffeomorphically.

Even though, as we have seen, locally TM is diffeomorphic to
MˆRn, this is not true in general with one exception.

Exercise 2.7.9. Let M be a smooth n-manifold that can be covered by
a single smooth chart. Show that TM is diffeomorphic to MˆRn

(without applying Proposition 2.7.13).

Definition 2.7.10. A local frame of a bundle π : E Ñ M of rank
r is a family of r local sections pS1, . . . , Srq P ΓpE|Uq such that
pS1ppq, . . . , Srppqq is a basis for Ep for all p P U. If U “ M then
pS1, . . . , Srq is called global frame. Sometimes, the sections Sj are
called basis sections. ♦

Example 2.7.11. A chart on a n-manifold M with local coordinates
pxiq yields a local frame

!

B
Bx1 , . . . , B

Bxn

)

of the tangent bundle TM.
♦

In the spirit of what we have seen about the previous example,
we have the following proposition.

Proposition 2.7.12. Let π : E Ñ M be a smooth vector bundle and
X : M Ñ E a section. If pSiq is a smooth local frame for E over an open
subset U Ď M, then X is smooth on U if and only if its component
functions with respect to pSiq are smooth.

Proof. Let ϕ : π´1pUq Ñ U ˆRk be the local trivialization as-
sociated with the local frame pSiq. Since ϕ is a diffeomorphism,
X is smooth on U if and only if ϕ ˝ X is smooth on U. If pXiq

denotes the component function of X with respect to Si, then
ϕ ˝ Xppq “ pp, pX1ppq, . . . , Xkppqqq, so ϕ ˝ X is smooth if and only if
the component functions pXiq are smooth.

That is, given a local frame tS1, . . . , Sru Ă ΓpE|Uq of a vector
bundle π : E Ñ M we can express any section X P ΓpEq as a linear
combination of elements of the frame:

X “ XiSi on U,

where Xi P C8pUq, i “ 1, . . . , r. Which was to be expected: after all,
for each p P U Ă M, the local frame is a basis for Ep.

Proposition 2.7.13. A vector bundle π : E Ñ M is trivialisable if and
only if it admits a global frame.

Proof. Let ϕ : E Ñ MˆRr be a global trivialisation and pe1, . . . , erq

the canonical basis for Rr. For q P M ˆRr, pS1pqq, . . . , Srpqqq :“
´

ϕ´1
ˇ

ˇ

qpe1q, . . . , ϕ´1
ˇ

ˇ

qperq
¯

is a global frame for E (why?).
Conversely, let pS1, . . . , Srq be a global frame for E. Then

ϕ : E Ñ MˆRr,
´

p, viSippq
¯

ÞÑ

´

p, pv1, . . . , vrq
¯

,

is a global trivialisation for E.
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Example 2.7.14. The cylinder E “ S1 ˆR is a trivialisable vector
bundle with π : E Ñ S1. Incidentally, the cylinder is isomorphic to
TS1 (why?). ♦

A useful generalization of vector bundles, which we will not
discuss in the course, is the locally trivial fiber bundle, where R is
replaced by a more general manifold.

2.8 Submanifolds

With differentials of smooth functions at hand, we are ready to
discuss submanifolds: smaller manifolds sitting inside larger ones.

Definition 2.8.1. Let Mm and Nn be differentiable manifolds and
F : M Ñ N a C1 function.

• F is an immersion if dFp is injective for all p P M (ñ m ď n);

• F is a submersion if dFp is surjective for all p P M (ñ m ě n);

• F is an embedding if F is an injective immersion that is also a
homeomorphism onto its range FpMq Ă N.

♦

Example 2.8.2. 1. The prototype of an immersion is the inclusion of
Rm in a higher-dimensional Rn:

i : Rm ãÑ Rn,

i :
´

x1, . . . , xm
¯

ÞÑ

¨

˝x1, . . . , xm, 0, . . . , 0
loomoon

n´m

˛

‚.

Indeed, the nˆm matrix

dix “ Dipxq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ ¨ ¨ ¨ 1
0 ¨ ¨ ¨ ¨ ¨ ¨ 0
...

...
0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

has full rank (equal to m) and is therefore injective. Moreover,
the map i is injective and continuously invertible on its range, so
it is also an embedding.

2. The prototype for a submersion is the projection of Rm onto a
lower-dimensional Rn: π

`

x1, . . . , xn, xn`1, . . . , xm˘ “
`

x1, . . . , xn˘.

Indeed, the nˆm matrix

dπx “ Dπpxq “

¨

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

...
...

0 ¨ ¨ ¨ ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‚



48 analysis on manifolds

has full rank (equal to n) and is therefore surjective. Hence, i is a
submersion.

3. Let n “ 1, m ą 1 and γ : R Ñ Rm a smooth curve. The map γ is
an immersion if and only if its velocity vector satisfies γ1ptq ‰ 0
for all t P R. If the curve intersects itself, e.g f pt1q “ f pt2q for
some t1 ‰ t2, then f is not an embedding.

♦

Remark 2.8.3. Surjectivity of submersions or injectivity of immersions
are properties of the differentials, not of the maps themselves. For
example, if U Ă M open, the inclusion i : U Ñ M is both an
immersion and a submersion. ♦

Definition 2.8.4. Let M and N smooth manifolds such that M Ă N
as a set. We say that M is an embedded submanifold of N if the
inclusion M ãÑ N is an embedding. If the inclusion is just an
immersion, we say that M is an immersed submanifold. ♦

Before moving on, it is useful to recall some results from mul-
tivariable analysis. A function f : Rm Ñ Rn between euclidean
spaces has rank k at x P Rm if its (n ˆ m) Jacobian matrix D f pxq
has rank k. The function has maximal rank22 at x if k “ minpn, mq. 22 Alternatively, it is of full rank.

When n “ m, f has maximal rank at x if and only if the square
matrix DFpxq is an invertible matrix.

As for many local properties, this definition carries over to
manifolds rather “smoothly”.

Definition 2.8.5. A smooth map F : M Ñ N has rank k at a point p
if the linear subspace dFppTp Mq has dimension k inside TFppqN. ♦

And the same is true for the inverse function theorem: compare
the following statements.

Theorem 2.8.6 (Inverse function theorem). Let U Ă Rn open and
f : U Ñ Rn be a smooth map. Assume that f has maximal rank at some
x P U, then there exists an open neighbourhood Ω Ă U of x such that
f
ˇ

ˇ

Ω : Ω Ñ f pΩq is a diffeomorphism.

Theorem 2.8.7 (Inverse function theorem for manifolds). Let F :
M Ñ N be a smooth function between manifolds of the same dimension
n. Let p P M and assume that F has maximal rank (i.e. rank n) at p.
Then there exists an open neighbourhood V of p such that the restriction
F : V Ñ FpVq is a diffeomorphism.

Exercise 2.8.8. Use the euclidean inverse function theorem (Theo-
rem 2.8.6) on Rn to prove Theorem 2.8.7.

In fact, also analogues of the implicit functions theorem carry
over. We will state them without going into the details of the
proofs.

Figure 2.7: Theorem 2.8.9 in a picture.

Proposition 2.8.9. Let F : Mm Ñ Nn be an immersion. Then for any
p P M, there exists a neighbourhood U of p and a chart pV, ψq about
Fppq P N such that
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(i) If yi “ ri ˝ ψ are the local coordinates of ψ then

FpUq XV “

!

q P V | ym`1pqq “ ¨ ¨ ¨ “ ynpqq “ 0
)

; (2.9)

(ii) F
ˇ

ˇ

U is an embedding.

If F is an embedding, and this M is an embedded submanifold,
then the set FpUq above can be written as FpUq “ FpMq XW for
some open set W Ă N. By replacing V in (2.9) with V XW, one gets

FpMq XV “

!

q P V | ym`1pqq “ ¨ ¨ ¨ “ ynpqq “ 0
)

.

In particular, this means that a m-dimensional submanifold is also a
m-dimensional manifold whose charts are the ones above after we
drop the final n´m components.

The proposition above shows that an immersion is always a local
embedding.

Exercise 2.8.10. 1. If M is compact, an injective immersion F : M Ñ

N is always an embedding.

2. This is not necessarily the case in the non-compact case, give a
counterexample.

Lemma 2.8.11. With the notation of Proposition 2.8.9, assume that around
any point p P M there is a chart of the form

MXV “

!

q P V | ym`1pqq “ ¨ ¨ ¨ “ ynpqq “ 0
)

Ă N.

Then, if we endow M with the subspace topology on N, M is a topological
manifold of dimension m. Furthermore, it has a smooth structure that
makes it into an embedded submanifold of N.

Sketch. Let π : Rn Ñ Rm be the projection as in the examples
above. Let p P M and let pV, ψq be a chart with coordinates pyiq of
the form above. If we endow M with the subspace topology, then
σ :“ π ˝ ψ

ˇ

ˇ

MXV is a homeomorphism. Repeating this at any point
we end up with a collection of maps satisfying the hypotheses of
Lemma 1.2.24. Thus M is a smooth manifold of dimension n and its
topology coincides with the subspace topology.

Finally, with the inclusion i : M ãÑ N one has that ψ ˝ i ˝
σ´1pp1, . . . , pnq “ pp1, . . . , pn, 0, . . . , 0q which is smooth.

A non-trivial consequence of the previous lemma is the follow-
ing proposition23. 23 Refer to [Lee13, Proposition 5.8 and

Proposition 5.31].

In Proposition 2.8.12 it is not enough
to ask that ι is smooth! As counterex-
ample consider the two manifolds
pR,A1q with A1 :“ tpR, idRqu and
pR,A2q with A2 :“ tpR, x ÞÑ x3qu. The
inclusion of open sets in R is smooth
in both cases but is a diffeomorphism
only in one.

Proposition 2.8.12. Let M be a manifold and U Ă M an open set. Then
U has a unique differentiable structure such that the inclusion ι : U ãÑ M
is a diffeomorphism.

Up to this point, the first manifold either had the same dimen-
sion or was smaller than the second one. What if it is larger?
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Definition 2.8.13. Let F : Mm Ñ Nn, m ě n, be a smooth map
between smooth manifolds. A point p P M is said to be a regular
point of F if F has rank n at p, while it is called a critical point if it
is not.

Similarly, a point q P N is called a regular value if every point in
F´1pqq is a regular point, and critical value otherwise. If q R FpMq,
then q is considered a regular value (in the sense that there is
nothing to check in its preimage by F). Cf. Figure 2.8. ♦

Figure 2.8: Beware of the subtleties
here. The map F “ πx ˝ i for the
inclusion i : T2 ãÑ R3 and the
projection πxpx, y, zq “ x. So dFp “

dpπxqippq ˝ dip. The latter is zero if the
image of TpT2 by dip : TpT2 ãÑ TpR3 is
contained in the yz-plane (the reason
will be clear by the end of the chapter):
the critical points depicted here are
exactly those points for which the
tangent plane is the yz-plane.

With this definition at hand, we are ready to state one of the
most important theorems in this lecture. Differently from most
previous ones, the statement is not local.

Theorem 2.8.14 (Implicit function theorem for manifolds). Let m ě n
and let F : Mm Ñ Nn be a smooth map between smooth manifolds. If
q P N is a regular value of F and P :“ F´1pqq is not empty, then P is a
topological manifold of dimension m´ n. Moreover, there exists a smooth
structure on P which makes it into a smooth embedded submanifold of M.

Remark 2.8.15. If F : M Ñ N is a submersion, Theorem 2.8.14 implies
that any p P M belongs to the pm ´ nq-dimensional embedded
submanifold F´1pFppqq. ♦

We can gather this observation and the previous results (the
inverse and the implicit function theorems) into the following
proposition (of which we are also omitting the proof).

Proposition 2.8.16. The following assertions are equivalent.

(i) Pk Ă Nn is a k-dimensional submanifold24. 24 So, k ď n.

(ii) P is locally the image of an embedding of a subset of Rk. That is, for
every p P P there exists V Ă P open neighbourhood of p, an open set
U Ă Rk and an embedding

ϕ : U Ñ N such that ϕpUq “ V.

(iii) P is locally a level set of a submersion into Rn´k. That is, for every
p P P there exists V Ă P open neighbourhood of p and a submersion
ψ : V Ñ Rn´k such that

N XV “ tq P V | ψpqq “ 0u.

Remark 2.8.17. Whitney Embedding Theorem states that any smooth
n-dimensional manifold can be smoothly embedded into R2n. Thus
any abstract manifold is diffeomorphic to a submanifold of Rm (for
some m). ♦

Example 2.8.18. The sphere S2 “ tx P R3 | }x} “ 1u is a 2-dimensional
submanifold of N “ R3. This is immediate using the third condi-
tion in the Proposition 2.8.16: let ψpxq “ }x}2 ´ 1 : R3 Ñ R, then
ψ is smooth, S2 “ tx P R3 | ψpxq “ 0u and dψxpvq “ 2x ¨ v ‰ 0 for
x P S2. ♦
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Example 2.8.19. Let N “ R2 and P “ tx P N | x2 “ |x1|u. Then
P is not a submanifold, but it can be equipped with a manifold
structure. For example with the global atlas tpP, px1, x2q ÞÑ x1qu, P
is a manifold diffeomorphic to R. ♦

Exercise 2.8.20. A real-valued function f : M Ñ R on a manifold has
a local maximum at p P M if there is a neighbourhood U Ă M of p
such that f ppq ě f pqq for all q P U.

1. Show that if a differentiable function f : pa, bq Ñ R, has a local
maximum at x P pa, bq, then f 1pxq “ 0.

2. Prove that a local maximum of a function f P C8pMq is a critical
point of f .
Hint: choose Xp P Tp M and let γptq be a curve in M starting at p with initial
velocity Xp. The f ˝ γ is a real-valued function with local maximum at 0...

Of course, we can also define subbundles.

Definition 2.8.21. Let π : E Ñ M be a rank-n vector bundle and
F Ă E a submanifold. If for all p P M, the intersection Fp :“ FX Ep

is a k-dimensional subspace of the vector space Ep and π|F : F Ñ M
defines a rank-k vector bundle, then π|F : F Ñ M is called a
subbundle of E. ♦

Exercise 2.8.22 ([homework 2]). Let M be a smooth m-manifold and N
a smooth n-manifold. Let F : M Ñ N be an embedding and denote
ĂM “ FpMq Ă N.

1. Show that the tangent bundle of M in N, given by TĂM :“
dFpTMq Ă TN

ˇ

ˇ

rM, is a subbundle of TN
ˇ

ˇ

rM by providing explicit
local trivialisations in terms of the charts pU, ϕq for M.

2. Assume that there exist a smooth function Φ : N Ñ Rn´m such
that ĂM :“ tp P N | Φppq “ 0u and dΦp has full rank for all p P ĂM.
Prove that

TĂM “ tpp, vq P TN|
rM | v P kerpdΦpqu.

We still have a question pending since the beginning of the
chapter. Is the tangent space to a sphere the one that we naively
imagine (see Figure 2.1)? To finally answer the question, we will
prove one last proposition.

Proposition 2.8.23. Let F : Mm Ñ Nn be a smooth map between
manifolds. Let q P N be a regular value of F such that P :“ F´1pqq ‰ H
and let i : P ãÑ M denote the inclusion. Then, for all p P P, one has

dippTpPq “ ker dFp.
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Proof. Both dippTpPq Ă Tp M and ker dFp Ă Tp M are linear sub-
spaces of the same dimension m´ n, therefore we only need to show
that one contains the other, e.g. dippTpPq Ă ker dFp.

Take f P C8pNq and v P TpP. By the chain rule25 we get 25 Proposition 2.4.3

pdFp ˝ dipqpvqp f q “ dpF ˝ iqppvqp f q “ vp f ˝ F ˝ iq.

Since F ˝ i
ˇ

ˇ

P ” q constant, f ˝ F ˝ i P C8pPq is the constant function
p ÞÑ f pqq and by Corollary 2.3.12 we have vp f ˝ F ˝ iq “ 0.

Example 2.8.24. We have seen in Example 2.8.18 that S2 “ F´1p0q
is a smooth manifold of dimension 2. Denoting the inclusion by
i : S2 ãÑ R3, one has

dippTpS2q “ TpppKq (2.10)

where Tp : R3 Ñ TpR3 is the map defined in Exercise 2.4.7 and

pK :“
 

q P R3 | xp, qy “ 0
(

,

where x¨, ¨y is the usual Euclidean dot product. The latter directly
comes from computing dFp and its kernel, which we essentially
already did in Example 2.8.18. Take a long deep breath and unfold
the definitions in (2.10), here it may be useful to draw a picture26. 26 Which is generally always the case

in geometry and topology, and most
other mathematical fields.

Equation (2.10) implies that the tangent space to S2 at a point p is
the plane tangent to S2 at p, as claimed in Figure 2.1. ♦

Exercise 2.8.25. Show that the above reasoning holds verbatim for
Sn Ă Rn`1.

Exercise 2.8.26. Let U Ă Rn open and f : U Ñ R smooth. Define
g : U Ñ Rn`1 by

gpxq “ px, f pxqq.

Show that g is a smooth embedding and, therefore, that gpUq is a
smooth embedded n-dimensional submanifold27 of Rn`1. 27 gpUq is the the graph of f !

Exercise 2.8.27 ([homework 2]). Show that the orthogonal matrices
Opnq :“ tQ P GLpnq | QTQ “ idu form a npn´ 1q{2-dimensional
submanifold of the n2-manifold Matpnq of nˆ n-matrices.

Show also that

TQOpnq “
!

B P Matpnq | pQ´1BqT “ ´Q´1B
)

,

and, thus, that TidOpnq is the space of skew-symmetric matrices

TidOpnq “
!

B P Matpnq | BT “ ´B
)

.

Hint: Find a suitable map F : Matpnq Ñ Sympnq such that F´1ptpuq “ Opnq
for some point p in the image, e.g. 0 or idn. Here Sympnq denotes the space of
symmetric matrices.
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Vector fields

We continue with our quest of generalizing multivariable calculus.
The next familiar object waiting to be questioned are vector fields.
In the euclidean settings these are simply continuous maps that
attach a vector to each point in their domain.

3.1 Vector fields

The step to abstract manifolds is rather intuitive in this case:
a vector field will be a map that, at each point of a manifold, picks a
tangent vector at that point in a smooth way.

Definition 3.1.1. A Cp-map X : M Ñ TM with π ˝ X “ idM, or
equivalently Xp P Tp M for all p P M, is called Cp-vector field. The
vector field is smooth if it is Cp for all p ě 1. We denote1 the set of 1 Alternative notations are T 1

0 pMq,
T pMq and ΓpTMq. The first two are
related to vector fields being tensor
fields of type p1, 0q, a topic that we will
discuss in the near future.

smooth vector fields by XpMq.
The map π : TM Ñ M is called footpoint map and the equation

π ˝ X “ idM is called section property. ♦

Remark 3.1.2. A careful look at the definition shows that vector
fields are sections of TM, indeed XpMq ” ΓpTMq. This is a useful
way to start understanding the bundle terminology: in some sense,
sections of vector bundles are a generalisation of vector fields. ♦

Beware of the curse of differential geometry. For convenience
and to be consistent with our notation for elements of the tangent
bundle, we denote the value Xp P tpu ˆ Tp M of a vector field by
Xp instead of Xppq. Furthermore, we will often identify Xp with
its component in Tp M, thus considering it as if Xp P Tp M, without
explicitly projecting it to the second component.

Let M be a smooth n-manifold (with or without boundary). Let
X : M Ñ TM be a vector field, not necessarily smooth, and pU, pxiqq

a smooth coordinate chart for M. Then we can write the value
of X at any point p P U as a linear combination in terms of the
coordinate basis vector:

Xp “ Xippq
B

Bxi

ˇ

ˇ

ˇ

p
. (3.1)

This defines n functions Xi : U Ñ R, called component functions of
X in the chart.
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Exercise 3.1.3 ([homework 2]). Show that, in the notation above,
the restriction of X to U is smooth if and only if its component
functions with respect to the chart are smooth.

Example 3.1.4. If pU, pxiqq is a smooth coordinate chart for a n-
manifold M, the assignment p ÞÑ B

Bxi

ˇ

ˇ

p determines a vector field on
U, called the ith-coordinate vector field and commonly denoted Bi,
Bxi or B{Bxi. Despite their looks, the Bxi |p denote genuine vectors in
Tp M that can be associated to euclidean vectors via a suitable chart.

The set t B
Bx1

ˇ

ˇ

p, . . . , B
Bxn

ˇ

ˇ

pu is a local frame for TM. ♦

The space of smooth vector fields is a vector space under point-
wise addition and scalar multiplication: for all p P M, X, Y P XpMq,
α, β P R, we have

pαX` βYqp “ αXp ` βYp.

The zero element of the vector space, called zero vector field, is the
vector field whose values is 0 P Tp M for all p P M. Moreover, each
vector field can be multiplied by smooth functions f P C8pMq by
defining f X : M Ñ TM by Be carefur, we are talking about two

different structures here: XpMq is
both a real vector space and a C8pMq-
module.p f Xqp “ f ppqXp.

Proposition 3.1.5. Let M be a smooth manifold with or without boundary.

1. If X, Y P XpMq and f , g P C8pMq, then f X` gY P XpMq.

2. XpMq is a module over the ring C8pMq.

In this sense, the basis expression (3.2) can be also rewritten as
an equation between vector fields instead of an equation between
vectors at point:

X “ Xi B

Bxi , (3.2)

where Xi denotes the component of the vector field X in the given
coordinates.

There is one more way of thinking about the coordinate basis
expression above. We have seen that differentials of smooth maps
define maps between tangent bundles. As it turns out, we can
employ differentials of diffeomorphisms to map vector fields to
vector fields.

Definition 3.1.6. Let F : M Ñ N be a diffeomorphism of smooth
manifolds. Then, the pushforward F̊ of F, defined by2 2 In coordinates, this reads

pF̊ Xqq “ dFF´1pqqpXF´1pqqq.
F̊ : XpMq Ñ XpNq, X ÞÑ F̊ X “ dF ˝ X ˝ F´1, (3.3)

maps (“pushes forward”) vector fields on M to vector fields on
N. ♦
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The definition of pushforward is more easily pictured by means
of the following commutative diagram:

M N

TM TN

X

F´1

F̊ X

dF

.

Then, if pU, ϕq is a coordinate chart for M, the restriction of a
vector field X P XpMq to U can be mapped to a vector field on
ϕpUq Ă Rn via the pushforward ϕ˚:

ϕ˚X : ϕpUq
loomoon

ĂRn

Ñ TϕpUq
loomoon

“ϕpUqˆRn

,

ϕ˚X : x ÞÑ pq, vpxqq with vpxq “ vjpxqej P Rn,

where vjpxq are the components3 of Xp P Tp M at p “ ϕ´1pxq with 3 As we start getting used to, the chart
ϕ here plays a twofold role: it provides
the coordinates x “ ϕppq on the patch
U and the coordinate basis of the
tangent space.

respect to the coordinate basis
!

B

Bxi

ˇ

ˇ

x

)

.

Example 3.1.7 (Computing the pushforward of a vector field). Let M
and N be the following submanifolds of R2:

M “

!

px, yq P R2 | y ą 0, x` y ą 0
)

,

N “

!

pu, vq P R2 | u ą 0, v ą 0
)

.

Define F : M Ñ N as the mapping Fpx, yq :“ px ` y, x{y ` 1q.
Then F is a diffeomorphism: we can compute its inverse by solving
pu, vq “ px` y, x{y` 1q in for x and y, obtaining px, yq “ F´1pu, vq “
pu´ u{v, u{vq which is also smooth on all N.

Let X P XpMq be given by

Xpx,yq “ y2 B

Bx

ˇ

ˇ

ˇ

px,yq
,

we are now going to compute the pushforward F̊ X.
The differential of F at a point px, yq P M is represented by its

Jacobian matrix,

DFpx, yq “

˜

1 1
1{y ´x{y2

¸

,

thus dFF´1pu,vq “ dF ˝ F´1pu, vq is represented by the matrix

DFpu´ u{v, u{vq “

˜

1 1
v{u pv´ v2q{u

¸

.

For any pu, vq P N,

XF´1pu,vq “
u2

v2
B

Bx

ˇ

ˇ

ˇ

F´1pu,vq
,

and, thus, by (3.3) (with p “ pu, vq) we get

pF̊ Xqpu,vq “
u2

v2
B

Bu

ˇ

ˇ

ˇ

pu,vq
`

u
v
B

Bv

ˇ

ˇ

ˇ

pu,vq
.

♦

For this computation, keep in mind
that the Jacobian here is a change of
coordinate between the two euclidean
spaces TF´1pu,vqM and Tpu,vqN, where
on the first we are using the coordinate

basis
"

B
Bx

ˇ

ˇ

ˇ

F´1pu,vq
, B
By

ˇ

ˇ

ˇ

F´1pu,vq

*

and on

the second we are using the coordinate

basis
"

B
Bx

ˇ

ˇ

ˇ

pu,vq
, B
By

ˇ

ˇ

ˇ

pu,vq

*

.
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Exercise 3.1.8. Let M be a smooth n-dimensional manifold. Let
p1, . . . , pk be distinct points of M and let vi P Tpi M, i “ 1, . . . , k, be
tangent vectors at those points. Show that there is a vector field X
on M such that Xpi “ vi, i “ 1, . . . , k.

Hint: bump functions may be handy here.

While we continue to explore the twofold nature of geometric
objects, it is worth looking back at our original definition of tangent
vectors. In one of our first encounters with tangent spaces, we said
that a tangent vector v at a point p P M defines a derivative at that
point by taking the directional derivative of a function at that point.
A vector field X now provides a tangent vector and, therefore, a Clearly all of the definitions above

hold if instead of M we consider open
subsets U Ă M.

derivation at every point of the manifold. In this sense, X P XpMq
induces a linear map on the algebra C8pMq of smooth functions on
M: for f P C8pMq,

X f : M Ñ R, pX f qp :“ Xp f , p P M.
Beware of the ordering: f X P XpMq
but X f P C8pMq!

Notation 3.1.9. Let f P C8pMq and let pU, ϕq be a chart with coor-
dinates pxiq. Then, for X “ B

Bxi , we denote X f by B f
Bxi and thus the

following notations are for us equivalent:

B f
Bxi ppq “

ˆ

B

Bxi

˙

p
p f q “

B

Bxi

ˇ

ˇ

ˇ

p
p f q “ Dip f ˝ ϕ´1qpϕppqq.

If M is an open subset of Rn and ϕ “ idRn , then the last equality
shows that the notation is consistent with the usual definition of
partial derivatives from multivariable analysis. ♦

Exercise 3.1.10. If X P XpMq and f P C8pMq, then X f P C8pMq.

Exercise 3.1.11. Let X, Y P XpMq. Show that X “ Y if and only if
X f “ Y f for every f P C8pMq.

This whole discussion allows us to extend the notion of deriva-
tion at a point to a derivation on the whole space.

Don’t confuse this with the derivations
at a point, which produce real num-
bers. In this case we map functions to
functions.

Definition 3.1.12. Let M be a smooth manifold and H ‰ W Ă M an
open set. A derivation on C8pWq is a linear map

X : C8pWq Ñ C8pWq

satisfying Leibniz rule:

X p f gq “ fX pgq ` gX p f q.

♦

Any vector field X P XpWq defines a derivation X via X p f q “ X f .
In fact the opposite is also true:

Proposition 3.1.13. Let M be a smooth manifold and H ‰ W Ă M
an open set. The set of derivation on W and XpWq are isomorphic as
C8pWq-modules.



vector fields 57

Proof. Suppose X is a derivation on C8pWq and fix p P W. Then X
defines a derivation on C8pWq at p, which we casually denote by
Xp, via the formula

Xpp f q :“ X p f qppq, @ f P C8pWq.

We can then think of X as a map W Ñ TW via X ÞÑ Xp. Since Challenge: count how many times we
are using the isomorphism between
derivations at points and tangent
vectors in this proof.

Xp f q “ X p f q by construction, it is a smooth function for all f P
C8pWq and therefore is smooth as vector field, concluding the
proof.

Therefore, from now on, we will also interchange derivations of
C8 and vector fields, and call them with capital latin letters.

3.2 Lie brackets

Once you have a module, it is worth checking if you can get an
algebra. Indeed, that is going to be our next objective. To this end,
we look for a bilinear map XpWq ˆXpWq Ñ XpWq.

The most natural choice is to just compose the vector fields, that
is, apply the derivatives one after the other:

XY :“ X ˝Y : C8pWq Ñ C8pWq, pXYqp f q :“ XpYp f qq.

If this satisfies the product rule, we are done. Let f , g P C8pWq, we
have

pXYqp f gq “ Xp f Ypgq ` gYp f qq

“ p f pXYqpgq ` gpXYqp f qq ` pXp f qYpgq ` XpgqYp f qq .

Unfortunately for us, this is not a derivation. However, we do not
seem to be so far off. If we carefully look at the “error”, i.e. the
term pXp f qYpgq ` XpgqYp f qq, we can observe that it is symmetric
with respect to X and Y. One way to let it cancel out, is to consider
the commutator of the two vector fields:

rX, Ys :“ XY´YX.

Indeed, rX, Ys is a derivation. Do not confound Lie with lie. Here
Lie is the surname of Sophus Lie, an
important Norwegian mathematician
that lived in the second half of the 19th
century.

Definition 3.2.1. Let X, Y P XpWq. We call Lie bracket of X and Y
the derivation given by their commutator rX, Ys :“ XY´YX. ♦

Remark 3.2.2. Note that the Lie brackets are not uniquely determined
by Xp and Yp: the smooth functions Xp f q and Yp f q depend on the
values of X and Y in a neighbourhood of p. ♦

Exercise 3.2.3. Show that the Lie bracket r, s of vector fields satisfies
the following properties. Let X, Y, Z P XpMq:

(i) (antisymmetry) rX, Ys “ ´rY, Xs;

(ii) (bilinearity) rαX ` βY, Zs “ αrX, Zs ` βrY, Zs and rX, αY `
βZs “ αrX, Ys ` βrX, Zs, for all α, β P R;
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(iii) (Jacobi identity) rX, rY, Zss ` rY, rZ, Xss ` rZ, rX, Yss “ 0.

Proposition 3.2.4. For all X, Y P XpMq and for all f , g P C8pMq,

r f X, gYs “ f grX, Ys ` f pXgqY´ gpY f qX.

Exercise 3.2.5. Prove the proposition.

We will see many applications of the Lie brackets throughout the
rest of the course, but before doing anything, let’s find an effective
way to compute it.

Proposition 3.2.6. Let pU, ϕq be a chart on M with local coordinates pxiq

and let X, Y P XpUq. If X “ Xi B
Bxi and Y “ Yi B

Bxi are the coordinate
expressions for X and Y, then4 4 Recall Notation 3.1.9!

rX, Ys “
ˆ

Xi BY j

Bxi ´Yi BX j

Bxi

˙

B

Bxj .

Exercise 3.2.7 ([homework 2]). Prove the proposition.

Example 3.2.8. Take the following vector fields on XpR2q:

X :“ px` 1qy
B

Bx
´ y

B

By
, Y :“ 3y

B

By
.

Then, the previous proposition implies

rX, Ys “ px` 1qy
B 0
Bx

B

Bx
´ y

B 0
By

B

Bx

` px` 1qy
B 3y
Bx

B

By
´ y

B 3y
By

B

By

´ 3y
B px` 1qy

By
B

Bx
` 3y

B y
By

B

By

“ ´3y
B

By
´ 3ypx` 1q

B

Bx
` 3y

B

By

“ ´3px` 1qy
B

Bx
.

♦

Theorem 3.2.9. Let F : M Ñ N be a diffeomorphism between smooth
manifolds with or without boundary and let X, Y P XpMq. Then, for all
f P C8pNq,

ppF̊ Xq f q ˝ F “ Xp f ˝ Fq, and F̊ rX, Ys “ rF̊ X, F̊ Ys.

.

Proof. By definition, for f P C8pNq, X P XpMq and any p P M

Xp f ˝ Fqppq “ Xpp f ˝ Fq

“ dFppXpq f “ pF̊ XqFppq f

“ ppF̊ Xq f qpFppqq “ ppF̊ Xq f q ˝ Fppq.
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Which proves the first equation. Therefore,

XYp f ˝ Fq “ XppF̊ Yq f ˝ Fq “ ppF̊ XqpF̊ Yq f q ˝ F,

and similarly for YX. Finally, by definition we have

pF̊ rX, Ys f q ˝ F “ rX, Ysp f ˝ Fq

“ XYp f ˝ Fq ´YXp f ˝ Fq

“ ppF̊ XqpF̊ Yq f q ˝ F´ ppF̊ YqpF̊ Xq f q ˝ F

“ prF̊ X, F̊ Ys f q ˝ F,

completing the proof.

Definition 3.2.10. A Lie algebra (over R) is a real vector space g,
endowed with a bilinear antisymmetric map

gˆ gÑ g, pv, wq ÞÑ rv, ws,

called Lie bracket, which in addition satisfies the Jacobi identity5. 5 Thus a Lie algebra is a non-
associative algebra.The dimension of the Lie algebra is the dimension of g as a vector

space.
If g is a Lie algebra, then a linear subspace h Ă g is called a Lie

subalgebra if rv, ws P h for all v, w P h. ♦

Example 3.2.11. Exercise 3.2.3 shows that the space XpMq of vector
fields on a manifold M is a Lie algebra. Since XpMq is a C8pMq-
module and C8pMq is an infinite-dimensional vector space, it
defines an infinite dimensional Lie algebra.

This may seem an alien concept at first, however there are many
simple examples of Lie algebras. To name a few:

1. R3 with the cross product rx, ys :“ xˆ y is a 3-dimensional Lie
algebra;

2. the set Matpnq of n ˆ n-matrices with the matrix commutator
rA, Bs “ AB ´ BA is a n2-dimensional Lie algebra, usually
denoted glpn, Rq;

3. any vector space V turns into an (abelian) Lie algebra by defin-
ing rv, ws “ 0;

4. if V is a vector space, the vector space of all linear maps from V
to itself becomes a Lie algebra, denoted glpVq, with the brackets
defined by rA, Bs “ A ˝ B ´ B ˝ A. Note that with the usual
identification of nˆ n matrices with linear maps from Rn to itself,
glpRnq coincides with glpn, Rq.

♦

Definition 3.2.12. Let g and h be two Lie algebras. A Lie algebra
homomorphism is a linear map T : g Ñ h which preserves the Lie
brackets, i.e.

rTv, Twsh “ Trv, wsg, @v, w P g.

A Lie algebra isomorphism is a bijective Lie algebra homomor-
phism whose inverse is also a Lie algebra homomorphism. ♦

In Theorem 3.2.9 we have thus shown that the pushforward is a
Lie algebra isomorphism!
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3.3 Flows and integral curves

Once again, a comparison with the euclidean world can open the
door to a whole new world. Vector fields on euclidean spaces give
rise to ordinary differential equations (ODEs) and to each vector
field we can associate a flow, that is, the curve that solve the ODE.

The classical theorems of existence and uniqueness of solutions
of ODEs, then, give us the necessary conditions to ensure that such
flow exists locally or globally and it is well–defined. For a rather
detailed account you can refer to [Kna18, Chapters 3.2 and 3.3]
(which you can freely access on SpringerLink via the university
proxy).

In fact, if X : U Ă Rn Ñ Rn is a vector field on an open subset U
of Rn, and

9uptq “ Xpuptqq (3.4)

is the corresponding ODE, then we have the following implications
of the euclidean theorems on existence and uniqueness of solutions:

(i) if X is continuous, then for each x P U there exists ε ą 0 and a
differentiable curve u “ ux : p´ε, εq Ñ U with uxp0q “ x that
solves (3.4);

(ii) (Picard-Lindelöf theorem) if X is locally Lipschitz continuous,
then the solution ux is unique;

(iii) if X P CppU, Rnq, then the solution map ϕ : pt, xq Ñ pt, xq :“
uxptq is p-times continuously differentiable as a function of
the initial data, i.e. ϕpx, ¨q P CppUq for all t in the existence
domain.

As we are getting used to, the whole theory can be extended to
manifolds in a quite direct but perhaps surprising fashion.

Definition 3.3.1. Let M be a manifold and let X P XpMq. A smooth
curve γ : pa, bq Ă R Ñ M is an integral curve of X if

γ1ptq “ Xγptq @t P pa, bq. (3.5)

Conventionally, we assume that 0 P pa, bq. In this case, if γp0q “ p,
we say that γ is an integral curve through p. ♦

This shows that there is a unique
integral curve of X starting at each
point of the plane and that the images
of any two integral curves are either
identical or disjoint.

Exercise 3.3.2. Let px, yq be standard coordinates on R2 and let
X “ B

Bx be the first coordinate vector field. Show that the inte-
gral curves of X are the straight lines parallel to the x-axis, with
parametrizations of the form γptq “ t ` α for some constants
α P R.

Example 3.3.3. Let px, yq be standard coordinates on R2 and Z “

x B
By ´ y B

Bx on R2. If γ : R Ñ R2 is a smooth curve, written in

standard coordinates6 as γptq “ pxptq, yptqq, then we have 6 In other words, xptq and yptq are the
components of the function γ : R Ñ

R2 seen as functions R Ñ R, that is,
γptq “ px ˝ γptq, y ˝ γptqq “: pxptq, yptqq

https://link.springer.com/book/10.1007%2F978-3-662-55774-7
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γ1ptq “ dγt

ˆ

d
dt

ˇ

ˇ

ˇ

t

˙

“
dxptq

dt
B

Bx

ˇ

ˇ

ˇ

γptq
`

dyptq
dt

B

By

ˇ

ˇ

ˇ

γptq

“ x1ptq
B

Bx

ˇ

ˇ

ˇ

γptq
` y1ptq

B

By

ˇ

ˇ

ˇ

γptq
,

while

Zγptq “ px ˝ γptqq
B

By

ˇ

ˇ

ˇ

γptq
´ y ˝ γptq

B

Bx

ˇ

ˇ

ˇ

γptq

“ xptq
B

By

ˇ

ˇ

ˇ

γptq
´ yptq

B

Bx

ˇ

ˇ

ˇ

γptq
.

Therefore, the condition (3.5) for Z and γ, i.e., γ1ptq “ Zγptq, trans-
lates into

x1ptq
B

Bx

ˇ

ˇ

ˇ

γptq
` y1ptq

B

By

ˇ

ˇ

ˇ

γptq
“ xptq

B

By

ˇ

ˇ

ˇ

γptq
´ yptq

B

Bx

ˇ

ˇ

ˇ

γptq
.

Comparing the components of the two vectors, we see that this is
equivalent to the system of ODEs

$

&

%

x1ptq “ ´yptq

y1ptq “ xptq
,

whose general solution is given by

xptq “ α cosptq ´ β sinptq, yptq “ α sinptq ` β cosptq, α, β P R.

Thus each curve of the form γptq “ pα cosptq ´ β sinptq, α sinptq `
β cosptqq is an integral curve of Z. When α “ β “ 0, this is the
constant curve γptq ” p0, 0q, otherwise, γ moves counter-clockwise
describing a circle. ♦

Since γp0q “ pa, bq, also in this
case, there is a unique integral curve
starting at each point pα, βq P R2, and
the images of any two integral curves
are either identical or disjoint.

Notation 3.3.4. If M is a manifold and pa, bq Ă R, also pa, bq ˆ M is
a manifold. Conventionally, for p P M we will denote ip : pa, bq Ñ
pa, bq ˆ M the map ipptq :“ pt, pq. All the following notations
will denote the tangent vector in Tpt,pqppa, bq ˆ Mq obtained from
B
Bt

ˇ

ˇ

t P TtR:

B

Bt

ˇ

ˇ

ˇ

pt,pq
:“ dpipqt

ˆ

B

Bt

ˇ

ˇ

ˇ

t

˙

“
d
dt

ipptq “ i1pptq.

In what follows we may chose any of the above notations depend-
ing of what we will find more convenient depending on the task at
hand. ♦

Exercise 2.4.7 implies that in the euclidean case our definition (in
terms of equality of tangent vectors on TγptqpMq) coincides with the
euclidean flow (defined in terms of equality of real numbers). Alter-
natively, one can pick a coordinate chart and use the pushforward
to locally compare the definitions.

Indeed, if pU, ϕq is a chart with coordinates7 pxiq, let γptq “ 7 We will soon stop being so verbose
and just write “in local coordinates (on
U)” without specifying their names
unless strictly necessary!

pγ1ptq, . . . , γnptqq in these coordinates. Then, condition (3.5) above
can be written as

9γiptq
B

Bxi

ˇ

ˇ

ˇ

γptq
“ Xipγptqq

B

Bxi

ˇ

ˇ

ˇ

γptq
, i “ 1, . . . , n,
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where we use the dot to denote the derivative in t for readability.
These equations can be further rewritten as the system of ordinary
differential equations of the same form as (3.4)

$

’

’

’

&

’

’

’

%

9γ1ptq “ X1pγ1ptq, . . . , γnptqq
...

9γnptq “ Xnpγ1ptq, . . . , γnptqq

,

to which we can apply euclidean theorems of existence and unique-
ness! Note also the terminology here, an “integral curve” for X is
the curve you obtain “integrating” the system of ODE associated to
X.

This immediately implies the following theorem.

Theorem 3.3.5 (Existence, uniqueness and differentiability of local
solutions). Let M be a smooth manifold and X P XpMq. For every
p P M̊ :“ MzBM, there exists ε ą 0, an open neighbourhood U Ă M̊ of p
and a unique map ϕ : p´ε, εq ˆU Ñ M, pt, pq ÞÑ ϕpt, pq, such that

(i) for every p P U, the curve ϕp : p´ε, εq Ñ M, t ÞÑ ϕpptq :“ ϕpt, pq
is an integral curve of X through p, that is, ϕ1p “ X ˝ ϕp and
ϕpp0q “ p;

(ii) for every t P p´ε, εq, the map ϕt : U Ñ M, p ÞÑ ϕtppq :“ ϕpt, pq, is
a diffeomorphism from U onto an open subset of M.

Remark 3.3.6. In some text, instead of ϕ1p “ X ˝ ϕp, you read

dϕpt,pq

ˆ

B

Bt

ˇ

ˇ

ˇ

pt,pq

˙

“ X ˝ ϕpt, pq.

This should not scare you since by definition

dϕpt,pq

ˆ

B

Bt

ˇ

ˇ

ˇ

pt,pq

˙

“ pϕ ˝ ipq
1ptq “ ϕ1pptq.

♦

We call the map ϕ a local flow of X. If a local flow is defined on
Rˆ M, we call it a global flow and the associated vector field is
called a complete vector field.

Example 3.3.7. Let M “ Rn and L P XpMq defined by Lpp1, . . . , pnq “

pp1, . . . , pn, 1, 0, 0, . . . , 0q. Then ϕL is a global flow, explicitly given as

ϕLpt, pq “ pp1 ` t, p2, . . . , pnq.

Linear motions along a coordinate, like ϕL, are sometimes called
linear drifts. ♦

Every smooth vector field has a local flow about any point, but
not necessarily a global flow.

Example 3.3.8 (A global flow may not exist). Let M “ R2 and
X “ x2 B

Bx . Then, the unique integral curve of X starting a p1, 0q is

γptq “
ˆ

1
1´ t

, 0
˙

.
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Since ix ˝ γptq is unbounded as t Ñ 1, this curve cannot be extended
past t “ 1.

A somewhat simpler example is given by the vertical lines on
H2 (so a manifold with boundary). These are integral curves of B

Bx2

which cannot extend further than the boundary tx2 “ 0u. ♦

Theorem 3.3.5, in particular, implies that if γ, δ : pa, bq Ñ M are
integral curves of X with γptq “ δptq for some t P pa, bq, then γ ” δ.

This justifies the following definition.

Definition 3.3.9. Let M be a smooth manifold and X P XpMq. For
a given p P M, we denote Ip “

`

t´ppq, t`ppq
˘

Ă R, 0 P Ip, the
maximal interval on which the unique integral curve γp : Ip Ñ M of
X through p is defined. We call such curve γp the maximal integral
curve of X through p. ♦

Remark 3.3.10. It follows from the definition of maximality that for
any p P M one has

t˘pγppsqq “ t˘ppq ´ s @s P Ip.

♦

Note that Ip is typically larger than the domain of definition
p´ε, εq of ϕp. By construction ϕp never leaves the coordinate set
U over which it was defined, on the other hand γp can in general
wander all over the manifold (even though γp “ ϕp for values of t
small enough)!

Again, theorems about existence and uniqueness of euclidean
maximal flows imply that we can extend ϕp uniquely to a maximal
flow.

Theorem 3.3.11 (Existence and uniqueness of maximal solutions).
Let M be a smooth manifold and X P XpMq. There exists a unique open
set D Ă Rˆ M̊ and a unique smooth map ϕ : D Ñ M such that

(i) for all p P M one has D X pRˆ tpuq “ Ip ˆ tpu;

(ii) ϕpt, pq “ γpptq for all pt, pq P D.

We call ϕ the flow of X. When we want to emphasize the vector
field X, we will write ϕX .

Proof. Both D and ϕ are uniquely identified respectively by (i)
and (ii), so to prove the theorem one only needs to show that D is
open and that ϕ is smooth. This is done by applying the euclidean
theorems to extend the local flow, finally showing that for all p P M
and t P Ip, D contains a neighbourhood of pt, pq on which ϕ is
smooth.

We are going to omit the details of the proof, the interested
reader can refer to [Lee13, Proposition 9.12]. The statements may
seem different at a first glance, but a careful look will reveal that he
is just taking a slightly different perspective.
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Indeed, if we reverse the roles of t and x, we can define for any
given t P M the set

Mt :“ tp P M | pt, pq P Du.

Then Theorem 3.3.11 is equivalent to say that Mt is open in M, M “

Ytą0Mt, and there is a well-defined smooth map ϕt : Mt Ñ M´t

given by
ϕtppq :“ ϕpt, pq, p P Mt. (3.6)

Which is exactly the claim in [Lee13, Proposition 9.12].

Remark 3.3.12. The point of view taken to define (3.6) brings to the
table a very important fact: ϕt : Mt Ñ M´t is a smooth map with
smooth inverse pϕtq

´1 :“ ϕ´t : M´t Ñ Mt.
That is, ϕt is a diffeomorphism, ϕ0 “ idM and, more generally,

if s, t P R then the domain P of ϕs ˝ ϕt is contained8 in Ms`t and 8 Equality holds if st ě 0, that is, if they
have the same sign.ϕs ˝ ϕt “ ϕs`t in P. ♦

For a complete vector field X, D “ RˆM.

Exercise 3.3.13. Let M “ tx P R2 | }x} ă 1u. Explicitly find a vector
field Z P XpMq, the associated maximal flow φX : D Ñ M and its
domain D, so that

1. Z is complete;

2. Z is not complete.

Definition 3.3.14. We denote DiffpMq the set of diffeomorphisms9 9 Also called automorphisms to stress
that domain and codomain coincide.ϕ : M Ñ M.

Note that DiffpMq is a group under composition, where the
identity element is just the identity map. ♦

Definition 3.3.15. A one-parameter group of diffeomorphisms10 is 10 If you stumble upon a one-parameter
group action, don’t be scared: it is the
same exact thing where ϕ is required
to be continuous instead of smooth.

a smooth left R-action on M, that is, a smooth map ϕ : RˆM Ñ M
such that for all s, t P R and all p P M:

ϕp0, pq “ p,

ϕpt, ϕps, pqq “ ϕpt` s, pq.

In other words, a one-parameter group of diffeomorphism is
another name for global flow and the two properties above are
exactly the group laws. And, indeed, we usually denote the map
t ÞÑ ϕpt, ¨q by ϕt.

If tϕtu is a one-parameter group of diffeomorphisms, then we
define its infinitesimal generator as the (complete) vector field11

11 Or, more compactly,
Xp “

d
dt

ˇ

ˇ

t“0 ϕtppq.
Xp :“ dϕp0,pq

ˆ

B

Bt

ˇ

ˇ

ˇ

p0,pq

˙

. (3.7)

Hence, the flow of X is simply the one-parameter group ϕt.
Always keep in mind that (3.7) is just a “scary” way to write

Xp :“ ϕ1pp0q where the role of the differential and the nature of the
vector field are more explicit. ♦
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Figure 3.1: One can think of a flow
as a sequence of many infinitesimal
straight motions determined by the
value of the vector field, that is where
“infinitesimal generator” comes from.
We will soon make this rigorous.

Exercise 3.3.16. Show that the following are one-parameter groups of
diffeomorphisms and compute their infinitesimal generators.

1. φt : R Ñ R, φtpxq “ x` t;

2. φt : R Ñ R, φtpxq “ etx;

3. φt : R2 Ñ R2, φtpx, yq “ px cosptq ´ y sinptq, x sinptq ` y cosptqq.

The definition above contains the proof of the following fact.

Proposition 3.3.17. Let M be a smooth manifold. There is a bijective
correspondence between one-parameter groups of diffeomorphisms (i.e.
global flows) and complete vector fields.

Notation 3.3.18. Since by construction

d
dt

ϕtppq “ Xpϕtppqq, ϕ0ppq “ p, @p P M,

it is often convenient to use the exponential notation

etX :“ ϕX
t , t P R,

to denote the flow of a vector field X. ♦

Exercise 3.3.19. Show that the exponential defined above satisfies the
following properties

e0X “ idM, petXq´1 “ e´tX ,

etX ˝ esX “ ept`sqX ,

d
dt

etXppq “ XpetXppqq, @p P M.

Moreover, if Xpxq “ Ax is a linear vector field on Rn, i.e., A
is a n ˆ n-matrix, then the corresponding flow ϕt is the matrix
exponential ϕtpxq “ eAx.

There are a few cases in which we can guarantee completeness,
let’s have a brief look.

Lemma 3.3.20. Let X P XpMq and assume that there exists ε ą 0 such
that p´ε, εq Ă Ip for all p P M. Then X is complete.

Proof. Assume that this is not the case, then there is some p P M
such that either t`ppq ă 8 or t´ppq ą ´8. Say that t`ppq ă 8 (the
other case is nearly identical).

Choose t0 such that t`ppq ´ t0 ă ε and set p0 “ γppt0q. By
assumption, γp0ptq is defined for all t P p´ε, εq. Consider the curve

γptq :“

$

&

%

γpptq, t P Ip,

γp0pt´ t0q, |t´ t0| ă ε.

The two definitions coincide on the overlap as

γp0pt´ t0q “ ϕt´t0pp0q “ ϕt´t0 ˝ ϕt0ppq “ ϕtppq “ γpptq,
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but γ is an integral curve for X through p which is defined on
pt´ppq, t0 ` εq. Since t0 ` ε ą t`ppq, this contradict the maximality of
Ip.

Corollary 3.3.21. Let X P XpMq be a vector field with compact support.
The X is complete.

Sketch of the proof. Use the compactness to pick a finite covering of
the support, define the local flow on the covering and then pick the
smallest ε (out of the finitely many).

Corollary 3.3.22. If M is compact12, then every vector field has compact 12 A compact manifold without bound-
ary is called closed manifold.support. So, every vector field on M is complete.

In the same fashion as Lemma 3.3.20, one can characterize non-
complete vector fields.

Lemma 3.3.23. Let K Ă ˝M compact and p P K. If t`ppq ă 8, then
there exists 0 ă τ ă t`ppq such that γpptq R K for all t P pτ, t`ppqq. An
analogous statement holds if t´ppq ą ´8.

Exercise 3.3.24. Prove Lemma 3.3.23.

In other words, a maximal integral curve cannot “end” inside
a compact set that doesn’t contain boundary points. Thus, if a
solution does not exist for all times, then it must either run to
infinity in finite time13 or hit the boundary of M. 13 Recall Example 3.3.8

3.4 Normal forms

A natural question, at this point, is what happens when we map
integral curves to different manifolds via diffeomorphisms, after all
it looks like the mapping to euclidean spaces via the charts behaves
quite nicely.

Proposition 3.4.1. Let F : M Ñ N be a diffeomorphism between smooth
manifolds, X P XpMq a vector field and γ : I Ñ M an integral curve of X.
Then F ˝ γ : I Ñ N is an integral curve of F̊ X.

If X is complete, we then have

F ˝ ϕX
t “ ϕ

F̊ X
t ˝ F.

Sometimes to understand what one is
doing, it may be convenient to rewrite
things in different forms, for example I
find the following quite clarificatory

ϕ
F̊ X
t “ F ˝ ϕX

t ˝ F´1, (3.8)

Proof. We only need to show that the two curves satisfy the same
ODE.

dpF ˝ γqt “ dFγptq ˝ dγt

“ dFγptq ˝ pX ˝ γqt

“ dFγptq ˝ X ˝ F´1
loooooooomoooooooon

˝F ˝ γptq

“ pF̊ Xq ˝ pF ˝ γqptq

“ pF̊ XqF˝γptq.
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Remark 3.4.2. One particularly interesting consequence of Propo-
sition 3.4.1 in conjunction with the exponential notation is the
following:

´

etX
˚ Y

¯

q
“

d
ds

ˇ

ˇ

ˇ

s“0
exp

´

s etX
˚ Y

¯

q
“

d
ds

ˇ

ˇ

ˇ

s“0
etX ˝ esY ˝ e´tXpqq, (3.9)

where we are using the definition of integral flow in the first equal-
ity and (3.8) in the second. This turns out to be rather useful for
proofs and computations. ♦

Exercise 3.4.3. Use Theorem 3.2.9 to show that the Lie bracket is the
infinitesimal version of the pushforward of the second vector field
along the flow of the first one, that is,

rX, Ys
ˇ

ˇ

q “
B

Bt

ˇ

ˇ

ˇ

t“0
pe´tX
˚ Yqq (3.10)

Hint: the identity pF̊ Xq f “ Xp f ˝ Fq ˝ F´1 and a Taylor expansion can help.

Remark 3.4.4. Equation (3.10) and (3.9) imply that

rX, Ysq “
B2

BsBt

ˇ

ˇ

ˇ

t“s“0
e´tX ˝ esY ˝ etXpqq. (3.11)

♦

With this we can show that the Lie bracket of two vector fields
is zero (i.e., they commute as operator on functions) if and only if
their flows commute, that is ϕX

t ˝ ϕY
s “ ϕY

s ˝ ϕX
t for all t, s P R.

Proposition 3.4.5. Let M be a smooth manifold and X, Y P XpMq. Then
rX, Ys “ 0 if and only if their flows commute.

Proof. First we show that rX, Ys “ 0 implies that

e´tX
˚ Y “ Y @t P R. (3.12)

To this end, we are going to use (3.10) to show that 0 “ rX, Ys “
B
Bt

ˇ

ˇ

ˇ

t“0
e´tX
˚ Y implies that B

Bt e´tX
˚ Y “ 0 for all t P R (i.e., it is a

constant map). Indeed, for any t,

B

Bt
e´tX
˚ Y “

B

Bε

ˇ

ˇ

ˇ

ε“0
e´pt`εqX
˚ Y “

B

Bε

ˇ

ˇ

ˇ

ε“0
e´tX
˚ e´εX

˚ Y

“ e´tX
˚

B

Bε

ˇ

ˇ

ˇ

ε“0
e´εX
˚ Y “ e´tX

˚ rX, Ys “ 0.

pùñq Fix t P R. We are going to show that ϕs :“ e´tX ˝ esY ˝ etX

is the flow of Y, i.e. ϕs “ esY. We can use the previous trick, (3.12)
and (3.9) to get, for any s P R,

B

Bs
ϕs “

B

Bε

ˇ

ˇ

ˇ

ε“0
e´tX ˝ eps`εqY ˝ etX

“
B

Bε

ˇ

ˇ

ˇ

ε“0
e´tX ˝ eεY ˝ etX

looooooooooooomooooooooooooon

e´tX
˚ Y

˝ e´tX ˝ esY ˝ etX
loooooooomoooooooon

ϕs

“ e´tX
˚ Y ˝ ϕs “ Y ˝ ϕs.

That is, e´tX ˝ esY ˝ etX “ esY which is equivalent to the claim.
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pðùq Let f P C8pMq, by (3.11) we have

rX, Ysq “
B2

BsBt

ˇ

ˇ

ˇ

t“s“0
e´tX ˝ esY ˝ etXpqq

“
B2

BsBt

ˇ

ˇ

ˇ

t“s“0
esY “ 0.

Exercise 3.4.6. Let M be a smooth manifolds and X, Y P XpMq. Define
pad XqY :“ rX, Ys. Use the semigroup property14 14 We have shown it at the beginning of

the previous proof!
B

Bt
etX
˚ Y “ etX

˚ rX, Ys,

to deduce the following formal series expansion:

e´tX
˚ Y “

8
ÿ

n“0

tn

b!
pad XqnY

“ Y` trX, Ys `
t2

2
rX, rX, Yss `

t3

6
rX, rX, rX, Ysss ` ¨ ¨ ¨ .

We can finally justify our comment in Figure 3.1: the following
theorem shows that every flow ϕX admits local coordinates on its
support which map it into a linear flow.

Definition 3.4.7. Let M be a smooth manifold and X P XpMq. The
support of X is defined as

supppXq :“
 

p P M | Xp ‰ 0 P Tp M
(

Ă M.

Points p P supppXq are called regular points of X. The points
p P Mz supppXq, i.e. such that Xp “ 0, are the fixed points (or
equilibrium points) of X: for such points the unique integral curve
through p is γptq ” p for all t P R. ♦

Theorem 3.4.8 (Normal form of a flow away from the fixed points).
Let M be a smooth manifold, X P XpMq and p P supppXq Ă M. Then,
there exists a chart pU, ϕq with p P U such that

ϕ˚X “ L,

where L is the linear drift defined in Example 3.3.7. Thus, locally,

ϕX
t “ ϕ´1 ˝ ϕL

t ˝ ϕ.

Proof. Choose15 a coordinate patch pU1, ψq centred at p (so ψppq “ 15 This can always be done via a
parametrisation of the hyperplane
transversal to X by px2, . . . , xnq “

p0, . . . , 0q, where the pxiq denote the
local coordinates. Cf. Example 3.4.9.

0) such that ψ˚Xp0q “ p1, 0, 0, . . . , 0q. By continuity of ψ˚X P

XpψpU1qq, we can always restrict to a smaller neighbourhood V2 Ă

ψpU1q on which pψ˚Xq1pqq ą 1
2 for all q P V2.

Our objective is to interpolate ψ˚X on V Ă V2 and L on Vc
2 to

obtain a new vector field rL on all of Rn which is diffeomorphic to
rL. If Ω : Rn Ñ Rn is such diffeomorphism, i.e. Ω˚rL “ L, then
ϕ “ Ω ˝ ψ is the chart we are looking for: indeed, on U “ ψ´1pVq we
have ϕ˚X “ Ω˚ψ˚X “ Ω˚rL “ L.
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Interpolated vector field
rL. Let V Ă V2 be an open set around

0. Pick a cutoff function χ P C8pRnq such that χpxq “ 1 for x P U
and χpxq “ 0 for x P Uc

2. Then the interpolating vector field is
immediately obtained as

rL “ χψ˚X` p1´ χqL P XpRnq.

Clearly its flow ϕ
rL
t is global as Rn has no boundary and the

regularity of the functions involved implies that no integral curve
can escape to infinity in finite time.

Diffeomorphism Ω. We will now show that

Ω “ lim
tÑ8

ϕL
´t ˝ ϕ

rL
t

exists and defines a diffeomorphism such that Ω˚rL “ L. Since by It is interesting to compare Ω with the
so called Møller transformations in
scattering theory (cf. [Kna18, Chapter
12.2]).

construction pϕrL
t pqqq

1 ě q1 ` 1
2 , every integral curve leaves V2 after a

finite time. So, on compact sets K Ă Rn, there is a finite time t0pKq
after which the limit is attained (can you explain why?):

lim
tÑ8

ϕL
´t ˝ ϕ

rL
t

ˇ

ˇ

ˇ

K
“ ϕL

´t0
˝ ϕ

rL
t0

.

Thus, Ω is a well–defined diffeomorphism. Moreover,

Ω ˝ ϕ
rL
t “ lim

sÑ8
ϕL
´s ˝ ϕ

rL
s ˝ ϕ

rL
t

“ lim
sÑ8

ϕL
´s ˝ ϕ

rL
s`t

“ lim
τÑ8

ϕL
t´τ ˝ ϕ

rL
s ˝ ϕ

rL
τ

“ lim
τÑ8

ϕL
t ˝ ϕL

´τ ˝ ϕ
rL
s ˝ ϕ

rL
τ “ ϕL

t ˝Ω,

and therefore the flows are diffeomorphic. In particular, we also
have ϕ

rL
p “ Ω´1 ˝ ϕL

Ωpxq. Differentiating this last equation we get

prL ˝ ϕ
rLqp “ dϕ

rL
p

“ dΩ´1
ϕL

Ωpxq
˝ dϕL

Ωpxq

“ dΩ´1
ϕL

Ωpxq
˝ pL ˝ ϕLqΩpxq,

which, at t “ 0, gives rL “ dΩ´1 ˝ L ˝Ω “ Ω´1
˚ L.

Example 3.4.9. Let Z “ x B
By ´ y B

Bx on R2 be the vector field from
Example 3.3.3, where we already computed its flow.

The point p1, 0q P R2 is a regular point of Z, since Zp1,0q “

B
By

ˇ

ˇ

ˇ

p1,0q
‰ 0. Since Z has a nonzero y coordinate, we can consider

the as the transversal “hypersurface”, a line in this case, the x-
axis, parametrised by Hpsq “ ps, 0q. We can then define the map
Ψpt, sq “ ϕt ˝ Hpsq : R2 Ñ R2 where ϕt is the flow of Z, it turns out
that then the coordinate map would just be the inverse of Ψ.

In this case: Ψpt, sq “ ϕtps, 0q “ ps cos t, s sin tq. Solving locally for
pt, sq as functions of x and y we get, in a neighbourhood of p1, 0q:

pt, sq “ Ψ´1px, yq “
ˆ

arctanpy{xq,
b

x2 ` y2
˙

.
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In this new coordinates, which are just polar coordinates labelled
with different symbols, you can directly check that Z “ B

Bt as
claimed. ♦

Remark 3.4.10 (Linearisation of a vector field at a fixed point). Away
from the fixed points, the previous theorem tells us that the flow is
locally linear. Near a fixed point we can describe the flow in terms
of the linearisation of the associated vector field.

If X P XpMq and p0 P M with Xp0 “ 0. On a chart ϕ centred at p0

with local coordinates pxiq, let rX “ ϕ˚X. Then we have

rXx “ rX0
ljhn

“0

`d rX0x`Op}x}2q “ d rX0x`Op}x}2q.

Close to x “ 0 we can thus approximate rXx by its linearisation d rX0x.
Qualitatively, the behaviour close to the fixed point is determined
by the eigenvalues16 of d rX0x and their geometric multiplicities 16 Note that thanks to the compatibility

conditions, the linearisations of X at
different charts are similar matrices,
and thus the spectrum of d rX0x is
independent of the choice of local
coordinates.

(cf. [Lee13, Figure 9.8]). This is the same as you have seen in the
euclidean case [Kna18, Chapter 5.3]. ♦

Exercise 3.4.11. Let M “ R2 with coordinates pq, pq P R2 and
H P C8pR2q. Discuss the possible local behaviour near the fixed-
points of the following types of vector fields by considering their
linearisation:

• gradient flows XGpq, pq :“

˜

B
Bq Hpq, pq
B
Bp Hpq, pq

¸

;

• hamiltonian flows XHpq, pq :“

˜

B
Bp Hpq, pq
´ B
Bq Hpq, pq

¸

.

Sketch in all cases the vector field and the local flow.

For simplicity in the rest of the course we will discuss only
global flows. But keep in mind that all results hold also for
local flows as long as one restricts the domains appropri-
ately.



4
Lie groups and Lie algebras

In the previous chapter we have briefly touched upon the notion of
Lie algebras. A strictly related notion, we will see in which sense,
is the notion of Lie group. There are mathematical objects that are
pervasive in mathematics, even outside the realm of differential
geometry, and in physics, where they play an important role in
classical mechanics1, and in high-energy physics2. 1 You may have heard of the celebrated

Noether’s theorem, which states
that every smooth symmetry has a
corresponding conservation law
2 Does gauge theory ring any bell?

The theory of Lie groups and Lie algebras is vast, and in these
lectures we will just briefly scratch the surface.

4.1 Lie groups

Definition 4.1.1. A Lie group G is a smooth manifold (without
boundary) that is also an algebraic group, with the property that
the multiplication map µ : G ˆ G Ñ G, µ : pg, hq ÞÑ gh, and the
inversion map ι : G Ñ G, ι : g ÞÑ g´1 are smooth. ♦

Example 4.1.2. 1. Rn is a Lie group under addition.

2. Rnzt0u is a Lie group under multiplication.

3. A manifold can be equipped with different Lie group structures.
For example, the following map

µpx, yq “ px1 ` y1, x2 ` y2, x3 ` y3 ` x1y2q

induces3 an alternative structure of Lie group on Rn called 3 To see that this defines a group
structure, identify R3 with upper
triangular 3ˆ 3 matrices via

x “ px1, x2, x3q ÞÑ

¨

˝

1 x1 x3

0 1 x2

0 0 1

˛

‚

and observe that m becomes the
standard matrix multiplication.

Heisenberg group.

4. The set GLpnq of invertible nˆ n matrices is a Lie group under
matrix multiplication. Indeed, it is a manifold of dimension
n2, the product is smooth since each matrix entry is given a
polynomial and the inversion is smooth thanks to Cramer’s
rule [Lee13, Proposition B.36].

5. The n-torus Tn “ Rn{Zn is an abelian Lie group with the group
structure induced by addition on Rn.

6. Given Lie groups pG1, . . . , Gkq, their direct product is the product
manifold G1 ˆ ¨ ¨ ¨ ˆ Gk with the group structure given by

pg1, . . . , gkqph1, . . . , hkq “ pg1h1, . . . gkhkq
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is a Lie group (why?).

7. Not all smooth manifolds can be equipped with a Lie group
structure: for example, Sn admits a Lie group structure only for
n “ 0, 1, 3.

♦

Definition 4.1.3. A Lie group homomorphism F : G Ñ H is a
smooth map which is also a group homomorphism. It is called Lie
group isomorphism if it is also a diffeomorphism, which implies
that it has an inverse that is also a Lie group homomorphism. In
this case we call G and H isomorphic Lie groups. ♦

Example 4.1.4. It turns out that you know plenty of examples of Lie
group homomorpisms.

1. The map exp : R Ñ R` is a Lie group homomorphism. The
image of exp is the open subgroup R` and exp : R Ñ R` is a
Lie group isomorphism with inverse log : R` Ñ R.

2. The map ε : R Ñ S1 defined by εptq “ e2πit is a Lie group
homomorphism whose kernel is Z. Similarly, the map εn : Rn Ñ

Tn defined by εnpx1, . . . , xnq “ pe2πix1
, . . . , e2πixn

q is a Lie group
homomorphism whose kernel is Zn.

3. The determinant function det : GLpnq Ñ Rzt0u is smooth since
det is a polynomial in the entries of the matrix and it is a Lie
group homomorphism since detpABq “ detpAqdetpBq.

♦

Definition 4.1.5. If G is a Lie group, for any element g P G, we
denote by Lg : G Ñ G the left translation and by Rg : G Ñ G the
right translation, respectively defined

Lgphq “ gh and Rgphq “ hg.

♦
The fact that translations are dif-
feomorphisms of the groups onto
itself is crucial, it implies that the
group looks the same around any
point. Indeed, they are homogeneous
spaces. To study the local structure of
a Lie group, as we will see soon, it is
enough to examine a neighbourhood
of the identity element.

These are both diffeomorphisms, since they can be described by
a composition of smooth maps. For instance,

G
h
Ñ
ÞÑ

Gˆ G
pg,hq

Ñ
ÞÑ

G
gh

.

Moreover, Lg´1 is the inverse of Lg. Similarly for Rg.

Remark 4.1.6. For convenience, we will only consider left translations.
There is nothing wrong with right translations and, in fact, you can
reformulate all the results that follow in terms of them. ♦

The next theorem is important for understanding many of the
properties of Lie group homomorphisms.

Theorem 4.1.7. Every Lie group homomorphism has constant rank.
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Proof. Let F : G Ñ H be a Lie group homomorphism and let e
denote the identity element of G.

Fix g P G. We will show that F has the same rank at g as its rank
at e. Since F is a homomorphism, for all h P G we have

FpLgphqq “ Fpghq “ FpgqFphq “ LFpgqpFphqq,

that is,
F ˝ Lg “ LFpgq ˝ F.

Differentiating both sides at e and using the chain rule, this reads

dFg ˝ dpLgqe “ dpLFpgqqFpeq ˝ dFe.

Since the left translation is a diffeomorphism, both dpLgqe and
dpLFpgqqFpeq are isomorphisms, and as such they preserve the rank.
From this, it follows that dFg and dFe have the same rank.

The global rank theorem then immediately implies the following
corollary.

Corollary 4.1.8. A Lie group homomorphism is a Lie group isomorphism if
and only if it is bijective.

Definition 4.1.9. Let G be a Lie group. A Lie subgroup of G is a sub-
group H Ă G endowed with a topology and a smooth structure that
make it at the same time a Lie group and an immersed submanifold
of G. ♦

Example 4.1.10. This means for example that the set GL`pnq of
invertible matrices with positive determinant is a Lie subgroup of
GLpnq. ♦

It turns out that embedded submanifolds are automatically Lie
groups. In fact more than that.

Theorem 4.1.11 (Closed subgroup theorem). Let G be a Lie group and
suppose H is any subgroup of G. The following are equivalent:

1. H is a closed subgroup4; 4 That is, H is a closed subset of G.

2. H is an embedded submanifold of G;

3. H is an embedded Lie subgroup of G.

The proof of this theorem is not hard, but especially proving the
equivalence of the first two claims is rather involved, so we will
skip it. For a proof, look at the corresponding section in [Lee13,
Chapter 20].

Since the closed subgroups of GLpnq
play a special role in Lie groups theory,
they have their own name: they are the
called matrix Lie group.

Example 4.1.12. Let Opnq Ă GLpnq denote the set of orthogonal
matrices5, then Opnq is closed in GLpnq and by the previous the-

5 That is, A such that AAT “ I.orem is a Lie subgroup. You have proven this when you solved
Exercise 2.8.27. ♦

Exercise 4.1.13. Let G be a Lie group.
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1. Let µ : G ˆ G Ñ G denote the multiplication map. Use the
identification Tpe,eqpG ˆ Gq » TeG ˆ TeG to show that dµpe,eq :
TeGˆ TeG Ñ TeG is given by

dµpe,eqpX, Yq “ X`Y.

Hint: compute dµpe,eqpX, 0q and dµpe,eqp0, Yq separately.

2. Let ι : G Ñ G denote the inversion map. Show that dιe : TeG Ñ

TeG is given by dιepXq “ ´X.

4.2 Lie algebras

We are finally ready to see how Lie groups and Lie algebras ended
up being related.

Definition 4.2.1. Let G be a Lie group. We define the Lie algebra
of G, usually denoted g, as the tangent space to G at the identity Sometimes you find LiepGq.

element e:
g :“ TeG.

♦

Of course, for this definition not to be completely insane, the Lie
algebra of a Lie group better be a Lie algebra also in the sense of
Definition 3.2.10. We are going to prove this very soon, but let’s first
look at some examples.

Example 4.2.2. 1. The Lie algebra of GLpnq is glpnq » Matpnq.

2. The Lie algebra of Opnq is opnq “ tA P glpnq | A` AT “ 0u. You
have shown it in Exercise 2.8.27.

♦

Exercise 4.2.3. The Lie algebra of Tn is Rn.
Hint: using the fact that TpMˆ Nq » TpMq ˆ TpNq and look at what happens

in the case n “ 1.

Before proceeding we need to introduce some more notation.

Definition 4.2.4. Let G be a Lie group. A vector field X P XpGq is
called left-invariant if That is, if for all g, h P G we have

dpLgqhXh “ Xgh.

Indeed,
X “ pLgq˚X “ dpLgq ˝ X ˝ pLgq

´1

if and only if X ˝ Lg “ dpLgq ˝ X.

pLgq˚X “ X @g P G.

We denote the set of left-invariant vector fields by XLpGq Ă XpGq.
♦

Proposition 4.2.5. Let G be a Lie group and X, Y P XLpGq. Then
rX, Ys P XLpGq and, therefore, XLpGq is a Lie subalgebra of XpGq.

Exercise 4.2.6. Prove the proposition.

Remark 4.2.7. The Lie algebra of all smooth left-invariant vector fields
on a Lie group G, which we denoted XLpGq and is a subalgebra of
XpGq, is also called the Lie algebra of G. In the next theorem we
are going to see that this is isomorphic to the one defined above in
terms of tangent at the identity. ♦
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A fundamental difference with the Lie algebra of vector fields is
that XLpGq is finite dimensional.

Theorem 4.2.8. Let G be a Lie group. The evaluation map

eval : XLpGq Ñ TeG, evalpXq “ Xe,

is a vector space isomorphism. Thus, XLpGq is finite dimensional with the
same dimension as G.

Proof. Linearity. Immediate (why?).

Injectivity. Follows immediately from the left-invariance: if
evalpXq “ Xe “ 0 for some X P XLpGq, then the left-invariance of X
implies that Xg “ dpLgqepXeq “ 0 for every g P G, thus X ” 0.

Surjectivity. Fix an arbitrary v P g “ TeG and define the map
vL : G Ñ TG by

vLpgq :“ dpLgqepvq.

By construction, vL satisfies the section property6, since dpLgqe : 6 If you don’t know what we are
talking about, have another look at
Definition 3.1.1.

TeG Ñ TgG.

• vL is a vector field: we will show that vL
g f :“ vLpgq f is smooth

for any f P C8pGq. To this end, pick a smooth curve γ :
p´ε, εq Ñ G such that γp0q “ e and γ1p0q “ v. Then, for any
g P G we have

vL
g f “ vLpgq f

“ dpLgqepvq f

“ vp f ˝ Lgq

“ p f ˝ Lg ˝ γq1p0q.

If we define ϕ : p´δ, δq ˆ G Ñ R by ϕpt, gq “ f ˝ Lg ˝ γptq “
f pgγptqq, the computation above shows that vL

g f “ Bϕ
Bt p0, gq. Since

ϕ is the composition of smooth functions, it is smooth, and thus
vL f is smooth.

• vL is left-invariant. Indeed, for any g, h P G, we have

dpLgqhpvLphqq “ dpLgqh ˝ dpLhqepvq

“ dpLg ˝ LhqepVq

“ dpLghqepvq

“ vLpghq.

Thus vL P XLpGq. Since evalpvLq “ vLpeq “ v, the map eval is
surjective, concluding the proof.

Corollary 4.2.9. Let G be a Lie group of dimension n. Then its Lie algebra
is a Lie algebra of dimension n.
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Proof. We just need to define a Lie bracket on g. But this is easier
done than said: using the notation of the previous theorem, set

rv, ws :“ evalprvL, wLsq, @v, w P g.

Another immediate consequence of this proposition is that every
left-invariant vector field is complete, which immediately makes
them all parallelizable.

Proposition 4.2.10. Let G be a Lie group and v P XLpGq. Then v is
complete.

Exercise 4.2.11. [homework 3] Prove the proposition.
Hint: extend a curve starting at e to a curve starting at g.

Corollary 4.2.12. Every Lie group admits a smooth global frame of
left-invariant vector fields, and therefore every Lie group is parallelizable.

Proof. Every basis for XL is a left-invariant smooth global frame for
G.

Just as we can view the tangent space as a “linear model” of
a smooth manifold near a point, the Lie algebra of a Lie group
provides a “linear model” of the group, which reflects many of the
properties of the group. Because Lie groups have more structure
than ordinary smooth manifolds, it should come as no surprise that
their linear models have more structure than ordinary vector spaces.
Since a finite dimensional Lie algebra is a purely linear-algebraic
object, it is in many ways simpler to understand than the group
itself. Much of the progress in the theory of Lie groups has come
from a careful analysis of Lie algebras.

Proposition 4.2.13. If F : G Ñ H is a Lie group homomorphism, then
there is a map F̊ : g Ñ h which is a Lie algebra homomorphism. We call
this map, the induced Lie algebra homomorphism.

Proof. Let v P g and let vL P XLpGq denote the unique left-invariant
vector field satisfying vL

e “ v. Let w :“ dFepvq “: F˚v and wL P

XLpHq as above. It is enough to show that wL
Fpgq “ pF

˚vLqg “ dFgVL
g

for all g P G.
Indeed, we have

dFgpvL
gq “ dFg ˝ dpLgqepvq

“ dpLFpgqqFpeq ˝ dFepvq

“ dpLFpgqqFpeqpwq

“ wL
Fpgq.

The result then follows from Theorem 3.2.9. If v1, v2 P g and wi “

F˚vi, i “ 1, 2, then
dFerv1, v2s “ rw1, w2s.
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An immediate consequence of this proposition is the following.

Corollary 4.2.14. Let H Ă G be a Lie subgroup. Then h is a Lie subalge-
bra of g.

Proof. Use the inclusion i : H ãÑ G as the homomorphism, then
die : h “ TeH Ñ g “ TeG is the Lie algebra homomorphism.

If we go back to the example of GLpnq, now we have two possi-
bly different Lie brackets on glpnq “ Matpnq: the one coming from
the previous corollary and the matrix commutator. The next result,
which we will not prove, shows that they coincide. See [Lee13, Proposition 8.41] for

reference.

Proposition 4.2.15. The Lie bracket on glpnq is given by the matrix
commutator. Therefore, if G is a matrix Lie group, the Lie bracket on g is
also the matrix commutator.

In fact, the correspondence between Lie subgroups and Lie
subalgebras goes both ways. See [Lee13, Theorem 8.46] for refer-

ence.

Theorem 4.2.16. Let G be a Lie group with Lie algebra g. If h is a Lie
subalgebra of g, then there is a unique connected Lie subgroup H of G
whose Lie algebra is h.

We close this section by stating a deep algebraic result about Lie
algebras, whose proof is way out of our reach.

Theorem 4.2.17 (Ado’s theorem). Let glpVq denote the Lie algebra
of linear maps from a finite dimensional vector space V to itself. Every
finite-dimensional real Lie algebra g admits a faithful finite-dimensional
representation, that is, there exists an injective Lie algebra homomorphism
F : gÑ glpVq » glpn, Rq for some finite dimensional vector space V.

4.3 The exponential map

We have seen that there is a tight relation between flows and expo-
nentials, so much so, that we started using formally the exponential
notation to denote flows of vector fields. With Lie groups and Lie
algebras, we will bring the construction to the next level, properly
formalising the construction.

There is a strict relation between one-
parameter groups of diffeomorphisms
and one-parameter subgroups of a
Lie group. We will not discuss it here,
just be aware that – in some sense – it
mimicks what we are exploring here in
the setting of infinite-dimensional Lie
groups.

Definition 4.3.1. Let G be a Lie group with Lie algebra g. We
call a one-parameter subgroup of G a Lie group homomorphism
R Ñ G. ♦

Given the introduction, the following theorem should not come
as a surprise.

Theorem 4.3.2. Let G be a Lie group. The one-parameter subgroups of
G are precisely the maximal integral curves of left-invariant vector fields
starting at the identity.

Proof. (ðù) Suppose that γ is the maximal integral curve for some
v P XLpGq starting at the identity e. Proposition 4.2.10 implies
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that γ is defined on all R. Since Lg is a diffeomorphism for
all g P G and v is left-invariant, by Proposition 3.4.1 Lg maps
integral curves of v to integral curves of v (why?). If g “ γpsq for
some s, the curve t ÞÑ Lγpsqpγptqq is an integral curve starting at
γpsq. By the group property of the flow, also t ÞÑ γpt` sq is an
integral curve starting at γpsq, so they must be equal. That is, for
all s, t P R,

γps` tq “ γpsqγptq.

Which implies that γ : R Ñ G is a one-parameter subgroup.

(ùñ) Let now γ : R Ñ G be a one-parameter subgroup and
v “ γ1p0q P g. The claim is that γ1ptq “ vLpγptqq. Since γpsqγptq “
γps` tq “ Lγptqpγpsqq we have

γ1ptq “
d
ds

ˇ

ˇ

ˇ

s“0
γpt` sq

“
d
ds

ˇ

ˇ

ˇ

s“0
Lγptqpγpsqq

“ pdLγptqqγp0qpγ
1p0qq

“ pdLγptqqepvq “ vLpγptqq.

Again, due to uniqueness of the integral curves, we obtain the
claim.

If we write Θv
t :“ ϕvL

t : G Ñ G for the flow of vL, then by
definition γv “ Θv

t peq.
Note that the trick employed in the proof above, can be used also

to show the following.

Lemma 4.3.3. For any s, t P R one has γvpstq “ γsvptq, where we used
the superscript to specify the generator of the subgroup.

Proposition 4.3.4. Let G be a Lie group with Lie algebra g. Let γ : R Ñ

G be a smooth curve with γp0q “ e and γ1p0q “ v P g. Then the following
claims are equivalent:

(i) γ is a one-parameter subgroup;

(ii) γptq “ γvptq is the one-parameter subgroup generated by v;

(iii) the flow Θv
t of vL is given by Θv

t “ Rγptq.

Proof. We have already seen piq ô piiq. To see piiiq ñ piiq observe
that the first implies γvptq “ Θv

t peq “ Rγptqe “ γptq.
Finally, assume piiq holds and fix g P G. Since vL is left-invariant,

gγv “ Lg ˝ γv is another integral curve of vL starting at g, thus,
again by uniqueness of integral curves, we have Rγptqpgq “ gγvptq “
Θv

t pgq. Which implies piiiq by the arbitrariness of g.

Given v P XLpGq, the one-parameter subgroup γv determined by
v in this way is called the one-parameter subgroup generated by v.
Because left-invariant vector fields are uniquely determined by their
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values at the identity, it follows that each one-parameter subgroup
is uniquely determined by its initial velocity in TeG, and thus there
are one-to-one correspondences:

tone-parameter subgroups of Gu Ø XLpGq Ø TeG.

The exponential map, is the map that will allow us to dissipate
some of the mystery around these isomorphisms.

Definition 4.3.5. Let G be a Lie group and g its Lie algebra. We
define the exponential map of G as the map

exp : gÑ G, X ÞÑ γp1q,

where γ is the one-parameter subgroup generated by X or, equiva-
lently, the integral curve of X starting at the identity. ♦

Exercise 4.3.6. Let G be a Lie group. For any X P XLpGq, γpsq “
exppsXq is the one-parameter subgroup of G generated by X.

Example 4.3.7. Proposition 4.3.13 shows that the exponential map
of GLpnq is given by exp A “ eA. This is where its name originated.

♦

This is a corollary of the properties of flows, of group properties
and of the previous propositions.

Proposition 4.3.8. The exponential map exp : g Ñ G satisfies the
following. For all s, t P R and v P g

1. exp is smooth;

2. exppps` tqvq “ exppsvq expptvq;

3. expp´vq “ pexppvqq´1;

4. expptvq “ γvptq;

5. the flow Θv
t of vL is given by Θv

t “ Rexpptvq.

The following property, on the other hand, deserves a bit more
care.

Theorem 4.3.9. The exponential map exp : g Ñ G is smooth. Moreover,
up to the canonical isomorphism T0g “ g, the differential d exp0 at 0 P g

is the identity.

Proof. Smoothness. We need to show that Θv
1peq depends smoothly

on v. This is not covered by our previous analysis of flows, but can
be via the following trick. Define a vector field ν on Gˆ g by

νpg,vq “ pv
L
g , 0q P TgGˆ Tvg „ Tpg,vqpGˆ gq.

Clearly ν satisfies the section property, so for it to be a smooth
vector field, we only need to show that it is smooth. Pick any
basis pX1, . . . , Xkq for g and let pxiq be the corresponding global
coordinates for g defined by pxiq ÞÑ xiXi. For any f P C8pGˆ gq and
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given a v P g, let fv :“ f p¨, vq : G Ñ R denote the smooth function
defined by regarding v as fixed. Then νpg,vq f “ vL

g fvpgq.
Since vL depends linearly (and thus smoothly) on v and f is

smooth in both g and v, the expression pg, vq ÞÑ vL
g fvpgq is smooth

in both arguments. This confirms that νpg,vq is a vector field and,
therefore, its flow Θν, which by Proposition 4.3.4 is given by

Θν
t pgq :“ pg expptvq, vq, pt, g, vq P Rˆ Gˆ g,

is smooth. In particular, Θ¨1peq “ pexpp¨q, ¨q : gÑ Gˆ g is smooth and
therefore exp itself is.

The differential d exp0. We want to show that the following
diagram commutes

T0g g

g

d exp0

T0 id

where T0 : g Ñ Tog is the map from Exercise 2.4.7. Let v P g, then
T0pvq “ δ1ptq where δptq “ tv. Thus we have

d exp0pT0vq “ pexp ˝δq1p0q

“
d
dt

ˇ

ˇ

ˇ

t“0
expptvq “

d
dt

ˇ

ˇ

ˇ

t“0
γvptq “ v,

which completes the proof.

Corollary 4.3.10. The exponential map is a diffeomorphism of some
neighbourhood of the origin in g onto its image in G.

Finally, let’s investigate how the exponential map behaves with
respect to Lie group homomorphisms.

Proposition 4.3.11. Let G and H be Lie groups with Lie algebras g and
h respectively. If F : G Ñ H is a Lie group homomorphism, the following
diagram commutes:

g h

G H

F̊

exp exp

F

Proof. We need to show that exppF̊ vq “ Fpexppvqq for every
v P g. Instead, we will show the stronger result that for all t P R,
expptF̊ vq “ Fpexpptvqq. The left-hand side is the subgroup gen-
erated by F̊ v, thus if we put γptq “ Fpexpptvqq, it is enough to
show that γ : R Ñ H is a Lie group homomorphism such that
γ1p0q “ pF̊ vqe. A composition of homomorphisms is a homomor-
phism, therefore t ÞÑ Fpexpptvqq is a one-parameter subgroup of H.
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For the initial velocity, observe that

pF ˝ expq1p0q “
d
dt

ˇ

ˇ

ˇ

t“0
Fpexpptvqq

“ dF0

ˆ

d
dt

ˇ

ˇ

ˇ

t“0
expptvq

˙

“ dF0pveq “ pF̊ vqe.

The complete formula is called Baker-
Campbell-Hausdorff formula and
its use appears all over the place in
mathematics and physics [BF12].

Remark 4.3.12. Note that it we have not shown exppX ` Yq “
pexp Xqpexp Yq. In fact, this is false in general. As a matter of fact,
exp X exp Y “ expZ where

Z “ X`Y`
1
2
rX, Ys `

1
12
rX, rX, Yss ´

1
12
rY, rX, Yss ` . . . ,

with the . . . indicating terms involving higher commutators of X
and Y. ♦

The one-parameter subgroups of GLpnq follow nicely from the
results introduced above. Let A P glpnq. Using its identification with
XpGLpnqq we can think of the matrix A as the left-invariant vector
field AL. That is, the one-parameter subgroup generated by A is the
integral curve of AL on GLpnq starting at e. This is a good place to
see where the right shift is coming from.

Let A “ pAi
jq and let pXi

jq denote the global coordinates on
GLpnq given by the matrix entries. Then the natural isomorphism
TidGLpnq » glpnq is given by the mapping

Ai
j
B

BXi
j

ˇ

ˇ

ˇ

id
ÞÑ pAi

jq.

Thus, if you remember that vL|g “ dpLgqepvq, the left-invariant
vector field AL is given by

AL|X “ dpLXqidpAq “ dpLXqid

˜

Ai
j
B

BXi
j

¸

,

and, thus, in coordinates, its value at X P GLpnq is

Xk
i Ai

j
B

BXi
j
.

Which means that the condition to be an integral curve, in coordi-
nates, is d

dt γi
jptq “ γi

kptqA
k
j or, in matrix notation, γ1ptq “ γptqA. By

using the expansion etA “
ř

kě0
Ak

k! one can verify that such γ is
exactly the matrix exponential.

We can summarise7 this as follows. 7 One should also prove convergence, if
you are curious about the details you
can refer to [Lee13, Proposition 20.2].Proposition 4.3.13. Let A P glpnq, then the one-parameter subgroup of

GLpnq generated by A is

expptAq “ etA “
ÿ

kě0

Ak

k!
.
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Corollary 4.3.14. Let G be a matrix Lie group with Lie algebra g. Then
the exponential map exp : g Ñ G is given by matrix exponentiation:
exp A “ eA.

This uncovers the structure behind
the structure you encountered in
Exercise 2.8.27.

Exercise 4.3.15. The one-parameter subgroups of Opnq are the
maps of the form etA for arbitrary skew-symmetric matrices A. In
particular, this shows that the exponential of any skew-symmetric
matrix is orthogonal.

Exercise 4.3.16. Let G a Lie group and g its Lie algebra. For any
X, Y P g, there show the following results.

1. For some ε ą 0, there is a smooth function Z : p´ε, εq Ñ g such
that, for all t P p´ε, εq,

pexp tXqpexp tYq “ expptpX`Yq ` t2Zptqq.

2. For some ε ą 0, there is a smooth function rZ : p´ε, εq Ñ g such
that, for all t P p´ε, εq,

pexp tXqpexp tYq “ exp
ˆ

tpX`Yq `
1
2

t2rX, Ys ` t3
rZptq

˙

.

Hint: Taylor expansions and Exercise 4.1.13 can help for this exercise.

The study of Lie groups acting on manifolds, opens a whole
world of interesting topics, spanning across all fields of mathemat-
ics. We will not enter into the details here, however I want to leave
you the main definitions.

Definition 4.3.17. Let G a Lie group and let M be a manifold. We
call left action of G on M a smooth map ` : GˆM Ñ M such that

`pgh, pq “ `pg, `ph, pqq, `pe, pq “ p

for all g, h P G and p P M. For any fixed g P G, the map p ÞÑ
`pg, pq is a diffeomorphism of M, which is usually denoted `g.
Analogously, we call right action of G on M a smooth map ρ :
Mˆ G Ñ M such that

ρpp, ghq “ ρpρpp, gq, hq, ρpp, eq “ p

for all g, h P G and p P M. For any fixed g P G, the map p ÞÑ
ρpp, gq is a diffeomorphism of M called orbit map, which is usually
denoted ρp or pp, gq ÞÑ p ¨ g. ♦

There are many interesting types of Lie group actions. I am
going to mention one here, which occurs when the action of G
on M is transitive. In this case M becomes a homogeneous space
and is diffeomorphic to the quotient G{H for some Lie subgroup
H Ă G.

Exercise 4.3.18. Let G be a Lie group with Lie algebra g. For each
g P G, the differential at the identity of the conjugation map Cg :“
Lg ˝ Rg´1 : G Ñ G is a linear isomorphism Cg˚ : g Ñ g. Hence,
Cg˚ P GLpgq.



lie groups and lie algebras 83

1. Show that the map Ad : G Ñ GLpgq defined Adpgq “ Cg˚ and
called adjoint representation of G is a group homomorphism.

2. Show that Ad : G Ñ GLpgq is smooth.

We will come back to discuss Lie groups and Lie algebras in the
appendix on distribution theory and Frobenius theorem.





5
Cotangent bundle

5.1 The cotangent space

The dual of a vector space should be a well-known concept
from linear algebra. We recall it here just for the sake of conve-
nience.

Definition 5.1.1. Let V a vector space of dimension n P N. Its dual
space V˚ :“ LpV, Rq is the n-dimensional real vector space of linear
maps ω : V Ñ R. The elements of V˚ are usually called linear
functionals and for ω P V˚ and v P V it is common to write

ωpvq “: pω, vq “: pω | vq,

even if the dual pairing pω | vq is not a scalar product. ♦

Remark 5.1.2. Note that a scalar product x, y : V ˆ V Ñ R on a
vector space V provides a natural identification of V and V˚ via the
map V Q v ÞÑ xv, ¨y “: ωp¨q P V˚. Even though dim V “ dim V˚

in any case, without the scalar product there is no such canonical
isomorphism. ♦

In the previous chapter we defined the tangent space as a special
vector space over each point in a manifold, which nicely fits in the
requirements above.

Definition 5.1.3. Let M be a differentiable manifold and p P M.
The dual space T˚p M :“ pTp Mq˚ of the tangent space Tp M is called
the cotangent space of M at p. The elements of T˚p M are called
cotangent vectors, covectors or (differential) 1-forms at p. ♦

For a function f : Rn Ñ R, we usually consider the gradient
∇ f pxq at a point x to be a vector. On a manifold however things a
slightly different.

Example 5.1.4 (The differential of a function). Let f P C8pMq. Let’s
look carefully at its differential:

d fp : Tp M Ñ Tf ppqR » R

is a linear function from the tangent space to R. In other words,
d fp P T˚p M. ♦
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Whereas tangent vectors give us a coordinate-free interpretation
of derivatives (of curves), it turns out that derivatives of real-valued
functions on a manifold are most naturally interpreted as cotangent
vectors.

Indeed, we saw that the action of d fp on a tangent vector v P
Tp M can be interpreted as the directional derivative of f at p in the
direction v and, by using Definition 2.5.6, we have

d fppvq “
d
dt

f pγptqq
ˇ

ˇ

ˇ

t“0

for some curve γ with γp0q “ p and γ1p0q “ v. We also know that
the equation above can be rewritten by thinking of v as a derivation,
giving

d fppvq “ vp f q.

That is, we can think of the dual pairing pd f | vq in a twofold way:

• as a linear action of the covector d f on the vector v;

• as the linear action of the vector v as a derivation operating on
the function f .

Notation 5.1.5. In analogy to the notation B
Bx

ˇ

ˇ

p that we used for
tangent vectors, when convenient we may write d f |p instead of
d fp. ♦

To look more concretely at differential forms, let’s compute its
coordinate representation. Let pU, pxiqq be a chart on Mn. Since the
coordinate functions xi P C8pUq are smooth real valued functions,
we can define the corresponding coordinate 1-forms dxi|p P T˚p M.
Their action on the coordinate vector fields, then, is immediately
computed as

ˆ

dxi|p,
B

Bxj

ˇ

ˇ

ˇ

p

˙

“ dxi|p

ˆ

B

Bxj

ˇ

ˇ

ˇ

p

˙

“
B

Bxj

ˇ

ˇ

ˇ

p
xi “ δi

j.

Which proves the following statement.

Proposition 5.1.6. Let pxiq be local coordinates on an open subset
U Ď Mn. At each point p P U, the covectors

 

dx1|p, . . . , dxn|p
(

form a basis for the cotangent space T˚p M which is dual to the basis
"

B
Bx1

ˇ

ˇ

ˇ

p
, . . . , B

Bxn

ˇ

ˇ

ˇ

p

*

for the tangent space Tp M.

That is, any 1-form ω can be locally written as a linear combina-
tion

ω “ ωi dxi

where ωi : U Ñ R. In particular, if f P C8pMq, the restriction
d f to points in U should have the same form. Evaluating it on a
coordinate vector field gives, for all p P U,

d fp
q

ˆ

B

Bxj

ˇ

ˇ

ˇ

p

˙

“ ωi dxi|p

ˆ

B

Bxj

ˇ

ˇ

ˇ

p

˙

“ ωiδ
i
j “ ωj

B f
Bxj ppq.
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That is, the local expression for d f is

d f “
B f
Bxi dxi. (5.1)

Remark 5.1.7. In calculus 1 you have probably been told that you
can cancel out differentials when applying solving differential
equations. This was probably accompanied by a warning that it is
just a formal thing, a computational convenience. We can finally
make sense of that in a general context: in one dimension, (5.1),
reads as

d f “
d f
dt

dt.

♦

Example 5.1.8. If f px, yq “ xy2e3x on R2, then d f is given by the
formula

d f “
Bpxy2e3xq

Bx
dx`

Bpxy2e3xq

By
dy

“ py2e3x ` 3xy2e3xqdx` 2xye3xdy.

♦

With the local basis, computing with covectors becomes much
easier. Given a covector ω “ ωj dxj and a vector v “ vi B

Bxi expressed
in the respective coordinate bases for the local coordinates pxiq, by
linearity in both arguments the dual pairing takes the form

pω | vq “
ˆ

ωj dxj
ˇ

ˇ

ˇ
vi B

Bxi

˙

“ ωjvi
ˆ

dxj
ˇ

ˇ

ˇ

B

Bxi

˙

“ ωjvj.

Example 5.1.9. Let, now, v “ 7 B
Bx

ˇ

ˇ

ˇ

p1,2q
` 3 B

By

ˇ

ˇ

ˇ

p1,2q
P Tp1,2qR

2, and f

from Example 5.1.8. We have

pd f |p1,2q, vq “
ˆ

py2e3x ` 3xy2e3xqdx` 2xye3xdy, 7
B

Bx
` 3

B

By

˙

ˇ

ˇ

ˇ

p1,2q

“ 7py2e3x ` 3xy2e3xq|p1,2q ` 6xye3x|p1,2q

“ 7p4e3 ` 12e3q ` 12e3 “ 52e3.

♦

Exercise 5.1.10. Let M be a smooth manifold and let f , g P C8pMq.
Show that the following properties hold:

1. dpα f ` βgq “ αd f ` βdg for α, β P R;

2. dp f gq “ f dg` gd f ;

3. dp f {gq “ pgd f ´ f dgq{g2 on the set where g ‰ 0;

4. if J Ď R contains the image of f and h : J Ñ R is smooth, then
dph ˝ f q “ ph1 ˝ f qd f ;

5. if f is constant, then d f “ 0.
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Remark 5.1.11 (The double dual). We said in Remark 5.1.2 that unless
we have an inner product, there is no canonical identification of
a vector space with its dual. This is true also for the tangent and
cotangent spaces. However, the situation is different for the double
dual T˚˚p M :“ pT˚p Mq˚.

For v P Tp M, the map

iv : T˚p M Ñ R, ω ÞÑ ivpωq :“ pω | vq

is linear and therefore iv P T˚˚p M.
Furthermore the map i : Tp M Ñ T˚˚p M, i ÞÑ iv, is a vector space

isomorphism. Indeed, it is injective since kerpiq “ t0u and since
dim Tp M “ dim T˚˚p M also surjective1. 1 Why? If rank-nullity theorem does

not ring a bell, make sure to look it up.
It is, e.g., [Lee13, Corollary B.21]

That is, T˚˚p M can be canonically identified with Tp M.
So, to add up to our list of interpretations of geometric objects,

we now have seen that

• a covector can act as a linear functional on vectors;

• a vector can act as a linear functional on covectors.

♦

This should start giving you an idea of what is behind the follow-
ing famous quote by Henri Poincaré:

Mathematics is the art of giving the same name to different things.

5.2 Change of coordinates

In Remark 2.3.16 we have seen that if we have two different charts
with local coordinates pxiq and pyiq on a smooth manifold M, Let’s denote the two charts respectively

by ϕ and ψ, then if φ “ ψ ˝ ϕ´1 is the
corresponding transition map, one has

Byj

Bxi ppq
B

Byj

ˇ

ˇ

ˇ

p
“ pDφppqqj

i
B

Byj

ˇ

ˇ

ˇ

p
,

where Dφ is the Jacobian matrix of the
transition map.

B

Bxi

ˇ

ˇ

ˇ

p
“
Byj

Bxi ppq
B

Byj

ˇ

ˇ

ˇ

p
.

Thus, if v P Tp M has local form v “ vi B
Bxi

ˇ

ˇ

p “ rvj B
Byj

ˇ

ˇ

p, we get

vi B

Bxi

ˇ

ˇ

ˇ

p
q

“ vi Byj

Bxi ppq
B

Byj

ˇ

ˇ

ˇ

p

rvj B

Byj

ˇ

ˇ

ˇ

p
,

or, reading off the basis elements,

rvj “
Byj

Bxi ppqv
i. (5.2)

Let now ω P T˚p M with local form ω “ ωidxi|p “ rωjdyj|p. In
analogy to our previous computations we get

ωi “ ω

ˆ

B

Bxi

ˇ

ˇ

ˇ

p

˙

“ ω

ˆ

Byj

Bxi ppq
B

Byj

ˇ

ˇ

ˇ

p

˙

“
Byj

Bxi ppq rωj.

That is,

ωi “
Byj

Bxi ppq rωj. (5.3)
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There is an important difference2 between (5.3) and (5.2). For 2 I have borrowed this explanation
from [Lee13, Chapter 11].covectors, (5.3) shows that their components transform in the same

way as (“vary with”) the coordinate partial derivatives: the Jacobian

of the change of variables Byj

Bxi ppq multiplies the objects associated
to the “new” coordinates yj to obtain the objects associated to
the “old” coordinates xi. For this reason covectors are said to
be covariant vectors. Analogously, tangent vectors are said to be
contravariant vectors, since (5.2) shows that their components
transform in the opposite way.

The difference in the way vector and covector transform is re-
flected also in the way they are transformed by smooth maps
between manifolds. As we have seen, the differential of a smooth
map yields a linear map between tangent spaces that pushes vec-
tors from one space to the other. Its dual is going to be a map that
pulls vector form one covector space to another.

Definition 5.2.1. Let F : M Ñ N be a smooth map between
smooth manifolds, let ω P T˚FppqN for some p P M. The pullback
of covectors by F at the point Fppq, is the dual linear map of the
differential

Which is also the reason why, some
authors, use the notation F̊ to denote
the differential of maps between
manifolds and other call pushforward
the differential.

dF˚p : T˚FppqN Ñ T˚p M, ω ÞÑ dF˚ω,

defined by duality in the following way3: 3 Or, omitting the point of application,
pdF˚ω, vq :“ pω, dFpvqq.

´

dF˚p ω | v
¯

:“
`

ω | dFppvq
˘

, @v P Tp M, @ω P T˚FppqN.

♦
Equations are getting more and
more tricky: this kind of dimensional
analysis is extremely useful to check
that you are doing the right thing.

Let’s check that the definition above makes sense: dF˚p ω P T˚p M so
v P Tp M, but ω P T˚FppqN so dFppvq P TFppqN since dFp : Tp M Ñ

TFppqN.

5.3 One-forms and the cotangent bundle

In analogy to Chapter 2.6 we can glue the cotangent space together
into a vector bundle on M.

Definition 5.3.1. The cotangent bundle T˚M of M is the disjoint
union of cotangent spaces

T˚M :“
ğ

pPM

´

tpu ˆ T˚p M
¯

“ tpp, ωq | p P M, ω P T˚p Mu.

♦

The cotangent bundle is a vector bundle of rank n with projec-
tion π : T˚M Ñ M, pp, ωq ÞÑ p. The cotangent spaces are the fibres
of the cotangent bundle.

Theorem 5.3.2. Let M be a smooth n-manifold. The smooth structure on
M naturally induces a smooth structure on T˚M, making T˚M into a
smooth manifold of dimension 2n for which all coordinate covector fields
are smooth local sections.
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Proof.

Exercise 5.3.3. [homework 3] Mimicking what we did for Theo-
rem 2.6.3, complete this proof.

Definition 5.3.4. A covector field or a (differential) 1-form on M
is a smooth section of T˚M. That is, a 1-form ω P ΓpT˚Mq is a
smooth map ω : p Ñ ωp P T˚p M that assigns to each point p P M a
cotangent vector at p. We denote the space of all smooth covector
fields on M by X˚pMq.

For reasons related to tensor fields
that we will understand soon, this is
sometimes denoted T 0

1 pMq.As for vector fields, we can define Cp-covector fields as the Cp-
maps ω : M Ñ T˚M such that π ˝ω “ idM. ♦

Also in this case, we will often identify for a covector field ω P

X˚pMq its value ωppq “ ωp P tpu ˆ T˚p M at p P M with its part
in T˚p M without necessarily making this explicit in the notation by
projecting on the second factor.

Example 5.3.5. Let f P C8pMq, then the map

d f : M Ñ T˚M, p ÞÑ d f |p P T˚p M

defines a 1-form d f P X˚pMq. ♦

As smooth sections of a vector bundle, covector fields can be
multiplied by smooth functions: if f P C8pMq and ω P X˚pMq, the
covector field f ω is defined by

p f ωqp “ f ppqωp.

Also in this case, X˚pMq is a module over C8pMq.
Since differential 1-forms are dual objects to tangent vectors, the

action of a form ω on X P XpMq is well–defined and pointwise
defines a function

pω | Xq : p ÞÑ pωp | Xpq.

Exercise 5.3.6. The differential form ω is smooth if and only if, for
every smooth vector field X P XpMq, the function pω | Xq P C8pMq.
Hint: write it down in local coordinates.

Definition 5.3.7. The pullback of covectors immediately extends to
covector fields. The pullback is the map

F˚ : X˚pNq Ñ X˚pMq, ω ÞÑ F˚ω

defined by
pF˚ωqp :“ dF˚p pωFppqq.

By definition, this acts on vectors v P Tp M by

ppF˚ωqp, vq “ pωFppq, dFppvqq “ ωFppqpdFppvqq.

♦
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Exercise 5.3.8 ([homework 3]). Let F : M Ñ N be a smooth map
between smooth manifolds. Suppose f is a continuous real valued
function on N and ω P X˚pNq is a covector field on N.

1. Show that
F˚p f ωq “ p f ˝ FqF˚ω :“ F˚ f F˚ω,

where we introduced the pullback of a smooth function as
F˚g :“ g ˝ F.

2. If in addition f P C8pNq, show that

F˚d f “ dp f ˝ Fq “ dpF˚ f q.

Hint: apply the equations at a point p P M and keep rewriting the equations in
different forms.

Exercise 5.3.9. Let F : M Ñ N smooth map between smooth mani-
folds. For p P M, denote pV, pyiqq a chart on N around Fppq and let
U “ F´1pNq. If ω “ ωjdyj P X˚pNq, apply twice Exercise 5.3.8 to
show that in U

F˚ω “ pωj ˝ Fqdpyj ˝ Fq.

Let F : R3 Ñ R2 be the map pu, vq “ Fpx, y, zq “ pxy2, y sin zq. Let
ω P X˚pR2q denote the covector field ωpu, vq “ udv´ vdu. Compute
F˚ω.

Exercise 5.3.8 is particularly interesting if we look at it in relation
to the pushforward.

Proposition 5.3.10. Let F : M Ñ N be a diffeomorphism and X P XpMq.
Then, for any f P C8pNq,

XpF˚ f q “ F̊ Xp f q ˝ F.

Proof. Indeed, for any p P M,

F̊ Xp f q ˝ Fppq “ ppF̊ Xq f qpFppqq “ pF̊ XqFppq f

“ pdF ˝ X ˝ F´1qpFppqq f “ pdF ˝ Xqppq f

“ dFppXpq f ,

XpF˚ f qppq “ Xp f ˝ Fqppq “ Xpp f ˝ Fq “ dFppXpq f

In this case you often say that the vector fields are F-related4 or 4 This is a definition that can be
properly formalized, but we will not
spend any time on it in during the
course.

that they behave naturally: you can either pull back the function f
to M or push forward the vector field X to N.

Exercise 5.3.11. Let tραu denote a partition of unity on a manifold M
subordinate to an open cover tUαu. Let F : N Ñ M denote a smooth
map between smooth manifolds. With the definition of pullback of
functions given above, prove that

1. the collection of supports tsupp F˚ραu is locally finite;
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2. the collection of functions tF˚ραu is a partition of unity on N
subordinate to the open cover tF´1pUαqu of N.

When we discussed vector fields, we observed that pushforwards
of vector fields under smooth maps are defined only in the special
case of diffeomorphisms. The surprising thing about covectors is
that covector fields always pull back to covector fields.

Example 5.3.12 (Polar coordinates on R2). We can define polar
coordinates in R2 via the map

ψ : R` ˆ p´π, πq Ñ R2ztx P R2 | x2 “ 0 and x1 ď 0u

pr, θq ÞÑ pr cos θ, r sin θq.

It is immediate to check that ψ is a diffeomorphism between open
subsets of R2, and we can think of ψ´1 as local coordinates for a
part of R2.

On the image of ψ we have the coordinate basis tdx1, dx2u. In
order to express them in terms of the coordinate basis tdr, dθu, we
can apply Exercise 5.3.8, the properties of differentials and the
formulas for the change of coordinates to get

ψ˚pdx1q “ dpx1 ˝ ψq “ dpr cos θq

“ cos θ dr` r dpcos θq “ cos θ dr´ r sin θ dθ

ψ˚pdx2q “ dpx2 ˝ ψq “ dpr sin θq

“ sin θ dr` r dpsin θq “ sin θ dr` r cos θ dθ.

♦

Example 5.3.13 (Tautological one-form). On T˚M there is a 1-form,
called5 tautological one-form, defined as follows. 5 As usual there are different names:

two other common ones are Liouville
form or Poincaré form, but don’t be
suprised if you find more.

A point in T˚M is a covector ωp P T˚p M at some point p P M. If
Xωp P TωppT

˚Mq is a tangent vector to T˚M at ωp. Let π : T˚M Ñ

M, then the pushforward π˚pXωpq P Tp M is a tangent vector to
M at p. Therefore, one can pair ωp and π˚pXωpq to obtain a real

number
´

ωp
ˇ

ˇ π˚pXωpq

¯

. The tautological one-form θ P X˚pT˚Mq is
then defined as

θωppXωpq :“
´

ωp

ˇ

ˇ

ˇ
π˚pXωpq

¯

.

This is a very important concept in symplectic and contact
geometry and in the mathematical theory of classical mechanics.

♦

The pullback is a rather pervasive concept, and does provide us
a new way to explore vector bundles.

Example 5.3.14 (The pullback bundle). Let F : M Ñ N be a smooth
map between manifolds. Suppose that π : E Ñ N be a vector
bundle of rank r over N. Then M ˆ E is a trivial bundle over M
with constant fibre E. You may think that this is yet another trivial
example, but it allows us to define the pullback bundle F˚E: let

F˚E :“ tpp, vq P Mˆ E | Fppq “ πpvqu ,
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with the projection Π1 : F˚E Ñ M. The fibre of F˚E over p P M,
then, is tpu ˆ EFppq, which under Π2 : F˚E Ñ E is diffeomorphic to
EFppq. If ϕ : π´1pUq Ñ U ˆRr is a bundle diffeomorphism for E,
then ϕ ˝Π2 : Π´1

1 pF´1pUqq Ñ U ˆRr is a bundle diffeomorphism
for F˚E. This F˚E is a vector bundle of rank r over M. In summary,
the following diagram commutes:

F˚E E

M N

Π2

Π1 π

F

.

♦

5.4 Line integrals

An important direct feature of 1-forms is that they are the natural
geometric objects that can be integrated along 1-dimensional (ori-
ented) submanifolds, i.e. along curves. In this sense they provide
a coordinate-free way to define line integrals. We will not see this
in too many details yet, but it is worth taking the time to give the
definition and see a few properties.

The idea is to use the pullback to pull the 1-form to the param-
eter space R and interpret the integral there as a usual Riemann
integral.

Definition 5.4.1. Let M be a smooth manifold, γ : I “ ra, bs Ă R Ñ

M a smooth curve and ω P X˚pMq a 1-form. The (line) integral of ω

along γ is the number
ż

γ
ω :“

ż

I
γ˚ω :“

ż b

a

ˆ

γ˚ω |
B

Bt

˙

ptq dt

where γ˚ω is the pullback of ω to I by γ and B
Bt : I Ñ TI is the unit

vector field on I. The pointwise dual pairing
´

γ˚ω | B
Bt

¯

P C8pIq
and is integrated in the usual Riemannian sense. ♦

Example 5.4.2. Let M “ R2zt0u. Let ω be the one-form

ω “
xdy´ ydx

x2 ` y2

and let γ : r0, 2πs Ñ M be the curve segment defined by γptq “
pcos t, sin tq.

We already saw that thanks to covariance, γ˚ω is immediately
computed with the substitution x “ cos t and y “ sin t in the
definition of ω, so we get

ż

γ
ω “

ż

r0,2πs

cos t dpsin tq ´ sin t dpcos tq
sin2 t` cos2 t

“

ż

r0,2πs
pcos t cos t dt´ sin t p´ sin tq dtq

“

ż 2π

0
dt “ 2π.
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♦

Exercise 5.4.3 ([homework 3]). Let M be a smooth manifold, γ : I “
ra, bs Ă R Ñ M a smooth curve and ω P X˚pMq a 1-form. Show the
following properties.

1. Show that with the definition above
ż

γ
ω “

ż b

a
ωγptqpγ

1ptqq dt. (5.4)

2. Let J Ă R be an open interval and F : J Ñ I a diffeomorphism
with F1ptq ą 0. If δ : J Ñ M denotes the reparametrisation of γ

defined by δptq :“ F˚γptq “ pγ ˝ Fqptq, show that This shows that line integrals are
independent of the parametrization.ż

δ
ω “

ż

γ
ω.

Hint: use the chain rule to get δ1ptq “ γ1pFptqqF1ptq and then apply (5.4).

3. Let f P C8pMq. Prove the fundamental theorem of calculus:
ż

γ
d f “ f pγpbqq ´ f pγpaqq.

Hint: justify that d fγptqpγ
1ptqq “ d

ds f pγpsqq
ˇ

ˇ

s“t and then use the usual
fundamental theorem of calculus on R.

Exercise 5.4.4 (One-forms in thermodynamics). Consider a physical
system composed of a fixed number of particles. The thermal
equilibrium state of the system can be characterised in terms of
its entropy S P R` and its volume V P R`. If we think at the
thermodynamic state space M “ R2

` Ă R2 as a smooth manifold,
we can define the energy of the system as a function E “ EpS, Vq :
M Ñ R on the space of equilibrium states.

Show that the differential dE P X˚pMq has the following represen-
tation with respect to the coordinate basis tdS, dVu:

dE “
BE
BS

dS`
BE
BV

dV “: TdS´ pdV.

Here T and p are the two functions denoting respectively the
temperature of the system and its pressure. The 1-form TdS os
called the heat absorbed by the system while ´pdV os the work
performed by the system.

Differently from the other properties of the system, these are not
functions and thanks to this it makes sense to ask how much heat
has been transferred or how much work has been performed: these
are just the integrals of those one-forms over curves in the space of
equilibrium states.

Note that since the energy is the differential of a function, its
integral over a closed curve is just the difference between initial
and final energy and, thus, it vanishes. However, work and heat are
usually not the differential of a function, which makes their integral
dependent on the specific path taken and usually not vanish on
closed loops. This peculiar property is what makes possible to
construct heat engines.
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Tensor fields

For a brief and concrete explanation
of tensors, I warmly recommend
the following youtube video by Dan
Fleisch and [Lie45, Chapter XIV].

Many of the spaces that we have encountered so far are particular
examples of a much larger class of objects. In this chapter we are
going to introduce all the necessary algebraic concepts.

We have seen that covectors in V˚ are real linear maps V Ñ R

from the underlying space V while, through the double dual,
vectors can be understood as real linear maps V˚ Ñ R from the
dual space V˚. In practice, tensors are just multilinear real-valued
maps on cartesian products of the form V˚ ˆ ¨ ¨ ¨ ˆV˚ ˆV ˆ ¨ ˆV.
We have already encountered some examples; covectors, inner
products and even determinants are examples of tensors:

• a scalar product is a bilinear map x¨, ¨y : V ˆV Ñ R;

• the signed area spanned by two vectors is a bilinear map R2 ˆ

R2 Ñ R defined by areapu, vq :“ u^ v “ u1v2 ´ u2v1;

• the determinant1 of a square matrix in Matpnq, viewed as a 1 In fact, the signed area is the determi-
nant of the 2ˆ 2 matrix pu vq...function det : Rn ˆ ¨ ¨ ¨ ˆRn

looooooomooooooon

n times

Ñ R is a n-linear map.

So functions of several vectors or covectors that are linear in each
argument are also called multilinear forms or tensors. It should not
come as a surprise that multilinear functions of tangent vectors and
covectors to manifolds appear naturally in different geometrical
and physical contexts. In this chapter we are going to discuss the
general definitions and notions that interest us, some of which may
be just refreshing what you have seen in multivariable analysis
in the context of general vector spaces V. Keep in mind, that at a
certain point, we will replace V with the tangent spaces Tp M of a
smooth manifold M.

6.1 Tensors

Definition 6.1.1. Let V be a n-dimensional vector space and V˚ its
dual. Let

MultpV1, . . . , Vkq

denote the space of multilinear maps V1 ˆ ¨ ¨ ¨ ˆVk Ñ R.

https://youtu.be/f5liqUk0ZTw
https://youtu.be/f5liqUk0ZTw
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A multilinear map

τ :

r times
hkkkkkkkikkkkkkkj

V˚ ˆ ¨ ¨ ¨ ˆV˚ˆV ˆ ¨ ¨ ¨ ˆV
looooomooooon

s times

Ñ R

is called tensor of type pr, sq, r-contravariant s-covariant tensor,
or pr, sq-tensor. Similarly as we did for the dual pairing, when
convenient we define the pairing

τ
´

ω1, . . . , ωr; v1, . . . , vs

¯

“:
´

τ | ω1, . . . , ωr; v1, . . . , vs

¯

.

For tensors τ1 and τ2 of the same type pr, sq and α1, α2 P R we
define

pα1τ1 ` α2τ2| . . .q :“ α1 pτ1| . . .q ` α2 pτ2| . . .q .

This equips the space

Tr
s pVq :“ Multp

r times
hkkkkkikkkkkj

V˚, . . . , V˚, V, . . . , V
looomooon

s times

q

of tensors of type pr, sq with the structure of a real vector space2. In 2 Be careful when reading books and
papers, for tensor spaces the literature
is wild: there are so many different
conventions and notations that there
is not enough space on this margin to
mention them all. Note that the book
of Lee inverts the order of superscripts
and subscripts in Tr

s .

particular, V˚ “ T0
1 pVq and V “ T1

0 pVq. ♦

Example 6.1.2. • An inner product on V, e.g. the scalar product in
Rn, is a p0, 2q-tensor. This means, for example that the aforemen-
tioned scalar product is an element of T0

2 pR
nq.

• The determinant, thought as a function of n vectors, is a tensor in
T0

npR
nq.

• Covectors are elements of T0
1 pTp Mq while tangent vectors are

elements of T1
0 pTp Mq.

♦

Take now, for example, two covectors ω1, ω2 P V˚. We can define
the bilinear map

ω1 bω2 : V ˆV Ñ R, ω1 bω2pv1, v2q “ ω1pv1qω2pv2q,

called the tensor product of ω1 and ω2. This can be generalized
immediately to general tensors in order to define new higher order
tensors.

Definition 6.1.3. Let V an n-dimensional vector space, τ1 P Tr
s pVq,

τ2 P Tr1
s1 pVq. We define the tensor product τ1b τ2 as the pr` r1, s` s1q-

tensor defined by

τ1 b τ2pω
1, . . . , ωr`r1 , v1, . . . , vs`s1q

“ τ1pω
1, . . . , ωr, v1, . . . , vsqτ2pω

r`1, . . . , ωr`r1 , vs`1, . . . , vs`s1q.

♦

This definition immediately implies that the map

b : Tr
s pVq ˆ Tr1

s1 pVq Ñ Tr`r1
s`s1 pVq

is associative and distributive but not commutative (why?).
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Exercise 6.1.4. Give a tensor in T2
0 which is a linear combination of

tensor products but cannot be written as a tensor product. Justify
your answer.

Hint: one of the examples at the beginning of the chapter can help.

In fact, this is a general fact. A more general approach to this
proposition is by proving the universal
property of tensor spaces. See for
instance [Lee13, Propositions 12.5, 12.7
and 12.8].

Proposition 6.1.5. Let V be an n-dimensional vector space. Let teju

and tεiu respectively denote the bases of V “ T1
0 pVq and V˚ “ T0

1 pVq
respectively. Then, every τ P Vr

s can be uniquely written as the linear
combination Exercise: expand Einstein’s notation to

write the full sum on the left with the
relevant indices.τ “ τ

j1¨¨¨jr
i1¨¨¨is

ej1 b ¨ ¨ ¨ b ejr b εi1 b ¨ ¨ ¨ b εis , (6.1)

where the coefficients τ
j1¨¨¨jr
i1¨¨¨in

P R. Thus the nr`s tensor products

ej1 b ¨ ¨ ¨ b ejr b εi1 b ¨ ¨ ¨ b εis , j1, . . . , jr, i1, . . . , is “ 1, . . . , n,

form a basis of Tr
s pVq, and Tr

s pVq has dimension nr`s.

Proof. Let tβju and tbiu denote the bases of V˚ and V that are dual
to teju and tεiu, that is, A linear map is uniquely specified

by its action on a basis, which in
particular means that these dual bases
are unique.pβj | eiq “ δ

j
i “ pε

j | biq.

Define
τ

j1¨¨¨jr
i1¨¨¨is

:“ τpβj1 , . . . , βjr , bi1 , . . . , bisq.

Then, on any element of the form pβj1 , . . . , βjr , bi1 , . . . , bisq, we triv-
ially have the decomposition (6.1). By multilinearity of all the terms
involved, (6.1) holds for any element pω1, . . . , ωr, v1, . . . , vsq after
decomposing it on the basis.

Uniqueness follows from the linear independence of the tensor
products ej1 b¨ ¨ ¨b ejr b εi1 b¨ ¨ ¨b εis proceeding by contradiction.

Exercise 6.1.6. Formalize in details the last step of the proof: unique-
ness follows from the linear independence of the tensor prod-
ucts.

Remark 6.1.7. There is a canonical isomorphism such that

Tr
s pVq »

r times
hkkkkkikkkkkj

V b ¨ ¨ ¨ bVbV˚ b ¨ ¨ ¨ bV˚
looooooomooooooon

s times

.

This allows us to choose whichever interpretation is more conve-
nient for the problem at hand: being it a multilinear map on a cross
product of spaces or an element of the tensor product of spaces. ♦

Let’s go back for a moment to the example of inner products.

Definition 6.1.8. We call pseudo-metric tensor, any tensor g P T0
2 pVq

that is

1. symmetric, i.e. gpv, wq “ gpv, wq for all v, w P T1
0 pVq;

2. positive definite, i.e. gpv, vq ě 0 for all v ‰ 0.
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We call non-degenerate any tensor g P T0
2 pVq such that

gpv, wq “ 0 @w P V ùñ v “ 0.

A metric tensor or scalar product is a non-degenerate pseudo-
metric tensor. The Riemannian metric is a metric tensor on the
tangent bundle of a manifold. An example of non-degenerate
tensor which is not a metric is the so-called symplectic form: a
skew-symmetric non-degenerate p0, 2q-tensor, which is fundamental
in classical mechanics and the study of Hamiltonian systems. ♦

Example 6.1.9. Let V be a n-dimensional real vector space with
an inner product gp¨, ¨q. Denote te1, . . . , enu the basis for V and
te1, . . . , enu the basis for its dual V˚. As a bilinear map on V ˆ V,
the inner product is uniquely associated to a matrix rgijs by gij “

pgei, ejq.
We already mentioned that in this case we can canonically iden-

tify V with V˚. Indeed, the inner product defines the isomor-
phisms3 3 Often called musical isomorphisms

or index raising and index lowering
operators.5 : V Ñ V˚, v ÞÑ gpv, ¨q, and its inverse 7 : V˚ Ñ V.

The matrix of 5, by definition, is rgijs, that is, That 5 is an isomorphism follows
immediately from the linearity and the
fact that non-degeneracy implies that
its kernel contains only the zero vector.pv5qi “ gijvj,

where the vj are the components of v. Therefore, the matrix of 7 is
the inverse4 rgijs of the inner product matrix, that is, 4 Using lower indices for matrix entries

and upper indices for the entries of the
inverse is very common. It turns out to
be an especially convenient notation,
which simplifies many formulas
in general relativity and classical
mechanics.

pω7qi “ gijωj,

where the ωj are the components of ω.

To add to the confusion: in the physics
literature, for v P V, the components
vj of v5 are often called covariant
components of v while the components
vj of v are called its contravariant
components.

Note that, in general, e5i ‰ ei: indeed, by definition e5i “ gijej.
It turns out that these operators can be applied to tensors to

produce new tensors. For example, if τ is a p0, 2q-tensor we can
define an associated tensor τ1 of type p1, 1q by τpω, vq “ τpω7, vq. Its
components are pτ1qji “ gjkτik. ♦

Exercise 6.1.10. Let V be a vector space with an inner product.

1. Show that the space T1
1 pVq is canonically isomorphic to the space

of endomorphisms of V, that is, of linear maps L : V Ñ V.

2. If ` P T1
1 pVq is the tensor associated to A, show that its compo-

nents `
j
i are just the matrix entries of A seen as a matrix.

3. Of course, given the previous example, T1
1 pVq is also canonically

isomorphic to the space of endomorphisms of V˚, that is, of lin-
ear maps Λ : V˚ Ñ V˚. Prove the claim by explicitly constructing
the mapping `Ø Λ.

Hint: definitions can look rather tautological when dealing with tensors... think
carefully about domains and codomains, remember the musical isomorphisms and
the tensor pairing.
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We are now in a good place to discuss how tensors are affected
by changes of basis. Let L : V Ñ V be an isomorphism, then we
can define a new basis treiu of V by rei :“ Lei. For convenience, we
denote its dual basis by treiu in contrast with our initial notation.

Thinking in linear algebraic terms, the linear map Λ : V˚ Ñ V˚

that relates the dual bases is determined by

δi
j “ pre

i | rejq “ pΛei | Lejq “: pL˚Λei | ejq

that is, Λ “ pL˚q´1.

Indeed, if rl j
i s is the matrix associated to L, that is, rei “ Lei “ l j

i ej,

then rej “ L˚ej “ l j
i e

i. Since the matrix rλj
is of Λ, that is, Λej “

λ
j
kek, must satisfy λ

j
klk

i “ δ
j
i , as matrices, rλj

is is the inverse of rl j
i s.

However, don’t forget that rl j
i s is the matrix of the endomorphism

L : V Ñ V while rλj
is is the matrix of the endomorphism Λ : V˚ Ñ

V˚.
We can transport this fact to general tensors to obtain that the

components of an arbitrary tensor τ P Tr
s pVq transform as follows.

Since

τ “ τ
j1¨¨¨jr
i1¨¨¨is

ej1 b ¨ ¨ ¨ b ejr b εi1 b ¨ ¨ ¨ b εis

“ rτk1¨¨¨kr
h1¨¨¨hs

rek1 b ¨ ¨ ¨ b
rekr brεh1 b ¨ ¨ ¨ brεhs ,

applying the previous reasoning and comparing term by term we
get

τ
j1¨¨¨jr
i1¨¨¨is

“ rτk1¨¨¨kr
h1¨¨¨hs

l j1
k1
¨ ¨ ¨ l jr

kr
λh1

i1
¨ ¨ ¨λhs

is

or

rτk1¨¨¨kr
h1¨¨¨hs

“ τ
j1¨¨¨jr
i1¨¨¨is

λk1
j1
¨ ¨ ¨λkr

jr ¨ ¨ ¨ l
i1
h1
¨ ¨ ¨ lis

hs
.

Remark 6.1.11. An important consequence of this fact is that we
can use a metric tensor, and the associated musical isomorphisms
5 and 7, to canonically identify a tensor space Tr

s pVq with Ts
r pVq,

Tr`s
0 pVq and T0

t`spVq by concatenating the correct number of maps,
for example

I “ Ig : Tr
s pVq Ñ Ts

r pVq

I : τ ÞÑ τ ˝ p¨5, . . . , ¨5
looomooon

r times

,

s times
hkkkikkkj

¨7, . . . , ¨7q.

In general, one can use the metric to raise or lower arbitrary indices,
changing the tensor type from pr, sq to pr` 1, s´ 1q or pr´ 1, s` 1q.

A neat application of this is showing that a non-degenerate
bilinear map g P T0

2 pVq can be lifted to a non-degenerate bilinear
map on arbitrary tensors, that is

G : Tr
s pVq ˆ Tr

s pVq Ñ R, Gpτ, rτq :“ pIgpτq | rτq.

In particular, if g is a metric on V, then G is a metric on Tr
s pVq. ♦
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Exercise 6.1.12. What do the canonical identifications of Tr
s pVq with

Tr`s
0 and T0

t`s look like?

Remark 6.1.13. Interestingly, even though each of the tensor spaces
Tr

s pVq is generally not an algebra, the map b transforms the collec-
tion of all tensor spaces This is a so-called graded algebra since

b : Tr
s pVq ˆ Tr1

s1 pVq Ñ Tr`r1
s`s1 pVq in

some sense moves along the structure
of the indices.

TpVq :“
à

r,sě0
Tr

s pVq, T0
0 pVq :“ R,

to an algebra, called tensor algebra. Here, for r “ s “ 0 we define
the tensor multiplication with a scalar as the standard multiplica-
tion: rb v “ rv for r P T0

0 pVq “ R and v P T1
0 pVq “ V. ♦

Before moving on, there is an important operation on tensors
that will come back later on and is worth to introducte in its gener-
ality.

Definition 6.1.14. Let V be a vector space and fix r, s ě 0. For h ď r
and k ď s, we define the ph, kq-contraction of a tensor as the linear
mapping Tr

s pVq Ñ Tr´1
s´1 pVq defined through

v1 b ¨ ¨ ¨ b vr bω1 b ¨ ¨ ¨ bωs

ÞÑ ωkpvhq v1 b ¨ ¨ ¨ b vh´1 b vh`1 ¨ ¨ ¨ b vr bω1 b ¨ ¨ ¨ bωk´1 bωk`1 ¨ ¨ ¨ bωs

and then extended by linearity, thus mapping τ ÞÑ rτ where

rτpν1, . . . , νr´1, v1, . . . , vs´1q

“ τpν1, . . . , ei
loomoon

hth index

, . . . , νr´1, w1, . . . , ei
loomoon

kth index

, . . . , ws´1q.

♦

Example 6.1.15. To understand why the two equations in the def-
inition are equivalent it is worth looking at an example over a
decomposable element. For simplicity, assume pr, sq “ p2, 3q and
τ “ v1 b v2 b ω1 b ω2 b ω3. Then τ corresponds to a multilinear
function

τpν1, ν2, w1, w2, w3q “ ν1pv1qν
2pv2qω

1pw1qω
2pw2qω

3pw3q.

By definition, the p1, 2q-contraction is

rτpν1, w1, w2q “ τpei, ν1, w1, ei, w2q

“ eipv1q ν1pv2qω
1pw1qω

2peiqω
3pw2q

“ eipv1qω
2peiq

loooooomoooooon

“ω2
i eipv1q“ω2pv1q

ν1pv2qω
1pw1qω

3pw2q

“ ω2pv1q v2 bω1 bω3pν1, w1, w2q.

♦

Example 6.1.16. For a P T1
1 pVq, the contraction trpaq :“ a1

1 is called
the trace of a and is the usual trace of the corresponding endomor-
phism A : V Ñ V. ♦
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6.2 Tensor bundles

It is time to leave the abstract world of vector spaces and start get-
ting closer to our main focus: manifolds. In the previous chapters
we have shown that the tangent bundle and the cotangent bundle
are families of vector spaces built over M that are dual to each other.
We now have the tools to further extend this idea and define tensor
bundles as families of tensor spaces build on top of the fibres of the
tangent bundle.

Definition 6.2.1. The pr, sq-tensor bundle over M as the bundle

Tr
s M “

ğ

pPM

`

tpu ˆ Tr
s pTp Mq

˘

of tensors of type pr, sq, with the projection on the first component
π : Tr

s M Ñ M. ♦

Here pullback and differential5 turn out to be life-saviours: any 5 Now you see why somebody calls it
pushforward...atlas tpUi, ϕiqu of M can be naturally mapped to an atlas on Tr

s M
via tpTr

s Ui, rϕiqu where

rϕi : Tr
s pUiq Ñ Tr

s ϕpUiq

is defined by linearity on the fibres via Study hint: look carefully at the
domains and codomains of all the
maps involved and make sure that you
understand how this is defined.

rϕpp, ej1 b ¨ ¨ ¨ b ejr b εk1 b ¨ ¨ ¨ b εksq

:“ pϕppq, dϕpej1 b ¨ ¨ ¨ b dϕpejr b pϕ
´1q˚εi1 b ¨ ¨ ¨ b pϕ´1q˚εisq.

In analogy to the definition of vector fields, we can introduce
tensor fields: these will just be local assignments of tensors to
points.

Definition 6.2.2. A section γpTr
s Mq of Tr

s M, that is, a smooth map
τ : M Ñ Tr

s M such that π ˝ τ “ idM, is called a tensor field of type
pr, sq. We denote the space of tensor fields of type pr, sq by T r

s pMq
and define T 0

0 pMq :“ C8pMq. ♦

Example 6.2.3. With the definition above we have that XpMq “ T 1
0 pMq

and X˚pMq “ T 0
1 pMq. ♦

Locally, we can express any tensor field in terms of the coor-
dinate bases. On a chart for M with local coordinates pxiq, our
analysis of the change of basis tells us that τ P T r

s pMq has the form

τppq “ τ
j1¨¨¨jr
i1¨¨¨is

ppq
B

Bxj1
b ¨ ¨ ¨ b

B

Bxjr
b dxi1 b ¨ ¨ ¨ b dxis ,

where τ
j1¨¨¨jr
i1¨¨¨is

P C8pMq.

Example 6.2.4. A non-degenerate symmetric bilinear form g P T 0
2 pMq

is a pseudo-Riemannian metric and the pair pM, gq a pseudo-Riemannian
manifold6. If g is also fibre-wise positive definite, then g is a 6 Also called semi-Riemannian

manifold.Riemannian metric and pM, gq is a Riemannian manifold. From
this you see that the Riemannian metric is just an inner product on
the tangent bundle of the manifold.
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1. The euclidean space Rn is a Riemannian manifold with the usual
scalar product, which we can represent as g “

řn
i“1 dxi b dxi

(What is its matrix form?).

2. If M “ R4, an example of pseudo-Riemannian metric is the

Minkowski metric g “ gijdxi b dxj where rgijs “

˜

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

¸

. The

pseudo-Riemannian manifold pM, gq is the space-time manifold
of special relativity, with x1 “ t is the time and px2, x3, x4q “

px, y, zq is the space.

♦

Definition 6.2.5. The support of a tensor field τ P T r
s pMq is defined

as the set
supp τ :“ tp P M | τppq ‰ 0u Ă M.

We sat that τ P T r
s pMq is compactly supported if supp τ is a com-

pact set. ♦

Again in analogy with what we saw on tangent and cotangent
bundles, we can provide a general definition of pullback and push-
forward on tensor bundles. This will be extremely useful soon,
when we start dealing with differential forms.

Definition 6.2.6. Let F : M Ñ N be a smooth map between smooth
manifolds and let ω P T 0

s pNq be a p0, sq-tensor field on N. We define
the pullback of ω by F as the p0, sq-tensor field F˚ω P T 0

s pMq on M
defined for any p P M by

F˚ : T 0
s pNq Ñ T 0

s pMq,

F˚ω|p :“ dF˚p pω|Fppqq @p P M,

where

dF˚p pω|Fppqqpv1, . . . , vsq :“ ω|FppqpdFpv1, . . . , dFpvsq, @v1, . . . , vs P Tp M.

♦

To be consistent with this definition, if f P C8pMq “ T 0
0 pMq and

ω P T 0
s pNq, then we define f bω :“ f ω and F˚ f :“ f ˝ F.

Exercise 6.2.7. Show that the tensor pullback satisfies the following
properties. Let F : M Ñ N and G : N Ñ P be smooth maps and
ν, ω P T 0

s pNq and f P C8pNq, then the following hold

1. F˚p f bωq “ F˚p f ωq “ p f ˝ FqF˚ω “ pF˚ f qpF˚ωq;

2. F˚pωb νq “ F˚ωb F˚ν;

3. F˚pω` νq “ F˚ω` F˚ν;

4. pG ˝ Fq˚ω “ F˚pG˚ωq;

5. pidNq
˚ω “ ω.
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We can use the pullback to construct a diffeomorphism of tensor
bundles of the same type out of a diffeomorphism ϕ : M Ñ N
between manifolds.

Proposition 6.2.8. Let ϕ : M Ñ N be a diffeomorphism between smooth
manifolds. Then ϕ induces a diffeomorphism Tr

s M Ñ Tr
s N.

Proof. Step I. We know that the pullback induces on the fibres a
diffeomorphism of cotangent bundles. Let p P M. We have already
seen that on the fibres the pullback is a diffeomorphism:

T˚N Ñ T˚M, pq, ωq ÞÑ pϕ˚ωqq “
´

ϕ´1pqq, dϕ˚ω|ϕ´1pqq

¯

.

This can be inverted giving rise to the so-called cotangent lift

dϕ: :“ pdϕq: :“ pϕ´1q˚ : T˚M Ñ T˚N.

For any ω P T˚p M and any v P Tp M, we have An aid to understand this map is the
following commuting diagram:

T˚p M TϕppqN

M N

πM

dϕ:

πN

ϕ

pdϕ:pω | dϕpvqϕppq “ dpϕ´1q˚pω|ϕ´1˝ϕppqpdϕpvqq

“ ωppdϕ´1
ϕppq ˝ dϕpvq

“ ωppvq “ pω | vqp.

Step II. Chaining d and d: on the appropriate components of the
tensor, we obtain a diffeomorphism of arbitrary tensor bundles:

dϕb ¨ ¨ ¨ b dϕb dϕ: b ¨ ¨ ¨ b dϕ: : Tr
s M Ñ Tr

s N,

defined on the product elements as

dϕb ¨ ¨ ¨ b dϕb dϕ: b ¨ ¨ ¨ b dϕ:pp, v1 b ¨ ¨ ¨ b vr bω1 b ¨ ¨ ¨ bωsq

:“ pϕppq, dϕ v1 b ¨ ¨ ¨ b dϕ vr b dϕ:ω1 b ¨ ¨ ¨ b dϕ:ωsq,

which extends to the whole fibres by linearity.

With this diffeomorphism at hand, we can finally define the
pushforward.

Definition 6.2.9. Let F : M Ñ N be a diffeomorphism between
smooth manifolds. We define pushforward of pr, sq-tensor fields by
F as the map F̊ : T r

s pMq Ñ T r
s pNq for which the following diagram

commutes:

M N

Tr
s pMq Tr

s pNq

F

τ F̊ τ

dFb¨¨¨bdFbdF:b¨¨¨bdF:

.

That is, for τ P T r
s pMq we define

F̊ τ “ dFb ¨ ¨ ¨ b dF
looooooomooooooon

r times

b

s times
hkkkkkkkkikkkkkkkkj

dF: b ¨ ¨ ¨ b dF: ˝τ ˝ F´1.

♦



104 analysis on manifolds

Example 6.2.10. Let f P T 0
0 pMq, then F̊ f “ f ˝ F´1. Similarly, for

X P T 1
0 pMq we have the pushforward F̊ X “ dF ˝ X ˝ F´1, in line

with the definition of pushforward of vector fields that we gave in
the previous chapter. An interesting, not really surprising though
(right?), property is the following: F̊ d f “ dpF̊ f q. ♦

Exercise 6.2.11 ([homework 3]). Let F : M Ñ N and G : N Ñ P two
diffeomorphisms of smooth manifolds.

1. Show that the chain rule pG ˝ Fq˚ “ G˚ ˝ F̊ holds.

2. Show that our previous definition7 of pullback is a particu- 7 That is, Definition 6.2.6 – which
includes the pullback from Defini-
tion 5.3.7.

lar case of the following general definition of a pullback of
pr, sq-tensor fields by F:

F˚ :“ pF´1q˚ : T r
s pNq Ñ T r

s pMq.

Hint: always work on a product tensor and extend by linearity.

Note that thanks to this duality between pullback and pushfor-
ward, the dual pairing is always invariant under diffeomorphisms: In general, (6.2) is not true for scalar

products: one has to require that the
diffeomorphism leaves the metric
invariant, i.e. gNpF̊ v, F̊ wq ˝ F “
gMpv, wq where gM P T0

2 pMq and
gN P T0

2 pNq. You encounter this if
you study isometries for pseudo-
Riemannian metrics or canonical
transformations in classical mechanics.

pF̊ ω | F̊ vq “ pω | vq. (6.2)

Can you show why?

Example 6.2.12 (Change of coordinates for tensor fields). Let, as usual,
pU, ϕq be a chart on M with local coordinates pxiq. If tei : Rn Ñ Ru

are the standard euclidean coordinates8 and teiu are the standard 8 Have a look at Notation 1.2.13 if you
don’t remember what I am talking
about. Here we are using the notation
ei ” ri since now we know that teiu is
just the dual basis to teiu.

basis vectors in Rn, then the coordinate 1-forms and the coordinate
vector fields on U Ă M are given by

dxi “ ϕ˚dei and
B

Bxi “ pϕ
´1q˚ei.

This immediately exposes the transformation laws for the change of
coordinates: let pU, ψq be another chart on U with local coordinates
pyiq, then dyi “ ψ˚dei and B

Byi “ pψ
´1q˚ei. If we denote φ “ ψ ˝ ϕ´1

the transition map in Rn, we get

B

Bxi “ pϕ
´1q˚ei

“ pϕ´1q˚ pφ
´1q˚φ˚

loooomoooon

id

ei

“ pϕ´1 ˝ φ´1q˚pφ˚eiq

“ pψ´1q˚ppDφq
j
iejq

“ pDφq
j
i
B

Byj ,

which may be easier to think about in terms of the following dia-
gram

B

Bxi P T 1
0 pUq Q pDφqij

B

Byj

ei P T 1
0 pVq T 1

0 pWq Q φ˚ei
loomoon

“pDφq
j
i ej

ϕ˚ ψ˚

φ˚
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where V “ ϕpUq and W “ ψpUq.
From this, we immediately get dyj “ pDφq

j
idxi and, therefore,

dxi “ pDφ´1qijdyj. ♦

Exercise 6.2.13. Let F : N Ñ M be a smooth map between smooth
manifolds. Show that a function f P C8pMq is constant on FpNq Ă
M if and only if F˚d f ” 0.

Hint: if you get stuck start by looking at a simple example, like N “ M and
F “ idM.





7
Differential Forms

There is a nice book by Guillemin and
Haines which is all on differential
forms [GH19] and whose draft is
freely available on the authors courses
website.

In the rest of the course we will focus on a particular class of ten-
sors, which generalizes the differential one-forms that we studied
on the cotangent bundle. It should not be surprising then, that
these will be called differential k-forms and that they will be alter-
nating p0, kq-tensors, that is, skew-symmetric in all arguments.

Geometrically, they are not dissimilar from the forms you may
have seen in multivariable calculus: a k-form takes k vectors as
arguments and computes the k-dimensional volume spanned by
these k-vectors. In this sense, they will be the key elements to define
integration over k-dimensional manifolds, in the same way as one-
forms and line integrals.

In addition to their role in integration, differential forms provide
a framework for generalizing such diverse concepts from multivari-
able calculus as the cross product, curl, divergence, and Jacobian
determinant.

7.1 Differential forms

Definition 7.1.1. Let V be a real n-dimensional vector space. Let
Sk denote the symmetric group on k elements, that is, the group of
permutations of the set t1, . . . , ku. Recall that for any permutation
σ P Sk, the sign of σ, denoted sgnpσq, is equal to `1 if σ is even1 1 It can be written as a composition of

an even number of transpositionsand ´1 is σ is odd2.
2 It can be written as a composition of
an odd number of transpositions
In particular, exchanging two argu-
ments changes the sign of ω.

A tensor ω P T0
k pVq, 0 ď k ď n, is called alternating (or

antisymmetric or skew-symmetric), if it changes sign whenever
two of its arguments are interchanged, that is, for all v1, . . . , vk P V
and for any permutation σ P Sk it holds that

ωpvσp1q, . . . , vσpkqq “ sgnpσqωpv1, . . . , vkq.

The subspace of alternating tensors in T0
k pVq is denoted3 by 3 Some authors also use Λkpv˚q or

ΛkpV˚q to denote the same space.Λk ” ΛkpVq Ă T0
k pVq and its elements are called exterior forms,

alternating k-forms or just k-forms. For k “ 0, we define Λ0 :“
T0

0 pVq :“ R. ♦

Exercise 7.1.2. Show that the following are equivalent for a tensor
ω P T0

k pVq.

1. ω is alternating;
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2. ω is 0 whenever two of its arguments are equal, that is, ωpv1, . . . , w, . . . , w, . . . , vkq “ 0;

3. ωpv1, . . . , vkq “ 0 whenever the vectors pv1, . . . , vnq are linearly
dependent.

7.2 The wedge product
You can find an interesting explanation
of the wedge product, based on
Penrose’s book “The road to reality”,
on a thread by @LucaAmb on Twitter.

If you remember, we said that the determinant was an example of
a T0

npRnq tensor: an antisymmetric tensor nonetheless. At the same
time, the determinant of a n ˆ n matrix, is the signed volume of
the parallelotope spanned by the n vectors composing the matrix.
We also saw that tensors can be multiplied with the tensor product,
which gives rise to a graded algebra on the free sum of tensor
spaces. This leads naturally to the following definition.

Definition 7.2.1. Let V be a real n-dimensional vector space. Given
k covectors ω1, . . . , ωk P T0

1 pVq, their wedge product (or exterior
product) ω1 ^ . . .^ωk is defined by

´

ω1 ^ . . .^ωk | v1, . . . , vk

¯

:“ det

¨

˚

˚

˝

ω1pv1q ¨ ¨ ¨ ω1pvkq
...

. . .
...

ωkpv1q ¨ ¨ ¨ ωkpvkq

˛

‹

‹

‚

@v1, . . . , vk P V.

♦

Since the determinant changes sign when two of its columns are
interchanged, ω1 ^ . . .^ ωk is alternating and thus an element of
ΛkpVq. Similarly, since the determinant changes sign when two of
its columns are interchanged, it holds that, for any σ P Sk,

ωσp1q ^ . . .^ωσpkq “ sgnpσqω1 ^ . . .^ωk. (7.1)

That is, using Leibniz formula for the determinant4, we get 4 [Lee13, Equation (B.3)]

ω1 ^ . . .^ωk “
ÿ

σPSk

sgnpσqωσp1q b . . .bωσpkq. (7.2)

According to Proposition 6.1.5 we have the basis representation

ω “ ωj1,...,jk ej1 b ¨ ¨ ¨ b ejk

in T0
k pVq. It would be convenient to have a similar basis representa-

tion on ΛkpVq.

Proposition 7.2.2. Let V be a real n-dimensional vector space, let pejq

denote a basis for V˚. Then, for each 1 ď k ď n, the set of k-forms

E “
!

ej1 ^ ¨ ¨ ¨ ^ ejk | 1 ď j1 ă ¨ ¨ ¨ ă jk ď n
)

,

forms a basis for the space ΛkpVq Ă T0
k pVq of alternating k-forms.

Therefore, if 1 ď k ď n

In particular, Λn “ Λ0 “ R.dim ΛkpVq “
ˆ

n
k

˙

“
n!

k!pn´ kq!
,

while if k ą n, dim ΛkpVq “ 0.

https://twitter.com/LucaAmb/status/1289244374996406273?s=20
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Proof. The last point of Exercise 7.1.2 implies that there are no non-
zero alternating k-tensors on V if k ą dim V, since in that case every
k-tuple of vectors would be dependent. For k ď n we need to show
that E spans ΛkpVq and its vectors are linearly independent.

First of all, observe that by (7.1) all the wedge products ej1 ^ . . .^ ejk R E
are either zero (if two indices are repeated, i.e., a base vector ap-
pears twice) or are a linear multiple of an element of E (the wedge
product with the indices in the same set but in increasing order).

Let now teiu denote the basis for V dual to teiu and ω P Λk. By
definition of alternating form, we have

ωpei1 , . . . , eikq “
1
k!

ÿ

σPSk

sgnpσqω
´

eiσp1q , . . . , eiσpkq.

¯

(7.3)

Moreover, for any v1, . . . , vk P V we have

Don’t forget, 1 ď i ď n.
vj “ eipvjqei, j “ 1, . . . , k.

Therefore,

ωpv1, . . . , vkq “ ω
´

ei1pvqqei1 , . . . , eikpvkqeik

¯

“ ei1pv1q ¨ ¨ ¨ eikpvkq ωpei1 , . . . , eikq

“ ei1pv1q ¨ ¨ ¨ eikpvkq
1
k!

ÿ

σPSk

sgnpσq ω
´

eiσp1q , . . . , eiσpkq.

¯

(7.3) “
1
k!

´

ei1 b ¨ ¨ ¨ b eik | v1, . . . , vk

¯

ÿ

σPSk

sgnpσq ω
´

eiσp1q , . . . , eiσpkq

¯

riσplq ÞÑjls “
1
k!

ω
`

ej1 , . . . , ejk

˘

ÿ

σPSk

sgnpσq
´

ej
σ´1p1q b ¨ ¨ ¨ b ej

σ´1pkq | v1, . . . , vk

¯

(7.2) “
1
k!

ω
`

ej1 , . . . , ejk

˘

´

ej1 ^ ¨ ¨ ¨ ^ ejk | v1, . . . , vk

¯

dedup. “
n´k`1
ÿ

j1“1

n´k`2
ÿ

j2“j1`1

¨ ¨ ¨

n
ÿ

jk“jk´1`1

ω
`

ej1 , . . . , ejk

˘

´

ej1 ^ ¨ ¨ ¨ ^ ejk | v1, . . . , vk

¯

.

That is,

ω “

n´k`1
ÿ

j1“1

n´k`2
ÿ

j2“j1`1

¨ ¨ ¨

n
ÿ

jk“jk´1`1

ωj1,...,jk ej1 ^ ¨ ¨ ¨ ^ ejk ,

where ωj1,...,jk “ ω
`

ej1 , . . . , ejk

˘

, in analogy with Proposition 6.1.5.

Remark 7.2.3. There are multiple alternative definitions of the wedge
product, which are equivalent up to a multiplicative factor. Be
careful when you consult the literature to check the conventions
used.

The convention that we are using here is usually called the
determinant convention and is usually the most convenient for
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computations. The name stems from the fact that if peiq denotes the
standard basis for pRnq˚, then for some vectors v1, . . . , vn P Rn,

detp v1 ¨ ¨ ¨ vn
looomooon

nˆ n matrix with
vi as columns

q “ e1 ^ ¨ ¨ ¨ ^ enpv1, . . . , vnq.

♦

As you could see from the previous proof, Einstein notation can
help but only to a certain extent. There is an extra bit of notation,
also common in higher-dimensional analysis, that can be often
convenient when working with many indices.

Notation 7.2.4. Given a positive integer k, an ordered5 k-tuple 5 That is, 1 ď i1 ă ¨ ¨ ¨ ă ik ď n.

I “ pi1, . . . , ikq of positive integers is called multi-index of length k.
If I is such a multi-index and σ P Sk is a permutation of t1, . . . , ku,
then we denote Iσ :“ piσp1q, . . . , iσpkqq. Defining eI :“ ei1 ^ ¨ ¨ ¨ ^ eik ,
we finally get the more compact notation ω “ ωIeI . ♦

In general, the tensor product ω b ν P T0
k`hpVq of alternating

forms ω P Λk and ν P Λh is not an alternating form. The follow-
ing proposition gives us a tool to define an exterior product of
alternating forms.

Proposition 7.2.5. Let Altk : T0
k pVq Ñ ΛkpVq be the map defined by

pAltk τqpv1, . . . , vkq :“
1
k!

ÿ

σPSk

sgnpσqτpvσp1q, . . . , vσpkqq, @v1, . . . , vk P V.

Then Altk is a linear projection and the following holds:

ω1 ^ ¨ ¨ ¨ ^ωk “ k! Altkpω
1 b ¨ ¨ ¨ bωkq.

Proof. Linearity is there by construction, we need to check that
Altk is a projection. This follows from a direct computation of its
idempotence:

pAltk Altk τqpv1, . . . , vkq “
1

k!k!

ÿ

σ,σ1PSk

sgnpσq sgnpσ1qτ
´

vσ1˝σp1q, . . . , vσ1˝σp1q

¯

rσ“σ1˝σ “
1

k!k!

ÿ

σ,ηPSk

sgnpηqτ
´

vηp1q, . . . , vηp1q

¯

“
1
k!

ÿ

ηPSk

sgnpηqτ
´

vηp1q, . . . , vηp1q

¯

“ pAltk τqpv1, . . . , vkq,

where we used the fact that η runs over all Sk, as σ does. Then the
result follows from (7.2).

As we were saying, now we can take the tensor product of two
forms ω b ν and use the antisymmetrisation Altk`h to to project it
onto the antisymmetric subspace Λk`h of T0

k`hpVq.
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Definition 7.2.6 (Wedge product of alternating forms). We can
extend the wedge product (or exterior product) to alternating forms
by defining, for any k, h P N,

^ : Λk ˆΛh Ñ Λk`h

pω, νq ÞÑ ω^ ν :“
pk` hq!

k!h!
Altk`hpωb νq.

♦

Example 7.2.7. The wedge product of two 1-forms ω and ν is

ω^ ν “ 2 Alt2pωb νq “ 2
1
2
pωb ν´ νbωq.

♦

Exercise 7.2.8. Compute the wedge product of three 1-forms.

Proposition 7.2.9. The wedge product has the following properties.

1. (associative) pω1 ^ ω2q ^ ω3 “ ω1 ^ pω2 ^ ω3q for ωi P Λki ,
i “ 1, . . . , 3;

2. (distributive) pω1 `ω2q ^ω3 “ ω1 ^ω3 `ω2 ^ω3 for ω1, ω2 P Λk

and ω3 P Λh;

3. (distributive) ω1 ^ pω2 `ω3q “ ω1 ^ω2 `ω1 ^ω3 for ω1 P Λk and
ω2, ω3 P Λh;

4. ω1 ^ω2 “ p´1qhkω2 ^ω1 for ω1 P Λk and ω2 P Λh.

Exercise 7.2.10. Prove the proposition.
Hint: keep in mind the tricks used in the proof of the previous propositions.

Exercise 7.2.11. Let V be a real n-dimensional vector space. Prove
that if an n-form ω vanishes on a basis e1, . . . , en for V, then ω is the
zero n-form on V.

Remark 7.2.12. As for tensors, if we define the 2n-dimensional vector
space

ΛpVq “
n
à

k“0
ΛkpVq,

then the wedge product turns it into an associative, anticommuta-
tive6 graded algebra, called exterior algebra of V. ♦ 6 A graded algebra is anticommutative

is the product satisfies a relation of the
form uv “ p´1qkhvu, where u and v
are in the spaces of the gradation with
indicex k and h respectively.

7.3 The interior product

There is an extremely important operation that relates vectors with
alternating tensors.

Definition 7.3.1. Let V be a real n-dimensional vector space. For
each v P V, the interior multiplication by v is a contraction of a
k-form by v, that is, the linear map ιv : ΛkpVq Ñ Λk´1pVq defined7 7 Another common notation for the

same operation is v ⌟ω.by
ιvωpw1, . . . , wk´1q “ ωpv, w1, . . . , wk´1q

♦
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In other words, ιvω is obtained from ω by inserting v into “the
first slot”. By convention ιvω “ 0 if ω P Λ0.

Lemma 7.3.2. Let V be a real n-dimensional vector space and v P V. Then
the following hold.

1. ιv ˝ ιv “ 0 and, thus, ιv ˝ ιu “ ´ιu ˝ ιv;

2. if ω P Λk and ν P Λh,

ιvpω^ ηq “ pιvωq ^ η ` p´1qkω^ pιvηq.

Exercise 7.3.3 ([homework 4]). Prove the Lemma.

7.4 Differential forms on manifolds

It is time to turn our attention back to smooth manifolds. Let M be
a n-dimensional smooth manifold, recall that we had defined the
tensor fields T r

s pMq as the sections of pr, sq-tensor bundles Tr
s pMq

over M. The subset of T0
k pMq consisting of alternating k-tensors is

denoted by ΛkpMq :“
Ů

pPMtpu ˆΛkpTp Mq.

Definition 7.4.1. The sections of ΛkpMq are called differential
k-forms, or just k-forms: these are smooth tensor fields whose
values at each point are alternating tensors. The integer k is called
the degree of the k-form.

We denote the vector space of smooth k-forms by

ΩkpMq “ ΓpΛkpMqq.

The wedge product ^ : ΩkpMq ˆΩhpMq Ñ Ωk`hpMq of differential
forms is defined pointwise as pω^ νqp “ ωp ^ νp. ♦

Example 7.4.2. 1. A 0-form is just a function f P C8pMq and 1-forms
are just the covector fields ω P T 0

1 pMq “ X˚pMq on M.

2. Let M “ R3, then both cospxyqdy^ dz and dx^ dy´ ydx^ dz`
ex{px2 ` y2 ` 1qdz^ dy are examples of smooth 2-forms.

3. Every 3-form in R3 is a continuous real-valued function times
dx^ dy^ dz.

♦

Remark 7.4.3. If we define

Ω˚pMq “
n
à

k“0
ΩkpMq,

then the wedge product turns Ω˚pMq into an associative, anticom-
mutative graded algebra. ♦

The following theorem gives a computational rule for pullbacks
of differential forms similar to the ones we developed for covec-
tor fields and arbitrary tensor fields earlier. In fact, it is a direct
consequence of our previous observations.
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Theorem 7.4.4. Let F : M Ñ N be a smooth map between smooth
manifolds. Let ω P ΩkpNq and ν P ΩhpNq. Then,

F˚pω^ νq “ F˚ω^ F˚ν,

and, if pxiq denote some local coordinates on U Ă N, locally

F˚
´

ωJdx J
¯

“ pωj1,...,jk ˝ Fqdpxj1 ˝ Fq ^ ¨ ¨ ¨ ^ dpxjk ˝ Fq.

Exercise 7.4.5. Prove the theorem.

Example 7.4.6. Let F : R2 Ñ R3 be defined by Fpu, vq “ pu2, v, u´ v2q

and let ω “ ydz^ dx` zdx^ dy on R3. We can apply the previous
theorem to compute F˚ω:

F˚ω “ vdpu´ v2q ^ dpu2q ` pu´ v2qdpu2q ^ dv

“ vpdu´ 2vdvq ^ p2uduq ` pu´ v2qp2uduq ^ dv

“ ´4uv2dv^ du` 2upu´ v2qdu^ dv

“ 2upu` 3v2qdu^ dv,

where we used that du^ du “ 0 and du^ dv “ ´dv^ du. ♦

Of course, the same technique can also be used to compute the
expression for a differential form in another smooth chart.

Example 7.4.7. Let ω “ dx^ dy on R2. Consider the polar coordinates
px, yq ÞÑ pρ cospθq, ρ sinpθqq, then

dx^ dy “ dpρ cos θq ^ dpρ sin θq

“ pcos θdρ´ ρ sin θdθq ^ psin θdρ` ρ cos θdθq

“ ρdρ^ dθ.

I am very confident that it is not the first time that you see the
equation above. . . ♦

Exercise 7.4.8. Let pxiq and pyiq are two different local coordinates on
some open V Ă M. Show that the following identity holds:

dy1 ^ dyn “ det
ˆ

Byj

Bxi

˙

dx1 ^ dxn.

The previous exercise is a particular case of the following state-
ment.

Proposition 7.4.9. Let F : M Ñ N be a smooth map between n-manifolds.
Let pxiq and pyiq denote, respectively, smooth coordinates on open subsets
U Ď M and V Ď N. Let u be a continuous real-valued function on V.
Then, on U X F´1pVq, the following holds:

F˚pu dy1 ^ ¨ ¨ ¨ ^ dynq “ pu ˝ Fqpdet DFqdx1 ^ ¨ ¨ ¨ ^ dxn,

where DF represents the Jacobian matrix of F in these coordinates.

Exercise 7.4.10. [homework 4] Prove the Proposition 7.4.9.
Hint: look at Theorem 7.4.4.
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Exercise 7.4.11. Let f : R2 Ñ R3 be defined by

f px, yq “ px2, y2, xyq.

Compute the pullback f ˚ω where ω is the form:

1. ω “ ydy` zdz;

2. ω “ xdy^ dx;

3. ω “ dx^ dy^ dz.

Of course, also the interior product extends naturally to vector
fields and differential forms, simply by letting it act pointwise: if
X P XpMq and ω P ΩkpMq, then the k ´ 1-form ιXω ” X ⌟ ω is
defined by pX ⌟ωqp “ Xp ⌟ωp.

Exercise 7.4.12. Let X P XpMq. Prove the following statements.

1. If ω is a smooth differential form, then ιXω is smooth.

2. The map ιX : ΩkpMq Ñ Ωk´1pMq is linear over C8pMq.

7.5 Exterior derivative

We already saw in the previous chapters that the differential of a
function f P Ω0pMq can be thought as a 1-form d f P Ω1pMq. We
are finally ready to generalise the concept to a map d : ΩkpMq Ñ
Ωk`1pMq. You have already seen most of this in the context of
multivariable analysis, however it is good to repeat it to set the
notational conventions.

The same exact definition holds with
Rn replaced by Hn.Definition 7.5.1. Let ω P ΩkpUq for some open subset U Ă Rn and

let peiq denote the standard basis for pRnq˚. If

ω “ ωIdeI , ωI P C8pUq,

then its exterior deriative dω P Ωk`1pUq is defined by

dω :“ dωI ^ deI “
ÿ

1ďi1ă¨¨¨ăikďn

dωi1,...,ik ^ dei1 ^ ¨ ¨ ¨ ^ deik ,

where dωI is the differential of the function ωI . ♦

Example 7.5.2. For a smooth 0-form8 f , we have that d f “ B f
Bxi dxi. If 8 A real valued function

ω is a 1-form, this instead becomes

dpωjdxjq “
Bωj

Bxi dxi ^ dxj

“
ÿ

iăj

Bωj

Bxi dxi ^ dxj `
ÿ

iąj

Bωj

Bxi dxi ^ dxj

“
ÿ

iăj

ˆ

Bωj

Bxi ´
Bωi

Bxj

˙

dxi ^ dxj,

consistently with our previous definitions. ♦
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Definition 7.5.3. Let now M be a smooth n-manifold and ω P

ΩkpMq. Let pU, ϕq denote a chart on U Ă M with local coordinates
pxiq. Then, the exterior derivative is defined locally as dω|U :“
ϕ˚dpϕ˚ωq, that is, for

ω|U “ ωIdxI , ωI P C8pMq,

we define
dω|U :“ dωI ^ dxI . (7.4)

♦

This local definition immediately extends to global one via the
following theorem.

Theorem 7.5.4. Let M be a smooth n-manifold, pU, ϕq a chart on U Ă M
and F : M Ñ N a diffeomorphism between smooth manifolds. Then, for
ω P ΩkpNq, we have F˚pdω|FpUqq “ dF˚ω|U .

Proof. Let pxiq denote the local coordinates of ϕ and let prU, rϕq :“
pFpUq, ϕ ˝ F´1q be the corresponding chart on FpUq Ă N with local
coordinates pyiq on N. Locally, ω “ ωIdyI , thus we get

dF˚ω|U “ d

¨

˝

ÿ

I“pi1,...,ikq

pωI ˝ FqF˚pdyi1q ^ ¨ ¨ ¨ ^ F˚pdyikq

˛

‚

“ d

¨

˝

ÿ

I“pi1,...,ikq

pωI ˝ Fqdpyi1 ˝ Fq ^ ¨ ¨ ¨ ^ dpyik ˝ Fq

˛

‚

“ d

¨

˝

ÿ

I“pi1,...,ikq

pωI ˝ Fqdxi1 ^ ¨ ¨ ¨ ^ dxik

˛

‚

“
ÿ

I“pi1,...,ikq

dpωI ˝ Fq ^ dxi1 ^ ¨ ¨ ¨ ^ dxik

“
ÿ

I“pi1,...,ikq

F˚dpωIq ^ dpyi1 ˝ Fq ^ ¨ ¨ ¨ ^ dpyik ˝ Fq

“
ÿ

I“pi1,...,ikq

F˚dpωIq ^ F˚pdyi1q ^ ¨ ¨ ¨ ^ F˚pdyikq

“ F˚pdω|FpUqq,

where we repeatedly applied Proposition 7.4.4 and Exercise 5.3.8 to
swap pushforwards and differentials.

Corollary 7.5.5. Let M be a smooth n-manifold and pUi, ϕiq, i “ 1, 2, two
charts on M. Then, for ω P ΩkpMq, the following holds

ϕ˚1

´

dpϕ1˚ωqϕ1pU1XU2q

¯

“ ϕ˚2

´

dpϕ2˚ωqϕ2pU1XU2q

¯

.

Therefore, the exterior derivative dω P ΩkpMq is uniquely defined by the
local definition (7.4).

Proof. Follows from Theorem 7.5.4 applied with F “ ϕ1 ˝ ϕ´1
2 :

ϕ2pUq Ñ ϕ1pUq, where U “ U1 XU2. Indeed, since by the chain rule
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F˚ “ pϕ´1
2 q˚ϕ˚1 “ ϕ2˚pϕ

´1
1 q˚, we have

ϕ˚1

´

dpϕ1˚ωqϕ1pUq

¯

“ ϕ˚2 pϕ
´1
2 q˚ϕ˚1

´

dpϕ1˚ωqϕ1pUq

¯

“ ϕ˚2 F˚
´

dpϕ1˚ωqϕ1pUq

¯

“ ϕ˚2

´

dpF˚ϕ1˚ωqϕ2pUq

¯

“ ϕ˚2

´

dpϕ2˚ωqϕ2pUq

¯

.

Exercise 7.5.6. Let F : M Ñ N be a smooth map between smooth
manifolds and ω P ΩkpNq, then

F˚pdωq “ dpF˚ωq.

Lemma 7.5.7. The exterior derivative satisfies the following properties. For
all ω, ω1, ω2 P ΩkpMq, ν P ΩhpMq and f P C8pMq,

(i) dpω1 `ω2q “ dω1 ` dω2;

(ii) dp f ωq “ d f ^ω` f dω;

(iii) dpω^ νq “ dω^ ν` p´1qkω^ dν;

(iv) dpdωq “ 0.

Proof. The first two properties immediately follow from the def-
inition. Property piiiq follows observing that to compare the two
sides of the equation, one needs to keep commuting the exterior
derivatives of coefficients of ν through the k-form ω.

The final property follows from the commutativity of the partial
derivatives. Indeed, locally on a chart on U Ă M with coordinates
pxiq, one has

dpdω|Uq “
B2ωI

BxkBxj dxk ^ dxj ^ dxI

“
ÿ

jăk

ˆ

B2ωI

BxkBxj ´
B2ωI

BxjBxk

˙

dxk ^ dxj ^ dxI

“ 0.

Exercise 7.5.8. Compute the exterior derivatives of the following
differential forms on R3:

1. xdy^ dz;

2. xdy´ ydx;

3. e´ f d f where f “ x2 ` y2 ` z2;

4. xdx` ydy` zdz;

5. xdy^ dz´ ydx^ dz` zdx^ dy.
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Exercise 7.5.9. Solve the equation dν “ ω for ν P Ω1pR3q where ω is
the 2-form:

1. dy^ dz;

2. y dy^ dz;

3. x2 ` y2 dx^ dy;

4. cospxq dx^ dz.

Let N Ă M a submanifold and i : N ãÑ M the corresponding
injection. For ω P ΩkpMq, we call i˚ω P ΩkpNq the restriction of
ω to N. Exercise 7.5.6, then, implies that restriction and exterior
derivative commute, that is, i˚dω “ dpi˚ωq.

Example 7.5.10 (Exterior derivatives and vector calculus in R3). Let
M “ R3. Any smooth 1-form ω P Ω1pR3q can be written as

ω “ Pdx`Qdy` Rdz

for some smooth functions P, Q, R P C8pR3q. Using the properties
of wedge product, we can compute its exterior derivative and get
the two form

dω “

ˆ

BP
Bx

dx`
BP
By

dy`
BP
Bz

dz
˙

^ dx

`

ˆ

BQ
Bx

dx`
BQ
By

dy`
BQ
Bz

dz
˙

^ dy

`

ˆ

BR
Bx

dx`
BR
By

dy`
BR
Bz

dz
˙

^ dz

“

ˆ

BQ
Bx
´
BP
By

˙

dx^ dy`
ˆ

BR
Bx
´
BP
Bz

˙

dx^ dz`
ˆ

BR
By
´
BQ
Bz

˙

dy^ dz.

Similarly, an arbitrary 2-form η P Ω2pR3q can be written as

η “ udx^ dy` vdx^ dz`wdy^ dz,

and one can check (do it!)

dη “

ˆ

Bu
Bz
´
Bv
By
`
Bw
Bx

˙

dx^ dy^ dz.

If you compare the results we obtained above with the gradient
(∇), divergence (∇¨) and curl (∇ˆ) from multivariable analysis,
you would likely notice that the components of the 2-form d ω

are exactly the componentes of the curl of the vector field with
components pP, Q, Rq. Similarly, the formula for the divergence will
look very close to the formula for dη. What is going on?

The standard euclidean metric on Rn is the metric associated to
the metric tensor9 gij “ δij. We can use the musical isomorphisms10 9 Cf. Definition 6.1.8.

10 Cf. Example 6.1.9.
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to identify vector fields and 1-forms, obtaining for the components
with respect to cartesian coordinates that vi “ vi.

Moreover, the interior multiplication yields another map β :
XpR3q Ñ Ω2pR3q defined by βpXq “ ιXpdx^ dy^ dzq, which is linear
over C8pR3q (why?) and, thus, corresponds to a smooth bundle
homomorphism from TR3 to Λ2pR3q (why?).

In a similar fashion, we can also define a smooth bundle isomor-
phism ‹ : C8pR3q Ñ Ω3pR3q via

‹p f q “ f dx^ dy^ dz.

We can use the exterior derivatives to observe that the following
diagram commutes

C8pR3q XpR3q XpR3q C8pR3q

Ω0pR3q Ω1pR3q Ω2pR3q Ω3pR3q

id

∇

5

∇ˆ

β

∇¨

‹

d d d

. (7.5)

The interest and need to generalize the operations of vector
calculus in R3 to higher dimensional spaces have been one of the
drives to develop the theory of differential forms. In particular, the
curl is well-defined as an operator on vector fields only in dimen-
sion 3, while with the exterior derivative we can now generalize its
meaning in all dimensions. ♦

Exercise 7.5.11. Show that the diagram (7.5) commutes; for example,

d f “
B f
Bxi “ p∇ f qidxi “ p∇ f q5.

Use the diagram to give a quick proof that p∇ˆq ˝∇ ” 0 and that
p∇¨q ˝ p∇ˆq ” 0 (physically this last identity implies that magnetic
fields are divergence free).

Exercise 7.5.12. Let V a vector space of dimension k. A symplectic
form on V is an element ω P Λ2pVq which is non-degenerate in
the sense that ιvpωq “ 0 if and only if v “ 0. Cf. Definition 6.1.8.
A symplectic manifold is a smooth manifold M equipped with a
closed differential 2-form ω such tht ωq is a symplectic form on
Tq M for every p P M.

1. Prove that if a symplectic form exists, then k “ 2n for some
n P N, i.e., it must be an even number.

2. Let M be a smooth manifold. Define a 1-form η P Ω1pT˚Mq on
the cotangent bundle of M as

λpq,pqpξq “ ppdπpq,pqξq, q P M, p P T˚q M, ξ P Tpq,pqpT
˚Mq,

where π : T˚M Ñ M is the projection to the base. Show that
ω :“ dλ is a symplectic form on T˚M, that is, every cotangent
bundle is a symplectic manifold.

For example, ω “
řn

i“1 αi ^ αi`n P Ω2pR2nq is a symplectic form
and plays a central role in classical mechanics. There, one usually
calls pαn`1, . . . , α2nq the position coordinates and pα1, . . . , αnq the
momentum coordinates.
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3. Show that for n “ 2, ω^ω “ ´2α1 ^ α2 ^ α3 ^ α4.

4. Generalize the previous computation to show that

2n
ľ

k“1

αk :“ α1 ^ ¨ ¨ ¨ ^ α2n “
p´1qp

n
2q

n!
ω^ ¨ ¨ ¨ ^ω
loooooomoooooon

n times

“:
p´1qp

n
2q

n!
^n ω.

7.6 Lie derivative

Definition 7.6.1. The Lie derivative of a differentiable function
f : M Ñ R on a smooth manifold M in the direction of a vector
field X : M Ñ TM is the real function defined by

LX f :“ d f pXq.

♦

From the look of it, this seems just an alternative way to define
the directional derivative. However, its power lies in the fact that
we can extend it to k-forms with important consequences, one of
which will be very useful in the next section.

Definition 7.6.2 (Cartan’s Magic Formula). Let M be a smooth
n-manifold and X P XpMq. For ω P ΩkpMq, we define the Lie
derivative of ω with respect to X as the k-form

LXω :“ ιXpdωq ` dpιXωq. (7.6)

♦

Since the exterior derivative raises the degree of the form and the
interior product decreases it, the net effect of the formula above, is
indeed, the production of a k-form, so LXω P ΩkpMq.

Exercise 7.6.3. Show that on functions the definition from (7.6)
coincide with the one that we gave at the beginning of this section.

Exercise 7.6.4. Show that the Lie derivative is a derivation in the
algebra Ω˚pMq of differential forms, that is, for ω, ν P Ω˚pMq one
has

LXpω^ νq “ pLXωq ^ ν`ω^ pLXνq.

It is possible to define the Lie derivative in a different way, in
terms of the derivative of the pushforward of ω along the flow of X.
Then the definition that we gave above becomes a theorem, which is
where the denotation Cartan’s Magic Formula comes from.

Of course, we can recover the alternative definition as a theorem.
Even though it is a bit impractical for computational purposes,
flows are hard to compute, it gives a nice geometric interpretation
of the Lie derivative: it describes the change of the differential form
ω in the direction of the flow generated by the vector field X.
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Theorem 7.6.5. Let M be a smooth complete n-manifold, X P XpMq and
ϕt its flow. Then, for all ω P Ω˚pMq, one has

d
dt
pϕ˚t ωq “ ϕ˚t LXω.

Proof. Step I. Thanks to the group properties of the flow, it is
enough to prove it for t “ 0. Indeed,

d
dt
pϕ˚t ωq “

d
ds
pϕ˚t`sωq

ˇ

ˇ

ˇ

s“0

“
d
ds
pϕ˚t ϕ˚s ωq

ˇ

ˇ

ˇ

s“0

“ ϕ˚t
d
ds
pϕ˚s ωq

ˇ

ˇ

ˇ

s“0
.

Step II. We start with f P Ω0pMq “ C8pMq. In local coordinates
pxiq, we have

d
dt

ˇ

ˇ

ˇ

t“0
ϕ˚t f pxq “ lim

tÑ0

f pϕtpxqq ´ f ptq
t

“
B f
Bxi

ˇ

ˇ

ˇ

x
Xipxq

“ d f pXqpxq “ LX f pxq.

Step III. Let ω “ dxi P Ω1pMq, then

d
dt
pϕ˚t dxiq

ˇ

ˇ

ˇ

t“0
“

d
dt
pdϕ˚t xiq

ˇ

ˇ

ˇ

t“0

“ d
d
dt
pϕ˚t xiq

ˇ

ˇ

ˇ

t“0

“ dXi.

On the other hand,

LXpdxiq “ ιXpddxiq ` dpιXdxiq

“ dpιXdxiq

“ dXi.

Step IV. The statement follows from Theorem 7.4.4 and Ex-
ercise 7.6.4 since every k-form can be locally written as ω “

ωIdxI .

Remark 7.6.6. The Lie derivative can be extended on any tensor
bundle Tr

s pMq with the following definition. This T P T s
r pMq, for

any p P M

pLXTqp :“
d
dt

ˇ

ˇ

ˇ

t“0

´

pϕX
t q
˚T

¯

p
,

where as usual ϕX
t denotes the maximal integral curve11 for X with 11 Remember, this is a diffeomorphims

from a neighbourhood of p onto a
neighbourhood of ϕX

t ppq.
initial point p.

In general, for τ P T s
r pMq and σ P T s1

r1 , the Lie derivative satisfies

LXpτb σq “ pLXτq b σ` τbLXpσq,
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and commutes with contractions.
Incidentally, it also satisfies

LXY “ rX, Ys,

and so it can be considered as a generalization of the Lie brackets.
One nice little perk of the general definition, is that it makes it

relatively straightforward to show that

LXpωpYqq “ pLXωqpYq `ωprX, Ysq,

which is often very useful in computations.
One can think to the Lie derivative as a mean to “differentiate”

a tensor field (or a differential form) with respect to a vector field.
Note that it does not allow us differentiate a tensor field (or a
differential form) with respect to a single tangent vector: the value
of LXpτq at a point depends on the values of X in a neighbourhood
of the point, not just on the germ at X. ♦

7.7 De Rham cohomology and Poincaré lemma

Definition 7.7.1. We say that a smooth differential form ω P ΩkpMq
is closed if dω “ 0, and exact if there exists a smooth pk´ 1q-form ν

on M such that ω “ dη.
The fact that d ˝ d “ 0 implies that every exact form is closed. ♦

The following example shows that not all closed forms are exact.
However, it turns out that closed forms are always locally exact but
not necessarily globally, so the question of whether a given closed
form is exact depends on global properties of the manifold. This
is the statement of the so-called Poincaré lemma. We are going to
prove it in two slightly different flavours: its classical version and a
slight generalization.

Exercise 7.7.2 ([homework 4]). Let M “ R2zt0u and ω the one-form on
M from Example 5.4.2 given by

ω “
xdy´ ydx

x2 ` y2 .

1. Show that ω is closed.

2. Show that ω is not exact.
Hint: compare Exercise 5.4.3.3 and Example 5.4.2.

Definition 7.7.3. We define kth de Rham cohomology group the
quotient vector space defined by

Hk
dRpMq :“

tclosed k-forms on Mu
texact k-forms on Mu

.

We will denote the elements of Hk
dRpMq by rωs, where ω is a closed

k-form. Thus, by definition, rω` dθs “ rωs. ♦
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We will use only elementary facts about de Rham theory in
the course, but they play an important role in algebraic topology
and mechanics. The de Rham groups, for example, turn out to be
topological invariants.

The following is a direct consequence of Exercise 7.5.6.

Corollary 7.7.4. If F : M Ñ N is a smooth map, then F˚ induces a well-
defined map F˚ : Hk

dRpNq Ñ Hk
dRpMq (denoted with the same symbol) via

rωs ÞÑ rF˚ωs.

Without further ado, let’s look at a first version of Poincaré
lemma on manifolds. As for all the local concepts we have seen
so far, the proof will reduce the problem to a euclidean statement
to which we will apply the Poincaré lemma that you have seen in
multivariable calculus.

Theorem 7.7.5. Let M be a smooth manifold and ω P ΩkpMq closed,
that is, dω “ 0. Let U Ă M be open and diffeomorphic to a star-shaped
domain12 of Rn. Then, there exists ν P Ωk´1pUq such that ω|U “ dν. 12 Cf. Lemma 2.3.14.

Proof. Let ϕ : U Ñ V Ă Rn be a diffeomorphism between U and
the star-shaped domain V Ă Rn. Then rω :“ ϕ˚ω is a closed k-form
on V and, according to the Poincaré lemma on Rn, there exists
rν P Ωk´1pVq such that rω “ drν.

To generalise this result further, we need to have a deeper look
into de Rham theory.

Definition 7.7.6. Two continuous maps h0, h1 : X Ñ Y between topo-
logical spaces are said to be homotopic if there exists a continuous
map K : r0, 1s ˆ X Ñ Y such that Kp0, ¨q “ h0 and Kp1, ¨q “ h1.

Two topological spaces X and Y are homotopy equivalent if there
exists continuous maps f : X Ñ Y and g : Y Ñ X such that f ˝ g and
g ˝ f are homotopic to the respective identity maps. ♦

A crucial observation for our means is the homotopy invariance
of the de Rham cohomology, which is a scary sounding property
which is formalised by the following statement.

Theorem 7.7.7. Let M be a smooth manifold and r0, 1s ˆ M the product
manifold with boundary pt0u ˆMq Y pt1u ˆMq Y pp0, 1q ˆ BMq. Let it :
M ãÑ r0, 1s ˆ M be the injection itppq :“ pt, pq and π : r0, 1s ˆ M Ñ M
the projection onto M. Then, there is a map

K : Ω`pr0, 1s ˆMq Ñ Ω`´1pMq

such that for every differential `-form ω P Ω`pr0, 1s ˆMq one has

Kpdωq ` dpKpωqq “ j˚1 pωq ´ j˚0 pωq

as elements of Ω`pMq. Furthermore, the induced maps on the de Rham
cohomology

j˚0 , j˚1 : H`
dRpr0, 1s ˆMq Ñ H`

dRpMq

coincide.
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Proof. Let T be the vector field on r0, 1s ˆM whose value at pt, pq is
given by

Tpt, pq “
ˆ

B

Bt

ˇ

ˇ

ˇ

t“0
, 0
˙

.

Then, for ω P Ω`pr0, 1s ˆMq, the map K is defined by

Kpωq :“
ż 1

0
j˚t pιTpωqqdt.

That is, for any p P M,

Kpωqp “

ż 1

0
j˚t pιTpωqpt,pqqdt,

where the integrand should be thought as a function of t on the
vector space Λ`´1pMq. That is, this is still a common integral, not
an integral on a manifold! By choosing local coordinates on M, we
see that the integral is defining a smooth p` ´ 1q-form on M. To
compute dpKpωqq pick some local coordinates pxiq, then we can
express Kpωq as a sum of terms of the form

˜

ż 1

0
f pt, xqdt

¸

dxI .

Applying the exterior derivative and differentiating under the
integral sign13 we get 13 Also known as Leibniz integral rule

and Feynman’s trick.

B

Bxj

˜

ż 1

0
f pt, xqdt

¸

dxj ^ dxI “

˜

ż 1

0

B f
Bxj pt, xqdt

¸

dxj ^ dxI .

That is,

dpKpωqq “
ż 1

0
dpj˚t pιTpωqqqdt.

Then, it follows from Cartan’s Magic Formula and Exercise 7.5.6
that

Kpdωq ` dpKpωqq “
ż 1

0
pj˚t pιTpdωqq ` dpj˚t pιTωqqq dt

“

ż 1

0
pj˚t pιTpdωqq ` j˚t pdpιTωqqq dt

“

ż 1

0
j˚t pLTpωqqdt.

Let ϕt now denote the flow of T, then ϕtps, pq “ pt` s, pq and thus
jt “ ϕt ˝ j0. By Theorem 7.6.5 we can compute the integrand as

j˚t pLTpωqq “ j˚0 pϕ
˚
t pLTpωqqq

“ j˚0

ˆ

d
dt

ϕ˚t pωq

˙

“
d
dt

j˚0 pϕ
˚
t pωqq

“
d
dt

j˚t pωq.
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Thus, by the classical Fundamental Theorem of Calculus we get

Kpdωq ` dpKpωqq “
ż 1

0

d
dt

j˚t pωqdt “ j˚1 pωq ´ j˚0 pωq,

proving the first part of the theorem.
To conclude the proof, take a closed `-form on r0, 1s ˆM, then

j˚1 prwsq ´ j˚0 prwsq “ rKpdωq ` dpKpωqqs “ 0,

completing the proof.

An important consequence of this result is the following theo-
rem.

Theorem 7.7.8. Let M and N two smooth manifolds and suppose F, G :
M Ñ N are two homotopic smooth maps. Then, the induced maps F˚ and
G˚ on the de Rham cohomology groups are the same.

Proof. Since F and G are homotopic, there is a continuous map
K : r0, 1s ˆM Ñ N such that Kp0, ¨q “ F and Kp1, ¨q “ G. If we could
assume K to be smooth, the theorem would follow from

F˚ “ pH ˝ j0q˚ “ j˚0 ˝ H˚ “ j˚1 ˝ H˚ “ pH ˝ j1q˚ “ G˚.

In fact this is the case, thanks to the Whitney Approximation
Theorem for homotopies14 which says that if two smooth maps are 14 This is a deep result related to the

Whitney Embedding Theorem from
Remark 2.8.17 and is out of the scope
of our course, for more details refer
to [Lee13, Chapter 6 and Theorems
6.26 and 9.27].

homotopic then they are also smoothly homotopic, in the sense that
the map K is smooth.

Corollary 7.7.9. Let M and N be smooth manifolds that are homotopy
equivalent. Then M and N have isomorphic de Rham cohomology groups.

Proof. Let F : M Ñ N and G : N Ñ M be continuous maps such
that F ˝ G and G ˝ F are homotopic to the identity maps. By the
Whitney Approximation Theorem (see the proof above) we can
approximate F and G by smooth maps that we keep denoting with
the same symbols. By the previous theorem, then, pF ˝ Gq˚ and
pG ˝ Fq˚ coincide with the maps induced by the identity. Since id˚

is clearly the identity, we see that F˚ is an inverse to G˚, which
concludes the proof.

We are almost there.

Definition 7.7.10. A topological space is said to be contractible if it
is homotopy equivalent to a point, that is, there exists p0 P M and a
continuous15 map 15 In fact, we now know that we can

assume it is smooth.

K : r0, 1s ˆM Ñ M with Kp0, ¨q “ idM and Kp1, ¨q “ p0.

♦

The map K continuously “contracts”
M into a single point p0 P M.

Corollary 7.7.11. Let M be contractible, then Hk
dRpMq “ 0 for all k ě 1.

Proof. The statement is clear is M is equal to a point. The rest
follows applying Corollary 7.7.9.
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Remark 7.7.12. De Rham cohomology is defined in terms of spaces
of differential forms and, as such, seems a priory deeply tied to the
differential structure. However, the corollary that we just proved
is all about topology and in particular tells us that de Rham coho-
mology cannot see the smooth structure on a topological manifold.
Indeed, the cohomology cannot distinguish Euclidean spaces since
HdRpR

nq is independent of n. ♦

Finally, we are ready to show a more general version of the
Poincaré lemma as promised.

Corollary 7.7.13 (Poincaré lemma). Let M be a smooth manifold and let
ω P ΩkpMq be a closed differential form of positive degree k ą 0. For any
point p P M there exists a neighbourhood U of p such that ω|U is an exact
form in ΩkpUq.

Proof. Every point in a n-manifold has a neighbourhood which is
homeomorphic to Rn and so is contractible.





8
Integration of forms

We finally have all the main ingredients to generalize our line inte-
gral detour and discuss integration of n-forms over n-dimensional
manifolds.

8.1 Orientation

We know from calculus one, or our line integral examples,
that the direction in which we traverse the interval, or a curve, can
actually make a difference. Indeed, the sign of the integral of a
differential n-form is only fixed after choosing an orientation of the
manifold.

If for a curve an orientation is simply a choice of a direction
along it, so we can make sense of it in terms of clockwise or
counter-clockwise, generalising the concept will require an extra ab-
straction step. Not just that, you have seen already that in Rn there
is a standard orientation, but in other vector spaces we may need to
make arbitrary choices. For manifolds, the situation is much more
complicated: for example, on a Möbius strip1 it is impossible to 1 Cf. Example 1.5.2.

make any such choice, as it turns out, it is non-orientable.
Let’s get there step by step.

Definition 8.1.1. Let V be a one-dimensional vector space. Then
Vzt0u has two components. An orientation of V is a choice of one
of these components, which one then labels as “positive” and
“negative”. A positive basis of V then is a choice of any non-zero
vector belonging to the positive component, while a negative basis
of V is a choice of any non-zero vector belonging to the negative
component. ♦

Example 8.1.2. The standard orientation of R is give by declaring
that the positive numbers are the positive components of Rzt0u. A
common choice as positive basis for R is te1 ” 1u while a negative
basis could be t´e1u. ♦

Let V be a n-dimensional vector space. How can we generalize in
a meaningful way the definition above?

By Proposition (7.2.2), the space ΛnpVq is a one-dimensional
vector space. Moreover, if te1, . . . , enu is a basis for V, then e1 ^ ¨ ¨ ¨ ^
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en is a basis for ΛnpVq.
Looks like we are getting somewhere.

Definition 8.1.3. Let V be a n-dimensional vector space. An
orientation on V is a choice of orientation on ΛnpVq. Therefore It should be clear from this that the

orientation is, in fact, an equivalence
class of ordered bases, and also that
the order in which the elements of the
basis appear matters.

there are exactly two orientations: we say that a basis te1, . . . , enu of
V is positive (or positively oriented) if e1 ^ ¨ ¨ ¨ ^ en is a positive basis
of ΛnpVq and negative (or negatively oriented) otherwise. ♦

Example 8.1.4. If ei is the standard ith basis vector in Rn, the standard
orientation of Rn is given by declaring that e1 ^ ¨ ¨ ¨ ^ en is a positive
basis of ΛnpRnq and thus that te1, . . . , enu is a positive basis of
Rn. ♦

An automorphism T : V Ñ V is called orientation-preserving if
it maps positively oriented bases to positively oriented bases (and
orientation-reversing otherwise). Due to the way different bases are
transformed by n-forms, this is equivalent to say that det T ą 0:
indeed, let tv1, . . . , vnu be a positively oriented basis and wi “ Tvi,
then

v1 ^ ¨ ¨ ¨ ^ vnpw1, . . . , wnq “ v1 ^ ¨ ¨ ¨ ^ vnpTv1, . . . , Tvnq

“ detpTq v1 ^ ¨ ¨ ¨ ^ vnpv1, . . . , vnq

“ detpTq.

In fact, the orientation is completely characterized by the action
of n-forms on the bases, as the following lemma shows.

Lemma 8.1.5. Let V be a n-dimensional vector space and let ω P

ΛnpVq be nowhere vanishing. Then, all bases tv1, . . . , vnu for which
ωpv1, . . . vnq ą 0 give the same2 orientation for V. 2 Not necessarily the positive orienta-

tion!
Proof. Let tv1, . . . , vnu and tw1, . . . , wnu denote two different bases
for V, then there exists a linear isomorphism ϕ such that v “ ϕ w,
that is vi “ ϕ

j
iwj. By definition and by multilinearity we then have

0 ă ωpv1, . . . vnq “ ωpϕ w1, . . . ϕ wnq “ detpϕqωpw1, . . . wnq,

that is the positivity of ω on the bases characterize the set of bases.

Exercise 8.1.6. Let V be a n-dimensional vector space, prove that two
nonzero n-forms on V determine the same orientation if and only if
each is a positive multiple of the other.

Remark 8.1.7. Of course, if V is a vector space, then an orientation
on V canonically determines an orientation on the dual space V˚ by
declaring that the basis dual to a positive basis is itself positive. ♦

We are almost there. The tangent space is a vector space and
n-forms act naturally on tangent vectors, this seems likely to be
the right place to define an orientation for a manifold, at least
pointwise. As usual, one does need to make sure that all the local
orientations just defined on the tangent bundle are gluing together
coherently.
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Remark 8.1.8. By Lemma 8.1.5 each chart pU, φq in the atlas deter-
mines an orientation at each point of its domain, which will be
positive if detpdϕq ą 0 and negative otherwise. This procedure can
be repeated for each chart in an atlas for M. Thus, in order to get a
globally consistent ordering, we need to worry about the overlaps
between charts. ♦

Definition 8.1.9. We call an atlas A “ tpUi, ϕiqu oriented if all the
charts have the same orientation, that is, if detpDϕijq ą 0 for all the
transition functions ϕij :“ ϕi ˝ ϕ´1

j .
A manifold M with an oriented atlas is called oriented manifold.

If an orientation exists, we say tht M is orientable, in this case we
call the equivalence class of atlases with the same orientation an
orientation. Otherwise we say that the manifold is nonorientable.

♦

An immediate consequence of Lemma 8.1.5 is that if a manifold
is orientable, there are exactly two different orientations.

Definition 8.1.10. Given an orientation on a manifold, we say that
any chart from the same equivalence class of atlases is positively
oriented, while we call all other charts negatively oriented. ♦

If M is connected, as for vector spaces, an orientation on ΛnpMq
determines the orientation of the manifold. If it is not connected, then we need to

deal with each connected component
separately.Theorem 8.1.11. Let M be a n-dimensional smooth manifold. A nowhere-

vanishing n-form ω P ΩnpMq uniquely determines an orientation. For
this reason, nowhere vanishing n-forms on a smooth n-manifold are called
volume forms.

Proof. Let ϕ and ψ be two different charts with overlapping do-
mains (otherwise there is nothing to check) and with local co-
ordinates pxiq and pyiq respectively. Define the transition map
σ :“ ψ ˝ ϕ´1, so that py1, . . . , ynq “ φpxq. Locally,

ω “ ωpxqdx1 ^ ¨ ¨ ¨ ^ dxn

“ σ˚p rωpyqdy1 ^ ¨ ¨ ¨ ^ dynq

“ prω ˝ σqpxqdetpDσ|xqdx1 ^ ¨ ¨ ¨ ^ dxn,

where we used Proposition 7.4.9 and Theorem 7.4.4. Thus, ωpxq and
rωpyq have the same sign if and only if detpDσ|xq ą 0.

Definition 8.1.12. Let M be a n-dimensional smooth manifold.
If pU, ϕq is a chart with local coordinates pxiq such that, in the
coordinate representation, the volume form ω “ ωpxqdx1 ^ ¨ ¨ ¨ ^ dxn

with ωpxq ą 0, then we say that the chart ϕ is positively oriented
with respect to ω, otherwise we say that it is negatively oriented.

♦

Remark 8.1.13. In fact, this definition can be immediately extended
to vector bundles. Given a real vector bundle π : E Ñ M, an
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orientation of E means that for each fiber Ep, there is an orientation
of the vector space Ep such that each trivialization map

ϕU : π´1pUq Ñ U ˆRn,

with Rn equipped with its standard orientation, is fiberwise
orientation-preserving.

Otherwise said, we can cover the
manifold by (continuous) local frames
whose local trivializations are orienta-
tion preserving.With this definition, the orientability of M coincides with the

orientability of the bundle3 TM Ñ M. ♦ 3 Note that TM as a manifold on its
own right is always orientable, even if
M is not. Cf. Exercise 8.1.19

Example 8.1.14. The euclidean space Rn is orientable with orientation
given by the continuous global frame B

Bri , . . . , B
Brn . ♦

Example 8.1.15. Let M “ S1 Ă R2. This is an orientable manifold
and we can find an orientation using the stereographic projections
from Exercise 1.2.33. Let U1 “ S1ztNu and U2 “ S1ztSu, with the
associated diffeomorphisms

ϕ1ppq “
2p1

1´ p2 and ϕ2ppq “
2p1

1` p2 .

Let’s pick a pointwise orientation by choosing as basis Xp P Tp M
given by4 Xp “ ´p2 B

Bp1 ` p1 B
Bp2 . Then, on U1, 4 We are not making up anything, if

you look carefully this is just Xp “ Bθ .

pϕ1q˚pXq “ pdϕ1qppXq

“

´

2
1´p2

2p1

p1´p2q2

¯´

´p2

p1

¯

B

Bx

ˇ

ˇ

ˇ

ϕ1ppq

“
2

1´ p2
B

Bx

ˇ

ˇ

ˇ

ϕ1ppq
,

and 2
1´p2 ą 0. If we perform the same computation on U2, however,

we obtain pϕ2q˚pXq “ ´ 2
1`p2

B
Bx

ˇ

ˇ

ˇ

ϕ2ppq
, with the negative coefficient

´ 2
1`p2 ă 0 (check!), corresponding to the opposite orientation

on U2. Of course, in this case, not all is lost: by choosing rϕ2ppq “
ϕ2p´p1, p2q we obtain prϕ2q˚pXq “ 2

1`p2
B
Bx

ˇ

ˇ

ˇ

rϕ2ppq
with the positive

coefficient 2
1`p2 ą 0 (check!), which shows that Xp defines an

orientation on the whole S1. ♦

Exercise 8.1.16. Check that the Jacobian determinant detpDpϕ2 ˝

ϕ´1
1 qq of the transition chart from Exercise 8.1.15 is negative, while

detpDprϕ2 ˝ ϕ´1
1 qq is positive.

Exercise 8.1.17. Consider the open Möbius strip M, a variation
of Example 1.5.2 defined as the quotient of R ˆ p´1, 1q via the
identification px, yq „ px` 1,´yq, and denote π : Rˆ p´1, 1q Ñ M
the corresponding projection map. The Möbius strip inherits the
differentiable structure from R2, so we need to show that there is
no orientable atlas which is also compatible with the differentiable
structure on M.

1. Define the map σ : R ˆ p´1, 1q Ñ R ˆ p´1, 1q by σpx, yq “
px` 1,´yq and show that π ˝ σ “ σ.

2. If ν P Ω2pMq define f by π˚ν “ f ω where ω is an area5 form on 5 I.e. a volume 2-form.

Rˆ p´1, 1q. Show that f px` 1, yq “ ´ f px, yq.
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3. Conclude that f must vanish at some point of Rˆ p´1, 1q, which
implies that M is nonorientable.

Exercise 8.1.18. Let f P C8pRn`1q with 0 as a regular value. Show
that f´1p0q is an orientable submanifold of Rn`1.

Exercise 8.1.19 ([homework 4]). Let M be a smooth manifold without
boundary and π : TM Ñ M its tangent bundle. Show that if tU, φu

is any atlas on M, then the corresponding6 atlas on TU is oriented. 6 Remember Theorem 2.6.3.

This, in particular, proves that the total space TM of the tangent
bundle is always orientable, regardless of the orientability of M.

What about orientation on the boundaries? Let’s first look
at the tangent space.

Let M be a smooth n-manifold with boundary and p P BM. Then,
we have three types of possible vectors:

1. tangent boundary vectors: X P TppBMq Ă Tp M tangent to the
boundary, forming an pn´ 1q-dimensional subspace of Tp M;

2. inward pointing vectors: X P Tp M such that X “ ϕ´1
˚ pYq where

ϕ´1 : V Ă Hn Ñ M and Y is some vector Y “ pY1, . . . , Ynq with
Yn ą 0;

3. outward pointing vectors: X P Tp M such that ´X is inward
pointing.

Thus, a vector field along BM is a function X : BM Ñ Tp M (not to
TpBM).

Proposition 8.1.20. On a smooth manifold M with boundary, there is a
smooth outward pointing vector field along BM.

Proof. Pick an open cover of BM with coordinate charts tpUα, px1
α, . . . , xn

αq |

α P Iu. Then Xα “ ´
B
Bxn

α
on Uα X BM is smooth and outward point-

ing. Choose a partition of unity tρα | α P Iu on BM subordinate to
the open cover tUα X BM | α P Iu. Then X :“

ř

αPI ραXα is a smooth
ouwtard pointing vector field along BM.

We can use this to introduce a notion of induced orientation on
BM.

Proposition 8.1.21. Let M be an oriented n-manifold with boundary. If
ω is a volume form on M and X a smooth outward-pointing vector field
on BM, then ιXω is a smooth nowhere-vanishing pn´ 1q-form on BM and,
thus, BM is orientable.

Proof. Since both ω and X are smooth, the contraction ιXω is also
smooth. We need to check that it cannot vanish.

Assume that ιXω does vanish at some point p P BM, that
is, pιXqpv1, . . . , vn´1q “ 0 for all v1, . . . , vn´1 P TppBMq. Let
te1, . . . , en´1u be a basis for TppBMq. Then tXp, e1, . . . , en´1u is a
basis for Tp M such that

ωppXp, e1, . . . , en´1q “ pιXωqppe1, . . . , en´1q “ 0.
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Then, by Exercise 7.2.11, ωp ” 0 reaching a contradiction.
Therefore, ιXω is non-vanishing on BM which means that BM is

orientable.

Exercise 8.1.22. Let M be an oriented manifold with boundary, ω

an orientation for M and X a smooth outward pointing vector field
along BM. Prove the following statements.

1. It σ is another orientation form on M, then σ “ f ω for some
everywhere positive f P C8pMq. Prove that ιXσ “ f ιXω on BM.

2. Show that if Y is another smooth outward pointing vector field
along BM, then there is an everywhere positive f P C8pMq such
that ιYσ “ f ιXω on BM.

Note that if pUi, ϕiq is a positively oriented atlas on M, then
pUi|BM, ϕi|BMq can be negatively oriented. Let ω “ dx1 ^ ¨ ¨ ¨ ^ dxn be
a positive volume form on M on one of the charts, then ´ B

Bxn is an
outward pointing on BHn and we have7 7 Recall Lemma 7.3.2.

ι´B{Bxnpdx1 ^ ¨ ¨ ¨ ^ dxnq “ ´ιB{Bxnpdx1 ^ ¨ ¨ ¨ ^ dxnq

“ ´p´1qn´1dx1 ^ ¨ ¨ ¨ ^ dxn´1 ^ ιB{Bxnpdxnq

“ p´1qndx1 ^ ¨ ¨ ¨ ^ dxn´1.

Thus, for example, the boundary orientation on BH1 “ t0u is ´1,
the one on BH2 is the standard orientation on R given by dx1 and
the one on BH3 is ´dx1 ^ dx2, which is the clockwise orientation in
the px1, x2q-plane, etc.

Example 8.1.23. The closed interval ra, bs Ă R with standard eu-
clidean coordinate x has a standard orientation given by the vector
field B

Bx . Therefore8, the boundary orientation at b is ι B
Bx
pdxq “ `1 8 Recall the charts in Example 1.5.7.

and the one at a is ι
´ B
Bx
pdxq “ ´1. ♦

Exercise 8.1.24. Orientability is common but there are many examples
of nonorientable manifolds.

1. Prove that Sn is orientable.
Hint: there is a small exercise above that can help a lot here.

2. Prove that any Lie group is orientable.

3. Prove that RPn is orientable if and only if n is odd.
Hint: the antipodal map x ÞÑ ´x on Sn can help.

8.2 Integrals on manifolds

To avoid unnecessary complications, we will only integrate n-
forms with compact support. Armed with our experience with line
integrals, fond memories of multivariable analysis and our recent
discoveries, we are finally ready to talk about integrals. Let’s keep
things simple and go one step at a time.
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Definition 8.2.1. Let M be a smooth n-manifold and pU, ϕq be a
chart from an oriented atlas of M. If ω P ΩnpMq be a n-form with
compact support in U, we define the integral of ω as

ż

M
ω “

ż

U
ω :“

ż

ϕpUq
ϕ˚ω :“

ż

Rn
ωpxqdx1 ¨ ¨ ¨ dxn,

where the last is the usual Riemannian integral on Rn and, on the
chart,

ϕ˚ω “ ωpxqe1 ^ ¨ ¨ ¨ ^ en P ΩnpHnq.

For convenience we may write dnx :“ dx1 ¨ dxn.
If M is an oriented 0-dimensional manifold and f is a 0-form

(that is, a smooth function) than we defined the integral to be the
sum

ż

M
f “

ÿ

pPM

˘ f ppq,

where we take the positive sign at points where the orientation is
positive and the negative sign at points where it is negative. The
compactness assumption here implies that there are only finitely
many nonzero terms in the sum. ♦

To make sure that this definition makes sense, let’s show that the
integral is well-defined, that is, up to orientation it does not depend
on the chosen chart.

Lemma 8.2.2. Suppose ω P ΩnpMq with compact support supp ω Ă

U XV, where pU, ϕq and pV, ψq are two positively oriented charts on the
oriented manifold M. Then, the value of the integral

ş

M ω is independent
on the chosen chart.

Proof. Let ϕ and ψ be two charts on U with the same orientation
and local coordinates x and y, let σ “ ψ ˝ ϕ´1 be the corresponding
transition map. Then,

ż

ϕpUq
ϕ˚ω “

ż

ωpxq dnx

“

ż

σ˚p rωpyqdnyq

p‹q
“

ż

p rω ˝ σqpxqdetpDσ|xqdnx

p♣q
“

ż

rωpyqdny

“

ż

ψpVq
ψ˚ω,

where ωppq and rωpqq are the local expressions for ω in the two
coordinate charts, in p‹q we applied Proposition 7.4.9 and in p♣q
we used the classical euclidean change of variables.

To be able to integrate charts which are not supported in the
domain of a single chart, we now need the help of a partition of
unity.
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Definition 8.2.3. Let M be a smooth oriented manifold and A “

tpUi, ϕiqu a positively oriented atlas. If ω P ΩnpMq has compact
support, then the integral of ω is defined as

ż

M
ω :“

N
ÿ

j“1

ż

Uj

ρjω, (8.1)

where tρj | j “ 1, . . . , Nu is a partition of unity subordinate to a
finite cover of supp ω by charts tUju and such that

řN
j“1 ρjppq “ 1

for p P supp ω. ♦ The terms on the right hand side
of (8.1) are all integrals as in Defini-
tion 8.2.1.The definition above makes sense only if the value of the integral

is independent of the chosen partition, but with the help of the
previous lemma this is easily checked.

Lemma 8.2.4. The value of
ş

M ω is independent from the choice of the
atlas and the choice of partition of unity.

Proof. The independence from the choice of the charts was demon-
strated in Lemma 8.2.2. Let trρju be another partition of unity
adapted to a (possibly different) finite cover by charts tpVj, psijqu

with
ř

rρjppq “ 1 for p P supp ω. Then we have,

ÿ

j

ż

ϕjpUjq
pϕjq˚

`

ρjω
˘

“
ÿ

j

ż

ϕjpUjq
pϕjq˚

˜

ρj
ÿ

k

rρkω

¸

“
ÿ

j,k

ż

φjpUjXVkq
pϕjq˚

`

ρjrρkω
˘

p♠q
“

ÿ

j,k

ż

ψkpUjXVkq
pψkq˚

`

ρjrρkω
˘

“
ÿ

k

ż

ψkpUjXVkq
pψkq˚

¨

˝ρjrρk
ÿ

j

ρjω

˛

‚

“
ÿ

k

ż

ψkpVkq
pψkq˚ prρkωq ,

where in p♠q we used Lemma 8.2.2.

This result can be nicely formalized as follows.

Theorem 8.2.5 (Global change of variable). Suppose M and N are
oriented n-manifolds and F : M Ñ N is an orientation preserving
diffeomorphism. If ω P ΩnpNq has compact support, then F˚ω has
compact support and the following holds

ż

N
ω “

ż

M
F˚ω.

Proof. First of all, observe that supppF˚ωq “ F´1psupppωqq which is
compact since manifolds are Hausdorff spaces and F is continuous.

Let now tpUi, ϕiqu be an atlas of a positively oriented chart on
M and tρiu a subordinate partition of unity. Then, tpFpUiq, ϕi ˝

F´1qu is an atlas of positively oriented charts for N and tρi ˝ F´1u
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is a partition of unity subordinate to the covering tpFpUiqu. By
Lemma 8.2.4 we have,

ż

M
F˚ω “

ÿ

i

ż

M
ρiF˚ω

“
ÿ

i

ż

Rn
pϕiq˚pρiF˚ωq

“
ÿ

i

ż

Rn
pϕiq˚pF´1q˚pρi ˝ F´1qω

“
ÿ

i

ż

Rn
pϕi ˝ F´1q˚pρi ˝ F´1qω

“

ż

N
ω,

which shows the commutativity of the following diagram

ΩnpMq ΩnpNq

R

F˚

ş

M

F̊

ş

N

and concludes the proof.

This justifies the following definition.

Definition 8.2.6 (Integral on submanifolds). Let M a smooth m-
manifold, N an oriented smooth n-manifold and J : N Ñ M a
smooth map9. If ω P ΩmpMq has compact support, we define 9 If N Ă M is a submanifold, then

J : N ãÑ M is just the inclusion map.
ż

N
ω :“

ż

N
J˚ω.

In particular, if M is compact, oriented, smooth m-manifold, ω is a
pm´ 1q-form on M and i : BM ãÑ M is the inclusion of the boundary
in M, we can interpret unambiguously

ż

BM
ω :“

ż

BM
i˚ω,

where partialM is understood to have the induced orientation. ♦

Example 8.2.7. Let M “ ra, bs Ă R equipped with the canonical global
atlas tpM, idR |Mqu and f P C80 pMq, i.e., smooth with compact
support10. Then, d f P Ω1pMq and supp d f Ă supp f is compact as 10 Which does not mean f paq “ f pbq “

0 since ra, bs is itself compact.well and we have
ż

M
d f “

ż b

a

B f
Bx

dx “ f pbq ´ f paq “
ż

BM
f .

♦

Exercise 8.2.8 (Fubini’s theorem [homework 4]). Let Mm and Nn be
oriented manifolds. Endow M ˆ N with the product orientation,
that is11, if πM : M ˆ NtoM and πN : M ˆ N Ñ N are the 11 An equivalent way is to say that if

v1, . . . , vm P Tp M and w1, . . . , wn P Tq N
are positively oriented bases in the
respective spaces, then

pv1, 0q, . . . , pvn, 0q, p0, w1q, . . . , p0, wnq P Tpp,qqMˆN

is defined to be a positively oriented
basis in the product.

canonical projections on the elements of the product, and ω and η
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respectively define orientations on M and N, then the orientation
on Mˆ N is defined to be the orientation defined by π˚Mω^ π˚Nη.

If α P ΩmpMq and β P ΩnpNq have compact support, show that

αˆ β :“ pπ˚Mαq ^ pπ˚N βq

has compact support and is a pm` nq-form on Mˆ N. Then, prove
Fubini’s theorem:

ż

MˆN
αˆ β “

ˆ
ż

M
α

˙ˆ
ż

N
β

˙

.

Exercise 8.2.9. Let te1, . . . , en`1u be the standard basis of Rn`1 and
Ωn`1 :“ e1 ^ ¨ ¨ ¨ ^ en`1 the induced volume form. On Sn define
ωn P ΩnpSnq by

ωnpsqpv1, . . . , vnq “ Ωn`1ps, v1, . . . , vnq

for s P Sn and v1, . . . , vn P TsS
n.

In this exercise we are going to define a canonical volume ωn on
Sn and prove that

ż

Sn
ωn “

2m`1πn

p2m´ 1q!
, if n “ 2m, m ě 1,

and
ż

Sn
ωn “

2πm`1

m!
, if n “ 2m` 1, m ě 0.

1. Show that ωn is a volume form on Sn. In fact it is the so-called
standard volume form on Sn.

2. Let f : R` ˆRn`1zt0u Ñ Rn`1zt0u be given by f pt, sq “ ts,
where R` is defined to be the set tt P R | t ą 0u. Show that if
R` is oriented by dt, Sn is oriented by ωn and Rn`1 is oriented
by Ωn`1, then the Jacobian determinant detpD f pt, sqq “ tn.
Conclude that f is orientation preserving.

3. Let M be the annulus M “ tx P Rn`1 | 0 ă a ă }x} ă b ă 8u.
Consider the restriction f |pa,bqˆSn and show that for x P Rn`1,

f ˚
´

e´}x}
2
Ωn`1

¯

“ tne´t2
pdtˆωnq,

where dtˆωn is a product volume form as in Exercise 8.2.8.

4. Show that

ż

Rn`1
e´}x}

2
Ωn`1 “

ż b

a
tne´t2

dt
ż

Sn
ωn.

5. Consider the limits a Ñ 0` and b Ñ `8 and show that

ż 8

0
tne´t2

dt
ż

Sn
ωn “

ˆ
ż `8

´8

e´u2
du

˙n`1

.
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6. Assume to know that
ş8

´8
e´u2

du “
?

π. Show that

ż 8

0
t2me´t2

dt “
p2m´ 1q!!

?
π

2m`1 and
ż 8

0
t2m`1e´t2

dt “
m!
2

,

and use them to deduce the required formulas for
ş

Sn ωn.

Remark 8.2.10. The integral defined in this section can be extended
rather immediately to measurable functions. Let ω P ΩnpMq be a
positive volume form and let f : M Ñ r0,8q be measurable. Then
one can define

ż

M
f ω “

ÿ

i

ż

ϕipUiq
pϕiq˚pρi f ωq

“
ÿ

i

ż

ϕipUiq
pρi f ˝ ϕ´1

i qpϕiq˚ω

“
ÿ

i

ż

ϕipUiq
pρi f ˝ ϕ´1

i qpxqωpxqdnx,

where the last integral is a Lebesgue integral on Rn. One then calls
f : M Ñ R integrable, saying f P L1pM, ωq, if

ş

M | f |ω ă 8 and
defines its integral as

ş

M f ω :“
ş

M f`ω´
ş

M f´ω, where f˘ denote
the positive and negative components of f as in the euclidean
case. ♦

8.3 Stokes’ Theorem

Stokes’ theorem states that if ω is an pn´ 1q-form on an orientable
n-manifold M, then the integral of dω over M equals the integral of
ω over BM, generalising our observations for the line integral. This
is a beautiful and very important results, with deep consequences.
The most immediate ones are the classical theorems of Gauss,
Green and Stokes, which are just a special cases of this result.

We are going to state the theorem, discuss some of its conse-
quences and then give its proof.

Theorem 8.3.1. Let M be an oriented n-manifold with boundary and let
ω P Ωn´1pMq be compactly supported. Then,

ż

M
dω “

ż

BM
ω. (8.2)

Here, BM inherits the orientation from
M as in Definition 8.2.6, ω on the
right-hand side is interpreted as i˚ω
where i : BM ãÑ M is the inclusion of
the boundary and if BM “ H then the
right-hand side is interpreted as 0.

On a similar note, the fact that ddω “
0 for every ω P ΛnpMq corresponds
to the fact that a boundary has no
boundary, that is BBM “ H for any M:
indeed, for any ω P ΛnpMq one has

0 “
ż

M
ddω “

ż

BM
dω “

ż

BBM
ω.

Corollary 8.3.2. Let M be an oriented n-manifold without boundary and
let ω P Ωn´1pMq be compactly supported. Then,

ż

M
dω “ 0.

That is, the integral of a compactly supported exact form over a manifold
without boundary vanishes.
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Corollary 8.3.3. Let M be a compact oriented n-manifold with boundary
and let ω P Ωn´1pMq be closed. Then,

ż

BM
ω “ 0.

That is, the integral of a closed form on the boundary of a compact mani-
fold vanishes.

Corollary 8.3.4 (Green’s theorem). Suppose D is a compact regular
domain in R2 and P, Q P C8pDq, then

ż

D

ˆ

BQ
Bx
´
BP
Bx

˙

dxdy “
ż

BD
pPdx`Qdyq.

Corollary 8.3.5. Let M a smooth m-manifold, N an oriented submanifold
of dimension n. Let J : N Ñ M be a smooth map12. If ω P Ωn´1pMq has 12 If N Ă M is a submanifold, then

J : N ãÑ M is just the inclusion map.compact support, we define
ż

N
dω “

ż

BN
ω,

where BN inherits the orientation from N.

Remark 8.3.6. The requirement of compactness in Stokes’ theorem
may seem there just to avoid technicalities involving the conver-
gence of the integral, however, it also avoid subtleties due to the
boundary as shown in the following example. Let M “ pa, bq, thus
BM “ H, and f pxq “ x. Then.

b´ a “
ż b

a
d f ‰

ż

BM
f “ 0.

But this does not contradict Stokes’ theorem since f is not com-
pactly supported.

If you close the interval, then f becomes with compact support
and we are back in the case of Example 8.2.7 where we had already
seen Stokes’ theorem. ♦

Proof. Part I: euclidean boundary case. Let’s start with a
special case: suppose M “ Hn itself. Since ω has compact sup-
port, there is R ą 0 such that supp ω Ă A “ r´R, Rsn´1 ˆ r0, Rs
is enclosed within the rectangle A. We can write ω in standard
coordinates to get

ω “

n
ÿ

j“1

ω jdx1 ^ ¨ ¨ ¨ ^xdx
j
^ ¨ ¨ ¨ ^ dxn

where the hat means that the corresponding element dxj is omitted.
Therefore13, 13 Exercise: explicitly write down the

steps of the computation.

dω “

n
ÿ

j“1

p´1qj´1 Bω j

Bxj dx1 ^ ¨ ¨ ¨ ^ dxn,
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and we end up with the integral
ż

Hn
dω “

n
ÿ

j“1

p´1qj´1
ż

A

Bω j

Bxj dx1 ^ ¨ ¨ ¨ ^ dxn

“

n
ÿ

j“1

p´1qj´1
ż R

0

ż R

´R
¨ ¨ ¨

ż R

´R

Bω j

Bxj pxqdx1 ¨ ¨ ¨ dxn.

The last are genuine euclidean integrals and we can change the
order of integration in each term to always integrate the xj term
first. The usual euclidean fundamental theorem of calculus then, for
the terms with i ‰ n, implies
ż

Hn
dω “

n
ÿ

j“1

p´1qj´1
ż R

0

ż R

´R
¨ ¨ ¨

ż R

´R

Bω j

Bxj pxqdx1 ¨ ¨ ¨ dxn

“

n
ÿ

j“1

p´1qj´1
ż R

0

ż R

´R
¨ ¨ ¨

ż R

´R

Bω j

Bxj pxqdxjdx1 ¨ ¨ ¨ xdxj ¨ ¨ ¨ dxn

“

n
ÿ

j“1

p´1qj´1
ż R

0

ż R

´R
¨ ¨ ¨

ż R

´R
ω jpxq

ˇ

ˇ

ˇ

xi“R

xi“´R
dx1 ¨ ¨ ¨ xdxj ¨ ¨ ¨ dxn

“ 0

since R is larger than the support of ω at each coordinate. The only
term that may not be zero is the i “ n one. In that case, for the same
reasons,

ż

Hn
dω “ p´1qn´1

ż R

´R

ż R

´R
¨ ¨ ¨

ż R

0

Bωn

Bxj pxqdxndx1 ¨ ¨ ¨ dxn´1

“ p´1qn´1
ż R

´R

ż R

´R
¨ ¨ ¨ωnpxq

ˇ

ˇ

ˇ

xn“R

xn“0
dxndx1 ¨ ¨ ¨ dxn´1

“ p´1qn´1
ż R

´R

ż R

´R
¨ ¨ ¨ωnpx1, . . . , xn´1, 0qdx1 ¨ ¨ ¨ dxn´1.

We now need to compare this with the right-hand side of (8.2). To
this end, compute he following
ż

BHn
ω “

n
ÿ

j“1

ż

AXHn
ωjpx1, . . . , xn´1, 0qdx1 ^ ¨ ¨ ¨ ^xdx

j
^ ¨ ¨ ¨ ^ dxn.

Since xn vanishes on BHn, the pullback of dxn to the boundary is
zero, and thus the only surviving term in the sum is the last one,
that is,

ż

BHn
ω “

ż

AXHn
ωnpx1, . . . , xn´1, 0qdx1 ^ ¨ ¨ ¨ ^ dxn´1. (8.3)

Since coordinates px1, . . . , xn´1q are positively oriented for Hn when
n is even and negatively oriented when n is odd, we obtain the
equality of (??) and (8.3).

Part II: euclidean case. If M “ Rn the considerations above
apply without the need to make an exception for the case i “ n, so
all the terms vanish on the left-hand side of (8.2) while the right-
hand side is trivially zero due to the empty boundary.
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Part III: “arbitrary” M but supp ω is contained in a sin-
gle chart. Let pU, ϕq denote a chart such that supp ω Ă U.
Without loss of generality assume that ϕ is a positively oriented
boundary chart, then

ż

M
dω “

ż

Hn
pφ´1q˚dw

“

ż

Hn
d
´

pφ´1q˚ω
¯

p♠q
“

ż

BHn
pφ´1q˚w

“

ż

BM
w,

where in the p♠q step we applied the computations above and
where BHn has the orientation induced by Hn. For a negatively
oriented smooth boundary chart, the computation applies with an
extra negative sign on each side of the equation. For an interior
chart, we get the same computations with Rn in place of Hn.

Part IV: “arbitrary” M and ω. Let finally ω P Ωn´1pMq with
compact support. Without loss of generality, let tpUi, ϕiq | i P Iu
be a finite cover of supp ω by positively oriented charts and tρiu a
subordinate partition of unity with

ř

ρippq “ 1 for all p P supp ω.
For convenience, set ωi :“ ρiω. Then, by applying the previous
arguments for each i we get

ż

BM
ω “

ÿ

i

ż

BM
ωi “

ÿ

i

ż

M
dpρiωq

“
ÿ

i

ż

M
pdρi ^ω` ρi dωq

“

ż

M
d

˜

ÿ

i

ρi

¸

^ω`

ż

M

˜

ÿ

i

ρi

¸

dω

“ 0`
ż

M
dω,

concluding the proof.

Exercise 8.3.7. Let Dn :“ tx “ px1, . . . , xnq P Rn | }x} ď 1u denote the
unit disk in Rn centred at 0. Recall that BDn “ Sn´1.

1. Compute
ş

S1 ν where ν is the following 1-form on R2: ν “

´x2dx1 ` x1dx2.

2. Compute
ş

S2 ω where ω is the following 2-form on R3: ω “

´x1dx1 ^ dx3 ´ x2dx1 ^ dx3 ` x3dx1 ^ dx2.

3. Show that η and ω above are closed but not exact (as differential
forms on S1 and S2 respectively).

Hint: if you look carefully, you may notice that you don’t really need to write
anything down in coordinates.
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Example 8.3.8. Consider the annulus M “ tpx, yq P R2 | 1{2 ď
x2 ` y2 ď 1u and the 1-form ω “

´ydx`xdy
x2`y2 “ dθ where px, yq “

pρ cos θ, ρ sin θq.
Then dω “ 0 and therefore

ş

M dω “ 0. Furthermore,
ż

BM
ω “

ż

x2`y2“1
ω`

ż

x2`y2“1{2
ω

“

ż 2π

0
dθ ´

ż 2π

0
dθ

“ 2π´ 2π “ 0.

An important consequence of this is that while locally ω is the
differential of the angle function θ, this cannot be exact on all M:
indeed, if ω “ dν, we would have

2π “

ż

S1
ω “

ż

S1
dν “

ż

BS1
ν “ 0.

Moreover, since 2π “
ş

S1 ω, Stokes’ theorem also implies that S1

is not the boundary of a compact regular domain in R2zt0u. ♦

In fact this example is a particular case of the following corollary
of Stokes’ theorem.

Corollary 8.3.9. Suppose M is a smooth manifolds with or without
boundary,S Ď M is an oriented compact smooth k-submanifold (without
boundary) and ω is a closed k-form on M. If

ş

S ω ‰ 0 then the following
are true:

1. ω is not exact on M;

2. S is not the boundary of an oriented compact smooth submanifold with
boundary in M.

Exercise 8.3.10. Prove this corollary.
Hint: look at the previous corollaries.

Exercise 8.3.11. Let F : M Ñ N be a diffeomorphism between smooth
manifolds and let ω P ΩnpNq be compactly supported. Then,

ż

M
F˚ω “

ż

N
ω.

Corollary 8.3.12. Let F : M Ñ M be a diffeomorphism and ω P ΩnpMq
an invariant volume form, that is, F˚ω “ ω. Then, for all compactly
supported smooth functions f P C80 pMq, the following holds

ż

M
f ω “

ż

M
p f ˝ Fqω.

Proof. Follows form the previous exercise by observing

F˚p f ωq “ p f ˝ FqF˚ω “ p f ˝ Fqω.

This corollary has deep consequences in classical mechanics,
which I am going to teach in the master and you are welcome to
attend!





A
TODO

• Add proof of fixed point thm using Stokes

• Mention Hodge star operator and maybe Laplace-Beltrami after
volume forms

• May be worth adding plenty more commutative diagrams when
we use pullbacks and pushforwards

• Add exercise on Liouville theorem for hamiltonians in symplec-
tic geometry

• Add exercise on fixed-points for gradient flows and Hamiltonian
flows

• More computational exercises





B
Frobenius theorem

Integrable and nonintegrable distributions, Contact geometry,
Frobenius theorem.





C
Vector bundles and connections

Hopefully we can cut on differential forms since they were treated
in multivariable analysis and get to this.
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