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Introduction

At the entry for Mathematical analysis, our modern source of truth

— Wikipedia - says

Mathematical analysis is the branch of mathematics dealing with
limits and related theories, such as differentiation, integration,
measure, infinite series, and analytic functions.

These theories are usually studied in the context of real numbers
and functions. Analysis evolved from calculus, which involves the
elementary concepts and techniques of analysis. Analysis may be
distinguished from geometry; however, it can be applied to any
space of mathematical objects that has a definition of nearness (a
topological space) or specific distances between objects (a metric
space).

IN THIS SENSE, our course will focus on generalizing the concepts
of differentiation, integration and, up to some extent, differen-

tial equations on spaces that are more general than the standard
Euclidean space.

This said, the Euclidean space R" is the prototype of all mani-
folds: it won't just be our simplest example, we will see that locally
every manifold looks like a Euclidean space.

Euclidean spaces, and the Riemannian charts that you encoun-
tered in the Geometry course, have a very strong property: they
can be described with a set of global coordinates. Even though this
means that all computations are explicit, it does make it harder to
distinguish intrinsic* concepts. Manifolds will force our hand to
work in a coordinate-free setting. We will see that this will unleash
a surprising power that will allow us to lay the foundation for a lot
of the mathematics that will come in the rest of the curriculum.

These notes will focus on fundamental methods of differential
geometry, in particular we will discuss manifolds, differential forms,
integration, geometry of submanifolds, real and complex vector
bundles, connections. Throughout the course and the text, I will try
to give particular emphasis on the usefulness of these topics in the
mathematical theories of classical and quantum mechanics.

If the time permits it, we will give a brief tour of Riemannian
metrics and the notion of curvature or of distributions and Frobe-
nius theorem, depending on the preferences expressed in class. This
part of the material will not necessarily be part of the lecture notes?.

The course relies heavily on your knowledge of linear and multi-
linear algebra, multivariable analysis3 and dynamical systems. This

' Le. independent from the choice of
coordinates.

*1 will update this paragraph, if
needed, in due course.

3 Make sure to review the material
of Multivariable Analysis before the
course begins


http://www.rolandvdv.nl/G20/
http://www.rolandvdv.nl/M19/
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should not come as a surprise: differential geometry and classical
mechanics were born together as unique discipline, part of mathe-
matical physics, before the various communities started diverging
on their own paths.

An old mathematical joke says that

differential geometry is the study of properties that are invariant
under change of notation.

Sadly, this is funny because it is alarmingly close to the truth* You +Cit. Lee [Lee13].

will soon see that different references use different notations. I'll
try to stick to the ones you used in the past courses when possible,
falling back to [Lee13] and [Tu11] and to my personal preference

when the latter disagree. In addition to the reference books,
these lecture notes have found deep

. inspiration from [Mer1g; Teu13; Hit14]
THESE LECTURE NOTES are by no means comprehensive. As a (all freely downloadable from the

reference you can use to the former course textbook [Tu11] or respective authors’ websites), and from
you can refer to [Lee13]: it is an incredibly good textbook and the book [AMRog].
contains all the material of the course and much more. I have
requested for [Tu11] book to be freely available via SpringerLink
using the university proxy but this will take some time to become
active. However, you can already freely access Lee’s book via the
University proxy on SpringerLink and it will provide a very good
and extensive reference for this and other future courses. The
book [Mcl13] is a nice compact companion that develops most of
this course concept in the specific case of R” and could provide
further examples and food for thoughts. A colleague recently
mentioned also [Lanoz]. I don’t know this book but from a brief
look it seems to follow a similar path as these lecture notes, so
might provide an alternative reference after all.

The idea for the cut that I want to give to this course was in-
spired by the online Lectures on the Geometric Anatomy of Theo-
retical Physics by Frederic Schuller, by the lecture notes of Stefan
Teufel’s Classical Mechanics course [Teu13] (in German), by the
classical mechanics book by Arnold [Arn89] and by the Analysis
of Manifold chapter in [Thio3]. In some sense I would like this
course to provide the introduction to geometric analysis that I wish
was there when I prepared my first edition of the Hamiltonian
mechanics course.

I am extremely grateful to Martijn Kluitenberg for his careful
reading of the notes and his useful comments and corrections.
Many thanks also to Huub Bouwkamp, Bram Brongers, Mollie Ja-
goe Brown, Nicolds Moro, Luuk de Ridder, Jordan van Ekelenburg,
Hanneke van Harten and Dave Verweg for reporting a number of
misprints and corrections.


https://link.springer.com/book/10.1007/978-1-4419-9982-5
https://www.video.uni-erlangen.de/course/id/242
https://www.video.uni-erlangen.de/course/id/242
https://www.mseri.me/lecture-notes-hamiltonian-mechanics/

Einstein summation convention

As will become clear soon, sums of the type Y, x’e; are unavoidably
appearing all over the place when working on manifolds. Therefore,
throughout these notes we will apply the Einstein summation

convention: if the same index> appears exactly twice in a monomial
term, once in the lower and once in the upper index position, then
that term is understood to be summed over all possible values of
that index®.

For instance, the expression

aijbf‘eiek

is a shorthand for
Z a'l b;‘ e;ey.
ik
In general, we will use lower indices for basis of vector spaces?,
and upper indices for the components of a vector with respect to a
basis®.
Note that an upper index “in the denominator” is regarded as a
lower index, so the following are to be considered equivalent:

Sl ol
— - Oxt oxt’

1

In fact, the expressions below are all equivalent and commonly
used in the differential geometry literature:

Zﬂi% = ai% = aiax; = ﬂiai.
i

5 For example, i in the summation

dix'e.

¢ Usually from 1 to the dimension of
the space in question.

7E.g., (e1,...,en) could be the standard

basis of R".

8E.g., the ith-coordinate xt of x e R™.

Since the coordinates of a point x € R"
are also its components with respect
to the standard basis (e, ..., e,), for
consistency they will be denoted
(x,...,x") with upper indices.






1
Manifolds

IN THE FIRST TWO YEARS of your mathematical education, you have

become familiar with calculus for functions and vector fields on IR”.

As I mentioned in the introduction, euclidean spaces will be our
prototypical example. However, the generalization of calculus to
curved spaces will require us to carefully isolate the mathematical
structures associated to the various concepts. This process will
help us to discover the rich geometric structure that lies at the
root of derivation and integration, which ultimately is of great
mathematical interest and has revolutionized mathematical physics.

If you think carefully, this abstraction step was already in the air.

Think about the concept of continuity.

1. (High school) A function f : R — IR is continuous if you
can draw it without lifting your pen from the page. Then, the
derivative f/(x) of f at a point x is just the slope of the function f
at the point x.

2. (Analysis) A function is continuous if its left and right limits at
each point exist and have the same value. Then, f : R — Ris
differentiable at a point x if the limit

0 =t £ =)

h—0

exists, and is continuously differentiable if x — f/(x) is itself a

continuous function.

3. (Multivariable analysis) You generalized the concepts to func-
tions with more than one variable. Continuity is practically
unchanged but, now, a continuous function f = (f1,..., f™) :
R" — R™ is differentiable at x = (x!,...,x") € R" if there is a
linear map* T : R” — R™ such that

p R = f0) = TH

(1.1)
|h|—0 I

The map Df(x) := T is the total derivative® of f and is nothing

1Thatis, T is a m x n matrix with
respect to some chosen basis.

2 This is sometimes called (total)
differential in multivariable analysis,
but this terminology may become a
source of confusion for us.
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else than the Jacobian matrix of f at the point x, that is

oft ofl
FIONE 0
Df(x) = : : . (1.2)
a m a m
P CONRERE G
The notion of continuous differentiability is unchanged3, and in 3 Note how the spaces are changing

though: since it takes values in the

. space of m x n matrices, the differential
functions. x + Df(x) is in fact a mapping of

Rl’l 5 ]Rn‘l Xn .

fact for m = n = 1 it coincides with the one you gave for real

4. (Metric and topological spaces) A map f : X — Y between
topological spaces is continuous if preimages of open sets under

f are open. More explicitly, f is continuous if for every open set
OcY, f~1(O) c X is an open set.

If X and Y are metric spaces, then this reduces to the definition
given above. But how can we make sense of differentiability in
this case?

If you have taken a course on calculus of variations, you know

that you can make sense of (1.1) and give a notion of differen-

tiability in the case X and Y are Banach spaces*. In general, a 4 Complete normed vector spaces.
topological space is not a vector space: there is no notion of

adding points and, least of all, one of linearity.

This is where differential geometry comes into play. The rest
of this chapter will be devoted to the introduction of smooth
manifolds, which are a class of topological spaces on which it is
possible to make sense of the notion of differentiation even though
they are not necessarily vector spaces. We will do this in two stages.
First we will introduce topological manifolds, which are topological

spaces that locally look like euclidean spaces. Then we will endow
topological manifolds with a so-called smooth structure. This will

allow us to define differentiability and smooth manifolds>. 5 These will just be topological mani-
Without further ado, let’s get started. folds with a smooth structure.

1.1 Topological manifolds

SINCE TO SPEAK OF CONTINUITY WE NEED TOPOLOGICAL SPACES,
it may be a good idea to remind you what they are and set some
notation. I will be very brief: if you need a more extensive reminder,
you can refer to Appendix A of either [Tu11] or [Lee13].

Definition 1.1.1. Let M be some set and 7 a set of subsets of M. A

pair (M, T) is a topological space® if ¢In such case the elements O € T of
T are all subsets of M called open
(i) M and J are open,ie, MeT and JeT; subsets and 7 is a topology on M.

(if) arbitrary unions of families of open subsets are open;

(iii) the intersection of finitely many” open subsets is open. 71t is equivalent to require the inter-
section of any two open subsets to be

O open. (Why?)



With topological spaces at hand, we can give a definition of
continuity and introduce a way to compare topological spaces.

Definition 1.1.2. A map f : X — Y between two topological spaces
(X, T)and (Y,U) is called:

e continuous if U € U implies that f~1(U) € T, that is, preimages

of open sets under f are open;

* homeomorphism if it is bijective® and continuous with continu-

ous inverse.

Definition 1.1.3. A topological space (X, 7) is Hausdorff if every

two distinct points admit disjoint open neighbourhoods. That is, for
every pair x # y of points in X, there exist open subsets Uy, Uy € T
such that x € Uy, y € Uy and Uy n Uy = . O

Topological spaces are extremely general, as such they may have
very inconvenient — someone would say nasty — properties. You can
see this for yourself with the following exercise.

Exercise 1.1.4. Let X be an arbitrary set. Show that 7 := {F, X}
defines a topology on X, called the trivial topology. Show that on
(X, T) any sequence in X converges to every point of X, and every
map from a topological space into X is continuous. *

Hausdorff spaces are still rather general: in particular, any metric
space with the metric topology? is Hausdorff.

Definition 1.1.5. A topological space (X, T) is second countable if

there exists a countable set B — T such that any open set can be
written as a union of sets in B. In such case, B is called a (count-
able) basis for the topology 7. O

Exercise 1.1.6 (Euclidean space R"). Let’s consider on IR" the metric
topology™® induced by the Euclidean metric 4 : R"” x R" — [0, +®),

d(x,y) := 4/ > (x' — y)2. Show that the topological space defined

on R”" is Hausdorff and second countable. *

Definition 1.1.7 (Topological manifold). A topological space™ M is
a topological manifold of dimension 7, or topological n-manifold, if

it has the following properties:
(i) M is a Hausdorff space;
(i) M is second countable;

(iii) M is locally euclidean of dimension #, that is™?, for any point

p € M there exist an open subset U — M with p € U, and open
subset V < R" and a homeomorphism ¢ : U — V

MANIFOLDS 7

8Le., a one to one correspondence.
Formally it means that it is both
injective and surjective.

The existence of a homeomorphism
between two spaces can be thought
as those spaces being equivalent in

a loose sense: they can be deformed
continuously into each other.

)
&
- €

9 Recall that in a metric space X the
metric topology is defined in the
following way: a set U < X is called
open if for any x € U there exists € > 0
such that U fully contains the ball of
radius € around x.

-9@

° See comment above.

" From now on, if we say that X is a
topological space we are implying that
there is a topology 7 defined on X.

Note that the finite dimensionality

is a somewhat artificial restriction:
manifolds can be infinitely dimen-
sional [Langg]. For example, the space
of continuous functions between mani-
folds is a so-called infinite-dimensional
Banach manifold.

> In words, any point p € M has a
neighbourhood that is homeomorphic
to an open subset of R".
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Notation 1.1.8. Reusing the notation of the definition above, we call
(coordinate) chart the pair (U, ¢) of a coordinate neighbourhood U

and an associated coordinate map'3 ¢ : U — V onto an open subset
V = ¢(U) < R" of R". Furthermore, we say that a chart is centred
atpe Uif ¢(p) = 0. O

Don’t get scared by the first two conditions: they are only
needed to make sure that there are not too few open sets (Haus-
dorff) and not too many (second countable).

Example 1.1.9. With our definition, a countable collections of points
with the discrete topology is a 0-dimensional topological manifold.
An uncountable collection of points with the discrete topology,

however, is not! O

Example 1.1.10. R" is trivially’# a topological manifold of dimension
n. More generally, any n-dimensional vector space’> is a topological
n-manifold. O

Exercise 1.1.11 (The line with two origins). Even though R" with
the euclidean topology is Hausdorff, being Hausdorff does not
follow from being locally euclidean. A famous counterexample is
the following?®.

Let Aj, Az be two points not on the real line R and define M :=
(R\{0}) u {A1, A2}. Induce a topology on M by taking as basis the
collection of all open intervals in R that do not contain 0, along
with all the sets of the form (—a,0) U {A1} v (0,4) and (—a,0) U
{Az} U (0,a), for a > 0.

1. Check that this forms a basis'” for a topology on M.
2. Define the two charts

if A;
g RO) U{A} —R, =1 "7 -1

0 ifx:A]-

Show that ¢; and @, are homeomorphisms with respect to the
aforementioned topology.

3. Show that M is locally euclidean and second countable but not
Hausdorff.

*

Example 1.1.12. The closed unit ball D;(0), where similarly as before
Dy(x):={zeR" | d(z,x) <1},

is not a topological manifold of dimension n. Can you see why? In
fact, this is an example of a more general concept of manifold with

boundary that we will introduce later in Chapter 1.5. O
Example 1.1.13. Consider the set M := {x e R? | |x!| = |x?|}

with the topology induced by IR?: this is not a topological manifold.

Since the number of connected components is invariant under
homeomorphisms, open connected neighbourhoods of (0,0) € M
cannot be'® homeomorphically mapped to open connected sets in
R. v

3 Or coordinate system.

4 Use Exercise 1.1.6 and the global
chart (R",idgn ), where idgn (x) := x is
the identity on IR".

> In fact, any open subset of a n-
dimensional vector space.

¢ See also [Lee13, Problem 1-1] and
[Tu11, Problem 5.1].

An

R_ ~ R,

Figure 1.1: A locally euclidean space

which is not Hausdorff.
7 That is, the basis elements cover M

and for any By, B, on the basis, for all
x € I = By n By, there is an element
Bs of the basis such that x € By and
B3 c I

A drawing of M is worth more than
a hundred words.
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THERE IS STILL AN ELEPHANT IN THE ROOM in need of a comment.
In our definition of topological manifolds, we are taking for granted
that the dimension of the manifold is well-defined, that is, if we
have two different charts, ¢; : U — R"and ¢, : U — R,

then necessarily m = n. Luckily this is true! The result is called
Invariance Domain Theorem and, since its proof requires advanced

There is a caveat, the theorem holds for
connected components of a manifold.
course. If you consider two distinct connected
components, you can indeed have
different dimensions for each of them.

concepts of algebraic topology, we will not pursue it further in the

1.2 Differentiable manifolds

Before entering into the details of new definitions, let’s recall what
will be the most important tools throughout the rest of the course.

Definition 1.2.1. Amap f : U — V between open sets U < R”
and V < R™isin C"(U, V) or of class C’, if it is continuously

differentiable r-times. It is called a C"-diffeomorphism™ if it is ' With this definition a homeomor-
phism is a C0-diffeomorphism

bijective and of class C" with inverse of class C". We say that f is
smooth, or of class C®, if it is of class C" for every r > 1. O
Theorem 1.2.2 (Chain rule). Let U  R" and V < R¥ be open sets and
f:U—RK g:V — R™ two continuously differentiable functions such
that f(U) < V. Then, the following holds.
(i) The function go f : U < R" — R™ is continuously differentiable
and its total derivative (1.2) at a point x € U is given by

D(ge f)(x) = D(g(f(x)) e Df(x).

(ii) Denote x = (x!,...,x") e Rtandy = (y',...,y*) € RF the

coordinates on the respective euclidean spaces and f = (f',..., f)
and ¢ = (g',...,¢™) the components of the functions. Then the

partial derivatives of g o f are given by Using Einstein’s notation, this could be
) i , written as
(')gz © f 5g’ (')fr . . a( i i T
: - =L <i< <j<n A8 of) y_ % of
Fa ) ; s g5, 1<i<m l<j<n S0 = S () 25 ()

Theorem 1.2.2 has some very deep consequences.

Exercise 1.2.3. Under the hypotheses of the previous theorem, prove
the following statements.

1. composition preserves the regularity: that is, the composition of
functions of class C' is itself a function of class C’;

2. if f: U c R" - V < R" is a diffeomorphism, then n = m.

Hint: is Df (x) an invertible matrix? If so, what is its inverse? *

Since differentiability is a local property and topological mani-
folds are locally like euclidean spaces, it seems reasonable to expect
that we can lift the definitions directly from R" using the charts to
obtain functions between euclidean spaces: for example, if we are
given a continuous map between two topological manifolds, we can
locally view it as a continuous map between two Euclidean spaces.
Generalizing this further, we could conceivably say that our original
map is differentiable if the local map is.
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As USUAL, THE DEVIL IS IN THE DETAILS: a topological manifold
is only homeomorphic to a Euclidean space, and a different choice
of homeomorphism might affect whether the local map is differen-
tiable or not. We need to take extra care to ensure that these lifted
definitions keep making sense when we use different charts that
overlap.

The solution is to introduce a little more structure to the prob-
lem.

Definition 1.2.4. We say that two charts (U, ¢1) and (U, ¢2) on a
topological manifold M are compatible if either Uy n Uy = & or if

the transition map>°
pro@y " ga(Uy nUz) — @1 (Uy 0 Uy)

is a smooth diffeomorphism. O

* Both the composition maps ¢1 o @, !
and @2 o ¢ ! are called transition
maps. Both maps are necessarily
homeomorphisms since ¢; and ¢, are.

With these at hand, let’s jump into the definition of smooth
manifolds.

Definition 1.2.5. A smooth atlas is a collection
A={py:Uy >V, | a €A}

of pairwise compatible charts that cover*' M.
Two smooth atlases are equivalent if their union is also a smooth
atlas. That is if any two charts in the atlases are compatible. O

Exercise 1.2.6. Show that the equivalence of atlases is really an
equivalence relation. *

Figure 1.2: Charts are compatible if
they coincide on the intersections of
their coordinate neighbourhoods.

2t Le. such that M = uyeaU,. One
calls the set {U, | « € A}, covering
M with open sets, an open cover of
M. Here A is some index set, not
necessarily countable.



Definition 1.2.7. A differentiable structure, or more precisely a

smooth structure, on a topological manifold is an equivalence class
of smooth atlases. %

Notation 1.2.8. By a chart (U, ¢) about p in a manifold M we mean a
chart in the differentiable structure of M such that p € U. $

Definition 1.2.9. A smooth manifold of dimension # is a pair (M, A)

of a topological n-manifold M and a smooth structure Aon M.

In colloquial language, a differentiable manifold is just a space
covered by charts with differentiable transition maps.

Notation 1.2.10. Whenever possible we will omit the differentiable
structure A from the notation and just write M. We may write M"
when we want to emphasize the dimension n of M. O

Exercise 1.2.11. Show that on a second countable differentiable
manifold it is always possible to find a countable atlas. *

Exercise 1.2.12. R" with the standard smooth structure A =
(R",idRn) is trivially a smooth manifold of dimension n. In fact,
any open subset U < R" can be made into a smooth manifold in a
natural way with the atlas A = (U, idgx |¢).

In the same way, show that any open subset U of a smooth
manifold M is a smooth manifold. Which atlas would you choose?

More generally, if V is any n-dimensional real vector space,
then the standard smooth structure on V is the one induced by the
smooth atlas consisting of a single chart (V,T) where T : V — R" is
some linear isomorphism. Why is this independent of the choice of
the isomorphism T?

This fact has a very interesting consequence. The space Mat(n)
of n x n-matrices can be identified with R™ by writing the ele-
ments of the matrix as a n?-vector. This gives to Mat(n) a struc-
ture of differentiable manifold. The subset of invertible matrices
GL(n) = {A € Mat(n) | detA # 0}, widely known as the general
linear group, being an open subset of Mat(n) (why?) is itself a
differentiable manifold. Is such manifold connected? Why? *

Notation 1.2.13. We will stick to the notation of [Tu11]. In the context
of manifolds, denote 7' : R” — R,1 < i < n, the standard
coordinates on R". With this notation, if ¢; denotes the ith standard
basis vector?? in R", then ri(e;) = (5;

If (U, ¢ : U— R")is a chart of a manifold, then x' = ' o ¢ will
denote the i-th component of ¢ and denote ¢ = (xl, ...,x") and,
when convenient, (U, ¢) = (U, X1, .. LX),

Thus, for p € U, (x'(p),...
tions x!,...,x" are called (local) coordinates on U. %

, X" (p)) is a point®3 in R". The func-

An advantage of this new notation is that we can talk about
coordinates without the need to explicitly reference charts. In other
words, we can say

MANIFOLDS 11

The union of all atlases in a differen-
tiable structure is the unique maximal
atlas in the equivalence class. There
is a one-to-one correspondence be-
tween differentiable structures and
maximal differentiable atlases: for
convenience and to lighten the no-
tation, from now on, we will always
regard a differentiable structure as a
differentiable maximal atlas without
further comments.

There are no preferred coordinate
charts on a manifold: all coordinate
systems compatible with the differen-
tiable structure are on equal footing.

*? Identified with the point
,...,0, 1 ,0,...,0) e R™.
——
ith component
The Kronecker delta 5]’: is defined by
5]’: =1ifi=jand (5]’: = 0 otherwise.
3 By abuse of notation we sometimes
omit the p. Thus (x',...,x") can stand
either for local coordinates or a point

in R": which one it is should be clear
from the context.
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Let p € M and choose local coordinates (x!

,...,X") about p...
or even

Let x = (x!,...,x") € M be a point in M...
dropping the distinction between p and x, both in place of

Let pe M and (U, ¢) a chart defined on a neighbourhood U of p. Let
x' = r' o ¢ denote the components of ¢ with respect to the standard
euclidean coordinates. ..

Example 1.2.14. The unit circle

Sl (xeR? | |x| =1} c R

with the relative topology># is a 1-dimensional topological manifold.

To provide the local homeomorphisms to R and define a smooth
structure for S! it is enough to define the following four charts:

Vi={x!>0}, ¢1:Vi—(-1,1), ¢@(x):=2x%
Vo = {x1 <0}, @:Vo—>(-11), ¢@ax):= x?,
V3= {x2 >0}, ¢@3:Vz3—(=1,1), ¢3(x):= Xl
Vii={x* <0}, ¢4:V4—(-1,1), @4x):=x"

What do these charts look like?

Exercise 1.2.15. Show that the corresponding transition functions are
smooth. *

O

Exercise 1.2.16. Let {(Uy, ¢4)} be the maximal atlas on a manifold M.

For any open set U < M and any point p € U, prove the existence of
a coordinate open set U, such that p e U, < U. *

Exercise 1.2.17 ([homework 1]). Let f : R" — R"™ be a smooth map.
Show that its graph

Ipi={(x,f(x)) | xeR"} < R"HM

is a smooth manifold of dimension n. *

Example 1.2.18. The definition of smooth manifold does not require
M to be embedded into some ambient space as in the examples
above. In fact, we can define the differentiable manifold S! by
equipping the topological quotient space®> R/Z with the two charts

g1 : R/Z\{[0]} — (0,1) and ¢;:R/Z\{[3]} = (—3,3)

which map [x] € R/Z to its representation in [0,1) or [—%, %)
respectively. The manifold obtained in this way is diffeomorphic to

the one defined in Example 1.2.14. O

Example 1.2.19 (Product manifolds). Given two manifolds (M, .A;)
and (My, Ay), we can define the product manifold M; x M; by

equipping M; x M, with the product topology?® and covering the
space with the atlas {(U; x Uy, (@1, ¢2)) | (U1, 1) € A1, (Uz, 92) €
Az} O

* Let (X, T) be a topological space and
Y < X. The relative topology on Y is
Vi={VcY | UeTst.V=UnY}

* There is a standard way to induce a
topology on a quotient space. Let M
be a topological space and 7 : M — N
surjective. The quotient topology on N
is given by defining U < N to be open
if and only if its preimage 7~ (U) <
M is open. If ~ is an equivalence
relation on M, the quotient space

M/ ~ is the set of equivalence classes
[Pl == {g€ M | p ~ q) and the
projection m: M — M/ ~, nt(p) = [p],
is a surjective map. Then U € M/ ~

is open if U,jeu[p] = M is open.
Here R/Z denotes the quotient space
R/ ~ where the equivalence relation
is induced by the canonical group
action of Z on R, that is, x ~ y if and
only if x —y € Z. This means that

[x] = {x + k| k € Z} and each interval
[x0, x0 + 1) of length 1 contains exactly
one representative per class. Note

that we are talking about topological
spaces: the quotient, in general, does
not preserve the Hausdorff property or
second countability.

2 Open sets in the product are prod-
ucts of open sets from the respective
topological spaces.



Note that smooth manifolds do not yet have a metric structure:
distances between the points are not defined. However, they are
metrizable®7: there exists some metric on the manifold that induces
the given topology on it. This allows to always view manifolds as
metric spaces.

Example 1.2.20 (A different smooth structure on R). Consider the
homeomorphism ¢ : R — R, ¢(x) = x3. The atlas consisting of
the global chart (IR, ¢) defines a smooth structure on R. This chart
is not smoothly compatible with the standard smooth structure on
R since idg o~ 1(y) = y*/3 is not smooth at y = 0. Therefore, the
smooth structure defined on R by  is different from the standard
one. You can adapt this idea to construct many different smooth
structures on topological manifolds provided that they at least have
one smooth structure. O

Exercise 1.2.21. Show that there exists a diffeomorphism between the
smooth structures (R,idRr) and (R, ¢) from the previous example.

*

Exercise 1.2.22 ([homework 1]). For r > 0, let ¢, : R — R be the map
given by
t, ift<0,

t) :=
o) rt, ift>0.

Let A, denote the maximal atlas on R containing the chart (R, ¢;).

1. Show that the differentiable structures on R defined by A,
and A, 0 < r < s, are different. This shows that there are

uncountably many families of different differential structures on
R.

2. Let M, be the manifold R equipped with the atlas .A,. Show that
M, and M; are diffeomorphic for #,s > 0.

*

Remark 1.2.23. There exist examples of topological manifolds
without smooth structures. It is also known that smooth manifolds
of dimension n < 4 have exactly one smooth structure (up to
diffeomorphisms) while ones of dimension n > 4 have finitely
many?3. The case 1 = 4 is unknown: if you prove that there is only
one smooth structure, you will have shown the smooth Poincaré
conjecture.

Instead of always constructing a topological manifold and then
specify a smooth structure, it is often convenient to combine these
steps into a single construction. This is especially useful when
the initial set is not equipped with a topology. In this respect, the
following lemma provides a welcome shortcut: in brief it says that
given a set with suitable “charts” that overlap smoothly, we can use
those to define both a topology and a smooth structure on the set.

Lemma 1.2.24 (Smooth manifold lemma). Let M be a set. Assume
that we are given a collection {Uy | & € A} of subsets of M together with

MANIFOLDS 13

*7 In fact, all the topological mani-
folds are metrizable. This property

is far more general and harder to
prove [Munoo, Theorem 34.1 and
Exercise 1 of Chapter 4.36] or [nLaz20].
Note that not all topological spaces are
metrizable, for example a space with
more than one point endowed with
the discrete topology is not. And even
if a topological space is metrizable,
the metric will be far from unique: for
example, proportional metrics generate
the same collection of open sets.

# A beautiful example of this is the
7-sphere 87 which is known to have 28
non-diffeomorphic smooth structures.
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bijections @4 : Uy — @(Uy) < R”, where ¢(Uy) is an open subset of R™.
Assume in addition that the following hold:

(i) Foreacha,B € A, the sets gu(Uy N Ug) and ¢g(Uy 0 Ug) are open
in R™.

(i) If Uy n Ug # &, the map @go ¢z ' : @u(Us 0 Ug) — @p(Uy N Up)
is smooth.

(iii) Countably many of the sets U, cover M.

(iv) If p # q are points in M, either there exists a such that p,q € Uy or
there exist a, B with Uy N Ug = & such that p € Uy and g € Ug.

Then M has a unique smooth manifold structure such that each (Uy, ¢x)
is a smooth chart.

Exercise 1.2.25. Prove Lemma 1.2.24.
Hint: declare all the ¢, to be homeomorphisms and use the hypotheses to check
the definition of a smooth manifold. A

Example 1.2.26. Lemma 1.2.24 simplifies life a lot. Consider the
product manifolds from Example 1.2.19. Since both M and N are
smooth manifolds, the product manifold is a (m + n)-dimensional
smooth manifold with the atlas introduced in the example.

The proof of this fact is trivial in the sense that each of the maps
in the atlas satisfies all the properties of the lemma by construction,
after all they are already part of the differentiable structure of a
smooth manifold. O

Exercise 1.2.277. Prove that the n-dimensional torus

T" =8 x ... xS c R¥
—
n times
is a smooth manifold of dimension 7. *

If M is a topological space and ~ an equivalence relation we
have seen that it is sometimes possible to define smooth manifolds.
Since in general the quotient does not behave nicely it is conve-
nient to get a few tricks to check if the manifold structure can be
preserved.

In this case it is convenient to have some tools to check continu-

ity of functions. For a proof refer to [Tu11, Proposition
7.1] or [Lee11, Theorem 3.70].

Proposition 1.2.28. Assume F : X — Y is a map between topological

spaces and ~ is an equivalence relation on X. Let F be constant on each

equivalence class [p] € X/ ~, and denote F:X/~—>Y, I?([p]) := F(p) for

p € X, the map induced by F on the quotient.

Then, F is continuous if and only if F is continuous.

Continuity of the projection implies that if M/ ~ is Hausdorff,

then w=1(7t(s)) = [s] is closed in M. If, additionally, 7t is open?? * That is, it maps open sets to open

then there is a stronger statement: sets.

Theorem 1.2.29. If M is a topological space and ~ an equivalence relation
such that T : M — M/~ is open, then:

These statements are not hard to
prove, but their proofs will be omitted
here. You can refer to [Tu11, Chapters
7.1-7.5].
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* 7 maps a basis for the topology of M into a basis for the topology M/ ~,
thus if M is second countable, then M/~ is second countable;

* the quotient space M/ ~ is Hausdorff if and only if the graph R of ~,
i.e., the set
R:={(x,y) e Mx M| x~y},

is closed in M x M.

In general, however, the class of quotient space is too large to
admit a good general theory of smooth manifolds. Yet, there is a
family of manifolds that has undergone lots of research and on
which a lot can be said: smooth manifolds with certain smooth Lie
group actions. Treating this will be far too much for the course, but
we will provide along the way most of the necessary ingredients
for you to be able to explore the topic on your own. For further
reference, you can look at [Lee13, Chapter 21].

Before moving on, below we are going to look at a couple of
simpler, notable, examples of quotient manifolds.

Example 1.2.30. Let RIP” denote the n-dimensional real projective
space, that is, the space of lines in R"*! passing through the origin.
This is a notable example of quotient manifold: we are going to
show that RIP" is a smooth manifold of dimension 7.

We can define an equivalence relation on ]RgJrl := R"™1\{0} by
declaring that for any x,y € R

x~Yy <= 3Jt+#0suchthaty =tx,

that is, two points are equivalent if they lie on the same line passing
through the origin. Then, the real projective space is the quotient

space RPP" := IRS+l / ~. For the sake of the example, let’s denote
the class of equivalence of a point x = (x,...,x") € ]Rg+l by [x] =
[x%,...,x"] and the projection to the quotient by 7 : ]RgJrl — RP".
The classes of equivalence [x] are called homogeneous coordinates
on RIP".

There is a nice interpretation of this construction in terms of
flattening spheres. Observe that a line through the origin always

Figure 1.3: The identification ~ of

15

intercepts a sphere 5" at two antipodal points and, conversely, antipodal points maps the sphere to

each pair of antipodal point determines a unique line through the a disk. Embedding 8"/ ~ in R"*1,
one can define a map 7p that projects
the representative of [x] in the north

center. So we can define an equivalence relation on the sphere by

identifying the antipodal points: given x,y € §", x ~' y if and only hemisphere orthogonally to the disk
if x = +y. This leads to the bijection RP” ~ S"/ ~'. Note that by D" = {x e R™ | [lx] <1, x"*1 = 0}

th tor i d to itself).
gluing antipodal points, we are identifying the north and south (the equator is mapped to itself

hemispheres, thus essentially flattening the sphere to a disk.
Exercise 1.2.31. Show that the map » : IR()”rl — 5" n(x) = EL
induces a homeomorphism 7 : RP" — §"/~.

Hint: find an inverse map and show that both #i and its inverse are continuous.

*

LET’S FIRST SHOW THAT RIP" 1S A TOPOLOGICAL 1-MANIFOLD.
The structure of topological manifold follows immediately from the
Theorem 1.2.29 and 7t being open, so let’s prove that.
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Let U c IR(’)’H, since 7t is continuous by construction, 7t(U) is
open if 7~ !(7t(U)) is open in ]RSH. By definition

n(m(U)) = U tu = U{tp | pe U}

t£0 t#0

Since multiplication by t +# 0 is a homeomorphism of Rj *1 the set
tU is open for any ¢, as is their union, RIP" is both Hausdorff and
second-countable.

Foreachi = 0,...,n, define ljll- = {x e ]R6’Jrl | x' # 0}, the set
where the i-th coordinate is not 0, and let U; = n(lfl,-) < RIP". Since
U; is open, U; is open. Define

gi: Ui > R",

oi([x°,..., x"]) = (

O gl il o
xi )’

e.g. po([x°,...,x"]) = (x!/xq,...,x"/x0). This map is well-defined

sy 7 VAR

X

because its value is unchanged by multiplying x by a non-zero
constant. Moreover, @; is continuous: the inverses can be computed
explicitly as

¢; (v syt = [yl,...,yi_l,l,yiH,...,y”].

Since {Uy, ..., Uy} is an open covering of RIP", this shows tht RIP"
is locally euclidean of dimension #.

LeT’s EQuIP RIP" WITH A SMOOTH STRUCTURE. We are already
half-way through: we are going to show that the coordinate charts
(Uj, ¢;) defined above are, in fact all smoothly compatible. Without
loss of generality, let’s assume i > j. Then, a brief computation
shows

piop (v ... y")

]/1 yjfl yj+l yifl 1 yiJrl yn
<y]‘/..-, y] 7 y] Joesoey y] ,;, y] ,...,yj),

which is a diffeomorphism from ¢;(U; n Uj;) to ¢;(U; n Uj) since
x/ # 0 on U;. The atlas defined by the collection {(U;, ¢;)} is called
standard atlas and makes RIP" a smooth manifold. O

Exercise 1.2.32. Show that the real projective space RIP" is compact.

Hint: use Exercise 1.2.31. *

Exercise 1.2.33 (Stereographic projections [homework 1]). Let N
denote the north pole (0,...,0,1) € §" < R"t! and let S denote
the south pole (0,...,0, —1). Define the stereographic projections
o:S\{N} - R" by

1

n
1 n+1y . X X
o(xt, ..., X" = (1x”+1""'1x”+1>'

and ¢ : S"\{S} —» R", 7(x) := —0(—x).




1. For any x € S"\{N}, show that o(x) = u where (1,0) is the
point of intersection of the line passing through N and x with
the hyperplane {x"*! = 0}. Similarly, show that &(x) is the point
where the line through S and x intersects the same hyperplane.

2. Show that ¢ is bijective and

1 n 2
() = ( 2u 2u [l 1>‘

Jul + 17 a2+ 17 u)? +1

3. Compute the transition map & o ¢! and verify that the atlas
{(S"\{N},0),(S"\{S},0)} defines a smooth structure on S".

4. Let n = 1. Show that this smooth structure is the same as the one
defined in Example 1.2.14.

*

s )

The general definition of C'-manifolds is mostly a matter

of replacing occurrences of “smooth” in the text with C”.
The study of these more general structures is not dissimilar
from what we will see in this course, with the exception of
analytic and C°-manifolds, but it introduces an unnecessary
extra level of verbosity. In these notes we will only deal with
smooth manifolds.

1.3 Smooth maps and differentiability

With a well-defined differentiable structure and the idea of com-
patible charts, we have all the ingredients to lift the definition of
differentiable maps from the euclidean world.

Before considering the general definition of a differentiable
map, let’s look at the simpler example of differentiable functions
f: M — R between a smooth manifold M and R.

Definition 1.3.1. A function f : M — R from a smooth manifold
M of dimension 7 to R is smooth, or of class C%, if for any smooth
chart (¢, V) for M the map fo¢~!: ¢(V) € R" — R is smooth as
a euclidean function on the open subset ¢(V) < R". We denote the
space of smooth functions by C*(M). O

This, colloquially speaking, means that a function is differen-
tiable if it is differentiable as a euclidean function through the
magnifying lens (see Figure 1.3) provided by the charts.

Exercise 1.3.2. Define the following operations on C*(M). For any
f,§€C*(M), ceR,

(f+8)(x) = fx) +8(x), (fg)(x):= f(x)g(x), (cf)(x):=cf(x).

Then, the space C*(M) endowed with the operations above is an

algebra3® over R. *

MANIFOLDS 17

Figure 1.4: A function is differentiable
if it is differentiable as a euclidean
function through the magnifying lens
provided by the charts.

% J.e. a vector space where you can
also multiply two elements.
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The following theorem can be very convenient when you work
with smooth functions.

Proposition 1.3.3. Let M be a smooth n-manifold and f : M — Ra
real-valued function on M. Then, the following are equivalent:

(i) feC®(M);

(ii) M has an atlas A such that for every chart (U, ¢) € A, foe~ ! :
R" 5 ¢(U) —» Ris C*®;

(iii) for every point p € M, there exists a smooth chart (V, ) for M such
that p € V and the function f o p~1 : R" > (V) — R is C* on the
open subset P(V) < R™.

Exercise 1.3.4. Prove the proposition.
Hint: go cyclic, for example show (i) = (ii), (ii) = (iii), (iii) = (7). A

At this point, the generalization of smooth functions to smooth
maps between manifolds should not come as a surprise.

Definition 1.3.5. Let F : M; — M be a continuous map 3" between
two smooth manifolds of dimension 7n; and n, respectively. We say
that F is smooth, or of class C®, if, for any chart (¢1, V1) of M; and
(92, V) of M, the map

q)zoFogol_l U — Uy,
Uy := ¢1(Vy n F71(Va)) c R™,
UZ = (PZ(F(Vl) N Vz) [ ]an,

is smooth as a euclidean function.
We denote by C* (M, M;) the set of all functions F : M; — M,
of class C®.

The map F := g0 Fo o !is called the coordinate representation
of F with respect to the given coordinates. O

%\ ;
il

b \%

N

A 77
-

3 Remember: continuity is not a prob-
lem since M; and M are topological
spaces.

Differently from your calculus classes,
we are defining differentiability before
we define what the derivative is.
Getting to it will require some amount
of work, and will have to wait until the
next chapter.

Figure 1.5: Maps are differentiable
when they are differentiable as maps
between euclidean spaces.
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For a very simple and familiar example, consider the real valued
function f(x,y) = x* + y? defined on IR%. In polar coordinates on
U = {(x,y) € R?> | x > 0}, f has the coordinate representation
f(p,8) = p%. Very often, where there is no ambiguity, we will simply
identify f and f and just write “in the local coordinates (p,6) on U,
flp,0) =p*".

A first observation about our definition of smooth maps is that
as one would hope, smoothness implies continuity.

Exercise 1.3.6. Show that every smooth map is continuous. *
Definition 1.3.7. A diffeomorphism F between two smooth mani-
folds M; and Mj is a bijective map such that F € C*(M;j, M) and

F~1 € C*®(M,, My). Two smooth manifolds M; and M, are called
diffeomporphic if there exists a diffeomorphism F : M; — M

between them. O

Exercise 1.3.8. Any chart (V, ¢) of a manifold M is a diffeomorphism
between the manifolds V <« M and ¢(V) c R". *

Exercise 1.3.9. Prove the following propositions and aid your reason-
ing by drawing the relevant figures.

Proposition 1.3.10. Let M be a smooth manifold of dimension n. Then
F : M — R™ is smooth iff for all smooth charts (U, ¢) of M, the function
Fog~':@(U) — R™ is smooth.

Proposition 1.3.11. Let M be a smooth manifold of dimension n. Then
F:R™ — M is smooth iff for all smooth charts (U, ) of M, the function
@ o F: F~1(U) — R" is smooth.

Proposition 1.3.12. Let M, N, P be three smooth manifolds, and suppose
that F: M — N and G : N — P are smooth. Then Go F € C*(M, P).

Proposition 1.3.13 (Smoothness is a local property). Let F : M — N
be a continuous function and let {U;}ic; be an open cover for M. Then
Fly, : Ui — N is smooth for every i € 1 iff F : M — N is smooth.

*
Exercise 1.3.14 ([homework 1]). Prove that R*\{(0,0)} is a two-
dimensional manifold and construct a diffeomorphism from this
manifold to the circular cylinder
C:={(x,y,2)eR|¥*+y* =1} cR>.
*

The following corollary is just a restatement of Proposition 1.3.13,
but provides a useful perspective on the construction of smooth
maps.

Proposition 1.3.15 (Gluing lemma for smooth maps). Let M and N
be two smooth manifolds and let {U, | « € A} be an open cover of M.
Suppose that for each & € A we are given a smooth map Fy : Uy — N
such that the maps agree on the overlaps: Fa\u,muﬁ = Frg|umuﬁ for all
«, 3 € A. Then there exists a unique smooth map F : M — N such that
F|u, = Fx for each a € A.

19
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In other words, if you can define a map in a neighbourhood of
each point in such a way that the locally defined maps all agree
where they overlap, then the local definitions piece together to yield
a global smooth map. We will use this construction repeatedly
throughout the course. Sometimes, however, the local definitions
are not guaranteed to agree. In this case one usually has to resort to
a different tool: partitions of unity. These allow to surgically patch
objects together and make sure that they still have the required
properties. In the next section we will look more deeply into this.

From now on, when we write manifold, chart, atlas, etc. we
always mean smooth manifold, smooth chart, smooth atlas,
etc..

1.4 DPartitions of unity

CUTOFF FUNCTIONS are a class of smooth functions that will be
of crucial importance throughout the course, and whose existence
cannot be given for granted. Since their definition and construction
does not require more than what we have just seen, let’s talk about
them now.

First of all, recall that the support of a smooth function f : M —
R, denoted by supp(f), is defined as

supp(f) :={peM | f(p) #0}.

We will introduce those functions with a proposition, and will

spend the rest of this chapter proving it.

Proposition 1.4.1 (Cutoff functions). Let M be a smooth manifold and
K c U c M two subsets such that K is closed and U is open. Then, there
exists a smooth function x : M — R, called cutoff function, with the
following properties

The bar over the set denotes its clo-
sure.
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(i) 0<x<1lforallpe M;
(ii) supp(x) < U;
(iii) x(p) =1forall pe K.

The proof of this proposition involves a general result which
is quite technical and whose proof will be omitted. You can refer
to [Lee13; Tu11] if you are curious to see the details.

Instead, we will show a special case of Proposition 1.4.1. The
main reason is that it involves an explicit construction of the cutoff
which can be convenient to have at hand later on.

Lemma 1.4.2 (Cutoff functions, compact case). Let M be a smooth
manifold and K < U < M two subsets such that K is compact and U is
open. Then, there exists a smooth function x : M — R with the following
properties

(i) 0< x<1forallpe M;
(ii) supp(x) < U;
(iti) x(p) =1forall p e K.

Proof. PART 1. To warm up, let’s do some first year analysis. For
any pair of real numbers r < R there exists a smooth function
f:R — [0,1] such that f(t) = 1fort < r, f(t) = 0fort > R and
0< f(t) <lforte (r,R).

We can construct this explicitly by means of the function

Ut >0
h:R—->R, h(t):= c ’
O/ tgo.

Exercise 1.4.3. Prove by induction that for t > 0 and k > 0, the kth
derivative h(¥)(t) is of the form py(1/t)e/! for some polynomial
pak(x) of degree 2k in x. Use this to show that h € C*(RR) and that
hk)(0) = 0 for all k > 0. Y

The function f that we are seeking is then3* given by » Exercise: check that such function f
satisfies all the desired properties.
h(R—t)

O = s m = hi—r

PART 2. Let’s extend f to R". Denote B, < IR" the open ball of
radius r around the origin. Then, for any 0 < r < R we seek a
function ¢ : R" — R such that g(x) = 1forall x € B,, g(x) = 0
forall x € R™\Bg and 0 < g¢(x) < 1 forall x € Bg\B,. This is
immediately achieved by defining g(x) := f(|x|), where f is the
function defined in the previous step.

PART 3. Let’s now pick a point p € M and an arbitrary neighbour-
hood U of p. Choosing an appropriate chart about p, the previous
step implies that we can choose a smaller neighbourhood V < U
of p with V. < U and such that there exists a smooth function

X : M — [0,1] satisfying x(p) = 1 forall p e V and x(p) = 0 for all
p e M\U.
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PART 4. We are ready to complete the proof. For each point p € K,

choose two neighbourhoods V,, U, such that V, ¢ K and U, < U.
Since K is compact, it admits a finite cover in terms of these sets: i.e.
there are finitely many points p1, ..., pn € K such that K Ufil V,.

For each i, choose x; : M — [0,1] as in the previous step: x;(p) = 1
forall p € Vp, and x;(p) = Oforall p € M\Uy,. The proof is
completed by defining

x:=1—[ [0 =xip)):

et

O

We are not there yet. To extend this result to our needs will need
a new tool, which will be useful throughout the course and in many
courses to come.

Definition 1.4.4. Let M be a smooth manifold. A partition of unity

is a collection {py | « € A} of functions p, : M — R such that
(i 0<pg<lforallpe Manda e A;

(ii) the collection {p, | « € A} is locally finite, that is, for any
p € M there are at most finitely many « € A such that p €

supp(pa);

(iii) forall pe Monehas ) .4 pu(p) =1.

O

Remark 1.4.5. Note that the existence of a partition of unity is a dis-
tinguished feature of differentiable manifolds: stronger structures,
like analytic or holomorphic ones, in general fail to have one. O

Throughout the course we will be mostly interested in partitions
of unity {p, | « € A} which are subordinate to an open cover
{Uy | « € A}, that is, such that supp, (o) < U, for each a € A.

Theorem 1.4.6. Let M be a smooth manifold. For any open cover {U, |
« € A} of M, there exists a partition of unity {p, | « € A} subordinate to
{Uy | € A}

With this result at hand, Proposition 1.4.1 can be shown very
easily.

Proof of Proposition 1.4.1. Consider the open cover of M given by

C := {M\K, U}. Then Theorem 1.4.6 implies that there exists a
partition of unity {pu, panx} adapted to C. The function x := py is
our cutoff function. O

1.5 Manifolds with boundary

For any p, >.,c4 pa(p) is a finite sum
by ii. Thus, the function defined by the
sum p := Y. p, is a well define smooth
function on M. We call such sum a

locally finite sum.

We are going to omit the proof of this
theorem, for its details you can refer
to [Tu11, Proposition 13.6] or [Lee13,
Theorem 2.23].



THE DEFINITION OF MANIFOLDS HAS A SERIOUS LIMITATION,
even though it is perfectly good to describe curves33 and surfaces34,
it fails to describe many natural objects like a closed interval [a, ] €
R or the closed disk D;(0) of Example 1.1.12. Note that in each

of these cases, both the interior and the boundary are smooth

manifolds and their dimension differ by one3>.

Let’s do a step back and think about topological manifolds: since
both the closed interval and the closed disk are closed sets, we
have problems to make them locally euclidean in neighbourhoods
of their boundaries. Can we modify our local model to resemble
something with a boundary?

Of course this is a rhetorical question. We can generalize our
definition by considering the closed upper half-spaces

H' = {x=(x',...,. ") eR" | x" >0},
with its (n — 1)-dimensional boundary
OH" = {x = (xl,...,x") eR" | x" =0}

and the topology inherited by R", as a replacement for our local
model R".

Definition 1.5.1. A topological space M is a topological manifold

with boundary of dimension #, or topological n-manifold with
boundary; if it has the following properties

(i) M is a Hausdorff space;
(i) M is second countable;

(iii) M is locally homeomorphic to H", any point x € M has a

neighbourhood that is homeomorphic to a (relatively) open3®
subset of H".

A chart on M is a pair (U, ¢) consisting of an open set U < M
and a homeomorphism ¢ : U — ¢(U) < H". O

%

Example 1.5.2. A Mobius strip M is a connected 2-manifold with
boundary. As a topological space it is the quotient37 R x [0, 1] via
the identification (x,y) ~ (x + 1,1 —y). The projection 7 : [(x,y)] —
(cos(27tx),sin(27x)) is a continuous surjective map to S'. Given

xo € R, we can choose charts [(x,y)] — (e cos(my), e* sin(rty)) for
x € (xo—¢€,x)+€)and any € < 1/2. ¢
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B E.g. the circle seen in Example 1.2.14.

3#E.g. the n2-spheres 52 from the
homework sheet.

3 In the first case the interior (a,b) is a
1-manifold and the boundary, the set
Ola,b] = {a, b}, is a O-manifold. In the
second case the interior of D;(0) is the
open unit ball, a 2-manifold, and the
boundary D (0) is the 1-manifold S'.

3 Recall that U < H" is relatively open,
that is open with respect to the relative
topology, if there exist an open set

U < R" such that U = U ~ H".

37 Think of a strip of paper whose ends
have been glued with a twist.

Note that 0M is diffeomorphic to sl
In fact, this is actually an example of

a non-trivial fiber bundle, something
that will make sense only a few
chapters from now. In this case, M is a
bundle of intervals over a circle.
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We saw in Proposition 2.8.12 that differentiability is a local
property, which means that is a property defined on open sets. To
clarify what it means to have differentiable structures on manifolds
with boundary, we will thus need to clarify what it means for a
function defined on H" to be differentiable at points on 0H". As it
turns out, this is a minor modification of our previous definition
that stems directly from the definition of the induced topology.

Definition 1.5.3. Let U — H" be a relatively open set. A map

f: U — R" is r-times continuously differentiable, or of class C”, if
there exists an open set U € R" and a map fe C"(U,R™) such that
U c U and f|u = f. The function f is said to be smooth, or of class
C®, if f is r-times continuously differentiable for all r > 1. O

With such definition at hand, one can define compatibility,
smooth atlases and differentiable structures as in Definition 1.2.4,
Definition 1.2.5 and Definition 1.2.7 by considering charts taking
value in H".

Exercise 1.5.4. Explicitly state the definitions above in the case of
manifolds with boundary. *

Definition 1.5.5. A smooth manifold with boundary of dimension n

is a pair (M, A) of a topological n-manifold with boundary M and a
smooth differentiable structure A = {(Uy, ¢1) | ® € A} on M.
The boundary of M is defined as

oM = | o (@u(Va) n 0H"). (1.3)

aeA

Proposition 1.5.6. The boundary dM is well-defined3®.

Proof. The statement follows if we show that the transition maps
send boundary pieces to boundary pieces. It turns out that this
fact is more general: for any diffeomorphism f : U — V, where
U,V c H" are relatively open, it holds that x € U n 0H" if and only
if f(x) e VnoH"™

Indeed, let x € U n (H™\0H") be a point in the interior of U.
Expanding f in Taylor series up to the first order, we have

f(x+h) = f(x) + Df|xh + O([[h])-

Since the total derivative Df at x is an isomorphism, there exist an
open neighbourhood O of x such that f(O) is open in R” and thus
f(x) e Vn (H" noH"™). O

Example 1.5.7. Let’s go back to the closed interval M = [4,b] < R.
With the atlas

A={(la,b), x> x—a),((ab], x>b—x)}

it is a differentiable 1-manifold with boundary oM = {a} u {b} =
{a,b}. O

Remember that the differentiable
structure is an equivalence class of
smooth atlases.

The boundary 0M as defined by (1.3)
can differ from its topological bound-
ary as a subset of another topological
space. For example the boundary 0S!
of the circle as a manifold is empty,
but the boundary of the circle S' as a
subset of R? is S itself.

3#In the sense that smooth charts
send boundary pieces to boundary
pieces.Note that the definition of
the boundary holds for topological
manifolds as well, but showing that
it is well-defined is much more
complicated and will be omitted.
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Let’s go back to our observation at the beginning of this section.
We started by observing that some objects seemed to be the “sum”
of a boundary manifold and an interior manifold. Can we make
sense of such observation using our newly introduced definition?

Proposition 1.5.8. Let M be a differentiable n-manifold with boundary.
Then M := M\OM and OM inherit the structure of manifolds (without
boundary) of dimensions diim(M) = n and dim(6M) = n — 1.

Proof. Let A = {(Uy, ¢o) | « € A} be an atlas for M. Then

Ao = {(U,X mM,(pMUMM) | a e A}

is an atlas for M where none of the charts contain points in /"
In a similar vein, an atlas for 0M is given by

Aa = {(uﬂé M aM, ¢D¢|UaﬁaM) | ae A}’

where
Palu,nom : (Ux 0 OM) — 0H" ~ R
by the proof of Proposition 1.5.6. O
Example 1.5.9. Consider the cone
C={p=0LpP)eR|(p)’+(p*)? =

(P2 0<p’<1},

25

| \
-
s

with boundary oC = {pe C | p® = 1}.
We can describe the cone with the following atlas A = {(U;, ¢;) |
i=1,2,3}

%

o Up:={peC|p’ < withx = (x',x*) = ¢1(p) = (p', P> + 1), 1

thus . \
<x1,x2 -1, \/(xl)2 + (x%2 — 1)2) ) - o

e Uh={peC|12<p®<1, (p',p?) # (0,p3)} with ¢, defined as
follows. Let

o (x) =

1 2 1
_ _(PL P _ (% 3

then x = ¢2(p) = (7o 9)(p) and g2(Us) = R x [0,1/2) < H.

e Uz={peC|12<p®<1, (p',p?) # (0,—p%)} and @3 defined
similarly as in the previous point.

The boundary is given by ¢C = ¢;1(R x {0}) u (pgl(lR x {0}). O

Exercise 1.5.10. Explicitly define @3 from the previous example. Why
*

Exercise 1.5.11 ([homework 1]). Let M = D1 < R" be the n-dimensional
closed unit ball from Example 1.1.12.

is @1 not appearing in 0C?

Figure 1.6: Compare ¢ with the
stereographic projections from Ex-
ercise 1.2.33. Do you notice any

1. Show that M is a topological manifold with boundary in which similarity?
each point of )M = $"~! is a boundary point and each point in

M = {x e R" | |x| < 1} is an interior point.

/!
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2. Give a smooth structure to M such that every smooth interior
chart is a smooth chart for the standard smooth structure on M.
Hint: consider the map moo~! : R" — R" where o : S" — R" is the
stereographic projection from Exercise 1.2.33 and 7w : R"*1 — R"isa

projection that omits one of the first n coordinates.

Differentiable manifolds without boundary (cf. Defini-

tion 1.2.9) can be thought as a special case of differentiable
manifolds with boundary (cf. Definition 1.5.5) where the
boundary happens to be empty. Therefore, with the ex-
ception of the beginning of Chapter 2, we will no-longer
distinguish the two concepts: from now on, a manifold may
have or may not have a boundary.




2
Tangent bundle

2.1 Let the fun begin!

WE ARE LEFT TO DEFINE DERIVATIVES of functions between man-
ifolds. And, since we saw that euclidean spaces are manifolds, we
had better find a definition that coincides with the one you saw in
your analysis courses.

In this chapter we will see how to associate to an n-dimensional
smooth manifold M an n-dimensional vector space, denoted by
T¢M, to each point x € M. Such vector space is called tangent space
to M at x and, for a manifold embedded into a euclidean ambient
space, it will coincide with the intuitive understanding of a tangent
hyperplane to the point on the manifold, see also Figure 2.1. As we
will see, there are various different definitions of tangent space but,
in the end, they all turn out to be equivalent.

Due to a certain amount of freedom in terms of different “per-
spectives” leading to different but equivalent definitions, there is
no unique way of introducing tangent spaces. Just to give you an
idea, all the following approaches lead to equivalent definitions (see
also [Lee13]):

® equivalence classes of curves through a point;

¢ transformation laws of the components of vectors with respect to
different charts;

* generalization of linear approximation into the idea of an ab-
stract derivation;

® derivations in the category of germs of functions;

It is also possible to “flip” the whole construction around, con-
structing differentials and cotangent spaces and using them to
introduce the tangent spaces. This is the approach taken by [Hit14]
and it is at least worth a look if you want to see a different perspec-
tive.

To avoid diverging from [Tu11] too much’, we will stick to
derivations on the space of germs, which emphasizes the locality of
derivations to an extreme. The equivalence between our approach

/H-)\E

Figure 2.1: Tangent space to a point
of a sphere $? embedded into the
ambient space R3.

* Since it used to be the compulsory
reading material in the previous years.
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and the one based on charts will be left as homework, while we
will look into the equivalence with the speed of curves and with
derivations together.

2.2 Directional derivatives in euclidean spaces

Suppose that f : U < R" — RF is a smooth map defined on an
open subset U < R". In multivariable calculus you have seen that if
x € U and v € R", then the vector Df(x)v can be interpreted as the

directional derivative? of f: 2 Sometimes this is denoted D, f(x)
instead.

Df(x)v = lim M

t—0 t

Then, the partial derivative is obtained as the particular case

flrtte) = f()

t—>0 t

Djf(x) := Df(x)e;

Of course, we can also look at the derivative by using the standard
euclidean coordinates !,. .., ", in that case we would be deriving

riof:R" - R,
LET’s TAKE IT sLow, and compare all these various derivatives :

. n k &) Di(u"og) =)
next to each other. For f : U < R" — R* and x € U, we have J

e Df(x), the Jacobian matrix, which is a k x n matrix;

* D;if(x), the jth column of the matrix Df(x), which is an element Do {?) »

of RK;
, DJ ? *)
e D(r' o f)(x), a linear function from R” — R, which one can think
of as the ith row of the matrix Df(x);

o (r of)(x) = (x) a number in R, which corresponds to the
(i,j)th element (Df( ))] of the matrix Df(x).

This notation using D instead of spelling out the partial deriva-
tives, comes with an important advantage. Let’s use it to rewrite the
chain rule from Proposition 1.2.2(ii):

k
i Using Einstein notation, since [ is the
i I g ,
Dj (1’ °8 O Z 7 © g )) Dj (1’ ° f) (x)/ only index that appears both in lower
I=1 and upper position, D;(r' o go f)(x) =
Dy(r' 0 g)(f(x)) Dj(r' o f)(x).

where 1l < i < m,1 < j < n. As you can see, we do not need to
explicitly spell out the derivatives in local coordinates on R” or R
in this new formula. This will prove extremely convenient for the
development of the theory.

2.3 Germs and derivations



TO REACH OUR GOAL OF DEFINING DERIVATIONS ON MANIFOLDS,
a direct extension of partial derivatives is not enough: we will need
to introduce some more levels of abstraction.

Definition 2.3.1. Let M be a smooth manifold. For some point
p e M, letU,V < M be two neighbourhoods of p. We say that
two functions f € C*(U) and g € C*(V) have the same germ
at p if there exists a neighbourhood W < U n V of p such that

flw = glw- 0

Germs define an equivalence relation on the set of smooth func-
tions defined on a neighbourhood of a point p: (U, f) ~, (V,g) if
they have the same germ at p. Then, a germ [f],, where (U, f) is
one representative for [f],, is an equivalence class in the quotient
space

C)/ (M) := CT(M)/~p .

Exercise 2.3.2. Show that ~, defined above is an equivalence relation
in C*(M). Y

For c € R and [f]p, [g]p germs with representatives (U, f),(V,g),
we have
* [flp + [8]p is the germ with representative (U NV, f + g);
* [flplglp is the germ with representative (U NV, fg);
* c[f]p is the germ with representative (U, cf).

Therefore, C;°(M) is also an algebra over R.
Exercise 2.3.3. Check that the operations above are well-defined.

Germs are the apotheosis of locality: a germ at p has a well-
defined value at p and nowhere else. This results in a map,

evaly : C;O(M) — R, evaly([f]y) := f(p),

where (V, f) is any representative of [f],.
Exercise 2.3.4. Check that the eval, map is well-defined. *

We can now go back to our discussion of euclidean derivations
to motivate our definition of tangent vectors.

Example 2.3.5. Let U < R" open3 and f € C*(U). For x € U and
v € R" we have seen that Df(x) can be interpreted as a matrix
that consumes the vector v to produce a number D(f)v. In such
interpretation f is fixed and only x and v vary, however there is no
reason for this restriction.

Indeed, an alternative interpretation lets also f vary and consid-
ers the action of differentiation as a map

UxR"xC®U) - R, (x,0f)— Df(x)o.

And since we are flipping around all the ideas, let us consider x
and v fixed and instead only let f vary:

(x,0) : C*(U) >R, (x,0)(f):=Df(x)v. (2.1)
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3 In what follows, we will think of U
as both an open subset of R"” and a
smooth manifold depending on what
is most convenient for us.
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By the definition (1.1) of the euclidean differential, we know that it
is a local property: the value Df(x) only depends on the germ of
f at x. Thus we can rephrase (2.1) by saying that v defines a linear

map
v:CLU) >R, o(fly) := Df(x)o.

In fact, this is not just a linear map, it also satisfies a derivation
property, in the sense that

o([flx[glx) = evale([flx)v([g]x) + evale([g]x)v([fx)-

Which, rewritten in a more familiar form, is just a way to rewrite
the Leibniz rule:

D(fg)(x)v = f(x)Dg(x)v + g(x)Df (x)v.

Note that we have now two different interpretations for v: it is
both a vector in R” and a linear map C(U) — R satisfying the
derivation property. O

Motivated by Example 2.3.5, we will define a tangent vector as a

derivation on the space of germs.

Definition 2.3.6. Let M a smooth manifold of dimension 7 and let
p € M. A tangent vector at p is a linear map

v:CY(M) - R (2.2)

which is also a derivation, i.e.

o([flplglp) = evaly([f]p)v(igly) +evaly([g]p)o([f]p)-

Since a tangent vector is a linear map from the vector space
C;°(M) to R, the set of all tangent vectors at a point p is itself a
vector space* which we denote by T, M. O

Let’s check that these vectors, at least satisfy the most elemen-
tary properties of derivations: one would expect the derivative of
constant functions to be zero, is that the case?

Lemma 2.3.7. Let M be a smooth manifold, let U < M be an open set
containing p and let v € T, M. Denote by [c], the germ of a constant
function (U, p — c). Then v([c],) = 0.

Proof. Since [c], = c[1],, by linearity we have v([c],) = cv([1],).
Thus, it will be enough to show that v([1],) = 0. Since v is a
derivation, using the algebra properties of the space of germs we
get

o([1]p) = v([1]p[1]p) = 2evaly([1]p)o([1]p) = 20([1]p)-
Thus, v([1],) = 0, concluding the proof. O

As you can see, working with equivalence classes is doable but
unnecessarily cumbersome. As we did with atlases, we would like
to get it over with.

Keep always in mind that the value
v([f]p) only depends on the value of f
around the point p.

4 Exercise: why is this true?

Keep this simple trick in mind, it will
be useful in the future.



Definition 2.3.8. Let M be a smooth manifold and p € M. Let
W < M be any neighbourhoods of p. A map w : C*(W) — R is
called a derivation of C*(W) at p if it is linear over R and satisfies

Leibniz rule

w(fg) = f(p)w(g) + g(p)w(f).

If v € T,M, then we already saw that v naturally defines a
derivation w of C*(W) for any open neighbourhood W of p. In this
case

w(f) = o([fIp)- (2.3)

Showing that the opposite is also true will require a bit of work.

Proposition 2.3.9. Let M be a smooth manifold, p € M and W any
neighbourhood of p. Then there is a linear isomorphism between T, M and
the space of derivations of C* (W) at p.

Proof. To prove the theorem we need to invert (2.3) and define a
tangent vector in terms of of a derivation of C*(W) at p. We will
proceed in three steps.

SteP I. Let w : C*(W) — R be a derivation at p and suppose that
f € C®(W) is identically zero on a neighbourhood Wy = W of p. We
are going to show that w(f) = 0.

By Proposition 1.4.1, we can find a cutoff function p : M — R
such that p(p) = 1 inside Wy and supp(p) = Wp. Consider now
g = pf : W — R. Then g is identically zero in the whole W, and
thus® w(g) = 0. Using Leibniz rule, the fact that p(p) = 1 and

f(p) =0, we get
0=w(g) =w(pf) =p(p)w(f) + f(p)w(p) = w(f).

Step IL Let [f], € C;°(M). We want to show that it is always pos-
sible to find a representative for [f]p with domain W, that is, there
exists ¢ € C*(W) — R such that [g], = [f]p. Let (V, f) be any
representative of [f],. Since germs are local, if necessary, we can
shrink V so that V < W. Here comes the tricky bit: we need to ex-
tend f to a function g defined on W which coincides with f in some

neighbourhood of p! To this end, choose®

a smaller neighbourhood
U of p such that U = V = W. Again, Proposition 1.4.1 comes to the

rescue. Apply it with K = U and “U"7 equal to V, and consider

p(@)f(q), qeV,

:W - R, =
g 8(q) 0, JeW\V.

Since g|ly = f, we have [g], = [f]p, proving the claim.

StEP III. We can now complete the proof. Let w : C*(W) — R be
a derivation at p. A tangent vector is a linear map v : C;°(M) — R,
see (2.2), and a derivation. We would like to define one in terms of
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We are still talking about derivations of
functions at specific points, not to be
confused with the derivations of the
algebra C® (W) which we will introdce
later and will be maps of the kind
C®(W) - C®(W).

5 Follows by linearity, exactly as in
Lemma 2.3.7

¢ We can do this because topologi-

cal manifolds are locally compact
Hausdorff spaces, which implies that
every point has a neighbourhood with
compact closure. You can take it for
granted or have a look at e.g. [Lee11,
Lemma 4.65] or [Munoo].

7 Meaning the set that we called U in
Proposition 1.4.1.
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w. Given any [f], € C;°(W), the previous step guarantees that there
exists a representative (W, f) for it, so we can define

v([flp) := w(f), where (W, f) is any representative of [f],.

Such v is a derivation by construction, so if it is well-defined, we are
done. To this end, assume that there exists a different representative
(W, g) for [f]p. Then, by definition, there exists a neighbourhood
V < W of p such that f|, = g|,. By linearity, w(f) —w(g) = w(f — )
and by the first step in the proof, w(f — g) = 0.

The assignment w — v inverts (2.3), completing the proof. O

This seemingly innocent proposition, has some very important
consequences.
First of all, from now on we are free to interpret tangent vectors

in T,M as derivations of C*(W) at p for any® open W containing p.

This enables us to give our first example of tangent vector.

Example 2.3.10. Let M be a smooth manifold of dimension n and

¢ :U—V cR"achart on U c M. As already mentioned, we write
x' = 1l o ¢ for the local coordinates? of ¢. For any p € U, we can
define a derivation of C*(U) at p as

0 0 of

il CTW =R 5| (F)i= 25() = Dilf oo™ (9(p)):

From now on, it will get more and more convenient to draw com-
mutative diagrams to see “how things are moving around”:

Mol —9¢—— VR

| /

f fop~?

L

R

We will soon see that {5‘3,
lp

|1<i< n} forms a basis for T,M. ¢
Secondly, it provides us some very useful corollaries.

Corollary 2.3.11. Let M be a smooth manifold and let W < M be a
non-empty open set considered as a smooth manifold. Then, for any p e W
there is a canonical identification TyW = T, M.

Corollary 2.3.12. Let M be a smooth manifold and p € M. Let W < M be
an open neighbourhood of p. If f € C* (W) is constant in a neighbourhood
of p, then v(f) = 0 for all v e T,M.

With these new tools at hand, we are ready to state and prove an
important result on the size of the tangent spaces. As it turns out,
TpM is a finite dimensional vector space, naturally isomorphic to
R™.

Theorem 2.3.13. Let M be a smooth manifold of dimension n and p € M.

Then Ty M is a vector space of dimension n.

8 In particular, it is often convenient to
have W coincide with the domain of a
chart or with the whole manifold M.

9 See Notation 1.2.13.



The theorem will follow immediately once we construct a basis
for T, M. To that end, we need a preliminary result from multivari-
able analysis.

Lemma 2.3.14. Let U < R", 0 € U, be a star-shaped™® open set and
h e C*(U). Then, there exists n smooth functions ¢; : U - R, 1<i<n,
such that g;(0) = D;h(0) and

h = h(0) +r'g;
where 1! are the coordinates introduced in Notation 1.2.13.

Proof. Fix a point x = (x!,...,x") € U. Let , : [0,1] — U denote

the line segment from 0 to x, parametrized as yx(t) = tx.
By the chain rule,

L o)) = (Dih(t) - & (121) = ¥ D1,

The fundamental theorem of calculus then implies
h(x) = h(0) = (ho7x)(1) = (o 7x)(0)

1 orl
:L %(ho'yx)(t) dtzx’L Dih(tx) dt.

Since x' = r'(x) by definition, the theorem follows by defining

gi(x) == Jol D;h(tx) dt.

Theorem 2.3.13 now follows from the next statement.

Proposition 2.3.15. Let M be a smooth manifold of dimension n and
pe M. Let ¢ : U— V beachart on M around p, i.e. p € U. Then any
tangent vector v € Ty M can be uniquely written as a linear combination

; 0

=v= v; = v(xh).

[

p/
Thus, {M)p | 1<i< n} is a basis of Ty M.

Proof. We may assume without loss of generality that ¢(p) = 0 and,
thanks to Corollary 2.3.11, that U is star-shaped. Let f € C*(U). By
Lemma 2.3.14 with h = fo ¢! we get

f=f(p)+xi(gio9), 8i(0)=Di(fop1)0) = % K0!
Thus, for any derivation v, we obtain
o) = o(f(p) + 0 )gi(0) + 2 (pJoli o 9) = o) 2| (1)

The right hand side is obtained observing that ¢(p) = 0, and
thus the components x'(p) = 0 are all zero, and applying Corol-
lary 2.3.12 to the constant f(p), which implies v(f(p)) = 0.
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® An open set U < R” containing the
origin, 0 € U, is called star-shaped if U
also contains the line segment from 0
to x for any x € U.

« This is our first use of Einstein
notation, this equation should be read
as h(x) = h(0) + Xy r'(x)i(x). Using
the global euclidean chart, x' = #/(x)
and h(x) = h(0) + Y x'gi(x),
which you may recognize as the first
iteration of the usual Taylor-MacLaurin
formula.

«— Again, due to Einstein notation,
the right hand side should be read as
S, X' Dih(tx).

«— For one last time, due to Einstein
notation, the right hand side should be

read as Y, x' §) D;h(tx) dt.

« Since we consider upper indices
in the denominator as lower indices,
the equation should be read as v =

iy Ui% . If M = R", what we are
-p

saying here is that v(f) = v- Vf =
Df v, that is, v acts as the directional
derivative in its direction.

If we are careful with the meaning

of our notz;}t{ion, we could write more
. 0 . o .

succintly 5 (p) in place of a%l}p(f) in

the same fashion as in Example 2.3.10.
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It follows that the set %
Clp

| 1<i< n} spans T, M. We now
need to show that its elements are linearly independent. Observe

that

0

; 0
— ] —
8xi X

~ oxilp
= Dl-(rj o@o qfl)((P(P))
= Dirl(9(p)) = 9.

(v o )

p

Thus, if

1

by letting v act on xj,j <1 < n, we obtain (a',...,a") = 0, proving

the linear independence. O

Remark 2.3.16 (Change of coordinates). Suppose ¢ and ¢ are two
different charts about p, with corresponding coordinates x' := 7 o @
and y' := 7' o . Taking v =
that

aiyf , in the previous proposition implies
SN I N
6yj p B ayj p oxt

Expanding the definitions, we get

p.

2| ) = Dy oy ) = Dyt o gy (),
yip

which is the (i, j)th entry in the matrix D(¢ o 1) (¢ (p)) as dis-
cussed at the beginning of Section 2.2. In other words, D(¢ o

1) (¢(p)) is the transition matrix from the basis {a‘ | 1<i< n}
P

oyt
to the basis {;1’ | lgign}. O
lp

Example 2.3.17. The transition map between the standard euclidean
coordinates and the polar coordinates on appropriate open sets in
R? is given by (x,y) = (pcos(f),psin(8)). Let p € R? denote the
point with coordinates (p,0) = (3,77) and v € T,R? the tangent
vector with polar coordinate representation

0 0

Applying the equations in Remark 2.3.16, we get

0 . 0
= cos(n)a‘p + sm(n)@‘p =5

%‘p P

—3sin(n)%‘ +3cos(n)%’ =-3_—
P P

2 -
0ly
and thus, the vector v in standard coordinates is represented by
0
+3-|.
po ylp

If we start getting used to thinking of

these vectors as actual derivatives and

hide the dependence on p, then the

equation on the left can be rewritten as
o _ o 2



Exercise 2.3.18. Let (x,y) denote the standard coordinates on R?.

1. Show that (X, ), where
¥=x and y=y+x°
are global smooth coordinates in R?.

2. Letp = (1,0) € R?in standard coordinates. Show that

% ) # O%‘p even though the respective coordinate functions

are identically equal.

This shows that the coordinate vectors in the tangent space de-
pend on the whole coordinate system and not just on the single
coordinate function they are associated to. *

WE ALREADY MENTIONED that there are multiple equivalent
definitions of the tangent space. In the following exercise you will
provide one in terms of charts and euclidean derivatives. Soon, we
will see yet another definition.

Exercise 2.3.19. Let {V, | « € A} be a family of vector spaces indexed
by a set A, let W be a fixed set and let T, : V, — W be a bijection
forall « € A. Assume that for any &, f € A, the composition

Tﬁ_ 1o Ty : Vo = Vpisa linear isomorphism. Show that there is a
unique vector space structure on W such that each Ty is a linear
isomorphism. e

Exercise 2.3.20 (Tangent vectors as equivalence classes of charts and
vectors). Let M be a smooth m-manifolds with maximal smooth atlas
Y. For p e M, let ¥, c ¥ denote the set of charts ¢ € ¥ such that p
lies in the image of ¢.

1. Show that

(0,9) ~ (w,y) < DPog ")(g(p)o=w.

defines an equivalence relation on R"™ x X,

2. Let 7, denote the set of equivalence classes [(v, ¢)] € R" x X,/ ~.

For ¢ € X, show that the map T, : R" — 7T, given by Tyv :=
[(v, )] is a bijection. Deduce'* that 7, admits a unique vector
space structure such that each T, is a linear isomorphism.

3. Let ¢ be a chart defined on a neighbourhood of p with local
coordinates x’ = 1’ o ¢ and let T, : R — T, M denote'? the linear
isomorphism defined by T,e; = W‘P' Show that there exists a

linear isomorphism S, : 7, — T, M which in addition satisfies

Sy o Ty =T, for every chart ¢ about p.

*

2.4 The differential of a smooth map
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" Hint: use the previous exercise!

2 As it turns out, this is the same as
T, defined in (2.4), however in this
exercise we use a different notation
to emphasize the dependence on the



36 ANALYSIS ON MANIFOLDS

IN THE CASE OF A SMOOTH MAP BETWEEN EUCLIDEAN SPACES,
the total derivative of the map at a point (represented by its Ja-
cobian matrix) is a linear map that represents the best linear ap-
proximation to the map near the given point. In the manifold case
there is a similar linear map but, as we discussed, it makes no sense
to talk about a linear map between manifolds: we need to find a
suitable linear map between tangent spaces.

It should not come a surprise that with the constructions devel-
oped so far not only do we have one such map, but we can directly
relate it to a derivative.

Definition 2.4.1. Let F : M — N be a smooth map between the
smooth manifolds M and N. Let p € M. The differential dF, of F at
p is the map*3

dFy : TyM — Tp(,)N, dF,(v)(f) :==v(foF), VYfeC®(N).

O

Indeed, v — dFy(v) is a linear map (why?) defining a derivation
at F(p) acting on functions in C*(N) (why?) and, as such, is also a
tangent vector in Tr(p)N.

Exercise 2.4.2. Answer the two (why?) above. *

Theorem 2.4.3 (The chain rule on manifolds). Let M, N, P be smooth
manifolds and F : M — N, G : N — P be two smooth maps. Then

d(GoF), = dGp(p) o dFp.

Proof. Since dF, : TyM — Tr(,)N and dGg(p) : Tr(p)N — Tg(r(p)) P,
the map d(G o F), : T,M — Tg(g(p)) P has the right domain and
codomain. Take now v € T,M and f € C*(P). We get

d(GoF)p(v)(f) =v(foGoF) =dFy(v)(foG)
) 4Gy (dE,(0)(f) = dGr(p) A, (0)(f),
where in (%) we used the fact that dF, (v) € Tr(,)N. O

Remark 2.4.4. The differential of the identity map idy; : M — M at
any point p € M is the identity map

idTpM . TPM - TpM.
Indeed, d(idy)p(v)(f) = o(f oidm) = v(f) for any v € T,M and any
feC®(M). O

The definition we gave seems quite abstract, let’s see what it
looks like in coordinates.

Proposition 2.4.5. Let F : M" — N" be a smooth map between smooth
manifolds. Let p € M, and let ¢ : U — @(U) be a chart on M about p

and ¢ : V — (V) be a chart on N about F(p). If (x') denotes the local
coordinates of ¢ and (y') the ones of , the matrix of dF, with respect to

the bases {%hﬂ | j= 1,...,m} of T,M and {8iy1|1:(}ﬂ) | j= 1,...,n}
of Tr(p)N is given by the Jacobian matrix D(p o F o e H(e(p)).

3 In the differential geometry lit-
erature, the differential has many
names: you can find it called tangent
map, total derivative or derivative of
F. Since it “pushes” tangent vectors
forward from the domain manifold
to the codomain, it is also called the
pushforward. If that was not enough,
different authors use different nota-
tions for it: besides dF,(v), you can
find Fyvp, F'(p), T,F, DF(p)[v] or
variations thereof.

The alternative D notation, in this case,
makes the relation to the usual chain
rule even more evident: D(Go F)(p) =
DG(F(p)) o DF(p).



Proof. The proof follows from the following direct computation
after observing that the number D;(r' o p o F o ¢~ 1)(¢(p)) is the
(i,) entry of the Jacobian matrix D(ip o F o ¢~ 1)(¢(p)). For any
j=1,...,m,

0 0 0
dF, | — =dF, | — N
y (036’ ‘P) P (596] P) W )W

E(p)
0 ; 0
= — ! F -
; _ 0
=Dl oo Fop )7

O

Exercise 2.4.6. Show that the matrix of dF, in terms of the coordinate
bases is

1 1
PR OB ()
T - e
without using the Proposition above. Here ‘;i ]] (p) = %|p(1—"i),

where F' is the ith component of F with respect to the chart with
coordinates y/.

Hint: show that dF, ((-/%;,|p) )= <%(P)a%j‘p(p)) (). *

A PARTICULARLY IMPORTANT CONSEQUENCE of this theorem is
that if we set M = R and N = R” our definition coincides with
the euclidean notion. This is easily checked by taking ¢ = idgm
and ¢ = idg»«. Then the coordinates (x',...,x™) are the standard
euclidean coordinates for R™ and the coordinates (y!,...,y") the
ones for R".

Let f : U < R™ — R" be a smooth function and define the linear
isomorphisms

T, R" - T,R" Tee;— -
oxtlx
n n / ! (2.4)
T,:R" - T,R", Ty =—
¥ y yCi ayl y
where {ej, ..., ey} denotes the standard basis of R™ and {e}, ..., e}

denotes the standard basis of R".

On the one hand, we have the total derivative Df(x) : R"” — R"
from multivariable calculus: a linear map, the Jacobian matrix
of partial derivatives. On the other, we have the differential df, :
T,R"™ — Tf(x)lRm defined above: also a linear map, related to the
Jacobian matrix of partial derivatives by Proposition 2.4.5. In fact
we know more, since Proposition 2.4.5 tells us that the following
diagram commutes:

Df(x)

R" ——MM— R”"

lTx le) .

af

T,R" ————— Ty R"
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More generally, the same kind of reasoning shows the following
fact. For any smooth map F : M — N" between smooth manifolds,
if @ is a chart about x € M with coordinates (x') and ¢ is a chart
about y = F(x) € N with coordinates (y'), the following diagram

commutes:
R D(¢OFO<P*1)(<P(X))]RH
Ti Tr(x) ,
dF.

TXM —r TF(x)N

where Ty and Tg(,) are defined as above.

AN ASPECT OF THE CONSTRUCTION ABOVE IS PARTICULARLY
DISTURBING: it forced us to fix a basis on the spaces; if this were
truly necessary it would defeat the purpose of this whole chapter.
Fortunately for us, the following exercise shows that, at any given
point, the tangent space to a vector space is canonically’# identified
with the vector space itself.

Exercise 2.4.7 ([homework 2]). Let V and W be finite-dimensional
vector spaces, endowed with their standard smooth structure (see
Exercise 1.2.12).

1. Fix a € V. For any vector v € V define a map 7,(v) : C*(V) - R
by

d
tlt=0
Show that the map v — 7,(v) : V — T,V is an isomorphism of

Ta(v)f = T f(a+to).

vector spaces.

2. LetL : V — W be a linear map. Show for any a € V that the
following diagram commutes:

v —Lt —w

Ta Tia -

v —M 1w

*

An important consequence of what we have seen so far is that
we can routinely identify tangent vectors to a finite-dimensional
vector space with elements of the space itself. More generally, if M
is an open submanifold of a vector space V, we can combine the
identifications T,M ~ T,V ~ V to obtain a canonical identification
of each tangent space to M with V. For example, since GL,(R) is
an open submanifold of the vector space Mat(n), we can identify
its tangent space at each point X € GL,(R) with the full space of
matrices Mat(n).

Exercise 2.4.8 (Tangent space of a product manifold). Let My, ..., M
be smooth manifolds (without boundary?>), and for each j let

Recall that the following commutes:

M—F N

1

R™ lpoFO(pfl R"

* That is, independently of the choice
of basis.

> The statement is true also if one
(only one!) of the M; spaces is a
smooth manifold with boundary. If
there is more than one manifold with
boundary, the product space will have
“corners” that cannot be mapped to
half spaces and thus is not a smooth
manifold, as a simple example you can
consider the closed square [0,1] x [0,1].



i : My x -+ - x Mg — M; be the projection onto the M; factor. For
any point p = (p1, ..., px) € M1 x --- x My, the map

O'ZTP(M1><~--><Mk)—>TpM1 X---XTpMk
oo~ (d(m)p(),...,d(m)p(v))

is an isomorphism. ¢

Remark 2.4.9. When M is a smooth manifold with boundary and p
is an interior point, all the discussions above apply verbatim. In par-
ticular, the tangent space at a boundary point of an n-dimensional
manifold with boundary is also an n-dimensional real vector space
that can be identified (non-uniquely) with IR” using a chart contain-
ing that point.
For p € dM the only change that needs to be made is to substi-

tute H" for R", with the understanding that the notation % }4’ ()
can be used interchangeably to denote either an element of T,,,)R"

or of Tq)(p)?-[". In the latter case, the nth coordinate vector a%

p
should be interpreted as a one-sided derivative. O

In the next section we will give yet another alternative way of
defining tangent vectors: less elegant but easier to compute.

2.5 Tangent vectors as tangents to curves

Exercise 2.4.7 may have left some thoughts hanging in the air...
From the look of it, it seems that there is a relation between tangent
spaces and the velocity of a body moving with constant speed. In
this section we will further explore these thoughts.

Definition 2.5.1. If M is a manifold with or without boundary, we
define a (parametrized) curve in M to be a smooth® map y: [ —
M, where I = (a,b) < R is an interval. O

Fix t € (a,b). A priori we have two different ways to define the
velocity vector of +y at a time ¢, that is, an element /() € T,y M:

(i) We can define a derivation on C*(M) at 7 (t) by setting

YO = (for) (), feCr(M). (2.5)
Exercise 2.5.2. Show that this is indeed a derivation on C*(M).
*

(ii) If we think of ¢ as a smooth map between manifolds, we can
define the tangent vector via the differential dv;:

0
’)//(i’) = dyy <6t t> € T"y(t)M (2.6)

Do these definition agree? One way to check is to pick a chart
¢ : U — ¢(U) in a neighbourhood of ¥(t), and compare the
expressions in local coordinates. Let (x') denote the coordinates
of ¢ and define the curves 7' := x' oy : I — R. Let’s focus
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16 Continuously differentiable would
be enough, but assuming it smooth
simplifies the exposition.
Conventionally, b = —a = € > 0 (the
reason will be clear in a second) and
we denote the coordinate on R by ¢
and the derivative of y at a point ¢
by 7/(t). We say that a curve starts at
pe Mif0eIand y(0) = p.

—
R
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on (2.5). By definition, 9/(t)(x") = (x' 0 9)’(t) = (¥)'(t), therefore by
Proposition 2.3.15 we get

i 0
") =95 :
7O = O] 27)
Exercise 2.5.3. Show that applying Proposition 2.4.5 to (2.6) leads to
the same formula as (2.7). *

~ M

0 PR. R

Figure 2.2: The velocity of a curve
But how can this mapping between curves and tangent vector be
well-defined? Surely, there must be multiple curves with the same
speed at a point which differ outside a neighbourhood of the point.

Lemma 2.5.4. Let M be a smooth manifold and «y,6 : (—€,€) - M
two smooth curves with (0) = 6(0). Then, 7'(0) = 8'(0) as elements
of T, (0)M if and only if for some (and thus any) chart ¢ : U — ¢(U),
7(0) € U, we have (¢ o y)'(0) = (¢ 05)'(0).

Proof. Let (x') denote the coordinates of ¢. The condition (¢ o
7)'(0) = (¢ 03)'(0) is equivalent as stating that (7/)'(0) = (')’ (0),
where 7/ = x' 0y and ¢’ = x' 0 4. Then, the claim follows from (2.7)

and the fact that {%| )} is a basis of T, o) M. O

7(0

This seems to follow a pattern: until now, all the definitions of
tangent vectors where in terms of classes of equivalence. And it
would seem reasonable to identify curves that that have the same
tangent vector at 0. There is still a potential problem, though: we
don’t yet know if every tangent vector can be written as the velocity
vector of a curve.

Theorem 2.5.5. Let M be a smooth n-manifold, let p € M and let
v € TpM. There exists a smooth curve 7y : (—€,€) — M such that

7'(0) = v.
Proof. Let ¢ : U — ¢(U) be a chart about p such that ¢(p) = 0. Let

(x') denote the coordinates of ¢, as usual, and assume that

n
.0
V=0

, aelR.
i=1 b

For € small enough, by continuity the vector (ta!,..., ta") e ¢(U)
for all |t| < e. Therefore, the curve

v:i(—€€) =M, () :=¢ (tal,... ta"),



is well-defined, smooth, satisfies 7(0) = p and, by (2.7), 7/(0) =
0. O

This means that we can actually give an alternative definition of
TyM in terms of tangents to curves:

Definition 2.5.6. A tangent vector at p € M is an equivalence class

of smooth curves v : (—€,€) — M such that y(0) = p, where ¢ ~ ¢ if
and only if (¢ o) (0) = (¢ ©J)'(0) for some chart ¢ centred about p
(see Lemma 2.5.4). O

In fact, it is possible to start the whole tangent space discussion
with the above definition. In that case, you would first need to
prove Exercise 2.3.19 and endow T, M with a vector space struc-
ture'”.

To conclude this part, the next proposition shows that velocity
vectors behave well under composition with smooth maps and give
us a direct, explicit and effective way to compute differentials.

Proposition 2.5.7. Let F : M — N be a smooth map between smooth
manifolds and «y : [ — M a smooth curve in M. Then

dE, (7' (1)) = (Fo ) ().

Proof. We are going to use (2.6) as definition of 7/(t). Applying the
chain rule we obtain:

F
dEy(n (7 (1)) = dF, ) 0 dye (atp

—d(Foy); (;D

= (Foy)'(b).
O
Exercise 2.5.8. Give an alternative proof of Proposition 2.5.7 us-
ing (2.5) as definition for 7/(t).
Hint: use the definitions to rewrite the formula in different ways. *

2.6 The tangent bundle

Instead of working separately with the various tangent spaces, we
can “glue” them together into a big manifold.

Definition 2.6.1. The tangent bundle TM of M is the disjoint union
of the tangent spaces

™™ := | | ({p} x T;M) = {(p,v) | pe M, ve T,M}.
pPEM

Elements in TM are pairs'® (p,v) of a base point p € M and a
tangent vector v € T, M.
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xl‘-— const

M

Figure 2.3: With this definition, the
coordinate tangent vectors d,; € T,M
become the tangent vectors defined by
the curve

t— ¢*1(x1(p),...,xi(p) +t...,x"(p)).

7 To get the analogue result as Proposi-
tion 2.3.15

™

/\\/M

8 We will often abuse notation and
identify T, M with with its image
under the canonical injection v —
(p,v) and use interchangeably any of
the notations v, v, or (p,v) for a vector
in T, M (depending on how much
emphasis we need to put on the base
point).
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To the tangent bundle we associate a surjective map 7 : TM —
M, the projection (onto the base), which sends each vector in a

tangent space to the point at which it is tangent, that is, 77(p, v) = p.

The second component of the pre-image 77! ({p}) = {p} x T, M, that
is T M itself, is called the fibre over p € M. We will come back to

this later on once we talk about vector bundles.

Example 2.6.2. Let M < R" be an an open set. We can identify TM
in a natural way with M x R". Since M x R" c R?" and thus is a
manifold, we can equip the tangent bundle TM with the structure
of a manifold induced by this identification. O

As it turns out, this is a particular instance of a more general
fact.

Theorem 2.6.3. Let M be a smooth n-manifold. The smooth structure
on M naturally®® induces a smooth structure on TM, making TM into a
smooth manifold of dimension 2n. Moreover, the map w : TM — M is
smooth.

Proof. STEP 1: EXTENDING CHARTS FROM M To TM. Given a chart
(U, ) about p € M, the preimage 7~ !(U) = TM is the set of all
tangent vectors to M at points of U. If (x') denotes the coordinate
functions of ¢, we can define a map ¢ : 7~ 1(U) — ¢(U) x R" = R?"

by
¢ vii = (xl(p),...,x”(p),vl,...,U"). (2.8)
oxtlp
Since ¢ can be explicitly inverted as ¢! (x!,...,x", 0}, ..., 0") =
o , it defines a bijection onto its image.
0x' |1 (x)

STEP2: COMPATIBILITY OF THE EXTENDED CHARTS. Suppose we
have two smooth charts (U, ¢), (V, ) for M with the respective
local coordinates (x') and (v'). Let (71 (U), §), (=1 (V), ) be
their extension®® to TM as in the previous step. By construction®',
both ¢(~1(U) n 7= 1(V)) = ¢(U V) x R* and ¢(7~(U) n
m=1(V)) = $(U n V) x R" are open in R*". Moreover, we can take
advantage of Remark 2.3.16 to write explicitly the transition map
Yo lipUnNV)xR" - p(UnV)xR" as

tpog5_1 (xl,. ) .,x”,vl,...,v”)

1 ) n
- (yl(P)w-/}/"(P)/ay-(p)v],..., oy

o) (”)”j) '

where p = ¢~!(x), which is clearly smooth.

STEP3: TM 1s A MANIFOLD. With the procedure delineated above,
a countable smooth atlas {(U;, ¢;)} of M induces a countable atlas
{(m=Y(U;), ¢;)} of TM. First of all, {(7~1(U;)} provides a countable
covering of TM. We need to show that the topology induced by
those charts is Hausdorff and second countable.

19 In the sense that its definition does
not require to make any arbitrary
choices.

In this proof you can see instances
of a typical abuse of notation: in the
expressions ¥ (x) we think of the ¥
as coordinate functions but we think
of the x as representing a point in
e(UNV).

Keep in mind that

N U) =TU =| |T,Uc| |T,M=TM.

2° These are called bundle charts.

' They are both homeomorphisms.
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T (W) (V) xR 2n

7 /

4\

o~ —,

Let (p1,v1), (p2,v2) € TM be different points: either p; # py, or
p1 = p2 and v1 # vs.

* In the first case, there are disjoint open sets V1, V, < U; (for some
i) containing respectively p; and p,. Then (ﬁlfl((pi(vl) x R™) and
gﬁfl (¢;(V2) x R™) are disjoint open sets containing respectively
(pr,01) and (p2,02).

® In the second case, p = p; = py but there are disjoint open
sets V1, Vo, < IR" containing v; and v, respectively; again, the
preimages ¢; ' (¢;(U;) x V1) and ¢; *(¢:(Uz) x V2) (for some i
such that p € U;) are disjoint open sets containing respectively
(p1,01) and (p2, 02).

The countable basis {U;} is a countable basis for the topology
of M (which is second countable), taking a countable basis {Wj}
for the topology of R", we can define a countable basis for TM
as {¢g~1((U; n Uj) x Wi)}. The charts defined above make TM
automatically euclidean of dimension 2#.

Exercise 2.6.4. This part of the proof seems unnecessarily detailed.
Can you simplify it using Lemma 1.2.24? *

STEP4: 7 15 sMOOTH. With respect to the charts (U, ¢) for M
and (7~ 1(U), ) for TM, the coordinate representation of 7 is
t(x,v) = x. O

The coordinates (x',v') defined by (2.8) are called natural (or
canonical) coordinates.

Exercise 2.6.5. Let f : M — N be a smooth map between smooth
manifolds. Show that its differential df : TM — TN is a smooth
map between smooth manifolds (the respective tangent bundles).
Hint: use the natural differentiable structure on the tangent bundle described
above and the definition of smooth map. *

bo) T

Figure 2.4: Coordinates for the tangent
bundle
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Remark 2.6.6. In classical mechanics, the configuration space is
usually a manifold M. The tangent bundle TM corresponds to

the state space, that is, the space of configurations and velocities.
In symbols x = (g,v) is a pair of a configuration 4 = 7t(x) and

a velocity v € T;M. It turns out that the Lagrangian is a smooth
function on TM. %

2.7 Vector bundles

What we have seen here is our first example of vector bundle,
which is just a way to call a vector space depending continuously
(or smoothly) on some parameters, for example points on a mani-
fold.

Definition 2.7.1. A vector bundle of rank r on a manifold M is a

manifold E together with a smooth surjective map 7 : E — M such
that, for all p € M, the following properties hold:

(i) the fibre over p, E, := 71 !(p), has the structure of vector
space of dimension 7;

(ii) there is a neighbourhood U < M of p and a diffeomorphism
¢t 1(U) — U x R such that

(@) 0@ = mwhere m; : U xR" — U is the projection on the
first factor,

(b) forallg e U, go!Eq : E; — {q} x R" is an isomorphism of
vector spaces.

The space E is called the total space, the manifold M is the
base space, 7t its projection and each of the maps ¢ is called local
trivialisation.

If there exists a trivialisation defined on the whole manifold, that
isamap ¢ : M — M x R”, such map is called global trivialisation
and the vector bundle is said to be trivialisable. O

Example 2.7.2. * A simple example of vector bundle of rank r over
a manifold M is the product space E = M x R" itself with the
projection on the first component 7r; : E — M. In this case the
bundle is clearly trivialisable.

¢ The tangent bundle TM with its projection to the base 7 : TM —
M is a vector bundle. In this case the fibres are the tangent
spaces 7~ 1(p) = T,M. If the tangent bundle of a manifold is
trivalisable, then its base manifold is said to be parallelisable.

o If ;. E; —> M;, i = 1,2, are vector bundles, then 7w = (711, 12) :
E1 x E — M x M is another vector bundle whose fibres are
the product of the fibres of the two original bundles. A particular
example of this is the tangent bundle T(M; x Mj), which is
diffeomorphic to TM; x TM,.
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® Other examples will appear throughout the course.

%
Exercise 2.7.3. Show that dim(E) = dim(M) + . *

Exercise 2.7.4. Show that if 7t : E — M is a vector bundle and U ¢ M
is an open set, then 71 a1(U) - 7~1(U) — U is a vector bundle of the
same rank. *

Example 2.7.5. Let 7t : E — M be a vector bundle of rank r. Assume
that E itself is the base space of another vector bundle 711 : E; — E
of rank s. Then 7ro 71; : E; — M is a vector bundle of rank r + s
called the composite bundle. Indeed, if ¢ : 7=1(U) — U x R is

a bundle diffeomorphism for E over U < M and ¢y : 71 ) -

U; x R® is a bundle diffeomorphism for E; over U; < E such that
Vi=n(lU;) nU # &, then

Y= (pom, 1) : (mom) Y (V) — (U xR") x (U; x R) /\\_/ E

is a bundle diffeomorphism for 7 o 717 over W.
A particular example of this is the tangent bundle of the tan-
gent bundle: if M is a n-manifold, its tangent bundle TM is a
2n-manifold, and its tangent bundle T(TM) is a vector bundle over S
M of rank 3n. $ M
To compare vector bundles it is useful to define the following /\'\/
concept.

Definition 2.7.6. An isomorphim between two vector bundles 7; :
E; — M, i = 1,2, over the same base space M is a homeomorphism Sel['€) sechon

: hich fi ! h i
h : E; — E; which maps every fiber 77~ (p) to the corresponding Figure 2.5 A useful mnemonic to

. 1 . . .
fiber 7T, *(p) by a linear isomorphism. O remember what is a section, is to
imagine it as a cross-section of the
Since an isomorphism preserves all the structure of a vector bundle.

bundle, isomorphic bundles are often regarded as the same.

Definition 2.7.7. A section of a vector bundle 77 : E — M is a smooth
map S : M — E such that mo S = idys. We denote the set of all
sections of E by I'(E).

If, in the definition, M is replaced by U < M, the section is

called local section. The set of local sections on U < M is denoted

T(Elu)- %

Example 2.7.8. It E = M x R", M < R", then for any smooth map
F : M — R" we have a section S € I'(E) defined by S(p) = (p, F(p)).
This is a classical euclidean vector field: a map that associates

vectors to points.
Notice, in particular, that functions f € C* (M) are sections of the
trivial bundle M x R. O

One can sometimes distinguish non-isomorphic bundles by
looking at the complement of their zero section: since any vector
bundle isomorphism & : E; — E; must map the zero section of E;
onto the zero section of Ej, the complements of the zero sections in
E; and E; must be homeomorphic.

”

Figure 2.6: A vector field “attaches
vectors to points.
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If the bundles are differentiable manifolds, then the definition of
isomorphism nicely generalizes: they are diffeomorphic if fibres are
mapped to fibres diffeomorphically.

Even though, as we have seen, locally TM is diffeomorphic to
M x R", this is not true in general with one exception.

Exercise 2.7.9. Let M be a smooth n-manifold that can be covered by
a single smooth chart. Show that TM is diffeomorphic to M x R"
(without applying Proposition 2.7.13). *

Definition 2.7.10. A local frame of a bundle 7 : E — M of rank

r is a family of r local sections (S1,...,Sr) € I'(E|y) such that
(S1(p),...,Sr(p)) is a basis for E, for all p € U. If U = M then
(S1,...,Sy) is called global frame. Sometimes, the sections S; are
called basis sections. O

Example 2.7.11. A chart on a n-manifold M with local coordinates

(xi) yields a local frame {a—il, ey, a%} of the tangent bundle TM.
O

In the spirit of what we have seen about the previous example,
we have the following proposition.

Proposition 2.7.12. Let w : E — M be a smooth vector bundle and
X : M — E asection. If (S;) is a smooth local frame for E over an open
subset U < M, then X is smooth on U if and only if its component
functions with respect to (S;) are smooth.

Proof. Let ¢ : m~1(U) — U x RF be the local trivialization as-
sociated with the local frame (S;). Since ¢ is a diffeomorphism,

X is smooth on U if and only if ¢ o X is smooth on U. If (X/)
denotes the component function of X with respect to S;, then
poX(p) = (p, (X (p),...,X*(p))), so ¢ o X is smooth if and only if
the component functions (X?) are smooth. O

That is, given a local frame {S4,...,5,;} < T'(E|y) of a vector
bundle 7t : E — M we can express any section X € I'(E) as a linear
combination of elements of the frame:

X = X’Si on U,

where X! € C*®(U),i=1,...,r. Which was to be expected: after all,
for each p € U = M, the local frame is a basis for E,,.

Proposition 2.7.13. A vector bundle v : E — M is trivialisable if and
only if it admits a global frame.

Proof. Let ¢ : E — M x R" be a global trivialisation and (ey, ..., €y)

the canonical basis for R". For g € M x R’, (51(q),...,5:(q)) :=

(g0_1|q(el), e, (p_1|q(er)) is a global frame for E (why?).
Conversely, let (Sq,...,S;) be a global frame for E. Then

¢:E—>MxR, (p,viSi(p)) — (p, (0, .. .,vr)) ,

is a global trivialisation for E. O



Example 2.7.14. The cylinder E = S! x R is a trivialisable vector
bundle with 7 : E — S!. Incidentally, the cylinder is isomorphic to

TS (why?). O

A useful generalization of vector bundles, which we will not
discuss in the course, is the locally trivial fiber bundle, where R is
replaced by a more general manifold.

2.8 Submanifolds

With differentials of smooth functions at hand, we are ready to
discuss submanifolds: smaller manifolds sitting inside larger ones.

Definition 2.8.1. Let M and N" be differentiable manifolds and

F: M — N a C! function.
* Fis an immersion if dF, is injective for all p € M (= m < n);

7

* Fis a submersion if dF), is surjective for all p e M (= m = n);

7

¢ Fis an embedding if F is an injective immersion that is also a
homeomorphism onto its range F(M) < N.

O

Example 2.8.2. 1. The prototype of an immersion is the inclusion of
R™ in a higher-dimensional R":

i:R" —R",

i: (xl,...,xm) — [ x1,...,x™0,...,0

—
n—m
Indeed, the n x m matrix
1 0
1 0
diy =Di(x)=|0 -~ .. 1
0
0 - --- 0

has full rank (equal to m) and is therefore injective. Moreover,
the map i is injective and continuously invertible on its range, so
it is also an embedding.

2. The prototype for a submersion is the projection of R™ onto a
lower-dimensional R™: 7t (x!, ..., x", x" 1, .. x™) = (xl,..., x").

7

Indeed, the n x m matrix

dmt, = Drt(x) =
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has full rank (equal to 1) and is therefore surjective. Hence, i is a
submersion.

3. Letn =1, m>1and vy : R - R"™ a smooth curve. The map 7 is
an immersion if and only if its velocity vector satisfies /(t) # 0
for all t € R. If the curve intersects itself, e.g f(t1) = f(f2) for
some t1 # tp, then f is not an embedding.

O

Remark 2.8.3. Surjectivity of submersions or injectivity of immersions
are properties of the differentials, not of the maps themselves. For
example, if U < M open, the inclusioni : U — M is both an
immersion and a submersion. O

Definition 2.8.4. Let M and N smooth manifolds such that M ¢ N
as a set. We say that M is an embedded submanifold of N if the
inclusion M < N is an embedding. If the inclusion is just an

immersion, we say that M is an immersed submanifold. O

Before moving on, it is useful to recall some results from mul-
tivariable analysis. A function f : R” — IR” between euclidean
spaces has rank k at x € R™ if its (n x m) Jacobian matrix D f(x)
has rank k. The function has maximal rank®? at x if k = min(n, m). 2 Alternatively, it is of full rank.
When n = m, f has maximal rank at x if and only if the square
matrix DF(x) is an invertible matrix.
As for many local properties, this definition carries over to
manifolds rather “smoothly”.

Definition 2.8.5. A smooth map F : M — N has rank k at a point p
if the linear subspace dF,(T, M) has dimension k inside Tr,)N. ¢

And the same is true for the inverse function theorem: compare
the following statements.

Theorem 2.8.6 (Inverse function theorem). Let U < R" open and

f U — R" be a smooth map. Assume that f has maximal rank at some
x € U, then there exists an open neighbourhood (3 < U of x such that
flg : @ — f(Q) is a diffeomorphism.

Theorem 2.8.7 (Inverse function theorem for manifolds). Let F :
M — N be a smooth function between manifolds of the same dimension
n. Let p € M and assume that F has maximal rank (i.e. rank n) at p.
Then there exists an open neighbourhood V of p such that the restriction
F:V — F(V) is a diffeomorphism.

Exercise 2.8.8. Use the euclidean inverse function theorem (Theo-
rem 2.8.6) on R" to prove Theorem 2.8.7. >

In fact, also analogues of the implicit functions theorem carry
over. We will state them without going into the details of the
proofs.

Proposition 2.8.9. Let F : M™ — N" be an immersion. Then for any
p € M, there exists a neighbourhood U of p and a chart (V, ) about
F(p) € N such that

Figure 2.7: Theorem 2.8.9 in a picture.



TANGENT BUNDLE 49

(i) Ify' = r' o are the local coordinates of i then
FWav={qeV | y"@==y"@=-0}; (29

(i) F|, is an embedding.

If F is an embedding, and this M is an embedded submanifold,
then the set F(U) above can be written as F(U) = F(M) n W for
some open set W < N. By replacing V in (2.9) with V n W, one gets

FM)nV ={qeV | y"*(g) = = y"(g) = 0}.

In particular, this means that a m-dimensional submanifold is also a
m-dimensional manifold whose charts are the ones above after we
drop the final #n — m components.

The proposition above shows that an immersion is always a local
embedding.

Exercise 2.8.10. 1. If M is compact, an injective immersion F : M —
N is always an embedding.

2. This is not necessarily the case in the non-compact case, give a
counterexample.
*

Lemma 2.8.11. With the notation of Proposition 2.8.9, assume that around
any point p € M there is a chart of the form

MﬂV:{qu | ym“(w:---:y”(q)zo}cN'

Then, if we endow M with the subspace topology on N, M is a topological
manifold of dimension m. Furthermore, it has a smooth structure that
makes it into an embedded submanifold of N.

Sketch. Let m : R" — R™ be the projection as in the examples
above. Let p € M and let (V, 1) be a chart with coordinates (y) of
the form above. If we endow M with the subspace topology, then
0 := mop|,, , is a homeomorphism. Repeating this at any point
we end up with a collection of maps satisfying the hypotheses of
Lemma 1.2.24. Thus M is a smooth manifold of dimension n and its
topology coincides with the subspace topology.

Finally, with the inclusioni : M < N one has that {poio
U_l(pl,. Pt = (pl, ..., p"0,...,0) which is smooth. O

A non-trivial consequence of the previous lemma is the follow-

ing prOpOSitiOl‘l23. 23 Refer to [Lee13, Proposition 5.8 and
Proposition 5.31].

Proposition 2.8.12. Let M be a manifold and U < M an open set. Then

In Proposition 2.8.12 it is not enough

. . . to ask that ¢ is smooth! As counterex-

is a diffeomorphism. ample consider the two manifolds

(R, A1) with A1 := {(R,idRr)} and

. . . . (R, Ap) with Ay := {(R,x — x°)}. The

Ur TO THIS POINT, the first manifold either had the same dimen- inclusion of open sets in R is smooth

sion or was smaller than the second one. What if it is larger? in both cases but is a diffeomorphism
only in one.

U has a unique differentiable structure such that the inclusion 1 : U — M
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Definition 2.8.13. Let F : M" — N", m > n, be a smooth map
between smooth manifolds. A point p € M is said to be a regular
point of F if F has rank n at p, while it is called a critical point if it
is not.

Similarly, a point g € N is called a regular value if every point in
F~!(q) is a regular point, and critical value otherwise. If g ¢ F(M),
then q is considered a regular value (in the sense that there is
nothing to check in its preimage by F). Cf. Figure 2.8. O

With this definition at hand, we are ready to state one of the
most important theorems in this lecture. Differently from most
previous ones, the statement is not local.

Theorem 2.8.14 (Implicit function theorem for manifolds). Let m > n
and let F : M™ — N" be a smooth map between smooth manifolds. If

q € N is a reqular value of F and P := F~(q) is not empty, then P is a
topological manifold of dimension m — n. Moreover, there exists a smooth
structure on P which makes it into a smooth embedded submanifold of M.

Remark 2.8.15. If F: M — N is a submersion, Theorem 2.8.14 implies
that any p € M belongs to the (m — n)-dimensional embedded
submanifold F~1(F(p)). O

We can gather this observation and the previous results (the
inverse and the implicit function theorems) into the following
proposition (of which we are also omitting the proof).

Proposition 2.8.16. The following assertions are equivalent.
(i) P* < N" is a k-dimensional submanifold®4.

(ii) P is locally the image of an embedding of a subset of R. That is, for
every p € P there exists V < P open neighbourhood of p, an open set
U < R¥ and an embedding

¢:U— N suchthat @(U)=1V.

(iii) P is locally a level set of a submersion into R"X. That is, for every
p € P there exists V < P open neighbourhood of p and a submersion
¢V — R"* ¥ such that

NaV={geV | pg) =0}

Remark 2.8.17. Whitney Embedding Theorem states that any smooth
n-dimensional manifold can be smoothly embedded into R?". Thus
any abstract manifold is diffeomorphic to a submanifold of R™ (for
some m). O

Example 2.8.18. The sphere $> = {x € R® | |x| = 1} is a 2-dimensional
submanifold of N = R3. This is immediate using the third condi-
tion in the Proposition 2.8.16: let ¥y(x) = [x|?> =1 : R® - R, then
i is smooth, 82 = {x € R3 | ¥(x) = 0} and dyp,(v) = 2x - v # O for
xeS2. O

=D

R

Figure 2.8: Beware of the subtleties
here. The map F = 71y oi for the
inclusion i : T? — R3 and the
projection 7ty (x,y,z) = x. SodF, =
d(7tx)i(p) © dip. The latter is zero if the
image of T, T? by diy : T,T? — T,R? is
contained in the yz-plane (the reason
will be clear by the end of the chapter):
the critical points depicted here are
exactly those points for which the
tangent plane is the yz-plane.

2480, k < n.



Example 2.8.19. Let N = R?and P = {x € N | x? = |x!|}. Then
P is not a submanifold, but it can be equipped with a manifold
structure. For example with the global atlas {(P, (x!,x?) — x1)}, P
is a manifold diffeomorphic to R. O

Exercise 2.8.20. A real-valued function f : M — R on a manifold has
a local maximum at p € M if there is a neighbourhood U < M of p
such that f(p) > f(q) for all g € U.

1. Show that if a differentiable function f : (4,b) — IR, has a local
maximum at x € (a,b), then f'(x) = 0.

2. Prove that a local maximum of a function f € C*(M) is a critical
point of f.
Hint: choose Xp, € TyM and let y(t) be a curve in M starting at p with initial

velocity Xp. The f oy is a real-valued function with local maximum at Q...

*

Or COURSE, WE CAN ALSO DEFINE SUBBUNDLES.

Definition 2.8.21. Let v : E — M be a rank-n vector bundle and

F < E a submanifold. If for all p € M, the intersection F, := F n E,
is a k-dimensional subspace of the vector space E, and 7| : F - M
defines a rank-k vector bundle, then 7| : F — M is called a
subbundle of E. O

Exercise 2.8.22 ([homework 2]). Let M be a smooth m-manifold and N
a smooth n-manifold. Let F : M — N be an embedding and denote
M = F(M)  N.

1. Show that the tangent bundle of M in N, given by TM :=
dF(TM) c TN|, is a subbundle of TN/|; by providing explicit
local trivialisations in terms of the charts (U, ¢) for M.

2. Assume that there exist a smooth function ® : N — R"™™ such
that M := {p € N | ®(p) = 0} and d®d, has full rank for all p € M.
Prove that

TM = {(p,0) € TN|; | © € ker(d®,)}.
s

WE STILL HAVE A QUESTION PENDING since the beginning of the
chapter. Is the tangent space to a sphere the one that we naively
imagine (see Figure 2.1)? To finally answer the question, we will
prove one last proposition.

Proposition 2.8.23. Let F : M™ — N" be a smooth map between
manifolds. Let g € N be a reqular value of F such that P := F~1(q) # &
and let i : P — M denote the inclusion. Then, for all p € P, one has

diy(TyP) = ker dF,.

TANGENT BUNDLE
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Proof. Both di,(T,P) < TyM and kerdF, < T,M are linear sub-
spaces of the same dimension m — 1, therefore we only need to show
that one contains the other, e.g. diy(T,P)  ker dF,.
Take f € C*(N) and v € T,P. By the chain rule*> we get % Proposition 2.4.3

(dF, o diy) (0)(f) = d(F 0 i)y(0)(f) = o(f o F o).

Since Foi|, = q constant, f o Foi € C*(P) is the constant function
p — f(gq) and by Corollary 2.3.12 we have v(f o Foi) = 0. O

Example 2.8.24. We have seen in Example 2.8.18 that §> = F~1(0)
is a smooth manifold of dimension 2. Denoting the inclusion by
i:52 < RR3, one has

diy(TpS?) = Tp(p™h) (2.10)
where 7, : R3 — TPIR3 is the map defined in Exercise 2.4.7 and

pti={qeR® | (p,q) =0},

where (., -) is the usual Euclidean dot product. The latter directly
comes from computing dF, and its kernel, which we essentially
already did in Example 2.8.18. Take a long deep breath and unfold

26.

the definitions in (2.10), here it may be useful to draw a picture % Which is generally always the case

in geometry and topology, and most

. . . 2 . .
Equation (2.10) implies that the tangent space to 5 at a point p is other mathematical fielda.

the plane tangent to S? at p, as claimed in Figure 2.1.
Exercise 2.8.25. Show that the above reasoning holds verbatim for
gn — R"+L. *
Exercise 2.8.26. Let U < R" open and f : U — R smooth. Define
g:U— R by
8(x) = (x, f(x))-
Show that g is a smooth embedding and, therefore, that g(U) is a
smooth embedded n-dimensional submanifold?” of R**1. A %7 ¢(U) is the the graph of f!

Exercise 2.8.27 ([homework 2]). Show that the orthogonal matrices
O(n) := {Q € GL(n) | QTQ = id} form a n(n — 1)/2-dimensional
submanifold of the n?-manifold Mat(n) of n x n-matrices.

Show also that

ToO(n) = {B & Mat(n) | (Q"'B)" = ~Q~'B},
and, thus, that T;4O(n) is the space of skew-symmetric matrices
T;qO(n) = {B e Mat(n) | BT = 73},

Hint: Find a suitable map F : Mat(n) — Sym(n) such that F~'({p}) = O(n)
for some point p in the image, e.. 0 or id,. Here Sym(n) denotes the space of

symmetric matrices. w



3
Vector fields

We continue with our quest of generalizing multivariable calculus.
The next familiar object waiting to be questioned are vector fields.
In the euclidean settings these are simply continuous maps that
attach a vector to each point in their domain.

3.1 Vector fields

THE STEP TO ABSTRACT MANIFOLDS is rather intuitive in this case:
a vector field will be a map that, at each point of a manifold, picks a
tangent vector at that point in a smooth way.

Definition 3.1.1. A CP-map X : M — TM with mo X = idy, or
equivalently X, € T,M for all p € M, is called CP-vector field. The
vector field is smooth if it is C? for all p > 1. We denote’ the set of
smooth vector fields by X(M).

The map 7 : TM — M is called footpoint map and the equation
o X = idy is called section property. O

Remark 3.1.2. A careful look at the definition shows that vector
fields are sections of TM, indeed X(M) = I'(TM). This is a useful
way to start understanding the bundle terminology: in some sense,
sections of vector bundles are a generalisation of vector fields. O

Beware of the curse of differential geometry. For convenience
and to be consistent with our notation for elements of the tangent
bundle, we denote the value X, € {p} x T,M of a vector field by
Xp instead of X(p). Furthermore, we will often identify X, with
its component in TpM, thus considering it as if Xp € TpM, without
explicitly projecting it to the second component.

Let M be a smooth n-manifold (with or without boundary). Let
X : M — TM be a vector field, not necessarily smooth, and (U, (x))
a smooth coordinate chart for M. Then we can write the value
of X at any point p € U as a linear combination in terms of the
coordinate basis vector:

i\ 0
Xp = Xl(P)ﬁ . (3.1)
This defines n functions X’ : U — R, called component functions of
X in the chart.

! Alternative notations are 73 (M),

T (M) and T(TM). The first two are
related to vector fields being tensor
fields of type (1,0), a topic that we will
discuss in the near future.
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Exercise 3.1.3 ([homework 2]). Show that, in the notation above,
the restriction of X to U is smooth if and only if its component
functions with respect to the chart are smooth. *

Example 3.1.4. If (U, (x')) is a smooth coordinate chart for a n-
manifold M, the assignment p — £|p determines a vector field on
U, called the ith-coordinate vector field and commonly denoted ¢;,

0, or 0/0x'. Despite their looks, the 0.;|, denote genuine vectors in
TpM that can be associated to euclidean vectors via a suitable chart.
The set {a—il

prees 9%‘;;} is a local frame for TM. O

The space of smooth vector fields is a vector space under point-
wise addition and scalar multiplication: for all p e M, X,Y € X(M),
«, 5 € R, we have

(aX + BY)p = aX, + Y.

The zero element of the vector space, called zero vector field, is the

vector field whose values is 0 € T, M for all p € M. Moreover, each
vector field can be multiplied by smooth functions f € C*(M) by

defining f X M—-TM by Be carefur, we are talking about two
different structures here: X(M) is
both a real vector space and a C* (M)-

(fX)P = f(p)XP‘ module.

Proposition 3.1.5. Let M be a smooth manifold with or without boundary.
1. f X,YeX(M)and f,g € C®(M), then fX + gY € X(M).

2. X(M) is a module over the ring C*(M).

In this sense, the basis expression (3.2) can be also rewritten as
an equation between vector fields instead of an equation between
vectors at point:

i 0
X = Xl - 2
pw (3-2)
where X! denotes the component of the vector field X in the given
coordinates.

THERE 1S ONE MORE WAY of thinking about the coordinate basis
expression above. We have seen that differentials of smooth maps
define maps between tangent bundles. As it turns out, we can
employ differentials of diffeomorphisms to map vector fields to
vector fields.

Definition 3.1.6. Let F : M — N be a diffeomorphism of smooth
manifolds. Then, the pushforward F, of F, defined by 2 In coordinates, this reads

. (FeX)q = dFp1() (Xp—1g))-
Fo: X(M) > X(N), X FEX=dFoXoF !,  (33)

maps (“pushes forward”) vector fields on M to vector fields on
N. 0



The definition of pushforward is more easily pictured by means
of the following commutative diagram:
M T
X Fi X -

™ —* TN

Then, if (U, ¢) is a coordinate chart for M, the restriction of a
vector field X € X(M) to U can be mapped to a vector field on
@(U) < R" via the pushforward ¢:

P«X: @U) — TolU) ,
— —
cRR? =p(U)xR"
P«X 1 x— (q,0(x)) with ov(x) = vf(x)ej eR",

where v/(x) are the components3 of X, e TyMat p = ¢~ (x) with

respect to the coordinate basis {% | x}.
Example 3.1.7 (Computing the pushforward of a vector field). Let M

and N be the following submanifolds of R?:
M= {(x,y)eIR2|y>0, x+y>0},
N:{(u,v)e]Rz\u>0, v>0}.

Define F : M — N as the mapping F(x,y) := (x +y,x/y + 1).
Then F is a diffeomorphism: we can compute its inverse by solving
(u,v) = (x +y,x/y + 1) in for x and y, obtaining (x,y) = F~(u,v) =
(u — u/v, u/v) which is also smooth on all N.

Let X € X(M) be given by
) 0
X(x/y) =Y & (x,y)’
we are now going to compute the pushforward F, X.

The differential of F at a point (x,y) € M is represented by its
Jacobian matrix,

11
PF(xy) = (1/y —x/y2> '

= dF o F~1(u,v) is represented by the matrix

DF(u—u/v,u/v) = (U}u (0_1)2)/14) .

For any (u,v) € N,

thus dFp—1(

u,v)

u? 0
XF?l(u’v) - ﬁ&ix‘rl(u,v)’
and, thus, by (3.3) (with p = (1, v)) we get
wo
v2 du

u o

(up) vV

wo) —

(FeX),

(o)’
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3 As we start getting used to, the chart
@ here plays a twofold role: it provides
the coordinates x = ¢(p) on the patch
U and the coordinate basis of the
tangent space.

For this computation, keep in mind
that the Jacobian here is a change of
coordinate between the two euclidean
spaces Tp—_1 (M)M and Teu0)N, where
on the first we are using the coordinate

basis { 2 2 and on
X | p=1(u,0)" %Y [F=1(u,0)

the second we are using the coordinate

is 4 2 2
basis {ax (o) (u,v)}'
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Exercise 3.1.8. Let M be a smooth n-dimensional manifold. Let
pP1,- -, px be distinct points of M and let v; € T, M, i = 1,...,k, be
tangent vectors at those points. Show that there is a vector field X
on M such that X, =v;,i=1,... k.

Hint: bump functions may be handy here. w

WHILE WE CONTINUE TO EXPLORE the twofold nature of geometric
objects, it is worth looking back at our original definition of tangent
vectors. In one of our first encounters with tangent spaces, we said
that a tangent vector v at a point p € M defines a derivative at that

point by taking the directional derivative of a function at that point.

A vector field X now provides a tangent vector and, therefore, a
derivation at every point of the manifold. In this sense, X € X(M)
induces a linear map on the algebra C* (M) of smooth functions on
M: for f € C*(M),

Xf:M—R, (Xf),:=Xpf, peM.

Notation 3.1.9. Let f € C*(M) and let (U, ¢) be a chart with coor-

dinates (x?). Then, for X = %, we denote Xf by 9F and thus the
x! Ox'
following notations are for us equivalent:

%= (za) =5

If M is an open subset of R” and ¢ = idRn, then the last equality

(f) = Di(f o o™ H)(g(p)).

p

shows that the notation is consistent with the usual definition of
partial derivatives from multivariable analysis. O

Exercise 3.1.10. If X € X(M) and f € C* (M), then Xf € C*(M).

Exercise 3.1.11. Let X,Y € X(M). Show that X = Y if and only if
Xf = Yf for every f € C®(M). A

This whole discussion allows us to extend the notion of deriva-
tion at a point to a derivation on the whole space.

Definition 3.1.12. Let M be a smooth manifold and &§ # W < M an
open set. A derivation on C*(W) is a linear map

X : C®(W) - C*(W)
satisfying Leibniz rule:

X(fg) = fX(g) +8X(f)
O

Any vector field X € X(W) defines a derivation X" via X' (f) = Xf.
In fact the opposite is also true:

Proposition 3.1.13. Let M be a smooth manifold and & # W < M
an open set. The set of derivation on W and X(W) are isomorphic as
C®(W)-modules.

Clearly all of the definitions above
hold if instead of M we consider open
subsets U < M.

Beware of the ordering: fX € X(M)
but Xf € C®(M)!

Don’t confuse this with the derivations
at a point, which produce real num-
bers. In this case we map functions to
functions.
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Proof. Suppose X is a derivation on C*(W) and fix p € W. Then X
defines a derivation on C*(W) at p, which we casually denote by
Xy, via the formula

Xp(f) == X(f)(p), VfeCPW).

We can then think of X asa map W — TW via X — X;,. Since Challenge: count how many times we
are using the isomorphism between

. . . derivations at points and tangent
C®(W) and therefore is smooth as vector field, concluding the vectors in this proof.

X(f) = X(f) by construction, it is a smooth function for all f €

proof. O

Therefore, from now on, we will also interchange derivations of
C® and vector fields, and call them with capital latin letters.

3.2 Lie brackets

ONCE YOU HAVE A MODULE, it is worth checking if you can get an
algebra. Indeed, that is going to be our next objective. To this end,
we look for a bilinear map X(W) x X(W) — X(W).

The most natural choice is to just compose the vector fields, that
is, apply the derivatives one after the other:

XY = XoY: CP(W) — CO(W), (XY)(f) := X(Y(f)).

If this satisfies the product rule, we are done. Let f,g € C*(W), we
have

(XY)(f8) = X(fY(g) +8Y(f))
= (f(XY)(g) +&(XY)(f)) + (X()Y(g) + X(8)Y(f)) -

Unfortunately for us, this is not a derivation. However, we do not
seem to be so far off. If we carefully look at the “error”, i.e. the
term (X(f)Y(g) + X(g)Y(f)), we can observe that it is symmetric
with respect to X and Y. One way to let it cancel out, is to consider
the commutator of the two vector fields:

[X,Y]:= XY — YX.

Indeed, [X, Y] is a derivation. Do not confound Lie with lie. Here
Lie is the surname of Sophus Lie, an
Definition 3.2.1. Let X,Y € X(W). We call Lie bracket of X and Y important Norwegian mathematician

that lived in the second half of the 19th
century.

the derivation given by their commutator [X, Y] := XY — YX. O

Remark 3.2.2. Note that the Lie brackets are not uniquely determined
by X, and Y): the smooth functions X(f) and Y(f) depend on the
values of X and Y in a neighbourhood of p. O

Exercise 3.2.3. Show that the Lie bracket [, ] of vector fields satisfies
the following properties. Let X, Y, Z € X(M):

(i) (antisymmetry) [X,Y] = —[Y, X];

(ii) (bilinearity) [aX + BY,Z] = «a[X,Z] + B[Y,Z] and [X,aY +
BZ] =a[X, Y]+ B[X,Z], forall o, e R;
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(iii) (Jacobi identity) [X, [Y, Z]] +[Y,[Z, X]] + [Z, [X, Y]] = 0.

*
Proposition 3.2.4. Forall X,Y € X(M) and for all f,g € C*(M),
[f X, gY] = f3[X, Y]+ f(Xg)Y — g(Y/)X.
Exercise 3.2.5. Prove the proposition. *

We will see many applications of the Lie brackets throughout the
rest of the course, but before doing anything, let’s find an effective
way to compute it.

Proposition 3.2.6. Let (U, @) be a chart on M with local coordinates (x')

andlet X,Y € X(U). If X = Xi% and Y = Y'-Z. are the coordinate
x 0x

expressions for X and Y, then*

0YI OXIN\ o
X, Y] = [ X2 —yiZ2 ) .
X, Y] ( oxi 0x1> ox/

Exercise 3.2.7 ([homework 2]). Prove the proposition. *

Example 3.2.8. Take the following vector fields on X(IR?):

0 0 0

Then, the previous proposition implies

200 000

Yox ox y@y ox
03y @ 03y 0

d(x+1y o 3 dy 0
oy  Ox oy oy

[X,Y]=(x+1)

0 0 0
= —Bya—y —3y(x + 1)§ + By@

¢

Theorem 3.2.9. Let F : M — N be a diffeomorphism between smooth
manifolds with or without boundary and let X,Y € X(M). Then, for all

feC?(N),

(FsX)f)oF = X(foF), and Fu[X,Y] = [F:X,F:Y].

Proof. By definition, for f € C*(N), X € X(M) and any pe M

X(foF)(p) = Xp(foF)
= dFy(Xp)f = (B X)p(p) f
= (B«X)f)(E(p)) = (EX)f) o E(p).

4 Recall Notation 3.1.9!
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Which proves the first equation. Therefore,
XY(foF)=X((F:Y)f oF) = ((F«X)(F:Y)f)oF,
and similarly for YX. Finally, by definition we have
(B[ X, Y]f) o F = [X, Y](f o F)

=XY(foF)—YX(foF)
= (BX)(EY)f) o F = (EY)(FX)f) o F
= ([F«X,F:Y]f)oF,

completing the proof. O

Definition 3.2.10. A Lie algebra (over R) is a real vector space g,
endowed with a bilinear antisymmetric map

gxg—g, (v,w)—[o,w],

called Lie bracket, which in addition satisfies the Jacobi identity>. 5 Thus a Lie algebra is a non-
The dimension of the Lie algebra is the dimension of g as a vector associative algebra.
space.

If g is a Lie algebra, then a linear subspace ) — g is called a Lie
subalgebra if [v,w] € b for all v, w € b. O

Example 3.2.11. Exercise 3.2.3 shows that the space X(M) of vector
fields on a manifold M is a Lie algebra. Since X(M) is a C*(M)-
module and C* (M) is an infinite-dimensional vector space, it
defines an infinite dimensional Lie algebra.

This may seem an alien concept at first, however there are many
simple examples of Lie algebras. To name a few:

1. IR® with the cross product [x,y] := x x y is a 3-dimensional Lie
algebra;

2. the set Mat(n) of n x n-matrices with the matrix commutator
[A,B] = AB — BA is a n?>-dimensional Lie algebra, usually
denoted gl(n, R);

3. any vector space V turns into an (abelian) Lie algebra by defin-
ing [v,w] = 0;

4. if V is a vector space, the vector space of all linear maps from V
to itself becomes a Lie algebra, denoted gl(V'), with the brackets
defined by [A,B] = Ao B — Bo A. Note that with the usual
identification of n x n matrices with linear maps from R" to itself,
gl(IR") coincides with gl(n, R).

0

Definition 3.2.12. Let g and h be two Lie algebras. A Lie algebra
homomorphism is a linear map T : g — h which preserves the Lie

brackets, i.e.
[Tv, Tw]y = T[v,w]yg, Yo, wEeg.

A Lie algebra isomorphism is a bijective Lie algebra homomor-

phism whose inverse is also a Lie algebra homomorphism. O

In Theorem 3.2.9 we have thus shown that the pushforward is a
Lie algebra isomorphism!
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3.3 Flows and integral curves

Once again, a comparison with the euclidean world can open the
door to a whole new world. Vector fields on euclidean spaces give
rise to ordinary differential equations (ODEs) and to each vector
field we can associate a flow, that is, the curve that solve the ODE.

The classical theorems of existence and uniqueness of solutions
of ODEs, then, give us the necessary conditions to ensure that such
flow exists locally or globally and it is well-defined. For a rather
detailed account you can refer to [Kna18, Chapters 3.2 and 3.3]
(which you can freely access on SpringerLink via the university
proxy).

In fact, if X : U < R” — R" is a vector field on an open subset U
of R"”, and

u(t) = X(u(t)) (3-4)

is the corresponding ODE, then we have the following implications
of the euclidean theorems on existence and uniqueness of solutions:

(i) if X is continuous, then for each x € U there exists € > 0 and a
differentiable curve u = uy : (—€,€) — U with u,(0) = x that
solves (3.4);

(ii) (Picard-Lindelof theorem) if X is locally Lipschitz continuous,
then the solution u, is unique;

(iii) if X e CP(U,R"), then the solution map ¢ : (t,x) — (¢, x) :=
1y (t) is p-times continuously differentiable as a function of
the initial data, i.e. ¢(x,-) € CP(U) for all  in the existence
domain.

As we are getting used to, the whole theory can be extended to
manifolds in a quite direct but perhaps surprising fashion.

Definition 3.3.1. Let M be a manifold and let X € X(M). A smooth
curve y : (a,b) © R — M is an integral curve of X if

V() =Xy  Vte(ab). (3-5)

Conventionally, we assume that 0 € (4, b). In this case, if ¥(0) = p,
we say that <y is an integral curve through p. O

Exercise 3.3.2. Let (x,y) be standard coordinates on R? and let

X = ;% be the first coordinate vector field. Show that the inte-
gral curves of X are the straight lines parallel to the x-axis, with
parametrizations of the form () = t + a for some constants

« € R. Y
Example 3.3.3. Let (x,y) be standard coordinates on R? and Z =
x(% - y% onR%. If ¥ : R — R? is a smooth curve, written in

standard coordinates® as () = (x(t),y(t)), then we have

This shows that there is a unique
integral curve of X starting at each
point of the plane and that the images
of any two integral curves are either
identical or disjoint.

¢ In other words, x(t) and y(t) are the
components of the function v : R —
IR? seen as functions R — R, that is,

v(t) = (xor(t),yox(t)) =: (x(B),y(*))


https://link.springer.com/book/10.1007%2F978-3-662-55774-7

70 = dne ()

_ dx(ﬂi‘ Mi(
dt  oxly(b) dt oy ly(t)
~Xo| +yL
ox ly(t) ay (1)
while
Zy = o] —vertog]
0 0

= x(t)

- _ t -
5y’w(t) YO%h

Therefore, the condition (3.5) for Z and v, i.e., 7/ (t) = Z. (1), trans-

lates into
A /02l il —anl
() Ox‘y(t) Ay (7y‘7(t) = x(t) &y‘y(t) y(®) oxly(t)’

Comparing the components of the two vectors, we see that this is
equivalent to the system of ODEs

whose general solution is given by
x(t) = wcos(t) — Bsin(t), y(t) = asin(t) + Bcos(t), wa,feR.

Thus each curve of the form y(t) = (acos(t) — Bsin(t), asin(t) +

B cos(t)) is an integral curve of Z. When o« = f = 0, this is the
constant curve (t) = (0,0), otherwise, ¥ moves counter-clockwise
describing a circle. O

Notation 3.3.4. If M is a manifold and (a,b) < R, also (a,b) x M is
a manifold. Conventionally, for p € M we will denote iy, : (a,b) —
(a,b) x M the map i,(t) := (¢, p). All the following notations
will denote the tangent vector in T(; ,)((a,b) x M) obtained from
2] ; € TiR:

oy (o _d. .,
Sl = A0 ((%D = Zip(H) = ih(0).

In what follows we may chose any of the above notations depend-

ing of what we will find more convenient depending on the task at
hand. %

Exercise 2.4.7 implies that in the euclidean case our definition (in
terms of equality of tangent vectors on T, ;) (M)) coincides with the
euclidean flow (defined in terms of equality of real numbers). Alter-
natively, one can pick a coordinate chart and use the pushforward
to locally compare the definitions.

Indeed, if (U, ¢) is a chart with coordinates? (x'), let y(t) =
(Y1(t),...,9"(t)) in these coordinates. Then, condition (3.5) above
can be written as
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/

/K\
Yavah

N

a

Since ¥(0) = (a,b), also in this

case, there is a unique integral curve
starting at each point (a, ) € R?, and
the images of any two integral curves
are either identical or disjoint.

7 We will soon stop being so verbose
and just write “in local coordinates (on
U)” without specifying their names
unless strictly necessary!



62 ANALYSIS ON MANIFOLDS

where we use the dot to denote the derivative in ¢ for readability.
These equations can be further rewritten as the system of ordinary
differential equations of the same form as (3.4)

’%l(t) = Xl(')’l(t)/ . ",),n(t))

P = X (1), ()

to which we can apply euclidean theorems of existence and unique-
ness! Note also the terminology here, an “integral curve” for X is
the curve you obtain “integrating” the system of ODE associated to
X.

This immediately implies the following theorem.

Theorem 3.3.5 (Existence, uniqueness and differentiability of local
solutions). Let M be a smooth manifold and X € X(M). For every

p e M := M\OM, there exists € > 0, an open neighbourhood U = M of p
and a unique map ¢ : (—€,€) x U — M, (¢, p) — @(t, p), such that

(i) for every p € U, the curve ¢, : (—€,€) — M, t — @p(t) := @(t, p)
is an integral curve of X through p, that is, ¢, = X o ¢, and
¢p(0) = p;

(ii) for every t € (—€,€), themap ¢ : U — M, p — @¢(p) := ¢(t, p), is
a diffeomorphism from U onto an open subset of M.

Remark 3.3.6. In some text, instead of (p;, = X o ¢p, you read

2
AP (1,p) ((?t’ (t/p)> = Xoo(t p).

This should not scare you since by definition

190 (5l ) = 00O = 30

O

We call the map ¢ a local flow of X. If a local flow is defined on
R x M, we call it a global flow and the associated vector field is
called a complete vector field.
Example 3.3.7. Let M = R" and L € X(M) defined by L(p!,...,p") =
(pY,...,p",1,0,0,...,0). Then ¢’ is a global flow, explicitly given as

ot (tp) = (P +p% "),
Linear motions along a coordinate, like ¢*, are sometimes called
linear drifts. O

Every smooth vector field has a local flow about any point, but
not necessarily a global flow.

Example 3.3.8 (A global flow may not exist). Let M = R? and
X = xZ%. Then, the unique integral curve of X starting a (1,0) is

y(t) = (11—t’0) .
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Since iy o y(t) is unbounded as t — 1, this curve cannot be extended
pastt = 1.

A somewhat simpler example is given by the vertical lines on
H? (so a manifold with boundary). These are integral curves of 6%2
which cannot extend further than the boundary {x? = 0}. O

Theorem 3.3.5, in particular, implies that if 7,6 : (a,b) — M are
integral curves of X with y(t) = 6(f) for some f € (a,b), then v = 4.
This justifies the following definition.

Definition 3.3.9. Let M be a smooth manifold and X € ¥(M). For
agiven p € M, we denote I, = (t~(p),t"(p)) < R, 0 € I, the
maximal interval on which the unique integral curve y, : I, — M of
X through p is defined. We call such curve 7, the maximal integral

curve of X through p. ¢

Remark 3.3.10. It follows from the definition of maximality that for
any p € M one has

F(yp(s)) =t (p) —s  Vsel,.

Note that I, is typically larger than the domain of definition
(—€,€) of ¢,. By construction ¢, never leaves the coordinate set
U over which it was defined, on the other hand 1, can in general
wander all over the manifold (even though v, = ¢, for values of ¢

small enough)!

Again, theorems about existence and uniqueness of euclidean
maximal flows imply that we can extend ¢, uniquely to a maximal
flow.

Theorem 3.3.11 (Existence and uniqueness of maximal solutions).
Let M be a smooth manifold and X € X(M). There exists a unique open
set D = R x M and a unique smooth map ¢ : D — M such that

(i) forall pe Monehas D~ (R x {p}) = I, x {p};

(i) @(t,p) = vp(t) forall (t,p) € D.

We call ¢ the flow of X. When we want to emphasize the vector
field X, we will write pX.

Proof. Both D and ¢ are uniquely identified respectively by (i)

and (ii), so to prove the theorem one only needs to show that D is
open and that ¢ is smooth. This is done by applying the euclidean
theorems to extend the local flow, finally showing that for all p € M
and t € I, D contains a neighbourhood of (t, p) on which ¢ is
smooth.

We are going to omit the details of the proof, the interested
reader can refer to [Lee13, Proposition 9.12]. The statements may
seem different at a first glance, but a careful look will reveal that he
is just taking a slightly different perspective.
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Indeed, if we reverse the roles of t and x, we can define for any
given t € M the set

Mi:={peM | (t,p)e D}

Then Theorem 3.3.11 is equivalent to say that M; is open in M, M =
Ut=oM;t, and there is a well-defined smooth map ¢ : M; — M_;
given by
er(p) = @(t,p), peMr (3-6)
Which is exactly the claim in [Lee13, Proposition g.12].
O

Remark 3.3.12. The point of view taken to define (3.6) brings to the
table a very important fact: ¢; : My — M_; is a smooth map with
smooth inverse (¢¢) ' := ¢_; : My — M;.

That is, ¢; is a diffeomorphism, ¢g = idp; and, more generally,
if 5, € R then the domain P of ¢ o ¢; is contained?® in M;4¢ and
$s © Pt = Psttin P. O

For a complete vector field X, D = R x M.

Exercise 3.3.13. Let M = {x € R? | ||x| < 1}. Explicitly find a vector
field Z € X(M), the associated maximal flow ¢X : D — M and its
domain D, so that

1. Z is complete;

2. Z is not complete.

*
Definition 3.3.14. We denote Diff(M) the set of diffeomorphisms?
¢:M— M.
Note that Diff(M) is a group under composition, where the
identity element is just the identity map. O

Definition 3.3.15. A one-parameter group of diffeomorphisms™® is

a smooth left R-action on M, that is, a smooth map ¢ : R x M — M
such that for all s,t e R and all p € M:

¢(0,p) =P,
(t, (s, p) = ¢(t +5,p).
In other words, a one-parameter group of diffeomorphism is

another name for global flow and the two properties above are
exactly the group laws. And, indeed, we usually denote the map

t— ¢(t,-) by ¢r.
If {¢:} is a one-parameter group of diffeomorphisms, then we
define its infinitesimal generator as the (complete) vector field"*

0
Xp = dq)(orp) (at’(O,p)) . (37)

Hence, the flow of X is simply the one-parameter group ¢;.

Always keep in mind that (3.7) is just a “scary” way to write
Xp = (p;,(O) where the role of the differential and the nature of the
vector field are more explicit. O

8 Equality holds if st > 0, that is, if they
have the same sign.

9 Also called automorphisms to stress
that domain and codomain coincide.

* If you stumble upon a one-parameter
group action, don’t be scared: it is the
same exact thing where ¢ is required
to be continuous instead of smooth.

0 s
- . 5
f—
¥
N 14
P X

" Or, more compactly,
Xp = i lizo®:(p).



Exercise 3.3.16. Show that the following are one-parameter groups of
diffeomorphisms and compute their infinitesimal generators.

1. ¢ R >R, p(x) =x+1t;
2. ¢ R >R, ¢ (x) = elx;

3. ¢ : R? — R?, ¢y(x,y) = (xcos(t) — ysin(t), xsin(t) + y cos(t)).

*
The definition above contains the proof of the following fact.
Proposition 3.3.17. Let M be a smooth manifold. There is a bijective Figure 3.1: One can think of a flow
. ) ) as a sequence of many infinitesimal
correspondence between one-parameter groups of diffeomorphisms (i.e. straight motions determined by the
global flows ) and complete vector ﬁelds. value of the vector field, that is where
“infinitesimal generator” comes from.
Notation 3.3.18. Since by construction We will soon make this rigorous.
d
791(P) = X(@(p)), go(p) =p, YpeM,
it is often convenient to use the exponential notation
X=X, teR,
to denote the flow of a vector field X. O

Exercise 3.3.19. Show that the exponential defined above satisfies the
following properties

0

¢ X _ ldM/ (etX)fl _ eftX

7

X o X — €(t+S)X,

LeX(p) = X(@X(p)), Wpe M.

Moreover, if X(x) = Ax is a linear vector field on R”, i.e., A
is a n x n-matrix, then the corresponding flow ¢; is the matrix
exponential ¢;(x) = e4*. *
There are a few cases in which we can guarantee completeness,
let’s have a brief look.

Lemma 3.3.20. Let X € X(M) and assume that there exists € > 0 such
that (—e,€) < Ip for all p € M. Then X is complete.

Proof. Assume that this is not the case, then there is some p € M
such that either ¢t (p) < c or t_(p) > —o0. Say that t*(p) < oo (the
other case is nearly identical).

Choose t such that t*(p) —ty < e and set pg = yp(to). By
assumption, 7y, (t) is defined for all t € (—¢, €). Consider the curve

p(t), telp,

v(t) =
’)/po(tfto), ‘tf t0| < €.

The two definitions coincide on the overlap as

Yot —t0) = @r—ty(P0) = Pt—ty © P1o(p) = @(p) = 7p(t),
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but v is an integral curve for X through p which is defined on
(t~(p),to +€). Since tg + € > tT(p), this contradict the maximality of
I,. 0

Corollary 3.3.21. Let X € X(M) be a vector field with compact support.
The X is complete.

Sketch of the proof. Use the compactness to pick a finite covering of
the support, define the local flow on the covering and then pick the
smallest € (out of the finitely many). O

Corollary 3.3.22. If M is compact™?, then every vector field has compact 2 A compact manifold without bound-

support. So, every vector field on M is complete. ary is called closed manifold.

In the same fashion as Lemma 3.3.20, one can characterize non-
complete vector fields.

Lemma 3.3.23. Let K © oM compact and p € K. If t*(p) < oo, then
there exists 0 < T < t*(p) such that vy, (t) ¢ K forall t € (T,t*(p)). An
analogous statement holds if t— (p) > —oo.

Exercise 3.3.24. Prove Lemma 3.3.23. A

In other words, a maximal integral curve cannot “end” inside
a compact set that doesn’t contain boundary points. Thus, if a
solution does not exist for all times, then it must either run to
infinity in finite time™ or hit the boundary of M. 3 Recall Example 3.3.8

3.4 Normal forms

A natural question, at this point, is what happens when we map
integral curves to different manifolds via diffeomorphisms, after all
it looks like the mapping to euclidean spaces via the charts behaves
quite nicely.

Proposition 3.4.1. Let F : M — N be a diffeomorphism between smooth
manifolds, X € X(M) a vector field and -y : I — M an integral curve of X.
Then F o« : I — N is an integral curve of Fy X. Sometimes to understand what one is
doing, it may be convenient to rewrite

things in different forms, for example I
find the following quite clarificatory

If X is complete, we then have

X Fu X
Fog; :(Pt* oF. oy
o :FocthoF_l, (3.8

Proof. We only need to show that the two curves satisfy the same
ODE.
d(Foy)r =dE,ody
= dF’Y(t) [e] (X o) ’)/)t

=dFE, o Xo F~loF oq(t)
N —

= (F«X) o (Fo)(t)
= (F*X)Fo'y(t)'
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Remark 3.4.2. One particularly interesting consequence of Propo-
sition 3.4.1 in conjunction with the exponential notation is the
following:

(),

where we are using the definition of integral flow in the first equal-

tX d tX  sY  —tX
exp (se Y) = — etoe’ oe
P ( * q dsls=0 (

o 9, (39

ity and (3.8) in the second. This turns out to be rather useful for
proofs and computations. %

Exercise 3.4.3. Use Theorem 3.2.9 to show that the Lie bracket is the
infinitesimal version of the pushforward of the second vector field
along the flow of the first one, that is,

XY, = 2| (™), (3.10)

17 ot

t=0
Hint: the identity (FxX)f = X(f o F) o F~1 and a Taylor expansion can help. ¢
Remark 3.4.4. Equation (3.10) and (3.9) imply that

62
e
080t lt=s=0

oe oe

[X, Y]q _ —tX sY tX(

q)- (3.11)
%

With this we can show that the Lie bracket of two vector fields
is zero (i.e., they commute as operator on functions) if and only if
their flows commute, that is ¢ 0 ¢} = @) 0 pX for all ,s € R.

Proposition 3.4.5. Let M be a smooth manifold and X,Y € X(M). Then
[X,Y] = 0 if and only if their flows commute.

Proof. First we show that [X, Y] = 0 implies that
e;tXY =Y VteR (3.12)
To this end, we are going to use (3.10) to show that 0 = [X,Y] =

% t Oe;tXY implies that %e;tXY = Oforallt € R (ie., itisa

constant map). Indeed, for any ¢,

0 _ix 0 —(t+e)X J —IX ,—eX
CertXy = & y= 2 eXy
o de e Jele—™
_x 0 _ _
= e tX%L:Oe* Xy — e X[X,Y] = 0.
(=) Fix t € R. We are going to show that ¢; := e X 0¥ 0 e!X

is the flow of Y, i.e. ¢s = ¢°. We can use the previous trick, (3.12)
and (3.9) to get, for any s € R,

0 0
v _ Y e tX o e(s+e)Y oetX
0s Ps 0€le=0
0
_ aﬁ —tX ° eeY oetX oe—tX o esY ° etX
€le=0
—tX ¥
ey Y

= e;tXYoq)s =Y o gs.

That is, e *X 0 e 0 ¢!X = ¢*¥ which is equivalent to the claim.

67
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(<) Let f € C*(M), by (3.11) we have

02 _
X, ]q = Osot t:s:Oe Hoe Oetx(q)
62 sY
= Gsotli=s=0’ 0

O

Exercise 3.4.6. Let M be a smooth manifolds and X, Y € X(M). Define

(ad X)Y := [X, Y]. Use the semigroup property'4 1 We have shown it at the beginning of
the previous proof!

0

Eeixy = eka [X/ Y],

to deduce the following formal series expansion:

o0 tn
ey =) 57(@d X)"Y
n=0 "
2 B
=Y +tX, Y]+ E[X’ [X, Y]]+

3 X, [X[X Y]]+ .

*
WE CAN FINALLY JUSTIFY our comment in Figure 3.1: the following

theorem shows that every flow ¢* admits local coordinates on its
support which map it into a linear flow.

Definition 3.4.7. Let M be a smooth manifold and X € X(M). The
support of X is defined as

supp(X) :={peM | X, #0e T,M} c M.

Points p € supp(X) are called regular points of X. The points

p € M\supp(X), i.e. such that X, = 0, are the fixed points (or
equilibrium points) of X: for such points the unique integral curve
through pis y(t) = p for all t e R. O

Theorem 3.4.8 (Normal form of a flow away from the fixed points).
Let M be a smooth manifold, X € X(M) and p € supp(X) < M. Then,
there exists a chart (U, ¢) with p € U such that

ql)*X = L,
where L is the linear drift defined in Example 3.3.7. Thus, locally,

¢f =9 logtog.

Proof. Choose'> a coordinate patch (U, ) centred at p (so ¢(p) = '5 This can always be done via a

_ S parametrisation of the hyperplane
0) such that 14 X(0) (1,0, O,.. ..,0). By contlru%lty of P+ X € tameversal to X by (2, @ oxh) o
X(y(U;)), we can always restrict to a smaller neighbourhood V, < (0,...,0), where the (x') denote the
p(U;) on which (1/J*X)l(q) > % for all g € V. local coordinates. Cf. Example 3.4.9.

Our objective is to interpolate X on V < V; and L on Vj to
obtain a new vector field L on all of R" which is diffeomorphic to
L.IfQ : R" — R"is such diffeomorphism, i.e. Q*Z = L, then
@ = Q oy is the chart we are looking for: indeed, on U = ¢~ (V) we
have @ X = Q4¢P X = Q*z =1L.



INTERPOLATED VECTOR FIELD L. Let V < V; be an open set around
0. Pick a cutoff function x € C®(R") such that x(x) = 1 forx e U
and x(x) = 0 for x € Uj. Then the interpolating vector field is
immediately obtained as

L= xps«X + (1—x)L € X(R").

Clearly its flow (ptZ is global as R” has no boundary and the
regularity of the functions involved implies that no integral curve
can escape to infinity in finite time.

DirreoMORPHISM (). We will now show that
_ 1 L L
Q= tlggo P—t° Pt
exists and defines a diffeomorphism such that QL = L. Since by
construction (¢F(g))! = q' + %, every integral curve leaves V, after a

finite time. So, on compact sets K < R”, there is a finite time #y(K)
after which the limit is attained (can you explain why?):

Jim oLy o 9| = oli o gfy-
Thus, () is a well-defined diffeomorphism. Moreover,
lim %0 g o pf

= lim @& ook
S_>OO¢—S ¢s+t

QO(PtZ

= lim L o Lo L
Taooqot_T @s °© Pz

= lim gt ogl ogiogr =groQ),

and therefore the flows are diffeomorphic. In particular, we also

have q)E =0lo go(L)(x). Differentiating this last equation we get

(Logh), = dg}
- dQ;é(x) odgg
— d();ém o (Lo g,
which, at t = 0, gives L=dOloLoQ = Q*_lL. O

Example 3.4.9. Let Z = x% — y% on R? be the vector field from
Example 3.3.3, where we already computed its flow.
The point (1,0) € R? is a regular point of Z, since Za0) =

0
%l(1,0)
the as the transversal “hypersurface”, a line in this case, the x-

# 0. Since Z has a nonzero y coordinate, we can consider

axis, parametrised by H(s) = (s,0). We can then define the map
¥(t,s) = @t o H(s) : R*> — R? where ¢; is the flow of Z, it turns out
that then the coordinate map would just be the inverse of ¥.

In this case: ¥(t,5) = ¢¢(s,0) = (scost,ssint). Solving locally for
(t,s) as functions of x and y we get, in a neighbourhood of (1,0):

(t,s) =¥ Yx,y) = (arctan(y/x),q/x2 + y2> .
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- s G
—_ > —
- 5 —
x1
—_ R
_ -
_— A —
[ SN
L

It is interesting to compare () with the
so called Meller transformations in
scattering theory (cf. [Kna18, Chapter
12.2]).
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In this new coordinates, which are just polar coordinates labelled
with different symbols, you can directly check that Z = % as

claimed. O

Remark 3.4.10 (Linearisation of a vector field at a fixed point). Away
from the fixed points, the previous theorem tells us that the flow is
locally linear. Near a fixed point we can describe the flow in terms
of the linearisation of the associated vector field.

If X e X(M) and pg € M with X, = 0. On a chart ¢ centred at py
with local coordinates (x'), let X = @+ X. Then we have

Xy = Xo +dXox + O(|x|*) = dXox + O(|x|?).
——
=0

Close to x = 0 we can thus approximate X, by its linearisation dXx.

Qualitatively, the behaviour close to the fixed point is determined
by the eigenvalues'® of dXpx and their geometric multiplicities

(cf. [Lee13, Figure 9.8]). This is the same as you have seen in the
euclidean case [Kna18, Chapter 5.3]. O

Exercise 3.4.11. Let M = R? with coordinates (g,p) € R? and
H e C*(IR?). Discuss the possible local behaviour near the fixed-
points of the following types of vector fields by considering their

linearisation:
0
zH(a,p)
e gradient flows Xg(gq,p) := % ;
& " (;%Hw, p)

ﬂme>
~&H,p)

Sketch in all cases the vector field and the local flow. px¢

¢ hamiltonian flows Xy (g, p) := (

For simplicity in the rest of the course we will discuss only
global flows. But keep in mind that all results hold also for
local flows as long as one restricts the domains appropri-
ately.

6 Note that thanks to the compatibility
conditions, the linearisations of X at
different charts are similar matrices,
and thus the spectrum of dXox is
independent of the choice of local
coordinates.



4
Lie groups and Lie algebras

In the previous chapter we have briefly touched upon the notion of
Lie algebras. A strictly related notion, we will see in which sense,
is the notion of Lie group. There are mathematical objects that are
pervasive in mathematics, even outside the realm of differential
geometry, and in physics, where they play an important role in
classical mechanics®, and in high-energy physics?.

The theory of Lie groups and Lie algebras is vast, and in these
lectures we will just briefly scratch the surface.

4.1 Lie groups

Definition 4.1.1. A Lie group G is a smooth manifold (without
boundary) that is also an algebraic group, with the property that
the multiplication map y : Gx G — G, u : (g,h) — gh, and the
inversion map 1 : G — G, 1 : g~ ¢~ ! are smooth. O

Example 4.1.2. 1. R" is a Lie group under addition.
2. R™\{0} is a Lie group under multiplication.

3. A manifold can be equipped with different Lie group structures.
For example, the following map

u(xy) = (M 4y, P4yt B+ +xly)

induces3 an alternative structure of Lie group on R" called
Heisenberg group.

4. The set GL(n) of invertible n x n matrices is a Lie group under
matrix multiplication. Indeed, it is a manifold of dimension
n?, the product is smooth since each matrix entry is given a
polynomial and the inversion is smooth thanks to Cramer’s
rule [Lee13, Proposition B.36].

5. The n-torus T" = R"/Z" is an abelian Lie group with the group
structure induced by addition on R".

6. Given Lie groups (Gq, ..., Gg), their direct product is the product
manifold G x - - - x G; with the group structure given by

(glr- . ~/gk)(h1r- . '/hk) = (glhl/-~ -gkhk)

* You may have heard of the celebrated
Noether’s theorem, which states

that every smooth symmetry has a
corresponding conservation law

2> Does gauge theory ring any bell?

3 To see that this defines a group
structure, identify R® with upper
triangular 3 x 3 matrices via

1 x A3
=L ) - [0 1 A
0 0 1

and observe that m becomes the
standard matrix multiplication.
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is a Lie group (why?).

7. Not all smooth manifolds can be equipped with a Lie group
structure: for example, 5" admits a Lie group structure only for
n=0,1,3.

0

Definition 4.1.3. A Lie group homomorphism F : G — Hisa

smooth map which is also a group homomorphism. It is called Lie
group isomorphism if it is also a diffeomorphism, which implies

that it has an inverse that is also a Lie group homomorphism. In
this case we call G and H isomorphic Lie groups. O

Example 4.1.4. It turns out that you know plenty of examples of Lie
group homomorpisms.

1. The map exp : R — R is a Lie group homomorphism. The
image of exp is the open subgroup R4 and exp : R — Ry isa
Lie group isomorphism with inverse log : R4 — R.

2. Themap e : R — S! defined by e(t) = ¢*™" is a Lie group
homomorphism whose kernel is Z. Similarly, the map €" : R" —
T" defined by €"(x!,...,x") = (ezmxl,. ..,e¥M") is a Lie group

homomorphism whose kernel is Z".

3. The determinant function det : GL(n) — RR\{0} is smooth since
det is a polynomial in the entries of the matrix and it is a Lie
group homomorphism since det(AB) = det(A) det(B).

O
Definition 4.1.5. If G is a Lie group, for any element g € G, we
denote by Ly : G — G the left translation and by R¢ : G — G the
right translation, respectively defined
L¢(h) =gh and Rg(h) = hg.
O

These are both diffeomorphisms, since they can be described by
a composition of smooth maps. For instance,

G—-GxG—G.
h= (gh) ' gh

Moreover, Lg_1 is the inverse of Lg. Similarly for Rg.

Remark 4.1.6. For convenience, we will only consider left translations.

There is nothing wrong with right translations and, in fact, you can
reformulate all the results that follow in terms of them. O

The next theorem is important for understanding many of the
properties of Lie group homomorphisms.

Theorem 4.1.7. Every Lie group homomorphism has constant rank.

The fact that translations are dif-
feomorphisms of the groups onto
itself is crucial, it implies that the
group looks the same around any
point. Indeed, they are homogeneous
spaces. To study the local structure of
a Lie group, as we will see soon, it is
enough to examine a neighbourhood
of the identity element.
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Proof. Let F : G — H be a Lie group homomorphism and let e
denote the identity element of G.

Fix g € G. We will show that F has the same rank at g as its rank
at e. Since F is a homomorphism, for all # € G we have

F(Lg(h)) = F(gh) = F(g)F(h) = Lp(g)(E(h)),

that is,
FOLg = LF(g) OF.

Differentiating both sides at ¢ and using the chain rule, this reads
ng o d(Lg)g = d(LF(g))F(e) o dFe

Since the left translation is a diffeomorphism, both d(Lg), and
d(LF(g))F(e) are isomorphisms, and as such they preserve the rank.
From this, it follows that dFy and dF, have the same rank. O

The global rank theorem then immediately implies the following
corollary.

Corollary 4.1.8. A Lie group homomorphism is a Lie group isomorphism if
and only if it is bijective.

Definition 4.1.9. Let G be a Lie group. A Lie subgroup of G is a sub-
group H c G endowed with a topology and a smooth structure that
make it at the same time a Lie group and an immersed submanifold
of G. O

Example 4.1.10. This means for example that the set GL* (n) of
invertible matrices with positive determinant is a Lie subgroup of
GL(n). O

It turns out that embedded submanifolds are automatically Lie
groups. In fact more than that.

Theorem 4.1.11 (Closed subgroup theorem). Let G be a Lie group and
suppose H is any subgroup of G. The following are equivalent:

1. H is a closed subgroup*;
2. H is an embedded submanifold of G;
3. H is an embedded Lie subgroup of G.

The proof of this theorem is not hard, but especially proving the
equivalence of the first two claims is rather involved, so we will
skip it. For a proof, look at the corresponding section in [Lee13,
Chapter 20].

Example 4.1.12. Let O(n) < GL(n) denote the set of orthogonal
matrices®, then O(n) is closed in GL(n) and by the previous the-
orem is a Lie subgroup. You have proven this when you solved
Exercise 2.8.27. O

Exercise 4.1.13. Let G be a Lie group.

4That is, H is a closed subset of G.

Since the closed subgroups of GL(n)
play a special role in Lie groups theory,
they have their own name: they are the

called matrix Lie group.
5 That is, A such that AAT = .
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1. Let 4 : G x G — G denote the multiplication map. Use the
identification T(,,)(G x G) ~ T.G x TG to show that d () :
T.G x T,.G — T,G is given by

Ahee) (X, Y) = X +Y.
Hint: compute dp (. 0)(X,0) and dp, ¢ (0,Y) separately.
2. Let:: G — G denote the inversion map. Show that di. : T,G —
T.G is given by di.(X) = —X.
s“«’

4.2 Lie algebras

We are finally ready to see how Lie groups and Lie algebras ended
up being related.

Definition 4.2.1. Let G be a Lie group. We define the Lie algebra
of G, usually denoted g, as the tangent space to G at the identity
element e:
g:= T,G.
¢

Of course, for this definition not to be completely insane, the Lie
algebra of a Lie group better be a Lie algebra also in the sense of
Definition 3.2.10. We are going to prove this very soon, but let’s first
look at some examples.

Example 4.2.2. 1. The Lie algebra of GL(n) is gl(n) ~ Mat(n).
2. The Lie algebra of O(n) is o(n) = {A € gl(n) | A+ AT = 0}. You
have shown it in Exercise 2.8.27.

O

Exercise 4.2.3. The Lie algebra of T" is IR".
Hint: using the fact that T(M x N) ~ T(M) x T(N) and look at what happens
in the case n = 1. A

Before proceeding we need to introduce some more notation.

Definition 4.2.4. Let G be a Lie group. A vector field X € X(G) is
called left-invariant if

(Lg)*X =X VgeG.

We denote the set of left-invariant vector fields by X1.(G) <= X(G).

0
Proposition 4.2.5. Let G be a Lie group and X,Y € X(G). Then
[X,Y] € X1.(G) and, therefore, X1(G) is a Lie subalgebra of X(G).
Exercise 4.2.6. Prove the proposition. *

Remark 4.2.7. The Lie algebra of all smooth left-invariant vector fields
on a Lie group G, which we denoted X} (G) and is a subalgebra of
X(G), is also called the Lie algebra of G. In the next theorem we

are going to see that this is isomorphic to the one defined above in
terms of tangent at the identity. O

Sometimes you find Lie(G).

That is, if for all g,h € G we have
d(Lg)hX;, = Xg;,,

Indeed,
X = (Lg)4X =d(Lg) o Xo(Lg)™?
if and only if X o Ly = d(Lg) o X.
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A fundamental difference with the Lie algebra of vector fields is
that X1 (G) is finite dimensional.

Theorem 4.2.8. Let G be a Lie group. The evaluation map
eval : X1 (G) » T,G, eval(X) = X,,

is a vector space isomorphism. Thus, X1(G) is finite dimensional with the
same dimension as G.

Proof. LINEARITY. Immediate (why?).
InjeCTIVITY. Follows immediately from the left-invariance: if
eval(X) = X, = 0 for some X € X (G), then the left-invariance of X

implies that X¢ = d(Lg).(X,) = 0 for every g € G, thus X = 0.

SURJECTIVITY. Fix an arbitrary v € g = T.G and define the map

ol : G — TG by
Loy -
v™(g) := d(Lg)e(0).
By construction, v’ satisfies the section property®, since d(Ly)e : ¢If you don’t know what we are
T.G — Tg G. talk.in.g. about, have another look at
Definition 3.1.1.
* ol is a vector field: we will show that vé f = vk(g)f is smooth

for any f € C%(G). To this end, pick a smooth curve 7y :
(—€,€) — G such that ¢y(0) = e and 7/(0) = v. Then, for any
g € G we have

vef =0 (9)f
= d(Lg)e(v) f
=v(fo Lg)
=(fo L¢o 7)’(0).

If we define ¢ : (—6,0) x G — Rby ¢(t,g) = foLgo(t) =
f(gy(t)), the computation above shows that vé f= %‘f(o, Q). Since
@ is the composition of smooth functions, it is smooth, and thus
ol f is smooth.

e ol is left-invariant. Indeed, for any g, h € G, we have

Thus v* € X1 (G). Since eval(v") = vl(e) = v, the map eval is
surjective, concluding the proof. O

Corollary 4.2.9. Let G be a Lie group of dimension n. Then its Lie algebra
is a Lie algebra of dimension n.
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Proof. We just need to define a Lie bracket on g. But this is easier
done than said: using the notation of the previous theorem, set

[v,w] := eval([v!, w!]), Vo,weg.
O

Another immediate consequence of this proposition is that every
left-invariant vector field is complete, which immediately makes
them all parallelizable.

Proposition 4.2.10. Let G be a Lie group and v € X1 (G). Then v is
complete.

Exercise 4.2.11. [homework 3] Prove the proposition.
Hint: extend a curve starting at e to a curve starting at g. A

Corollary 4.2.12. Every Lie group admits a smooth global frame of
left-invariant vector fields, and therefore every Lie group is parallelizable.

Proof. Every basis for X| is a left-invariant smooth global frame for
G. O

Just as we can view the tangent space as a “linear model” of
a smooth manifold near a point, the Lie algebra of a Lie group
provides a “linear model” of the group, which reflects many of the
properties of the group. Because Lie groups have more structure
than ordinary smooth manifolds, it should come as no surprise that
their linear models have more structure than ordinary vector spaces.
Since a finite dimensional Lie algebra is a purely linear-algebraic
object, it is in many ways simpler to understand than the group
itself. Much of the progress in the theory of Lie groups has come
from a careful analysis of Lie algebras.

Proposition 4.2.13. If F : G — H is a Lie group homomorphism, then
there is a map Fy : g — b which is a Lie algebra homomorphism. We call
this map, the induced Lie algebra homomorphism.

Proof. Letv € g and let v* € X1 (G) denote the unique left-invariant
vector field satisfying v} = v. Let w := dF.(v) =: F*vand wl €
X1 (H) as above. It is enough to show that w%(g) = (F*vh)g = dF Vg
for all g € G.

Indeed, we have

dFq(vg) = dFg 0 d(Lg)e(v)
= d(LF(g))F(e) © dFe(0)
= d(Lp(g))F(e) (W)
L

= WE(g):

The result then follows from Theorem 3.2.9. If v1,v; € g and w; =
F*v;,i=1,2, then
dPe[Ul,Uz] = [wl, ZUz].
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An immediate consequence of this proposition is the following.

Corollary g4.2.14. Let H < G be a Lie subgroup. Then Y is a Lie subalge-
braof g.

Proof. Use the inclusion i : H — G as the homomorphism, then
die: h = T,H — g = T.G is the Lie algebra homomorphism. O

If we go back to the example of GL(n), now we have two possi-
bly different Lie brackets on gl(n) = Mat(n): the one coming from
the previous corollary and the matrix commutator. The next result,
which we will not prove, shows that they coincide.

Proposition 4.2.15. The Lie bracket on gl(n) is given by the matrix
commutator. Therefore, if G is a matrix Lie group, the Lie bracket on g is
also the matrix commutator.

In fact, the correspondence between Lie subgroups and Lie
subalgebras goes both ways.

Theorem 4.2.16. Let G be a Lie group with Lie algebra g. If by is a Lie
subalgebra of g, then there is a unique connected Lie subgroup H of G
whose Lie algebra is b.

We close this section by stating a deep algebraic result about Lie
algebras, whose proof is way out of our reach.

Theorem 4.2.17 (Ado’s theorem). Let gl(V) denote the Lie algebra

of linear maps from a finite dimensional vector space V to itself. Every
finite-dimensional real Lie algebra g admits a faithful finite-dimensional
representation, that is, there exists an injective Lie algebra homomorphism
F:g— gl(V) ~ gl(n,R) for some finite dimensional vector space V.

4.3 The exponential map

We have seen that there is a tight relation between flows and expo-
nentials, so much so, that we started using formally the exponential
notation to denote flows of vector fields. With Lie groups and Lie
algebras, we will bring the construction to the next level, properly
formalising the construction.

Definition 4.3.1. Let G be a Lie group with Lie algebra g. We
call a one-parameter subgroup of G a Lie group homomorphism
R — G. 0

Given the introduction, the following theorem should not come
as a surprise.

Theorem 4.3.2. Let G be a Lie group. The one-parameter subgroups of
G are precisely the maximal integral curves of left-invariant vector fields
starting at the identity.

Proof. («<=) Suppose that 7 is the maximal integral curve for some
v € X1(G) starting at the identity e. Proposition 4.2.10 implies

See [Lee13, Proposition 8.41] for
reference.

See [Lee13, Theorem 8.46] for refer-
ence.

There is a strict relation between one-
parameter groups of diffeomorphisms
and one-parameter subgroups of a

Lie group. We will not discuss it here,
just be aware that — in some sense — it
mimicks what we are exploring here in
the setting of infinite-dimensional Lie
groups.
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that -y is defined on all R. Since L, is a diffeomorphism for

all ¢ € G and v is left-invariant, by Proposition 3.4.1 Ly maps
integral curves of v to integral curves of v (why?). If ¢ = y(s) for
some s, the curve t — L, (7(t)) is an integral curve starting at
v(s). By the group property of the flow, also t — y(t +s) is an
integral curve starting at 7y(s), so they must be equal. That is, for
all s,t e R,

v(s+1) = v(s)r(b).
Which implies that v : R — G is a one-parameter subgroup.
(=) Letnow ¢ : R — G be a one-parameter subgroup and

v = 7/(0) € g. The claim is that 9/(t) = vl (7(t)). Since y(s)y(t) =
Y(s +1t) = Ly (7(s)) we have

YO =4 yt+s)

= L)
= (AL (1))(0)(7'(0))
— (L 0)e(0) = 0 (2(1).

)

Again, due to uniqueness of the integral curves, we obtain the

claim.
O

If we write @} := q)fL : G — G for the flow of v, then by
definition y” = ©7 (e).

Note that the trick employed in the proof above, can be used also
to show the following.

Lemma 4.3.3. For any s,t € R one has y°(st) = °°(t), where we used
the superscript to specify the generator of the subgroup.

Proposition 4.3.4. Let G be a Lie group with Lie algebra g. Let v : R —
G be a smooth curve with (0) = e and v/ (0) = v € g. Then the following
claims are equivalent:

(i) vy is a one-parameter subgroup;
(i) y(t) = y°(t) is the one-parameter subgroup generated by v;
(iii) the flow @Y of v is given by O = R )-

Proof. We have already seen (i) < (ii). To see (iii) = (ii) observe
that the first implies 7“(t) = ©f(e) = R, (e = ().

Finally, assume (ii) holds and fix g € G. Since o" is left-invariant,
g7’ = Lg 01" is another integral curve of v" starting at g, thus,
again by uniqueness of integral curves, we have R, ;) (g) = g7°(f) =
©7(g). Which implies (iii) by the arbitrariness of g. O

Given v € X1(G), the one-parameter subgroup 7’ determined by
v in this way is called the one-parameter subgroup generated by v.

Because left-invariant vector fields are uniquely determined by their
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values at the identity, it follows that each one-parameter subgroup
is uniquely determined by its initial velocity in TG, and thus there
are one-to-one correspondences:

{one-parameter subgroups of G} « X (G) < T.G.

The exponential map, is the map that will allow us to dissipate
some of the mystery around these isomorphisms.

Definition 4.3.5. Let G be a Lie group and g its Lie algebra. We
define the exponential map of G as the map

exp:g— G, Xw— (1),

where 7 is the one-parameter subgroup generated by X or, equiva-
lently, the integral curve of X starting at the identity. O

Exercise 4.3.6. Let G be a Lie group. For any X € X1(G), ¥(s) =
exp(sX) is the one-parameter subgroup of G generated by X. Y

Example 4.3.7. Proposition 4.3.13 shows that the exponential map
of GL(n) is given by exp A = e”\. This is where its name originated.

O

This is a corollary of the properties of flows, of group properties
and of the previous propositions.

Proposition 4.3.8. The exponential map exp : g — G satisfies the
following. Foralls,te Randveg

1. exp is smooth;
2. exp((s + t)v) = exp(sv) exp(t);
3. exp(—0) = (exp(v))~;

4. exp(tv) = 7y°(t);

5. the flow Y of v& is given by ©Y = Rexp(to)-

The following property, on the other hand, deserves a bit more
care.

Theorem 4.3.9. The exponential map exp : g — G is smooth. Moreover,
up to the canonical isomorphism Tog = g, the differential dexp at 0 € g
is the identity.

Proof. SMOOTHNESS. We need to show that ©(e) depends smoothly
on v. This is not covered by our previous analysis of flows, but can
be via the following trick. Define a vector field v on G x g by

Y

00) = (05,0) € TyG x Tog ~ T(5)(G x g).

Clearly v satisfies the section property, so for it to be a smooth
vector field, we only need to show that it is smooth. Pick any

basis (X, ..., Xg) for g and let (x') be the corresponding global
coordinates for g defined by (x') — x'X;. For any f € C*(G x g) and
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givenav e g, let f, := f(-,v) : G — R denote the smooth function
defined by regarding v as fixed. Then v(, ;) f = vé fo(9)-

Since v! depends linearly (and thus smoothly) on v and f is
smooth in both ¢ and v, the expression (g,v) — vé fo(g) is smooth
in both arguments. This confirms that v, , is a vector field and,
therefore, its flow ®Y, which by Proposition 4.3.4 is given by

®1t/(g) = (gexp(tv),v), (£ 4,v)eRxG xg,

is smooth. In particular, ®;(e) = (exp(:),-) : ¢ — G x g is smooth and
therefore exp itself is.

THE DIFFERENTIAL d exp,. We want to show that the following
diagram commutes

Tog dexpy g
AN

where 7y : g — T,g is the map from Exercise 2.4.7. Let v € g, then
To(v) = &'(t) where 6(t) = tv. Thus we have

d expy(To0) = (exp 06)'(0)

d o
= 5| exp(to) Y(b) = v,

~ dtli=o

which completes the proof. O

Corollary 4.3.10. The exponential map is a diffeomorphism of some
neighbourhood of the origin in g onto its image in G.

Finally, let’s investigate how the exponential map behaves with
respect to Lie group homomorphisms.

Proposition 4.3.11. Let G and H be Lie groups with Lie algebras g and
b respectively. If F : G — H is a Lie group homomorphism, the following
diagram commutes:

epr J{exp
G-t »mH

Proof. We need to show that exp(F.v) = F(exp(v)) for every

v € g. Instead, we will show the stronger result that for all t € R,
exp(tF«v) = F(exp(tv)). The left-hand side is the subgroup gen-
erated by F,v, thus if we put y(t) = F(exp(tv)), it is enough to
show that v : R — H is a Lie group homomorphism such that

v (0) = (Fxv)e. A composition of homomorphisms is a homomor-
phism, therefore t — F(exp(tv)) is a one-parameter subgroup of H.



For the initial velocity, observe that
(Foexp)(0) = i‘ F(exp(tv))
P dtl=0 P

d
=dF <dt ‘t:o exp(tv))

= dFy(v,) = (Fx0)e.

Remark 4.3.12. Note that it we have not shown exp(X + Y) =
(exp X)(exp Y). In fact, this is false in general. As a matter of fact,

exp Xexp Y = expZ where

Z=X+Y+ %[X,Y] + f—Z[X,[X,Y]] - %[Y,[X,Y]] +...,

with the ... indicating terms involving higher commutators of X
and Y. O

The one-parameter subgroups of GL(n) follow nicely from the
results introduced above. Let A € gl(n). Using its identification with
X(GL(n)) we can think of the matrix A as the left-invariant vector
field AL. That is, the one-parameter subgroup generated by A is the
integral curve of AL on GL(n) starting at e. This is a good place to
see where the right shift is coming from.

Let A = (A;) and let (X;) denote the global coordinates on
GL(n) given by the matrix entries. Then the natural isomorphism
TigGL(n) ~ gl(n) is given by the mapping

;0

i i

id ]

Thus, if you remember that v’ | ¢ = d(Lg)e(v), the left-invariant
vector field AL is given by

.0
Alx = d(Lx)ia(A) = d(Lx)ia | Ajmez |/
6Xj
and, thus, in coordinates, its value at X € GL(n) is

; 0

xkai L

ToXt

]

Which means that the condition to be an integral curve, in coordi-
nates, is %’y}i(t) = ’y;((t)A;«‘ or, in matrix notation, 9/(t) = y(t)A. By
using the expansion ¢4 = k=0 %k one can verify that such v is
exactly the matrix exponential.

We can summarise” this as follows.

Proposition 4.3.13. Let A € gl(n), then the one-parameter subgroup of
GL(n) generated by A is
Ak

exp(tA) = eth = Z R
k=0
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The complete formula is called Baker-
Campbell-Hausdorff formula and

its use appears all over the place in
mathematics and physics [BF12].

7 One should also prove convergence, if
you are curious about the details you
can refer to [Lee13, Proposition 20.2].
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Corollary 4.3.14. Let G be a matrix Lie group with Lie algebra g. Then
the exponential map exp : g — G is given by matrix exponentiation:
exp A = ef.

Exercise 4.3.15. The one-parameter subgroups of O(n) are the
maps of the form e/ for arbitrary skew-symmetric matrices A. In
particular, this shows that the exponential of any skew-symmetric
matrix is orthogonal. >

Exercise 4.3.16. Let G a Lie group and g its Lie algebra. For any
X, Y € g, there show the following results.

1. For some € > 0, there is a smooth function Z : (—¢,€) — g such
that, for all t € (—¢, €),

(exp tX)(exp tY) = exp(tH(X + Y) + £2Z(1)).

2. For some € > 0, there is a smooth function Z : (—€,€) — g such
that, for all t € (—¢,€),

(exp tX)(exp tY) = exp (t(X +Y)+ %tZ[X, Y] + t32(t)> .

Hint: Taylor expansions and Exercise 4.1.13 can help for this exercise. A

The study of Lie groups acting on manifolds, opens a whole
world of interesting topics, spanning across all fields of mathemat-
ics. We will not enter into the details here, however I want to leave
you the main definitions.

Definition 4.3.17. Let G a Lie group and let M be a manifold. We
call left action of G on M a smooth map ¢ : G x M — M such that

U(gh,p) = L(g L(h,p), Lep)=p

forall g,h € Gand p € M. For any fixed g € G, themap p —

(g, p) is a diffeomorphism of M, which is usually denoted /.
Analogously, we call right action of G on M a smooth map p :
M x G — M such that

p(p,gh) =ple(p, &), 1), p(pe)=p

forall g,h € Gand p € M. For any fixed g € G, themap p —
p(p,g) is a diffeomorphism of M called orbit map, which is usually
denoted p” or (p,g) — p- 8- O

There are many interesting types of Lie group actions. I am
going to mention one here, which occurs when the action of G
on M is transitive. In this case M becomes a homogeneous space

and is diffeomorphic to the quotient G/H for some Lie subgroup
HcG.

Exercise 4.3.18. Let G be a Lie group with Lie algebra g. For each
g € G, the differential at the identity of the conjugation map C, :=
Lgo Rg_1 : G — G is a linear isomorphism Cgx : g — g. Hence,

This uncovers the structure behind
the structure you encountered in
Exercise 2.8.27.



1. Show that the map Ad : G — GL(g) defined Ad(g) = Cgx and
called adjoint representation of G is a group homomorphism.

2. Show that Ad : G — GL(g) is smooth.
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*

We will come back to discuss Lie groups and Lie algebras in the
appendix on distribution theory and Frobenius theorem.
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5
Cotangent bundle

5.1 The cotangent space

THE DUAL OF A VECTOR SPACE should be a well-known concept
from linear algebra. We recall it here just for the sake of conve-
nience.

Definition 5.1.1. Let V a vector space of dimension # € N. Its dual
space V* := L(V,R) is the n-dimensional real vector space of linear
maps w : V — R. The elements of V* are usually called linear
functionals and for w € V* and v € V it is common to write

w(v) = (w,v) =: (w | v),
even if the dual pairing (w | v) is not a scalar product. ¢

Remark 5.1.2. Note that a scalar product(,) : VxV — Rona
vector space V provides a natural identification of V and V* via the
map V 3 v — (v,-) =t w(-) € V*. Even though dimV = dim V'*
in any case, without the scalar product there is no such canonical
isomorphism. O

In the previous chapter we defined the tangent space as a special
vector space over each point in a manifold, which nicely fits in the
requirements above.

Definition 5.1.3. Let M be a differentiable manifold and p € M.
The dual space T; M := (T, M)* of the tangent space T, M is called
the cotangent space of M at p. The elements of T; M are called
cotangent vectors, covectors or (differential) 1-forms at p. O

For a function f : R” — R, we usually consider the gradient
Vf(x) at a point x to be a vector. On a manifold however things a
slightly different.

Example 5.1.4 (The differential of a function). Let f € C*(M). Let’s
look carefully at its differential:

is a linear function from the tangent space to R. In other words,
dfp e Ty M. O
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Whereas tangent vectors give us a coordinate-free interpretation
of derivatives (of curves), it turns out that derivatives of real-valued
functions on a manifold are most naturally interpreted as cotangent
vectors.

Indeed, we saw that the action of df, on a tangent vector v €
Ty M can be interpreted as the directional derivative of f at p in the
direction v and, by using Definition 2.5.6, we have

afy0) = 2 f (1)

t=0
for some curve 7 with ¢(0) = p and 7/(0) = v. We also know that
the equation above can be rewritten by thinking of v as a derivation,
giving

dfp(0) = o(f)-

That is, we can think of the dual pairing (df | v) in a twofold way:
® as a linear action of the covector df on the vector v;

* as the linear action of the vector v as a derivation operating on
the function f.

Notation 5.1.5. In analogy to the notation % | » that we used for
tangent vectors, when convenient we may write df|, instead of
dfp. O

To look more concretely at differential forms, let’s compute its
coordinate representation. Let (U, (x')) be a chart on M". Since the
coordinate functions x’ € C*(U) are smooth real valued functions,
we can define the corresponding coordinate 1-forms dx'|, € Ty M.
Their action on the coordinate vector fields, then, is immediately
computed as

8 (0 o1 i
! — = dx? — = — | xt=4
<dx I 8xf‘p> =y <6xf p) o p" o

Which proves the following statement.

Proposition 5.1.6. Let (x') be local coordinates on an open subset
U < M". Ateach point p € U, the covectors {dx'|,,...,dx"|,}
form a basis for the cotangent space Ty M which is dual to the basis

_0_
ox!

That is, any 1-form w can be locally written as a linear combina-

0
7t r Oxtt

} for the tangent space T, M.
P 4

tion

w = wj dx!
where w; : U — R. In particular, if f € C*(M), the restriction
df to points in U should have the same form. Evaluating it on a
coordinate vector field gives, for all p € U,

1Y = axil, (<] ) = i = o
h (3l,) =~ (3, ) =t =
0
i(

ox/

p)-
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That is, the local expression for df is

df = gj;dx (5.1)

Remark 5.1.7. In calculus 1 you have probably been told that you
can cancel out differentials when applying solving differential
equations. This was probably accompanied by a warning that it is
just a formal thing, a computational convenience. We can finally
make sense of that in a general context: in one dimension, (5.1),

reads as p
af = f dt

O

Example 5.1.8. If f(x,y) = xy?e>* on IR?, then df is given by the

formula

(xy2€3x) (xy2€3x)
af = d d
f 0x *r oy Y
= (¥ + 3xy?e>)dx + 2xyedy.
0
With the local basis, computing with covectors becomes much
easier. Given a covector w = w dx/ and a vector v = v’ aa expressed

in the respective coordinate bases for the local coordinates (x'), by
linearity in both arguments the dual pairing takes the form

0 : 0 ,
(w|v) = (w]- dx’! ‘ Ulaxi> = wjv' <dx] (3x’) = w;vl.

3.9

Example 5.1.9. Let, now, v = 76% 12) + ay‘(l 2

from Example 5.1.8. We have

@lazye) = ((y263x+3xy2 x4 2eyedy, 72 4+ aay) oo

= 7(y*e> + 3xy’e 3x)|(1,2) + 6xye’ "1,2)

= 7(4€% + 12¢%) + 12¢% = 52¢°.

O

Exercise 5.1.10. Let M be a smooth manifold and let f,g € C*(M).
Show that the following properties hold:

d(af + Bg) = adf + Bdg for o, p e R;
2. d(fg) = fdg + gdf;
3. d(f/g) = (gdf — fdg)/g? on the set where g # 0;

4. if ] < R contains the image of f and /i : | — R is smooth, then
d(ho f) = (W o fldf;

5. if f is constant, then df = 0.
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Remark 5.1.11 (The double dual). We said in Remark 5.1.2 that unless
we have an inner product, there is no canonical identification of
a vector space with its dual. This is true also for the tangent and
cotangent spaces. However, the situation is different for the double
dual T;*M := (T; M)*.

For v € T, M, the map

ip: TyM — R, w — ip(w) == (w | v)

is linear and therefore i, € T;,"*M.

Furthermore the map i : T,M — T;,"*M, i — iy, is a vector space
isomorphism. Indeed, it is injective since ker(i) = {0} and since
dim TyM = dim T;* M also surjective.

That is, T;* M can be canonically identified with T, M.

So, to add up to our list of interpretations of geometric objects,
we now have seen that

e a covector can act as a linear functional on vectors;

® a vector can act as a linear functional on covectors.

O

This should start giving you an idea of what is behind the follow-
ing famous quote by Henri Poincaré:

Mathematics is the art of giving the same name to different things.
5.2 Change of coordinates

In Remark 2.3.16 we have seen that if we have two different charts
with local coordinates (x') and (y') on a smooth manifold M,

0 oyl 0
o p E(P)aiyf .
Thus, if v € Ty M has local form v = vi%‘p = vfaiy]. pwe get
. 0 oyl 0
L = 17‘ -
oxilp ~ 7 oxd (p)ﬁyf p
I
7],
oyl'lp
or, reading off the basis elements,
.oyl 4
o = L) (5.2)

Let now w € T;M with local form w = wdx'|, = cT)]'dyf|p. In
analogy to our previous computations we get

o o1\ oy, o\ oy o
i <é’xi p) - (3xi(p)0’yj P) = 2 P

_w
Coxi

That is,

Wi

(p)aw;. (5.3)

' Why? If rank-nullity theorem does
not ring a bell, make sure to look it up.
Itis, e.g., [Lee13, Corollary B.21]

Let’s denote the two charts respectively
by ¢ and ¢, then if ¢ = po ¢~ is the
corresponding transition map, one has

oyl 0 j 0

T p-Z| = i

32 D) 3], = PN
where D¢ is the Jacobian matrix of the
transition map.



There is an important difference® between (5.3) and (5.2). For
covectors, (5.3) shows that their components transform in the same
way as (“vary with”) the coordinate partial derivatives: the Jacobian
of the change of variables % (p) multiplies the objects associated
to the “new” coordinates 1/ to obtain the objects associated to
the “old” coordinates x'. For this reason covectors are said to
be covariant vectors. Analogously, tangent vectors are said to be

contravariant vectors, since (5.2) shows that their components

transform in the opposite way.

The difference in the way vector and covector transform is re-
flected also in the way they are transformed by smooth maps
between manifolds. As we have seen, the differential of a smooth
map yields a linear map between tangent spaces that pushes vec-
tors from one space to the other. Its dual is going to be a map that
pulls vector form one covector space to another.

Definition 5.2.1. Let F : M — N be a smooth map between
smooth manifolds, let w € T;‘(p)N for some p € M. The pullback
of covectors by F at the point F(p), is the dual linear map of the
differential
% . ok % %
dF; : TrpyN = TyM, w— dF*w,

defined by duality in the following way3:
(dF;,“w | v) = (w|dF,(v)), YveT,M, Vwe TF(p)N-

O

Let’s check that the definition above makes sense: dF;," w E T;‘M SO
veTyM butw e T;(p)N so dFy(v) € Tp(,)N since dF, : TyM —

5.3 One-forms and the cotangent bundle

In analogy to Chapter 2.6 we can glue the cotangent space together
into a vector bundle on M.

Definition 5.3.1. The cotangent bundle T*M of M is the disjoint

union of cotangent spaces

T*M := |_| ({p} X T;’,‘M) ={(pw) | pe M, we T;M}.
peEM

O

The cotangent bundle is a vector bundle of rank n with projec-
tion 7 : T*M — M, (p,w) — p. The cotangent spaces are the fibres
of the cotangent bundle.

Theorem 5.3.2. Let M be a smooth n-manifold. The smooth structure on
M naturally induces a smooth structure on T* M, making T* M into a
smooth manifold of dimension 2n for which all coordinate covector fields
are smooth local sections.
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21 have borrowed this explanation
from [Lee13, Chapter 11].

Which is also the reason why, some
authors, use the notation Fy to denote
the differential of maps between
manifolds and other call pushforward
the differential.

3 Or, omitting the point of application,
(dF*w,v) := (w,dF(v)).

Equations are getting more and
more tricky: this kind of dimensional
analysis is extremely useful to check
that you are doing the right thing.
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Proof.

Exercise 5.3.3. [homework 3] Mimicking what we did for Theo-

rem 2.6.3, complete this proof. *
O

Definition 5.3.4. A covector field or a (differential) 1-form on M
is a smooth section of T*M. That is, a 1-form w € T(T*M) is a

smooth map w : p — w) € T;M that assigns to each point p € M a

cotangent vector at p. We denote the space of all smooth covector
fields on M by X*(M).

As for vector fields, we can define CP-covector fields as the CP-
maps w : M — T*M such that mow = idy. O

Also in this case, we will often identify for a covector field w €
X*(M) its value w(p) = wp € {p} x TyM at p € M with its part
in T; M without necessarily making this explicit in the notation by
projecting on the second factor.

Example 5.3.5. Let f € C*(M), then the map
df :M—T*M, p—dfleTyM

defines a 1-form df € X*(M). ¢

As smooth sections of a vector bundle, covector fields can be
multiplied by smooth functions: if f € C*(M) and w € X*(M), the
covector field fw is defined by

(fw)p = f(p)wp.

Also in this case, ¥*(M) is a module over C*(M).

Since differential 1-forms are dual objects to tangent vectors, the
action of a form w on X € X(M) is well-defined and pointwise
defines a function

(@[ X):p—(wp | Xp)-

Exercise 5.3.6. The differential form w is smooth if and only if, for
every smooth vector field X € X(M), the function (w | X) € C*(M).
Hint: write it down in local coordinates. A

Definition 5.3.7. The pullback of covectors immediately extends to
covector fields. The pullback is the map

F*: X*(N) - X*(M), ww~ Ffw

defined by
(F*w)p = dF;,"(ch(p))

By definition, this acts on vectors v € T,M by

((F*w)p,v) = (Wk(p), dFp(0)) = wp(p)(dFy(0)).

For reasons related to tensor fields
that we will understand soon, this is
sometimes denoted T,°(M).
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Exercise 5.3.8 ([homework 3]). Let F : M — N be a smooth map
between smooth manifolds. Suppose f is a continuous real valued
function on N and w € X*(N) is a covector field on N.

1. Show that
F*(fw) = (foF)F*w := F*f F*w,
where we introduced the pullback of a smooth function as
F*g:=gqoF.
2. If in addition f € C*(N), show that

F*df = d(f o F) = d(F*f).

Hint: apply the equations at a point p € M and keep rewriting the equations in
different forms. A

Exercise 5.3.9. Let F : M — N smooth map between smooth mani-
folds. For p € M, denote (V, (y')) a chart on N around F(p) and let
U=FYN).Ifw= wjdyf e X*(N), apply twice Exercise 5.3.8 to
show that in U

Ffw = (wjo F)d(y/ o F).

Let F : R® — R? be the map (u,v) = F(x,y,z) = (xy? ysinz). Let
w € X*(IR?) denote the covector field w(u,v) = udv — vdu. Compute
F*w. A

Exercise 5.3.8 is particularly interesting if we look at it in relation
to the pushforward.

Proposition 5.3.10. Let F : M — N be a diffeomorphism and X € X(M).
Then, for any f € C*(N),

X(F*f) = F«X(f) o F.
Proof. Indeed, for any p € M,

EX(f) o F(p) = (EX)f)(E(p)) = (FsX)p(p) f
= (dFo X0 FT1)(E(p)f = (dF o X)(p)f
= de(Xp)fr
X(F*f)(p) = X(fo F)(p) = Xp(f o F) = dFy(Xp) f

O
In this case you often say that the vector fields are F-related* or +This is a definition that can be
that they behave naturally: you can either pull back the function f properly formalized, but we will not

. spend any time on it in during the
to M or push forward the vector field X to N. course.
Exercise 5.3.11. Let {pa} denote a partition of unity on a manifold M
subordinate to an open cover {U,}. Let F : N — M denote a smooth
map between smooth manifolds. With the definition of pullback of

functions given above, prove that

1. the collection of supports {supp F*p,} is locally finite;
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2. the collection of functions {F*p,} is a partition of unity on N
subordinate to the open cover {F~!(U,)} of N.

*

When we discussed vector fields, we observed that pushforwards
of vector fields under smooth maps are defined only in the special
case of diffeomorphisms. The surprising thing about covectors is
that covector fields always pull back to covector fields.

Example 5.3.12 (Polar coordinates on R?). We can define polar
coordinates in IR? via the map

¥Ry x (=7, 7m) —» R:\{x e R? | x* = 0 and x! <0}

(r,0) — (rcos@,rsinf).

It is immediate to check that ¢ is a diffeomorphism between open
subsets of IR?, and we can think of ¥~! as local coordinates for a
part of R?.

On the image of 1 we have the coordinate basis {dx!,dx?}. In
order to express them in terms of the coordinate basis {dr, df}, we
can apply Exercise 5.3.8, the properties of differentials and the
formulas for the change of coordinates to get

P*(dxt) = d(x! o) = d(rcos )

= cosfdr+rd(cosf) = cosfdr —r sinfdo
P*(dx?) = d(x* o) = d(rsin6)

=sin@dr + rd(sinf) = sinfdr + r cos 0 d6.

O

Example 5.3.13 (Tautological one-form). On T*M there is a 1-form,
called> tautological one-form, defined as follows.

A point in T*M is a covector w), € T;’M at some point p € M. If
Xw, € Tw,(T*M) is a tangent vector to T*M at w). Let 7 : T*M —
M, then the pushforward 714(Xw,) € TpM is a tangent vector to

M at p. Therefore, one can pair w), and n*(pr) to obtain a real

number (wy | n*(pr)). The tautological one-form 6 € X*(T*M) is
then defined as

b, (Xew,) 1= (wp ‘ n*(pr)) .

This is a very important concept in symplectic and contact
geometry and in the mathematical theory of classical mechanics.

O

The pullback is a rather pervasive concept, and does provide us
a new way to explore vector bundles.

Example 5.3.14 (The pullback bundle). Let F : M — N be a smooth
map between manifolds. Suppose that 7 : E — N be a vector
bundle of rank r over N. Then M x E is a trivial bundle over M
with constant fibre E. You may think that this is yet another trivial
example, but it allows us to define the pullback bundle F*E: let

F*E:={(p,v) e M x E | F(p) = n(v)},

5 As usual there are different names:
two other common ones are Liouville
form or Poincaré form, but don’t be

suprised if you find more.
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with the projection I'ly : F¥*E — M. The fibre of F*E over p € M,
then, is {p} x Ef(,), which under I, : F*E — E is diffeomorphic to
Epp)- I ¢ - 7~1(U) — U x R is a bundle diffeomorphism for E,
then g oIl : Hfl(F_l(U)) — U x R" is a bundle diffeomorphism
for F*E. This F*E is a vector bundle of rank r over M. In summary,
the following diagram commutes:

F*E—>E

-l

M—t

5.4 Line integrals

An important direct feature of 1-forms is that they are the natural
geometric objects that can be integrated along 1-dimensional (ori-
ented) submanifolds, i.e. along curves. In this sense they provide
a coordinate-free way to define line integrals. We will not see this
in too many details yet, but it is worth taking the time to give the
definition and see a few properties.

The idea is to use the pullback to pull the 1-form to the param-
eter space R and interpret the integral there as a usual Riemann
integral.

Definition 5.4.1. Let M be a smooth manifold, v: I = [4,b] c R —
M a smooth curve and w € X*(M) a 1-form. The (line) integral of w

along < is the number

J;w B Lfy*w B Lb (fy*a) | ‘ft) ()t

where 7*w is the pullback of w to I by 7y and % : I — T1 is the unit
vector field on I. The pointwise dual pairing ('y*w | %) e C*®(I)
and is integrated in the usual Riemannian sense. O
Example 5.4.2. Let M = R?\{0}. Let w be the one-form
xdy — ydx

x2 +y?

and let v : [0,271] — M be the curve segment defined by y(f) =
(cost,sint).

We already saw that thanks to covariance, y*w is immediately
computed with the substitution x = costand y = sint in the
definition of w, so we get

J f cos td(sin t) —sinfd(cost)
0,271] sin? t + cos? t

= f (cost costdt —sint (—sint)dt)
[0,27]

27T
= dt =
0
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O
Exercise 5.4.3 ([homework 3]). Let M be a smooth manifold, 7y : I =
[a,b] € R —> M a smooth curve and w € X¥*(M) a 1-form. Show the
following properties.

1. Show that with the definition above
b
[ w=[ woerea (5.4
Y a

2. Let ] € R be an open interval and F : | — I a diffeomorphism
with F/(t) > 0. If 6 : ] - M denotes the reparametrisation of 7y
defined by 6(t) := F*y(t) = (7 o F)(t), show that

Lw - Lw.
"(F(

Hint: use the chain rule to get 6'(t) = ' (F(t))F'(t) and then apply (5.4).

3. Let f € C*(M). Prove the fundamental theorem of calculus:
| a7 = rao) - srt@).
v

Hint: justify that df, (7' (t)) = %f(’y(s))|s=t and then use the usual
fundamental theorem of calculus on R.

*

Exercise 5.4.4 (One-forms in thermodynamics). Consider a physical
system composed of a fixed number of particles. The thermal
equilibrium state of the system can be characterised in terms of
its entropy S € R, and its volume V € R. If we think at the
thermodynamic state space M = R% < RR? as a smooth manifold,
we can define the energy of the system as a function E = E(S,V) :
M — R on the space of equilibrium states.

Show that the differential dE € X*(M) has the following represen-
tation with respect to the coordinate basis {dS,dV}:

0E OE
dE = %dS + de =:TdS — pdV.
Here T and p are the two functions denoting respectively the
temperature of the system and its pressure. The 1-form TdS os
called the heat absorbed by the system while —pdV os the work
performed by the system.

Differently from the other properties of the system, these are not
functions and thanks to this it makes sense to ask how much heat
has been transferred or how much work has been performed: these
are just the integrals of those one-forms over curves in the space of
equilibrium states.

Note that since the energy is the differential of a function, its
integral over a closed curve is just the difference between initial
and final energy and, thus, it vanishes. However, work and heat are
usually not the differential of a function, which makes their integral
dependent on the specific path taken and usually not vanish on
closed loops. This peculiar property is what makes possible to
construct heat engines. *

This shows that line integrals are
independent of the parametrization.



6
Tensor fields

Many of the spaces that we have encountered so far are particular
examples of a much larger class of objects. In this chapter we are
going to introduce all the necessary algebraic concepts.

We have seen that covectors in V* are real linear maps V — R
from the underlying space V while, through the double dual,
vectors can be understood as real linear maps V* — R from the
dual space V*. In practice, tensors are just multilinear real-valued
maps on cartesian products of the form V* x --- x V¥ x V x - x V.
We have already encountered some examples; covectors, inner
products and even determinants are examples of tensors:

¢ ascalar product is a bilinear map {-,-): VxV - R;

* the signed area spanned by two vectors is a bilinear map R? x
R? — R defined by area(u,v) := u A v = ulv? — u?v;

¢ the determinant® of a square matrix in Mat(n), viewed as a
function det : R" x --- x R" — R is a n-linear map.
| —

n times

So functions of several vectors or covectors that are linear in each
argument are also called multilinear forms or tensors. It should not
come as a surprise that multilinear functions of tangent vectors and
covectors to manifolds appear naturally in different geometrical
and physical contexts. In this chapter we are going to discuss the
general definitions and notions that interest us, some of which may
be just refreshing what you have seen in multivariable analysis
in the context of general vector spaces V. Keep in mind, that at a
certain point, we will replace V with the tangent spaces T, M of a
smooth manifold M.

6.1 'Tensors

Definition 6.1.1. Let V be a n-dimensional vector space and V* its
dual. Let

Mult(Vy, ..., V)

denote the space of multilinear maps V; x --- x Vx = R.

For a brief and concrete explanation
of tensors, I warmly recommend
the following youtube video by Dan
Fleisch and [Lie45, Chapter XIV].

*In fact, the signed area is the determi-
nant of the 2 x 2 matrix (1 v)...


https://youtu.be/f5liqUk0ZTw
https://youtu.be/f5liqUk0ZTw
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A multilinear map
r times
/_/%
T: V% . xVExVx---xV-o>R
;W_J
s times

is called tensor of type (r, s), r-contravariant s-covariant tensor,

or (r,s)-tensor. Similarly as we did for the dual pairing, when
convenient we define the pairing
1 r. _. 1 r.
T(w Lo, W ,01,...,05) =: (T |w, ..., w ,Ul,...,Us).

For tensors 73 and 1, of the same type (r,s) and a1, a4, € R we
define
(T +am|...) i=a1 (Tq|...) + a2 (1]...).

This equips the space

r times
——
T; (V) := Mult(V*,..., V¥, V,...,V)
—_——
s times
of tensors of type (r,s) with the structure of a real vector space®. In 2 Be careful when reading books and
particular, VE = T{)(V) and V = T& (V) O papers, for tensor spaces the literature

is wild: there are so many different
conventions and notations that there

. : is not enough space on this margin to
R", is a (0,2)-tensor. This means, for example that the aforemen- mention them all. Note that the book

tioned scalar product is an element of T (R"). of Lee inverts the order of superscripts
and subscripts in T;.

Example 6.1.2. ® An inner product on V, e.g. the scalar product in

¢ The determinant, thought as a function of n vectors, is a tensor in
TI(R™).

¢ Covectors are elements of T{(T, M) while tangent vectors are
elements of T} (T, M).
%

L w? e V*. We can define

Take now, for example, two covectors w
the bilinear map

W W :VxV SR, w ®w2(01,02) = w1 (v1)wa(v2),

called the tensor product of w! and w?. This can be generalized
immediately to general tensors in order to define new higher order
tensors.

Definition 6.1.3. Let V an n-dimensional vector space, 7 € T;(V),
T € TS’,/ (V). We define the tensor product 71 ® » as the (r +7/,5 +5')-
tensor defined by

1 +7’
nRm(w,..., 0w 7,01, Vs s)

+1

=W, ..., w01, ,0) (W, W

’
’
7 Us+1s- - '/US+S’)'

This definition immediately implies that the map

®@: TH(V)x T, (V) — TS’I;, (V)

is associative and distributive but not commutative (why?).



Exercise 6.1.4. Give a tensor in Tg which is a linear combination of
tensor products but cannot be written as a tensor product. Justify
your answer.

Hint: one of the examples at the beginning of the chapter can help. A

In fact, this is a general fact.

Proposition 6.1.5. Let V be an n-dimensional vector space. Let {e;}
and {&'} respectively denote the bases of V = T(V) and V* = TY(V)
respectively. Then, every T € V can be uniquely written as the linear
combination

T=U"T e @ e @ ®--- @, (6.1)

ip---ds

where the coefficients lelll]; € R. Thus the n"*s tensor products
¢, ® Qe ®EN® @€, fi,... jri1,...,is=1,...,m,

form a basis of T} (V'), and T! (V) has dimension n'*5.

Proof. Let {#/} and {b;} denote the bases of V* and V that are dual
to {e;} and {¢!}, that is,

(B | er) =0 = (¢ | by).

Define
Ti:---i: = T(ﬁh, .. .,‘B]',bil,. . '/bis)'

Then, on any element of the form (,le,. ey ﬁf', bi,, ..., bi), we triv-
ially have the decomposition (6.1). By multilinearity of all the terms
involved, (6.1) holds for any element (wl, e, w01, ..., 0s) after
decomposing it on the basis.

Uniqueness follows from the linear independence of the tensor

products €, @ --®ej, RN ®- @l proceeding by contradiction. O

Exercise 6.1.6. Formalize in details the last step of the proof: unique-
ness follows from the linear independence of the tensor prod-
ucts. *

Remark 6.1.7. There is a canonical isomorphism such that

r times
r oo * *
(V)2 V® - QVRV*®---@V*.
—_
s times
This allows us to choose whichever interpretation is more conve-
nient for the problem at hand: being it a multilinear map on a cross
product of spaces or an element of the tensor product of spaces. ¢

Let’s go back for a moment to the example of inner products.

Definition 6.1.8. We call pseudo-metric tensor, any tensor g € T9(V)
that is

1. symmetric, i.e. g(v,w) = g(v,w) for all v, w € Ty (V);

2. positive definite, i.e. g(v,v) = 0 for all v # 0.

TENSOR FIELDS Q7

A more general approach to this
proposition is by proving the universal
property of tensor spaces. See for
instance [Lee13, Propositions 12.5, 12.7
and 12.8].

Exercise: expand Einstein’s notation to
write the full sum on the left with the
relevant indices.

A linear map is uniquely specified

by its action on a basis, which in
particular means that these dual bases
are unique.
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We call non-degenerate any tensor g € T9(V) such that
gv,w)=0 YweV = v=0.

A metric tensor or scalar product is a non-degenerate pseudo-

metric tensor. The Riemannian metric is a metric tensor on the
tangent bundle of a manifold. An example of non-degenerate
tensor which is not a metric is the so-called symplectic form: a

skew-symmetric non-degenerate (0, 2)-tensor, which is fundamental
in classical mechanics and the study of Hamiltonian systems. O

Example 6.1.9. Let V be a n-dimensional real vector space with
an inner product g(+,-). Denote {ey,...,e;} the basis for V and
{el,...,e"} the basis for its dual V*. As a bilinear map on V x V,
the inner product is uniquely associated to a matrix [g;;] by gij =
(geir€f)-

We already mentioned that in this case we can canonically iden-
tify V with V*. Indeed, the inner product defines the isomor-
phisms3

LV L VE v ¢(v,-), and its inverse bvE LV,

The matrix of ?, by definition, is [gl-j], that is,

(©")i = gijol,

where the v/ are the components of v. Therefore, the matrix of ? is
the inverse# [¢"/] of the inner product matrix, that is,

(wh) = gy,

where the w; are the components of w.

Note that, in general, e? # ¢': indeed, by definition e? = g,»jef .

It turns out that these operators can be applied to tensors to
produce new tensors. For example, if T is a (0,2)-tensor we can
define an associated tensor 7’ of type (1,1) by 7(w,v) = T(wh, v). Tts
components are (')} = g/*t. O

Exercise 6.1.10. Let V be a vector space with an inner product.

1. Show that the space T} (V) is canonically isomorphic to the space
of endomorphisms of V, that is, of linear maps L: V — V.

2. If £ € T}(V) is the tensor associated to A, show that its compo-

nents Kﬂ are just the matrix entries of A seen as a matrix.

3. Of course, given the previous example, T} (V) is also canonically
isomorphic to the space of endomorphisms of V*, that is, of lin-
ear maps A : V* — V*. Prove the claim by explicitly constructing
the mapping ¢ — A.

Hint: definitions can look rather tautological when dealing with tensors... think
carefully about domains and codomains, remember the musical isomorphisms and
the tensor pairing. A

3 Often called musical isomorphisms
or index raising and index lowering
operators.

That ® is an isomorphism follows
immediately from the linearity and the
fact that non-degeneracy implies that
its kernel contains only the zero vector.

4 Using lower indices for matrix entries
and upper indices for the entries of the
inverse is very common. It turns out to
be an especially convenient notation,
which simplifies many formulas

in general relativity and classical
mechanics.

To add to the confusion: in the physics
literature, for v € V, the components
vj of v" are often called covariant
components of v while the components
v/ of v are called its contravariant
components.



We are now in a good place to discuss how tensors are affected
by changes of basis. Let L : V — V be an isomorphism, then we
can define a new basis {¢;} of V by ¢; := Le;. For convenience, we
denote its dual basis by {¢'} in contrast with our initial notation.

Thinking in linear algebraic terms, the linear map A : V¥ — V*
that relates the dual bases is determined by

5= (2] &) = (A€ | Lej) =: (L*Aé' | ¢)
thatis, A = (L*)71,

Indeed, if [l{ ] is the matrix associated to L, thatis, ¢; = Le; = l{e]-,
thené = L*e/ = lfei. Since the matrix [/\{] of A, that is, Ae/ =
/\{(ek, must satisfy A{(lf‘ = 5?, as matrices, [/\{] is the inverse of [l{]
However, don’t forget that [lf ] is the matrix of the endomorphism
L:V — V while [/\{] is the matrix of the endomorphism A : V* —
V=

We can transport this fact to general tensors to obtain that the
components of an arbitrary tensor T € T} (V) transform as follows.
Since

T=1" Ve ® @, @1 ® @

1115
o~k -ky

=3, &, @...@Ekr@)ghl ® -,
applying the previous reasoning and comparing term by term we
get

jl"'jr _ "’kl"'kr jl jr hl hs

Ty = Thyeeh ey B iy oA

or

~kyke ey ky i i

Th1~~-h5 — Tl‘]---is A]] . /\]r e lhl e lhsb
Remark 6.1.11. An important consequence of this fact is that we
can use a metric tensor, and the associated musical isomorphisms
> and ¥, to canonically identify a tensor space T (V) with T; (V),
;" (V) and T? 't (V) by concatenating the correct number of maps,
for example

7= Ig :TH(V) - T (V)
s times
—

T:7T— TO('b,...,'b,'ﬁ,...,'ﬁ).

—_——

r times
In general, one can use the metric to raise or lower arbitrary indices,
changing the tensor type from (r,s) to (r +1,s —1) or (r — 1,5+ 1).

A neat application of this is showing that a non-degenerate

bilinear map g € T9(V) can be lifted to a non-degenerate bilinear
map on arbitrary tensors, that is

G:TI(V)x TI(V) >R, G(t,7):= (T4(1) | T).

In particular, if g is a metric on V, then G is a metric on T} (V). O

TENSOR FIELDS
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Exercise 6.1.12. What do the canonical identifications of T} (V) with

TSH and TtOJrs look like? *

Remark 6.1.13. Interestingly, even though each of the tensor spaces
T (V) is generally not an algebra, the map ® transforms the collec-
tion of all tensor spaces

T(V):= P TI(V), TH(V):=R,
r,5=0
to an algebra, called tensor algebra. Here, for r = s = 0 we define
the tensor multiplication with a scalar as the standard multiplica-
tion: r@uv =rvforre T9(V) =Rand ve T}(V) = V. O

Before moving on, there is an important operation on tensors
that will come back later on and is worth to introducte in its gener-
ality.

Definition 6.1.14. Let V be a vector space and fix r,s > 0. For h <r
and k < s, we define the (h, k)-contraction of a tensor as the linear
mapping T7 (V) — T::ll(V) defined through

1® - RULEAOW ® -®u

'_)wk(vh)vl®"‘®vh_1®0h+1~'~®Ur®w1®...®wk—1®wk+l”.

and then extended by linearity, thus mapping T — T where

T, v oy, 0 )
1 ‘ -1
=t(v,..., el LV T, e .., Ws 1)
nth index kth index
O
Example 6.1.15. To understand why the two equations in the def-
inition are equivalent it is worth looking at an example over a
decomposable element. For simplicity, assume (7,s) = (2,3) and
T=11Q0m& wl' ® Ww? ®ws. Then T corresponds to a multilinear
function
T, V2w, wa, w3) = v (01 (02)w’ (w1)w? (ws)w® (w3).
By definition, the (1,2)-contraction is
%(Vll w1, w2) = 7'd(ei/ 1/1/ w1, €4, w2)
= ¢(01) V! (02)w' (w1)w? (er)w (w2)
= do)w’(e) v(v)w' (w)w’(w)
[
=w;el (v1)=w?(01)
= w2(01) 0nRWw® w3(V1, w1, Ww3).
O

Example 6.1.16. For a € T}(V), the contraction tr(a) := a} is called

the trace of a and is the usual trace of the corresponding endomor-
phism A:V — V. O

This is a so-called graded algebra since

®: TI(V) x T, (V) — T'H(V) in
some sense moves along the structure

of the indices.
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6.2 Tensor bundles

It is time to leave the abstract world of vector spaces and start get-
ting closer to our main focus: manifolds. In the previous chapters
we have shown that the tangent bundle and the cotangent bundle
are families of vector spaces built over M that are dual to each other.
We now have the tools to further extend this idea and define tensor
bundles as families of tensor spaces build on top of the fibres of the
tangent bundle.

Definition 6.2.1. The (7, s)-tensor bundle over M as the bundle

UM = | | ({p} x TU(T,M))
pEM

of tensors of type (7, s), with the projection on the first component

m:T/IM — M. O
Here pullback and differential®> turn out to be life-saviours: any 5 Now you see why somebody calls it
atlas {(U;, ¢;)} of M can be naturally mapped to an atlas on T, M pushforward..
via {(T{U;, ¢;)} where
gi: To(U;) — Top(Uy)
is defined by linearity on the fibres via Study hint: look carefully at the
domains and codomains of all the
a(p ej R - Re: ® Ekl R ® gks) maps involved and make sure that you
7 r

understand how this is defined.

= (p(p), dgpe, ® -~ Ddpe; ® (97 ) @@ (97 1)"eb).

In analogy to the definition of vector fields, we can introduce
tensor fields: these will just be local assignments of tensors to
points.

Definition 6.2.2. A section y(T; M) of T} M, that is, a smooth map
T: M — T]M such that 7t o T = id, is called a tensor field of type
(r,s). We denote the space of tensor fields of type (r,s) by 7, (M)
and define 7 (M) := C*(M). O

Example 6.2.3. With the definition above we have that X(M) = 7' (M)
and X*(M) = T(M).
Locally, we can express any tensor field in terms of the coor-
dinate bases. On a chart for M with local coordinates (x'), our
analysis of the change of basis tells us that T € 7 (M) has the form
T(p) = Tfl"'j’(P) i R -® i ®dxi1 R -- ~®dxi5
111 ox oxlr !
where lelll]: e C*(M).
Example 6.2.4. A non-degenerate symmetric bilinear form g € 7,)(M)
is a pseudo-Riemannian metric and the pair (M, g) a pseudo-Riemannian

manifold®. If g is also fibre-wise positive definite, then g is a ¢ Also called semi-Riemannian

Riemannian metric and (M, g) is a Riemannian manifold. From manifold.

this you see that the Riemannian metric is just an inner product on
the tangent bundle of the manifold.
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1. The euclidean space R" is a Riemannian manifold with the usual
scalar product, which we can represent as ¢ = Y ; dx’ ® dx’
(What is its matrix form?).

2. If M = R%, an example of pseudo-Riemannian metric is the

. . -1000

Minkowski metric g = g;idx' ® dx/ where [g;j] = < 9 %?8). The
0001

pseudo-Riemannian manifold (M, g) is the space-time manifold

of special relativity, with x! = tis the time and (xz, %3, x4) =
(x,y,z) is the space.

O

Definition 6.2.5. The support of a tensor field T € 7/ (M) is defined
as the set

suppT:={pe M| t(p) #0} c M.

We sat that 7 € 7 (M) is compactly supported if supp 7 is a com-

pact set. %

Again in analogy with what we saw on tangent and cotangent
bundles, we can provide a general definition of pullback and push-
forward on tensor bundles. This will be extremely useful soon,
when we start dealing with differential forms.

Definition 6.2.6. Let F : M — N be a smooth map between smooth
manifolds and let w € T'(N) be a (0, s)-tensor field on N. We define
the pullback of w by F as the (0, s)-tensor field F*w € T2(M) on M
defined for any p € M by

F*: TA(N) = T)(M),
F*w\p = dF;‘(w\F(p)) VP € M,

where

dF; (w|p(p)) (01, - - -, vs) 1= W|p(p) (dEpv1, ..., dFpvs),  Vo1,...,0s € TyM.

O

To be consistent with this definition, if f € C*(M) = 7(M) and
w € TX(N), then we define f ® w := fw and F*f := foF.

Exercise 6.2.7. Show that the tensor pullback satisfies the following
properties. Let F : M — N and G : N — P be smooth maps and
v,we TY(N) and f € C*(N), then the following hold

1L F(f®w) = F(fw) = (fo F)F*w = (F*f)(F*w);
2. F¥(w®v) = Ffw® F*v;
3. F¥(w+v) = F*w+ F*y;
4. (GoF)*w = F*(G*w);

5. (dn)*w = w.



We can use the pullback to construct a diffeomorphism of tensor
bundles of the same type out of a diffeomorphism ¢ : M — N
between manifolds.

Proposition 6.2.8. Let ¢ : M — N be a diffeomorphism between smooth
manifolds. Then ¢ induces a diffeomorphism T, M — T, N.

Proof. STEP 1. We know that the pullback induces on the fibres a
diffeomorphism of cotangent bundles. Let p € M. We have already
seen that on the fibres the pullback is a diffeomorphism:

TN TM, (g,0) = (9*w)y = (97 @) dg"wly 1)
This can be inverted giving rise to the so-called cotangent lift
det = (dg)T := (¢71)* : T*M — T*N.

For any w e T;M and any v € TPM, we have

(dghw | dgpo)gpy = g™ (@lp-10g() (dpp0))
= wp(dg ) o dpyv)
— wy(0) = (w | ).

StEP II. Chaining d and df on the appropriate components of the
tensor, we obtain a diffeomorphism of arbitrary tensor bundles:

d9p®- - ®dpRde'®---®@de' : TIM — TN,
defined on the product elements as
dp®- RdpRde’® - ®de'(p,11® ®V,OW' ®- - QW)
=(p(p),dpm® - ®d¢ v, ®dgoTw1 Q- ®dgoTws),
which extends to the whole fibres by linearity. O

With this diffeomorphism at hand, we can finally define the
pushforward.

Definition 6.2.9. Let F : M — N be a diffeomorphism between
smooth manifolds. We define pushforward of (r, s)-tensor fields by
F as the map Fy : 7] (M) — T/ (N) for which the following diagram
commutes:

M F N
T FytT
T)... T
T;(M) AFQ--QAFQAFT®:---QdF T;(N)

That is, for T € 7T (M) we define

s times
/_/%
FuT=dF® - QIAFQRIFT @ -®@dFf ot o F1.
—_—

r times
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An aid to understand this map is the
following commuting diagram:

% do?
M To(nN

an l"”

MT>N
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Example 6.2.10. Let f € T (M), then Fxf = f o F~L. Similarly, for
X € T4 (M) we have the pushforward F,X = dFo X o F~!, in line
with the definition of pushforward of vector fields that we gave in
the previous chapter. An interesting, not really surprising though
(right?), property is the following: F.df = d(Fsf). O
Exercise 6.2.11 ([homework 3]). Let F: M — Nand G : N — P two
diffeomorphisms of smooth manifolds.

1. Show that the chain rule (G o F)4 = Gy o Fx holds.
2. Show that our previous definition” of pullback is a particu-

lar case of the following general definition of a pullback of
(r,s)-tensor fields by F:

F*i= (F )t TH(N) — T4 (M).

Hint: always work on a product tensor and extend by linearity. w

Note that thanks to this duality between pullback and pushfor-
ward, the dual pairing is always invariant under diffeomorphisms:

(Fsw | Fxv) = (w | v). (6.2)
Can you show why?

Example 6.2.12 (Change of coordinates for tensor fields). Let, as usual,
(U, ¢) be a chart on M with local coordinates (x'). If {¢' : R" — R}
are the standard euclidean coordinates® and {¢;} are the standard
basis vectors in R”, then the coordinate 1-forms and the coordinate
vector fields on U — M are given by

dx' = ¢*de! and 6% = (¢

This immediately exposes the transformation laws for the change of

) %€

coordinates: let (U, ) be another chart on U with local coordinates
(y'), then dy' = p*de’ and aiyl = (¢~ 1)xe;. If we denote ¢ = o g~ !
the transition map in R, we get

= (¢~ o™ Nul(gner)
= (¥7)+((Dg)e))
i 0
— I
which may be easier to think about in terms of the following dia-
gram

a7 € To(U) > (Dg)i =

ei€ T(V) P TLHW) 5 ¢ue;
——

7 That is, Definition 6.2.6 — which
includes the pullback from Defini-
tion 5.3.7.

In general, (6.2) is not true for scalar
products: one has to require that the
diffeomorphism leaves the metric
invariant, i.e. gy (Fyv, Fyw) o F =

gm (v, w) where gy € T9(M) and

gn € TY(N). You encounter this if
you study isometries for pseudo-
Riemannian metrics or canonical
transformations in classical mechanics.

8 Have a look at Notation 1.2.13 if you
don’t remember what I am talking
about. Here we are using the notation
¢l = 1! since now we know that {¢} is
just the dual basis to {e;}.
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where V = ¢(U) and W = y(U). '

From this, we immediately get dy/ = (D¢)/dx’ and, therefore,
dx' = (Dg~")idy!. O
Exercise 6.2.13. Let F : N — M be a smooth map between smooth
manifolds. Show that a function f € C* (M) is constant on F(N) <
M if and only if F*df = 0.

Hint: if you get stuck start by looking at a simple example, like N = M and
F=idy. ¥






7
Differential Forms

In the rest of the course we will focus on a particular class of ten-
sors, which generalizes the differential one-forms that we studied
on the cotangent bundle. It should not be surprising then, that
these will be called differential k-forms and that they will be alter-
nating (0, k)-tensors, that is, skew-symmetric in all arguments.

Geometrically, they are not dissimilar from the forms you may
have seen in multivariable calculus: a k-form takes k vectors as
arguments and computes the k-dimensional volume spanned by
these k-vectors. In this sense, they will be the key elements to define
integration over k-dimensional manifolds, in the same way as one-
forms and line integrals.

In addition to their role in integration, differential forms provide
a framework for generalizing such diverse concepts from multivari-
able calculus as the cross product, curl, divergence, and Jacobian
determinant.

7.1 Differential forms

Definition 7.1.1. Let V be a real n-dimensional vector space. Let
Sk denote the symmetric group on k elements, that is, the group of

permutations of the set {1,...,k}. Recall that for any permutation
o € Sy, the sign of o, denoted sgn(0), is equal to +1 if ¢ is even®
and —1 is ¢ is odd?>.

A tensor w € TI?(V), 0 < k < n,is called alternating (or
antisymmetric or skew-symmetric), if it changes sign whenever

two of its arguments are interchanged, that is, for all vy, ..., v, € V
and for any permutation o € Sy it holds that

W (Vg (1), -1 Vg(k)) = sgn(0)w (01, ..., V).

The subspace of alternating tensors in T{ (V) is denoted3 by

A = AKWV) < T,?(V) and its elements are called exterior forms,
alternating k-forms or just k-forms. For k = 0, we define A? :=
(V) :==R. O

Exercise 7.1.2. Show that the following are equivalent for a tensor
w e TAV).

1. w is alternating;

There is a nice book by Guillemin and
Haines which is all on differential
forms [GH19] and whose draft is
freely available on the authors courses
website.

* It can be written as a composition of
an even number of transpositions

2 It can be written as a composition of
an odd number of transpositions

In particular, exchanging two argu-
ments changes the sign of w.

3Some authors also use A¥(v*) or
Ax(V#) to denote the same space.



108 ANALYSIS ON MANIFOLDS

2. w is 0 whenever two of its arguments are equal, that is, w(vy,...,w,...

3. w(vy,...,v¢) = 0 whenever the vectors (vy, ..., v;,) are linearly
dependent.

*

7.2 The wedge product

If you remember, we said that the determinant was an example of
a TY(R") tensor: an antisymmetric tensor nonetheless. At the same
time, the determinant of a n x n matrix, is the signed volume of
the parallelotope spanned by the n vectors composing the matrix.
We also saw that tensors can be multiplied with the tensor product,
which gives rise to a graded algebra on the free sum of tensor
spaces. This leads naturally to the following definition.

Definition 7.2.1. Let V be a real n-dimensional vector space. Given

k covectors w!, ..., wk € T?(V), their wedge product (or exterior
product) w! A ... A &k is defined by

W'(o) - wlo)

(wlA.../\wk Ul,...,?]k) := det : : Yoy, ...

W) - W (o)
O

Since the determinant changes sign when two of its columns are
interchanged, w' A ... A W is alternating and thus an element of
AX(V). Similarly, since the determinant changes sign when two of
its columns are interchanged, it holds that, for any o € Sy,

k

WAL A" = sgn(e)w! AL A WK (7.1)

w
That is, using Leibniz formula for the determinant*, we get

WAL AR = Z sgn(a)w”(l) ®...Qw k), (7.2)

UESk

According to Proposition 6.1.5 we have the basis representation
w = le,...,jkejl R - Qe

in T,?(V). It would be convenient to have a similar basis representa-
tion on AX(V).

Proposition 7.2.2. Let V be a real n-dimensional vector space, let (¢/)
denote a basis for V*. Then, for each 1 < k < n, the set of k-forms

E:{ele.../\ejk ‘ 1<]1<<]k<n}’

forms a basis for the space AX(V) < T2(V) of alternating k-forms.
Therefore, if 1 <k <mn

!
dim AK(V) = (Z) - ﬁ

while if k > n, dim AX(V) = 0.

You can find an interesting explanation
of the wedge product, based on
Penrose’s book “The road to reality”,
on a thread by @LucaAmb on Twitter.

,UkEV.

4 [Lee13, Equation (B.3)]

In particular, A" = A = R.


https://twitter.com/LucaAmb/status/1289244374996406273?s=20

Proof. The last point of Exercise 7.1.2 implies that there are no non-
zero alternating k-tensors on V if k > dim V/, since in that case every
k-tuple of vectors would be dependent. For k < n we need to show
that E spans AF(V) and its vectors are linearly independent.

First of all, observe that by (7.1) all the wedge products e/t A ... A el ¢ E
are either zero (if two indices are repeated, i.e., a base vector ap-
pears twice) or are a linear multiple of an element of E (the wedge
product with the indices in the same set but in increasing order).

Let now {e;} denote the basis for V dual to {¢'} and w € A*. By
definition of alternating form, we have

1
w(ej, .. .,eik) = Z sgn(o)w (eia(l),...,eiy(k)) (7.3)

’ UESk

Moreover, for any vy, ...,vx € V we have
v} = ei(vj)ei, ji=1,...,k
Therefore,
w(vy,...,0) =w (eil (vg)eiy, .- ,eik(vk)e,-k>
= el (vy) - e (vg) wleqy, ..., €5,)

. . 1
= ¢l (vy) - ..elk(Uk)P 2 sgn(o) w (ei‘r(l),. ..,eia(k)')

: 0'€Sk

(7:3) = % (eil ® el | 01,...,vk) Z sgn(o) w (eia(l)""’eia(k))

O’ESk

DIFFERENTIAL FORMS

Don't forget, 1 <i < n.

lieqy—itl _ %w (ej,---€5,) Z sgn(o) (efrm) Q@1 | vl,,,,,z)k)

U'ESk

1 ‘ ‘
(7~2)=E (ejl,...,ejk) (efl VERRN L vl,...,vk)

n—k+1 n—k+2 n

dedup. _ Z Z Z a)(ejl,...,e]-k) (efl/\.../\efk|vl,..

=1 p=p+1  ji=jk_1+1

That is,

n—k+1 n—k+2 n

w= 33 3wy e A e,

=1 ja=p+1  jr=jk_1+1

where wj,

ji = w(ej,, ... ej), in analogy with Proposition 6.1.5.

O

Remark 7.2.3. There are multiple alternative definitions of the wedge
product, which are equivalent up to a multiplicative factor. Be
careful when you consult the literature to check the conventions
used.

The convention that we are using here is usually called the
determinant convention and is usually the most convenient for

.,Uk>.
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computations. The name stems from the fact that if (¢') denotes the
standard basis for (IR")*, then for some vectors vy,...,v, € R",

det(vy --- vy ) =e' A~ ne(vy,...,00).
—

n X n matrix with
v; as columns

O

As you could see from the previous proof, Einstein notation can
help but only to a certain extent. There is an extra bit of notation,
also common in higher-dimensional analysis, that can be often
convenient when working with many indices.

Notation 7.2.4. Given a positive integer k, an ordered> k-tuple 5Thatis, 1 < i <
I = (i1,...,i) of positive integers is called multi-index of length k.

If I is such a multi-index and ¢ € Sy is a permutation of {1, ...k},
then we denote Iy := (iy(1), .-, iy(x))- Defining el == et A A ek,
we finally get the more compact notation w = wye!. O

In general, the tensor product w @v € T} (V) of alternating
forms w € AFand v € A" is not an alternating form. The follow-
ing proposition gives us a tool to define an exterior product of
alternating forms.

Proposition 7.2.5. Let Alty : T,?(V) — AK(V) be the map defined by

1
(Alte T)(v1, ..., 08) = o Z sgn(0)T(Vg(1)s - - -+ Vo(k))s Youy,...,vp € V.

UESk

Then Alty is a linear projection and the following holds:

W' A AW = KA (0! @ @ Wb).

Proof. Linearity is there by construction, we need to check that

Alty is a projection. This follows from a direct computation of its
idempotence:

1
(Al Alty T) (01, ..., 0f) = T Z sgn(o) sgn(c’)T (valw(l),...,vww(lo

: (T,O"ESk
~ 1
F=vlor = Z sgn(n)T (U”(l),. ..,0,7(1)>
U’,?yESk
1
=47 2 sen(n)T (vmnr-"f”v(l))
" nEeSk

= (Altk T)(Ul, .. .,Z)k),

where we used the fact that 77 runs over all Sy, as ¢ does. Then the
result follows from (7.2). O

As we were saying, now we can take the tensor product of two
forms w ® v and use the antisymmetrisation Altj to to project it
onto the antisymmetric subspace A¥+" of TP (V).

<<



Definition 7.2.6 (Wedge product of alternating forms). We can
extend the wedge product (or exterior product) to alternating forms
by defining, for any k, h € IN,

A AR Al ARHR

k+h)!
(W, V) > wAv:= % Altp p(w®v).

O

Example 7.2.7. The wedge product of two 1-forms w and v is
1
wAav=2Alh(wRV) = 2§(w®v —VRW).

O

Exercise 7.2.8. Compute the wedge product of three 1-forms. *

Proposition 7.2.9. The wedge product has the following properties.

1. (associative) (w' A w?) A W3 = w

i=1,...,3

LA (w? A w®) for ' e AN,

2. (distributive) (w' + w?) A W3 = W' A W? + W? A WP for wl, w? e AF
and w3 e A";

3. (distributive) w' A (W? + w®) = W' A W? + W' A WP for w! € AF and

w?, w3 e AI;
4. w'Aw?= (—1)hkw2 A w! for wl e A¥ and w? e AP
Exercise 7.2.10. Prove the proposition.
Hint: keep in mind the tricks used in the proof of the previous propositions. ¥

Exercise 7.2.11. Let V be a real n-dimensional vector space. Prove
that if an n-form w vanishes on a basis ¢y, ..., e, for V, then w is the
zero n-form on V. *

Remark 7.2.12. As for tensors, if we define the 2"-dimensional vector
space

AV) = D AKY),
k=0

then the wedge product turns it into an associative, anticommuta-
tive® graded algebra, called exterior algebra of V. O

7.3 The interior product

There is an extremely important operation that relates vectors with
alternating tensors.

Definition 7.3.1. Let V be a real n-dimensional vector space. For
each v € V, the interior multiplication by v is a contraction of a
k-form by v, that is, the linear map 1, : AK(V) — AF=1(V) defined”
by

Lw(wy, ..., W) =w(v,wy, ..., We_1)
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¢ A graded algebra is anticommutative
is the product satisfies a relation of the
form uv = (—1)"vu, where u and v

are in the spaces of the gradation with

indicex k and h respectively.

7 Another common notation for the
same operation is v J w.
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In other words, iyw is obtained from w by inserting v into “the
first slot”. By convention 1,w = 0 if w € A°.

Lemma 7.3.2. Let V be a real n-dimensional vector space and v € V. Then
the following hold.

1. 1poly = 0and, thus, iyo 1y, = —i, 0Ly,

2. ifwe Afand ve A,
w(w An) = (lbw) Ay + (—1)kw A (to7).

Exercise 7.3.3 ([homework 4]). Prove the Lemma. >

7.4 Differential forms on manifolds

It is time to turn our attention back to smooth manifolds. Let M be
a n-dimensional smooth manifold, recall that we had defined the
tensor fields 7, (M) as the sections of (7, s)-tensor bundles T} (M)
over M. The subset of TI?(M) consisting of alternating k-tensors is
denoted by AF(M) := Llpemip} x Ak(TpM).

Definition 7.4.1. The sections of AK(M) are called differential
k-forms, or just k-forms: these are smooth tensor fields whose
values at each point are alternating tensors. The integer k is called
the degree of the k-form.

We denote the vector space of smooth k-forms by

O (M) = T(A*(M)).
The wedge product A : QF(M) x Q(M) — QFF(M) of differential
forms is defined pointwise as (w A V), = wp A Vp. O

Example 7.4.2. 1. A 0-form is just a function f € C*(M) and 1-forms
are just the covector fields w € TP(M) = X*(M) on M.

2. Let M = R3, then both cos(xy)dy A dz and dx A dy — ydx A dz +
e*/(x? +y? + 1)dz A dy are examples of smooth 2-forms.

3. Every 3-form in IR? is a continuous real-valued function times
dx ndy A dz.

Remark 7.4.3. If we define
n
Q*(M) = P O m),
k=0

then the wedge product turns 0*(M) into an associative, anticom-
mutative graded algebra. O

The following theorem gives a computational rule for pullbacks
of differential forms similar to the ones we developed for covec-
tor fields and arbitrary tensor fields earlier. In fact, it is a direct
consequence of our previous observations.
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Theorem 7.4.4. Let F : M — N be a smooth map between smooth
manifolds. Let w € QX(N) and v e Q"(N). Then,

F*(w Av) = F*w A F*v,
and, if (x') denote some local coordinates on U = N, locally
F* (wydxl) = (wy,,__j, o F)(x 0F) A -+ A d(xl o F).

Exercise 7.4.5. Prove the theorem. A

Example 7.4.6. Let F : R?> — R3 be defined by F(u,v) = (u?,0,u — v?)
and let w = ydz A dx + zdx A dy on R®. We can apply the previous
theorem to compute F*w:

F*w = vd(u — v*) A d(u?) + (1 — 0*)d(u?) A do
= o(du — 2vdv) A 2udu) + (1 — v?)(2udu) A dov
= —4uv’do A du + 2u(u — v*)du A do
= 2u(u + 3v*)du A do,

where we used that du A du = 0 and du A dv = —dv A du. O

Of course, the same technique can also be used to compute the
expression for a differential form in another smooth chart.

Example 7.4.7. Let w = dx A dy on R?. Consider the polar coordinates
(x,y) = (pcos(8), psin(0)), then
dx ndy =d(pcos8) A d(psin®)
= (cosBdp — psin6d6) A (sinOdp + p cos 0d0)
= pdp A d6.
I am very confident that it is not the first time that you see the
equation above. .. O

Exercise 7.4.8. Let (x') and (y) are two different local coordinates on
some open V < M. Show that the following identity holds:

oyl
1 Y 1
dy* Andy" = det(axi)dx A dx".

*

The previous exercise is a particular case of the following state-
ment.

Proposition 7.4.9. Let F : M — N be a smooth map between n-manifolds.
Let (x') and (y') denote, respectively, smooth coordinates on open subsets
U< MandV < N. Let u be a continuous real-valued function on V.
Then, on U n F~Y(V), the following holds:

F*(udy' A --- Ady") = (uo F)(det DF)dx! A --- A dx",
where DF represents the Jacobian matrix of F in these coordinates.

Exercise 7.4.10. [homework 4] Prove the Proposition 7.4.9.
Hint: look at Theorem 7.4.4. *
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Exercise 7.4.11. Let f : R? — R3 be defined by

fley) = (%, xy).
Compute the pullback f*w where w is the form:
1. w = ydy + zdz;
2. w=xdy Adx;
3. w=dx Ady A dz.
*

Of course, also the interior product extends naturally to vector
fields and differential forms, simply by letting it act pointwise: if
X € X(M) and w € OF(M), then the k — 1-form ixw = X Jw is
defined by (X Jw)p = X Jwy.

Exercise 7.4.12. Let X € X(M). Prove the following statements.
1. If w is a smooth differential form, then (xw is smooth.

2. The map tx : QF(M) — QF~1(M) is linear over C*(M).

7.5  Exterior derivative

We already saw in the previous chapters that the differential of a
function f € Q°(M) can be thought as a 1-form df € Q!(M). We
are finally ready to generalise the concept to a map d : QX(M) —
O 1(M). You have already seen most of this in the context of
multivariable analysis, however it is good to repeat it to set the
notational conventions.

Definition 7.5.1. Let w € QF(U) for some open subset U — R" and
let (¢') denote the standard basis for (R")*. If

w = wide!, wreCP(U),

then its exterior deriative dw € QF+1(U) is defined by

dw = dwy A de! = 2 dwj,,. i ~de't A - A de'k,
lSl‘1<"'<ik<}’l

where dwy is the differential of the function wj. O

Example 7.5.2. For a smooth 0-form® f, we have that df = %dxi. If
w is a 1-form, this instead becomes

dewidnl) = “ani p dy
(w]x)_(?xi xt A dx

ow; ‘ owj .
_ E J E ]
S del AN dx] + ﬁdxl N dx]

i<j i>]
wj  dw; ; ;
= Z —L — ) dx' AdX,
~\ oxt  Ox
i<j

consistently with our previous definitions. O

The same exact definition holds with
IR" replaced by H".

8 A real valued function



Definition 7.5.3. Let now M be a smooth n-manifold and w €
OF(M). Let (U, @) denote a chart on U = M with local coordinates
(x'). Then, the exterior derivative is defined locally as dw|y; :=
¢*d(psw), that is, for

wly = widx!,  w;e CP(M),

we define
dwly = dwy A dx!. (7.4)
O

This local definition immediately extends to global one via the
following theorem.

Theorem 7.5.4. Let M be a smooth n-manifold, (U, ¢) a chart on U ¢ M
and F : M — N a diffeomorphism between smooth manifolds. Then, for
w € OX(N), we have F*(dw|pqy) = dF*wlu.

Proof. Let (x') denote the local coordinates of ¢ and let (a, Q) =
(F(U), ¢ o F1) be the corresponding chart on F(U) = N with local
coordinates (y') on N. Locally, w = wydy!, thus we get

dFwly=d| Y (o F)F*dy") - n F*(dyfw)

=d| > (wfoF)d(y“oF)A-"Ad(J/"koF))

=d > (wroF)dx't a--e A dxik)
I=(i1,-/ix)
Z d(wpoF) ndxt A« A dxlk
I=(i1,....ix)

F*d(w) Ad(yt o F) A --- A d(y™ o F)

I
]

I=(irnit)

Z F*d(wy) A F*(dy™) A - A F*(dy*)
I=(i1,0iy)
= F*(dw|F(u))/

where we repeatedly applied Proposition 7.4.4 and Exercise 5.3.8 to
swap pushforwards and differentials. O

Corollary 7.5.5. Let M be a smooth n-manifold and (U;, ¢;), i = 1,2, two
charts on M. Then, for w € QX (M), the following holds

P71 (d(§01*w)¢1(umu2)) =93 (d(sz*w)fpz(umuz))-

Therefore, the exterior derivative dw € QX (M) is uniquely defined by the
local definition (7.4).

Proof. Follows from Theorem 7.5.4 applied with F = @1 0 ¢, 1.
@2(U) — ¢1(U), where U = U n Uj. Indeed, since by the chain rule

DIFFERENTIAL FORMS
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= (93 1)* 9% = ¢2x (97 ')+, we have
ot (d(912@)gyuy) = 73 (97 0% (A(P1e)g 1)
= ¢y F* (d(qol*w)(pl(u))
=93 (d(F*¢1*W)¢2(U)>
=9 (d((l)Z*w)q)z(U)) :

O
Exercise 7.5.6. Let F : M — N be a smooth map between smooth
manifolds and w € QOF(N), then
F*(dw) = d(F*w).
*

Lemma 7.5.7. The exterior derivative satisfies the following properties. For
all w, wy,wy € OF(M), ve V(M) and f e C*(M),

(i) d(w1+ wy) = dwq + dwy;

(ii) d(fw) =df A w+ fdw;
(iii) d(w Av) =dw Av+ (=1)kw A dv;
(iv) d(dw) = 0.

Proof. The first two properties immediately follow from the def-
inition. Property (iii) follows observing that to compare the two
sides of the equation, one needs to keep commuting the exterior
derivatives of coefficients of v through the k-form w.

The final property follows from the commutativity of the partial
derivatives. Indeed, locally on a chart on U — M with coordinates
(x'), one has

(960[
ox

d(dw|y) = dxk A dxl A dx!

koxi
j
(oxkéxf (%d(?xk) dxk A dxd A dx!

Exercise 7.5.8. Compute the exterior derivatives of the following
differential forms on R3:

1. xdy A dz;

2. xdy —ydx;

3. e fdf where f = 22 + > + 2%
4. xdx +ydy + zdz;

5. xdy A dz —ydx A dz+zdx A dy.



*

Exercise 7.5.9. Solve the equation dv = w for v € Q' (IR®) where w is

the 2-form:

1. dy Adz;

2. ydy Andz;

3. X2 +y?dx Ady;

4. cos(x) dx A dz.

*

Let N ¢ M a submanifold and i : N — M the corresponding
injection. For w € QF(M), we call i*w € QF(N) the restriction of
w to N. Exercise 7.5.6, then, implies that restriction and exterior

derivative commute, that is, i*dw = d(i*w).

Example 7.5.10 (Exterior derivatives and vector calculus in IR®). Let

M = R3. Any smooth 1-form w € Q' (IR?) can be written as

w = Pdx + Qdy + Rdz

for some smooth functions P, Q, R € C*(R?). Using the properties

of wedge product, we can compute its exterior derivative and get

the two form
oP oP oP
dw = (6xdx + @dy + (?zdz) A dx
Q 2Q Q

OR OR OR
+ (axdx + aiydy + (7de> Adz

ox 0z

—(6Q—0P>dxAdy+(aR—ap>dxAdz+<aR—aQ

ox oy oy

Similarly, an arbitrary 2-form 7 € Q?(R?) can be written as

7 =udx A dy +vdx A dz +wdy A dz,

and one can check (do it!)

=(w—€v+(iw>dxAdyAdz.
oz 0y Ox

0z

)dyAdz.

If you compare the results we obtained above with the gradient

(V), divergence (V-) and curl (V x) from multivariable analysis,

you would likely notice that the components of the 2-form d w

are exactly the componentes of the curl of the vector field with

components (P, Q, R). Similarly, the formula for the divergence will

look very close to the formula for d7. What is going on?

The standard euclidean metric on R” is the metric associated to

the metric tensor? g;; = J;;. We can use the musical isomorphisms*®

DIFFERENTIAL FORMS

9 Cf. Definition 6.1.8.
° Cf. Example 6.1.9.
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to identify vector fields and 1-forms, obtaining for the components
with respect to cartesian coordinates that v; = v'.

Moreover, the interior multiplication yields another map f8 :
X(R3) — O?(R3) defined by B(X) = tx(dx A dy A dz), which is linear
over C*(IR?) (why?) and, thus, corresponds to a smooth bundle
homomorphism from TR? to A%(R3) (why?).

In a similar fashion, we can also define a smooth bundle isomor-
phism % : C*(R3) — Q*(R3?) via

*(f) = fdx ndy A dz.

We can use the exterior derivatives to observe that the following
diagram commutes

C*(R%) —Y— X(R%) — X(R3) —V— C*®(R%)

bd lb l/s J* . (75

QOR3) — OY(R3) —45 O2(R%) —4 O3(R3)

The interest and need to generalize the operations of vector
calculus in IR? to higher dimensional spaces have been one of the
drives to develop the theory of differential forms. In particular, the
curl is well-defined as an operator on vector fields only in dimen-
sion 3, while with the exterior derivative we can now generalize its
meaning in all dimensions. O

Exercise 7.5.11. Show that the diagram (7.5) commutes; for example,

af = L= (part = (vpy.
Use the diagram to give a quick proof that (Vx) oV = 0 and that
(V:) o (Vx) = 0 (physically this last identity implies that magnetic
fields are divergence free). *
Exercise 7.5.12. Let V a vector space of dimension k. A symplectic
form on V is an element w € A?(V) which is non-degenerate in
the sense that 1,(w) = 0 if and only if v = 0. Cf. Definition 6.1.8.
A symplectic manifold is a smooth manifold M equipped with a

closed differential 2-form w such tht w; is a symplectic form on
T;M for every p € M.

1. Prove that if a symplectic form exists, then k = 2n for some
n € N, i.e., it must be an even number.

2. Let M be a smooth manifold. Define a 1-form 1 € Q'(T*M) on
the cotangent bundle of M as

Map) (©) = pldm( @), qeM, peTiM, &€ T, (T*M),

where 7 : T*M — M is the projection to the base. Show that
w := dA is a symplectic form on T*M, that is, every cotangent
bundle is a symplectic manifold.

For example, w = Y7 ; &’ A a/T" € Q?(R?") is a symplectic form
and plays a central role in classical mechanics. There, one usually
calls (a"*1,...,a%") the position coordinates and (a!,...,a") the

momentum coordinates.
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3. Show that for n =2, w A w = —2a! A a? A a3 A ot

4. Generalize the previous computation to show that

2n n n
-1 ) -1 )
/\ak:=a1A~~~AaZ”=( ) w/\~~/\w=:( ) AT w.
n! S~ n!
k=1 n times

7.6 Lie derivative

Definition 7.6.1. The Lie derivative of a differentiable function
f + M — R on a smooth manifold M in the direction of a vector
field X : M — TM is the real function defined by

Lxf = df(X).
O

From the look of it, this seems just an alternative way to define
the directional derivative. However, its power lies in the fact that
we can extend it to k-forms with important consequences, one of
which will be very useful in the next section.

Definition 7.6.2 (Cartan’s Magic Formula). Let M be a smooth
n-manifold and X € X(M). For w € QF(M), we define the Lie
derivative of w with respect to X as the k-form

Lxw = 1x(dw) + d(ixw). (7.6)
O

Since the exterior derivative raises the degree of the form and the
interior product decreases it, the net effect of the formula above, is
indeed, the production of a k-form, so Lxw € QF(M).

Exercise 7.6.3. Show that on functions the definition from (7.6)
coincide with the one that we gave at the beginning of this section.
>

Exercise 7.6.4. Show that the Lie derivative is a derivation in the
algebra Q* (M) of differential forms, that is, for w,v € O*(M) one
has

Lx(wav)=(Lxw)Av+w A (LxV).

*

It is possible to define the Lie derivative in a different way, in
terms of the derivative of the pushforward of w along the flow of X.
Then the definition that we gave above becomes a theorem, which is
where the denotation Cartan’s Magic Formula comes from.

Of course, we can recover the alternative definition as a theorem.
Even though it is a bit impractical for computational purposes,
flows are hard to compute, it gives a nice geometric interpretation
of the Lie derivative: it describes the change of the differential form
w in the direction of the flow generated by the vector field X.
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Theorem 7.6.5. Let M be a smooth complete n-manifold, X € X(M) and
@ its flow. Then, for all w € OY* (M), one has

*

d
g (#rw) = ¢F Lxw.

Proof. STEP I. Thanks to the group properties of the flow, it is
enough to prove it for t = 0. Indeed,

d o+
= leresw)|
d
* %o %
= @ ds (qos )S:O‘

Step I1. We start with f € Q°(M) = C®(M). In local coordinates
(x'), we have

% t:O(P;kf(x) = lim w

t—0
_ | i
- (7’xi xX (x)

= df(X)(x) = Lxf(x).

Step IIL Let w = dx' € Q(M), then

d * 7.1 _ d * .1

dt((l)t dx ) =0 - dt(d(l)tx ) =0
_ d * .1
_ddt((l)tx)tzo
=dXx'".

On the other hand,

Lyx(dx') = ix(ddx') + d(1xdx")
— d(1xdx’)
= dx'.

STEP IV. The statement follows from Theorem 7.4.4 and Ex-
ercise 7.6.4 since every k-form can be locally written as w =
wrdx!. O

Remark 7.6.6. The Lie derivative can be extended on any tensor
bundle T} (M) with the following definition. This T € 7,°(M), for
any pe M

(exTyi= ], (99rT) .

where as usual ¢ denotes the maximal integral curve'* for X with
initial point p.
In general, for T € 7°(M) and 0 € 7;5/, the Lie derivative satisfies

Lx(t®0)=(LxT)®0+7T® Lx(0),

"* Remember, this is a diffeomorphims
from a neighbourhood of p onto a
neighbourhood of ¢ (p).
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and commutes with contractions.
Incidentally, it also satisfies

LxY =[XY],

and so it can be considered as a generalization of the Lie brackets.
One nice little perk of the general definition, is that it makes it
relatively straightforward to show that

Lx(w(Y)) = (Lxw)(Y) +w([X,Y]),

which is often very useful in computations.

One can think to the Lie derivative as a mean to “differentiate”
a tensor field (or a differential form) with respect to a vector field.
Note that it does not allow us differentiate a tensor field (or a
differential form) with respect to a single tangent vector: the value
of Lx(7) at a point depends on the values of X in a neighbourhood
of the point, not just on the germ at X. O

7.7 De Rham cohomology and Poincaré lemma

Definition 7.7.1. We say that a smooth differential form w € QF(M)
is closed if dw = 0, and exact if there exists a smooth (k —1)-form v
on M such that w = dy.

The fact that d o d = 0 implies that every exact form is closed. ¢

The following example shows that not all closed forms are exact.
However, it turns out that closed forms are always locally exact but
not necessarily globally, so the question of whether a given closed
form is exact depends on global properties of the manifold. This
is the statement of the so-called Poincaré lemma. We are going to
prove it in two slightly different flavours: its classical version and a
slight generalization.

Exercise 7.7.2 ([homework 4]). Let M = R?\{0} and w the one-form on
M from Example 5.4.2 given by
xdy — ydx

x2+y?

1. Show that w is closed.

2. Show that w is not exact.
Hint: compare Exercise 5.4.3.3 and Example 5.4.2.

Definition 7.7.3. We define kth de Rham cohomology group the

quotient vector space defined by

_ {closed k-forms on M}
~ {exact k-forms on M} °

HgR(M) :

We will denote the elements of HX, (M) by [w], where w is a closed
k-form. Thus, by definition, [w + df] = [w]. O

121



122 ANALYSIS ON MANIFOLDS

We will use only elementary facts about de Rham theory in
the course, but they play an important role in algebraic topology
and mechanics. The de Rham groups, for example, turn out to be
topological invariants.

The following is a direct consequence of Exercise 7.5.6.

Corollary 7.7.4. If F : M — N is a smooth map, then F* induces a well-
defined map F* : HQR(N ) — HQR(M) (denoted with the same symbol) via
[w] = [F*w].

Without further ado, let’s look at a first version of Poincaré
lemma on manifolds. As for all the local concepts we have seen
so far, the proof will reduce the problem to a euclidean statement
to which we will apply the Poincaré lemma that you have seen in
multivariable calculus.

Theorem 7.7.5. Let M be a smooth manifold and w € QF(M) closed,
that is, dw = 0. Let U < M be open and diffeomorphic to a star-shaped
domain™ of R™. Then, there exists v e QX1 (U) such that w|y = dv.

Proof. Let ¢ : U — V < R" be a diffeomorphism between U and
the star-shaped domain V < R". Then @& := ¢w is a closed k-form
on V and, according to the Poincaré lemma on R”, there exists

v e OF1(V) such that & = dv. O

To generalise this result further, we need to have a deeper look
into de Rham theory.

Definition 7.7.6. Two continuous maps hg, i1 : X — Y between topo-
logical spaces are said to be homotopic if there exists a continuous
map K : [0,1] x X — Y such that K(0,-) = hp and K(1,-) = h;.

Two topological spaces X and Y are homotopy equivalent if there

exists continuous maps f : X — Y and ¢: Y — X such that f o g and
g o f are homotopic to the respective identity maps. O

A crucial observation for our means is the homotopy invariance
of the de Rham cohomology, which is a scary sounding property
which is formalised by the following statement.

Theorem 7.7.7. Let M be a smooth manifold and [0,1] x M the product
manifold with boundary ({0} x M) u ({1} x M) u ((0,1) x OM). Let iy :
M — [0,1] x M be the injection i;(p) := (t,p) and 7w : [0,1] x M - M
the projection onto M. Then, there is a map

K:Q[0,1] x M) — QM)
such that for every differential (-form w € QF([0,1] x M) one has
K(dw) +d(K(w)) = ji (@) = jo (@)

as elements of O (M). Furthermore, the induced maps on the de Rham
cohomology
Jo, 7t + Har(10,1] x M) — Hg (M)

coincide.

2 Cf. Lemma 2.3.14.



Proof. Let T be the vector field on [0,1] x M whose value at (¢, p) is

given by
0
T(t,p) = (61‘ — 0) '

Then, for w € Qf([0,1] x M), the map K is defined by

1
K(w) = L (e ().

That is, for any p € M,

1
K@)y = [ 7 rtw) )i

where the integrand should be thought as a function of f on the

vector space A'"1(M). That is, this is still a common integral, not
an integral on a manifold! By choosing local coordinates on M, we

see that the integral is defining a smooth (¢ — 1)-form on M. To
compute d(K(w)) pick some local coordinates (x'), then we can
express K(w) as a sum of terms of the form

(Jl ft, x)dt> dxl.
0

Applying the exterior derivative and differentiating under the
integral sign'3 we get

s (Jl f(t, x)dt) dxl A dx! = ( 1 a—f.(t, x)dt) dxl A dx!.
0

8xf 0 ox/
That is,
1
d(K(w)) = fo 4 (17(w)))dt.

Then, it follows from Cartan’s Magic Formula and Exercise 7.5.6
that
1

K(dw) +d(K(w)) = fo (i (ir(dw)) + d(ji (irw))) dt

1
= Jo (f (ter(dw)) + ji (d(iw))) dt

1
- jo J#(Lr(w))dt.

Let ¢; now denote the flow of T, then ¢(s, p) = (t + s, p) and thus

jt = @t 0 jo. By Theorem 7.6.5 we can compute the integrand as

ji (L1(w)) = jo (9f (L1(w)))

~ji (ot @)
)

d o,
= E]t (w).
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3 Also known as Leibniz integral rule
and Feynman’s trick.
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Thus, by the classical Fundamental Theorem of Calculus we get

1 g
K(dw) + d(K(w)) = L Eii“(w)dt = ji(w) = j5(w),

proving the first part of the theorem.
To conclude the proof, take a closed ¢-form on [0,1] x M, then

Ji ([w]) = jg ([w]) = [K(dw) + d(K(w))] = 0,
completing the proof. O

An important consequence of this result is the following theo-
rem.

Theorem 7.7.8. Let M and N two smooth manifolds and suppose F, G :
M — N are two homotopic smooth maps. Then, the induced maps F* and
G* on the de Rham cohomology groups are the same.

Proof. Since F and G are homotopic, there is a continuous map
K:[0,1] x M — N such that K(0,-) = F and K(1,-) = G. If we could
assume K to be smooth, the theorem would follow from

F* = (Hojo)* = j§ o H* = jfo H* = (Hoj)* = G

In fact this is the case, thanks to the Whitney Approximation
Theorem for homotopies™* which says that if two smooth maps are
homotopic then they are also smoothly homotopic, in the sense that
the map K is smooth. O

Corollary 7.7.9. Let M and N be smooth manifolds that are homotopy
equivalent. Then M and N have isomorphic de Rham cohomology groups.

Proof. Let F: M — N and G : N — M be continuous maps such
that F o G and G o F are homotopic to the identity maps. By the
Whitney Approximation Theorem (see the proof above) we can
approximate F and G by smooth maps that we keep denoting with
the same symbols. By the previous theorem, then, (F o G)* and

(G o F)* coincide with the maps induced by the identity. Since id*
is clearly the identity, we see that F* is an inverse to G*, which
concludes the proof. O

We are almost there.

Definition 7.7.10. A topological space is said to be contractible if it
is homotopy equivalent to a point, that is, there exists pp € M and a
continuous'> map

K:[0,1]x M —> M with K(0,-) =idy and K(1,-) = py.
O

Corollary 7.7.11. Let M be contractible, then HﬁR(M) =0forallk > 1.

Proof. The statement is clear is M is equal to a point. The rest
follows applying Corollary 7.7.9. O

*This is a deep result related to the
Whitney Embedding Theorem from
Remark 2.8.17 and is out of the scope
of our course, for more details refer
to [Lee13, Chapter 6 and Theorems
6.26 and 9.27].

5 In fact, we now know that we can
assume it is smooth.

The map K continuously “contracts”
M into a single point pg € M.



Remark 7.7.12. De Rham cohomology is defined in terms of spaces
of differential forms and, as such, seems a priory deeply tied to the
differential structure. However, the corollary that we just proved

is all about topology and in particular tells us that de Rham coho-
mology cannot see the smooth structure on a topological manifold.
Indeed, the cohomology cannot distinguish Euclidean spaces since
Hyr(R") is independent of n. O

Finally, we are ready to show a more general version of the
Poincaré lemma as promised.

Corollary 7.7.13 (Poincaré lemma). Let M be a smooth manifold and let
w € OF(M) be a closed differential form of positive degree k > 0. For any
point p € M there exists a neighbourhood U of p such that w|y is an exact
form in OF(U).

Proof. Every point in a n-manifold has a neighbourhood which is
homeomorphic to R" and so is contractible. O

DIFFERENTIAL FORMS
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8
Integration of forms

We finally have all the main ingredients to generalize our line inte-
gral detour and discuss integration of n-forms over n-dimensional
manifolds.

8.1 Orientation

WE KNOW FROM CALCULUS ONE, or our line integral examples,
that the direction in which we traverse the interval, or a curve, can
actually make a difference. Indeed, the sign of the integral of a
differential n-form is only fixed after choosing an orientation of the
manifold.

If for a curve an orientation is simply a choice of a direction
along it, so we can make sense of it in terms of clockwise or
counter-clockwise, generalising the concept will require an extra ab-
straction step. Not just that, you have seen already that in R” there
is a standard orientation, but in other vector spaces we may need to
make arbitrary choices. For manifolds, the situation is much more
complicated: for example, on a Mobius strip® it is impossible to
make any such choice, as it turns out, it is non-orientable.

Let’s get there step by step.

Definition 8.1.1. Let V be a one-dimensional vector space. Then
V\{0} has two components. An orientation of V is a choice of one
of these components, which one then labels as “positive” and
“negative”. A positive basis of V then is a choice of any non-zero
vector belonging to the positive component, while a negative basis
of V is a choice of any non-zero vector belonging to the negative
component. O

Example 8.1.2. The standard orientation of R is give by declaring
that the positive numbers are the positive components of R\{0}. A
common choice as positive basis for R is {e; = 1} while a negative
basis could be {—e¢1}. O

Let V be a n-dimensional vector space. How can we generalize in
a meaningful way the definition above?

By Proposition (7.2.2), the space A" (V) is a one-dimensional
vector space. Moreover, if {eq,...,e,} is a basis for V, then LA A

*Cf. Example 1.5.2.
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e" is a basis for A"(V).

Looks like we are getting somewhere.

Definition 8.1.3. Let V be a n-dimensional vector space. An
orientation on V is a choice of orientation on A" (V). Therefore
there are exactly two orientations: we say that a basis {ey,...,e,} of
V is positive (or positively oriented) if e! A --- A € is a positive basis
of A"(V) and negative (or negatively oriented) otherwise. O

Example 8.1.4. If ¢; is the standard ith basis vector in IR”, the standard
orientation of R" is given by declaring that e! A --- A " is a positive
basis of A"(IR") and thus that {ey,...,e,} is a positive basis of

R". O

An automorphism T : V — V is called orientation-preserving if

it maps positively oriented bases to positively oriented bases (and
orientation-reversing otherwise). Due to the way different bases are

transformed by n-forms, this is equivalent to say that detT > 0:
indeed, let {vy,...,v,} be a positively oriented basis and w; = Tv;,
then

oV A A (W, .. wy) =0 A A DTy, .., Toy)

det(T) o' A - A 0™ (01, ..., 0p)

= det(T).

In fact, the orientation is completely characterized by the action
of n-forms on the bases, as the following lemma shows.

Lemma 8.1.5. Let V be a n-dimensional vector space and let w €
A" (V) be nowhere vanishing. Then, all bases {v1,...,v,} for which
w(v1,...vy) > 0 give the same> orientation for V.

Proof. Let {vq,...,v,} and {wy, ..., w,} denote two different bases
for V, then there exists a linear isomorphism ¢ such that v = ¢ w,
that is v; = (p{w] By definition and by multilinearity we then have

0 <w(vy,...vn) =w(Quwy,...ewy) = det(@)w(wy,...wy),

that is the positivity of w on the bases characterize the set of bases.
O

Exercise 8.1.6. Let V be a n-dimensional vector space, prove that two
nonzero n-forms on V determine the same orientation if and only if
each is a positive multiple of the other. *

Remark 8.1.7. Of course, if V is a vector space, then an orientation
on V canonically determines an orientation on the dual space V* by
declaring that the basis dual to a positive basis is itself positive. ¢

We are almost there. The tangent space is a vector space and
n-forms act naturally on tangent vectors, this seems likely to be
the right place to define an orientation for a manifold, at least
pointwise. As usual, one does need to make sure that all the local
orientations just defined on the tangent bundle are gluing together
coherently.

It should be clear from this that the
orientation is, in fact, an equivalence
class of ordered bases, and also that
the order in which the elements of the
basis appear matters.

2 Not necessarily the positive orienta-
tion!
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Remark 8.1.8. By Lemma 8.1.5 each chart (U, ¢) in the atlas deter-
mines an orientation at each point of its domain, which will be
positive if det(dg) > 0 and negative otherwise. This procedure can
be repeated for each chart in an atlas for M. Thus, in order to get a
globally consistent ordering, we need to worry about the overlaps
between charts. %

Definition 8.1.9. We call an atlas A = {(U;, ¢;)} oriented if all the
charts have the same orientation, that is, if det(Dg;;) > 0 for all the
transition functions ¢;; := ¢; o (p].’l.

A manifold M with an oriented atlas is called oriented manifold.

If an orientation exists, we say tht M is orientable, in this case we
call the equivalence class of atlases with the same orientation an
orientation. Otherwise we say that the manifold is nonorientable.

O

An immediate consequence of Lemma 8.1.5 is that if a manifold
is orientable, there are exactly two different orientations.

Definition 8.1.10. Given an orientation on a manifold, we say that
any chart from the same equivalence class of atlases is positively
oriented, while we call all other charts negatively oriented. O

If M is connected, as for vector spaces, an orientation on A" (M)

determines the orientation of the manifold. If it is not connected, then we need to
deal with each connected component
Theorem 8.1.11. Let M be a n-dimensional smooth manifold. A nowhere- separately.

vanishing n-form w € OV"(M) uniquely determines an orientation. For
this reason, nowhere vanishing n-forms on a smooth n-manifold are called

volume forms.

Proof. Let ¢ and ¢ be two different charts with overlapping do-
mains (otherwise there is nothing to check) and with local co-
ordinates (x') and (i) respectively. Define the transition map
o:=1poe !, sothat (y',...,y") = ¢(x). Locally,

w = w(x)dx! A Adx"
= (@W)dy' A - A dy")

— (@o0)(x)det(Daly)dxt A --- A dx",

where we used Proposition 7.4.9 and Theorem 7.4.4. Thus, w(x) and
@(y) have the same sign if and only if det(Dc|y) > 0. O

Definition 8.1.12. Let M be a n-dimensional smooth manifold.

If (U, ¢) is a chart with local coordinates (x') such that, in the
coordinate representation, the volume form w = w(x)dx! A --- A dx"
with w(x) > 0, then we say that the chart ¢ is positively oriented

with respect to w, otherwise we say that it is negatively oriented.

O

Remark 8.1.13. In fact, this definition can be immediately extended
to vector bundles. Given a real vector bundle r : E — M, an
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orientation of E means that for each fiber E,, there is an orientation
of the vector space Ej, such that each trivialization map

oy L (U) > U x R,

with R" equipped with its standard orientation, is fiberwise
orientation-preserving.

With this definition, the orientability of M coincides with the
orientability of the bundle3 TM — M. O

Example 8.1.14. The euclidean space IR" is orientable with orientation
given by the continuous global frame %, s, a% O
Example 8.1.15. Let M = S! = R?. This is an orientable manifold
and we can find an orientation using the stereographic projections
from Exercise 1.2.33. Let U; = S'\{N} and U, = S!\{S}, with the
associated diffeomorphisms

2p!

14 p?

P1(p) :1_7;72 and  ¢2(p)

Let’s pick a pointwise orientation by choosing as basis X, € T,M
given by4 X, = —pza—f}l + pla%z. Then, on Uj,

(91)x(X) = (dg1)p(X)

(2 o) () 2
2 0
T-p2ox

91(p)’
and ﬁ > 0. If we perform the same computation on Uy, however,
2 0

S 14p2 0x

we obtain (¢7)«(X) =

) with the negative coefficient

P2{p

—ﬁ < 0 (check!), corresponding to the opposite orientation

on U,. Of course, in this case, not all is lost: by choosing ¢>(p) =
_pl 2 (5 _ 2 2 : o

@2(—p*, p*) we obtain (¢7)«(X) T 2% ) with the positive

coefficient # > 0 (check!), which shows that X, defines an

orientation on the whole 8. O

Exercise 8.1.16. Check that the Jacobian determinant det(D(¢; o
o 1)) of the transition chart from Exercise 8.1.15 is negative, while
det(D(¢; o q)fl)) is positive. *

Exercise 8.1.17. Consider the open Mobius strip M, a variation

of Example 1.5.2 defined as the quotient of R x (—1,1) via the
identification (x,y) ~ (x +1,—y), and denote 7 : R x (—1,1) - M
the corresponding projection map. The Mobius strip inherits the
differentiable structure from R?, so we need to show that there is
no orientable atlas which is also compatible with the differentiable
structure on M.

1. Define themap ¢ : R x (-1,1) - R x (=1,1) by o(x,y) =
(x +1,—y) and show that moo = 0.

2. If v e Q%(M) define f by *v = fw where w is an area5 form on
R x (—1,1). Show that f(x +1,y) = —f(x,y).

Otherwise said, we can cover the
manifold by (continuous) local frames
whose local trivializations are orienta-
tion preserving.

3 Note that TM as a manifold on its
own right is always orientable, even if
M is not. Cf. Exercise 8.1.19

4 We are not making up anything, if
you look carefully this is just X, = Jp.

51.e. a volume 2-form.
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3. Conclude that f must vanish at some point of R x (—1,1), which
implies that M is nonorientable.

*
Exercise 8.1.18. Let f € C*°(R"*!) with 0 as a regular value. Show
that f~1(0) is an orientable submanifold of R"*1. *

Exercise 8.1.19 ([homework 4]). Let M be a smooth manifold without
boundary and 7t : TM — M its tangent bundle. Show that if {U, ¢}

is any atlas on M, then the corresponding® atlas on TU is oriented. ¢ Remember Theorem 2.6.3.

This, in particular, proves that the total space TM of the tangent
bundle is always orientable, regardless of the orientability of M.

WHAT ABOUT ORIENTATION ON THE BOUNDARIES? Let’s first look
at the tangent space.

Let M be a smooth n-manifold with boundary and p € 0M. Then,
we have three types of possible vectors:

1. tangent boundary vectors: X € T,(0M) < T,M tangent to the
boundary, forming an (n — 1)-dimensional subspace of T, M;

2. inward pointing vectors: X € T, M such that X = @3 1(Y) where
q)_l : Vo H" - Mand Y is some vector Y = (Yy,...,Y,) with
Y, > 0;

3. outward pointing vectors: X € T, M such that —X is inward
pointing.

Thus, a vector field along 0M is a function X : 0M — T, M (not to
T,0M).

Proposition 8.1.20. On a smooth manifold M with boundary, there is a
smooth outward pointing vector field along OM.

Proof. Pick an open cover of M with coordinate charts {(Uy, (xL,...,x") |
a € I}. Then X, = —% on Uy n dM is smooth and outward point-

ing. Choose a partition of unity {p, | « € I} on dM subordinate to

the open cover {Uy n0M | a € I}. Then X := >} ; paXs is @ smooth
ouwtard pointing vector field along 0M. O

We can use this to introduce a notion of induced orientation on
oM.

Proposition 8.1.21. Let M be an oriented n-manifold with boundary. If
w is a volume form on M and X a smooth outward-pointing vector field
on OM, then 1xw is a smooth nowhere-vanishing (n — 1)-form on 0M and,
thus, 0M is orientable.

Proof. Since both w and X are smooth, the contraction :xw is also
smooth. We need to check that it cannot vanish.

Assume that (xw does vanish at some point p € JM, that
is, (1x)(v1,...,95—1) = Oforallvy,...,v,_1 € Tp(dM). Let
{e1,...,en—1} be a basis for T,(0M). Then {Xp,eq,...,e,_1} isa
basis for T, M such that

wp(xpr €1, /en—l) = (le)P(elr s /en—l) =0.
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Then, by Exercise 7.2.11, w, = 0 reaching a contradiction.
Therefore, 1xw is non-vanishing on 0M which means that oM is
orientable. O

Exercise 8.1.22. Let M be an oriented manifold with boundary, w
an orientation for M and X a smooth outward pointing vector field
along 0M. Prove the following statements.

1. It ¢ is another orientation form on M, then ¢ = fw for some
everywhere positive f € C*(M). Prove that ix0 = fixw on M.

2. Show that if Y is another smooth outward pointing vector field
along 0M, then there is an everywhere positive f € C*(M) such
that tyoc = fixw on OM.

*

Note that if (U}, ¢;) is a positively oriented atlas on M, then
(Ui|om, @ilom) can be negatively oriented. Let w = dx! A --- A dx™ be
a positive volume form on M on one of the charts, then —9% is an
outward pointing on ¢H" and we have? 7 Recall Lemma 7.3.2.

L_gjoxn (dxt A A dx™) —La/axn (dx' Ao A dx™)
= —(—1)71_1dx1 A ndx™ A L oxn (dx™)

= (=1)"dx' Ao Adx"L

Thus, for example, the boundary orientation on oHY = {0} is —1,
the one on 0H? is the standard orientation on R given by dx!' and
the one on dH3 is —dx! A dx2, which is the clockwise orientation in
the (x!, x?)-plane, etc.

Example 8.1.23. The closed interval [4,b] — R with standard eu-

clidean coordinate x has a standard orientation given by the vector

field 0% Therefore®, the boundary orientation at b is 2 (dx) = +1 8 Recall the charts in Example 1.5.7.
2 (dx) = —1. 0

Exercise 8.1.24. Orientability is common but there are many examples

and the one atais

of nonorientable manifolds.

1. Prove that §" is orientable.

Hint: there is a small exercise above that can help a lot here.
2. Prove that any Lie group is orientable.

3. Prove that RIP" is orientable if and only if # is odd.

Hint: the antipodal map x — —x on S" can help.

8.2 Integrals on manifolds

To avoid unnecessary complications, we will only integrate n-
forms with compact support. Armed with our experience with line
integrals, fond memories of multivariable analysis and our recent
discoveries, we are finally ready to talk about integrals. Let’s keep
things simple and go one step at a time.
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Definition 8.2.1. Let M be a smooth n-manifold and (U, ¢) be a
chart from an oriented atlas of M. If w € (O"(M) be a n-form with
compact support in U, we define the integral of w as

J w:f w::J Pxw ::f w(x)dxt - dx",
M u p(U) "

where the last is the usual Riemannian integral on R” and, on the
chart,
psw = w(x)el Ao A" e Q(HT).

For convenience we may write d"x := dx! - dx".
If M is an oriented 0-dimensional manifold and f is a 0-form
(that is, a smooth function) than we defined the integral to be the

[BEDIE)

pPEM

sum

where we take the positive sign at points where the orientation is
positive and the negative sign at points where it is negative. The
compactness assumption here implies that there are only finitely
many nonzero terms in the sum. O

To make sure that this definition makes sense, let’s show that the
integral is well-defined, that is, up to orientation it does not depend
on the chosen chart.

Lemma 8.2.2. Suppose w € (V'(M) with compact support supp w <
UV, where (U, @) and (V, ) are two positively oriented charts on the
oriented manifold M. Then, the value of the integral §,, w is independent
on the chosen chart.

Proof. Let ¢ and ¢ be two charts on U with the same orientation
and local coordinates x and v, let o = i o ¢! be the corresponding
transition map. Then,

where w(p) and w(q) are the local expressions for w in the two
coordinate charts, in (%) we applied Proposition 7.4.9 and in ()
we used the classical euclidean change of variables. O

To be able to integrate charts which are not supported in the
domain of a single chart, we now need the help of a partition of
unity.

133



134 ANALYSIS ON MANIFOLDS

Definition 8.2.3. Let M be a smooth oriented manifold and A =
{(U;, p;)} a positively oriented atlas. If w € (O"(M) has compact
support, then the integral of w is defined as

JM w = ]i fuj pjw, (8.1)

where {p; | j = 1,..., N} is a partition of unity subordinate to a
finite cover of supp w by charts {U;} and such that Z]N:1 pi(p) =1
for p € supp w. O

The definition above makes sense only if the value of the integral
is independent of the chosen partition, but with the help of the
previous lemma this is easily checked.

Lemma 8.2.4. The value of §,, w is independent from the choice of the
atlas and the choice of partition of unity.

Proof. The independence from the choice of the charts was demon-
strated in Lemma 8.2.2. Let {0;} be another partition of unity
adapted to a (possibly different) finite cover by charts {(V}, psi;)}
with }}p;(p) = 1 for p € supp w. Then we have,

(@) (Pj Zﬁkw>
) P
= Ef | (9)« (ojpxw)

()« (PjﬁkZij>
]

- ZL o (00 (),

k

where in (#) we used Lemma 8.2.2. O
This result can be nicely formalized as follows.

Theorem 8.2.5 (Global change of variable). Suppose M and N are
oriented n-manifolds and F : M — N is an orientation preserving
diffeomorphism. If w € Q"(N) has compact support, then F*w has
compact support and the following holds

fw=J F*w.
N M

Proof. First of all, observe that supp(F*w) = F~!(supp(w)) which is
compact since manifolds are Hausdorff spaces and F is continuous.
Let now {(Uj, ¢;)} be an atlas of a positively oriented chart on

M and {p;} a subordinate partition of unity. Then, {(F(U;), ¢; o
F~1)} is an atlas of positively oriented charts for N and {p; o F~}

The terms on the right hand side
of (8.1) are all integrals as in Defini-
tion 8.2.1.
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is a partition of unity subordinate to the covering {(F(U;)}. By
Lemma 8.2.4 we have,

Lo for
= Z JRn(fpi)*(PiF*w)
DY NN
_ZJ (@i o FYs(pio F Hw

:f“"
N

which shows the commutativity of the following diagram

*
O0'(M) ——F,— Q"(N)

\/

and concludes the proof. O
This justifies the following definition.

Definition 8.2.6 (Integral on submanifolds). Let M a smooth m-
manifold, N an oriented smooth n-manifoldand | : N - M a
smooth map?. If w € O™ (M) has compact support, we define 9If N c M is a submanifold, then

J : N — M is just the inclusion map.
J w = f T*w.
N N

In particular, if M is compact, oriented, smooth m-manifold, w is a
(m —1)-form on M and i : 0M — M is the inclusion of the boundary
in M, we can interpret unambiguously

J wzzj i*w,
oM oM

where partial M is understood to have the induced orientation. O

Example 8.2.7. Let M = [a,b] < R equipped with the canonical global
atlas {(M,idR |p)} and f € Ci°(M), i.e., smooth with compact

support’®. Then, df € Q!(M) and suppdf < supp f is compact as © Which does not mean f(a) = f(b) =
well and we have 0 since [a, b] is itself compact.
0
[ar=[ Zae=yo)-rw =] 7
oM
0

Exercise 8.2.8 (Fubini’s theorem [homework 4]). Let M™ and N" be
oriented manifolds. Endow M x N with the product orientation,

thatis',if mrpyr : M x NtoMand 7ty : M x N — N are the " An equivalent way is to say that if
v1,...,0m € TyMand wy, ..., w, € ;N
are positively oriented bases in the
respective spaces, then

canonical projections on the elements of the product, and w and 7

(v1,0),...,(vn,0), (0,w1),...,(0,wn) € T(p gy M x N

is defined to be a positively oriented
basis in the product.
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respectively define orientations on M and N, then the orientation
on M x N is defined to be the orientation defined by 73w A 7.
If « € O™ (M) and S € O"(N) have compact support, show that

& x pi= (1) A (TN B)

has compact support and is a (m + n)-form on M x N. Then, prove
Fubini’s theorem:

ot 2= (L) (1)

Exercise 8.2.9. Let {ey,...,e,,1} be the standard basis of R"**! and

*
Qi1 := €1 A -+ A ey the induced volume form. On §" define
wy € O"(S") by
wn(8)(01,...,00) = Qui1(s,01,...,04)

forse §" and vy,...,v, € TsS".
In this exercise we are going to define a canonical volume w, on
§" and prove that

2m+1n.n )
f'Twn:m, lfn:2m,m>1,

and

2 m—+1
an: "M L ifn=2m+1, m=>0.

1. Show that w; is a volume form on S". In fact it is the so-called
standard volume form on S".

2. Let f : Ry x R"1\{0} — R"*1\{0} be given by f(t,s) = ts,
where R is defined to be the set {t € R | ¢+ > 0}. Show that if
R4 is oriented by dt, 5" is oriented by w, and R"*1 is oriented
by Q,+1, then the Jacobian determinant det(Df(t,s)) = t".
Conclude that f is orientation preserving.

3. Let M be the annulus M = {x e R""! | 0 < a < |x| < b < o0}.
Consider the restriction f|, 4)xs» and show that for x € R,

f* (e_Hx“anJrl) = t"e_tz(dt X wy),
where dt x wy, is a product volume form as in Exercise 8.2.8.

4. Show that

b
J e, — j ety J w0,
Rr+1 a n

5. Consider the limits a — 0" and b — +c0 and show that

0 5 +o n+1
f e Bdt | wy, = (J e ! du) .
0 Sn —00



6. Assume to know that {*_ e~ du = \/7. Show that

foo gt g, _ (2m— DIV

~— * and J’OO t2m+18_t2dt = @
0 0 2

om+1

and use them to deduce the required formulas for Ssn wy;.

*

Remark 8.2.10. The integral defined in this section can be extended
rather immediately to measurable functions. Let w € (O"(M) be a
positive volume form and let f : M — [0, c0) be measurable. Then
one can define

JM fw= ;Ji(ui)(q’i)*(mfw)
- ZJ ‘(u,)(PifO o7 ) (@i)w
B ZJ .(u-)(pifo‘Pfl)(x)w(x)d"x,

where the last integral is a Lebesgue integral on IR”. One then calls
f : M — R integrable, saying f € L'(M,w), if Syl flw < oo and
defines its integral as §,, fw := {,, fTw — §,, f~w, where f* denote
the positive and negative components of f as in the euclidean

case. O

8.3 Stokes” Theorem

Stokes’ theorem states that if w is an (n — 1)-form on an orientable
n-manifold M, then the integral of dw over M equals the integral of
w over 0M, generalising our observations for the line integral. This
is a beautiful and very important results, with deep consequences.
The most immediate ones are the classical theorems of Gauss,
Green and Stokes, which are just a special cases of this result.

We are going to state the theorem, discuss some of its conse-
quences and then give its proof.

Theorem 8.3.1. Let M be an oriented n-manifold with boundary and let
w € "1 (M) be compactly supported. Then,

JM dw = LM w. (8.2)

Corollary 8.3.2. Let M be an oriented n-manifold without boundary and
let w € Q"1 (M) be compactly supported. Then,

J dw = 0.
M

That is, the integral of a compactly supported exact form over a manifold
without boundary vanishes.
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Here, OM inherits the orientation from
M as in Definition 8.2.6, w on the
right-hand side is interpreted as i*w
where i : dM — M is the inclusion of
the boundary and if 0M = (& then the
right-hand side is interpreted as 0.

On a similar note, the fact that ddw =
0 for every w € A"(M) corresponds

to the fact that a boundary has no
boundary, that is 00M = & for any M:
indeed, for any w € A"(M) one has

ozf ddew = dw:f .
M oM 00M
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Corollary 8.3.3. Let M be a compact oriented n-manifold with boundary
and let w € Q" ~1(M) be closed. Then,

J w = 0.
oM

That is, the integral of a closed form on the boundary of a compact mani-
fold vanishes.

Corollary 8.3.4 (Green's theorem). Suppose D is a compact reqular
domain in R? and P, Q € C®(D), then

oQ 0P
fp (é‘x B ax> dxdy = LD(de + Qdy).

Corollary 8.3.5. Let M a smooth m-manifold, N an oriented submanifold
of dimension n. Let | : N — M be a smooth map*2. If w € Q"~1(M) has

compact support, we define
J dw :J w,
N ON

where ON inherits the orientation from N.

Remark 8.3.6. The requirement of compactness in Stokes’ theorem
may seem there just to avoid technicalities involving the conver-
gence of the integral, however, it also avoid subtleties due to the
boundary as shown in the following example. Let M = (a,b), thus
OM = ¢, and f(x) = x. Then.

baszdf;féLMf:O.

But this does not contradict Stokes’ theorem since f is not com-
pactly supported.

If you close the interval, then f becomes with compact support
and we are back in the case of Example 8.2.7 where we had already
seen Stokes’ theorem. O

Proof. PART I: EUCLIDEAN BOUNDARY CASE. Let’s start with a

special case: suppose M = H'" itself. Since w has compact sup-
port, there is R > 0 such that suppw = A = [-R,R]""! x [0, R]
is enclosed within the rectangle A. We can write w in standard

coordinates to get

n .
w:Zw]dxl/\---/\dx A A dx®
j=1

where the hat means that the corresponding element dx/ is omitted.

Therefore!3,

< 0w
dw =Y (=1 1==dx! A Adx?,
w j;( ) S X A ndx

21f N < M is a submanifold, then
J : N — M is just the inclusion map.

3 Exercise: explicitly write down the

steps of the computation.
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and we end up with the integral

R —R axf

The last are genuine euclidean integrals and we can change the
order of integration in each term to always integrate the x/ term
first. The usual euclidean fundamental theorem of calculus then, for
the terms with i # n, implies

n - R R R pi ) )
dw = -1 _f j J ~(x)dx" - -dx
Hn Z( ) 0 J-R R 596]()
R j —~.
1)/~ 1f J J 0 ydxdxt - - dx”
R R 0X/

R . x¥=R -
] 1J J J w](x) ) dxl...dx]...dxn
_R x'=—R

since R is larger than the support of w at each coordinate. The only

I
M:

-
I
—_

I
M:

o =
I

term that may not be zero is the i = n one. In that case, for the same

R R
w:(—l)"—lf RJR-.- oWt

0 (39(]

R (R "_R
_ (—1)”—1f f " dxdat
—R J—R
R R
= (1)t J J cw(xh, L, x" T 0)dat - da L
—R J—R

x"=0
We now need to compare this with the right-hand side of (8.2). To

reasomns,

HH

this end, compute he following

f w = ZJ .,x”_l,O)dxl/\---/\dx]/\-~-/\dx”.
oM AmH"

Since x" vanishes on 0H", the pullback of dx" to the boundary is
zero, and thus the only surviving term in the sum is the last one,
that is,

J w = J wn(xl,. . .,x”’l,O)dx1 A Adx®L (8.3)
6HH AmHﬂ

Since coordinates (x!,...,x"~1) are positively oriented for H" when
n is even and negatively oriented when 7 is odd, we obtain the
equality of (??) and (8.3).

PART II: EUCLIDEAN cASE. If M = R” the considerations above
apply without the need to make an exception for the case i = #, so
all the terms vanish on the left-hand side of (8.2) while the right-
hand side is trivially zero due to the empty boundary.
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PARrT III: “ARBITRARY” M BUT supp w IS CONTAINED IN A SIN-
GLE CHART. Let (U, ¢) denote a chart such that suppw < U.
Without loss of generality assume that ¢ is a positively oriented
boundary chart, then

[ (o)

’Hn
) —1\*
L’H" ((P ) v

_J w,
oM

where in the (#) step we applied the computations above and
where 0H" has the orientation induced by H". For a negatively

*

oriented smooth boundary chart, the computation applies with an
extra negative sign on each side of the equation. For an interior
chart, we get the same computations with IR” in place of H".

PART IV: “ARBITRARY” M AND w. Let finally w € Q"~1(M) with
compact support. Without loss of generality, let {(U;, ¢;) | i € I}
be a finite cover of supp w by positively oriented charts and {p;} a
subordinate partition of unity with >’ p;(p) = 1 for all p € supp w.
For convenience, set w; := p;w. Then, by applying the previous
arguments for each i we get

J;?Mw - ZI: E?Mwi - Zl:fMd<pZW)

:ZJ (dpi A w + pidw)
i M

“Lue(Ee) e (30

:O+J dw,
M

concluding the proof. O

Exercise 8.3.7. Let D" := {x = (x!,...,x") e R" | |x| < 1} denote the
unit disk in R" centred at 0. Recall that D" = §"1,

1. Compute g v where v is the following 1-form on R%Zv =
—x2dx! + xldx.

2. Compute fg; w where w is the following 2-form on R w =
—xtdxl A dx® — x2dxt A dx® + x3dxt A dx.

3. Show that # and w above are closed but not exact (as differential
forms on S! and S? respectively).

Hint: if you look carefully, you may notice that you don’t really need to write
anything down in coordinates. A
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Example 8.3.8. Consider the annulus M = {(x,y) € R? | 1/2 <
x? +y? < 1} and the 1-form w = yi%y"dy = d6 where (x,y) =
(pcosB,psin).

Then dw = 0 and therefore {,,dw = 0. Furthermore,

oM x24+y2=1 x24+y2=1/2
27T 27T

o — de
= 27'(— 21T = 0.

An important consequence of this is that while locally w is the
differential of the angle function 6, this cannot be exact on all M:
indeed, if w = dv, we would have

27'c:fw: dU:J v=0.
sl sl os!

Moreover, since 271 = Ssl w, Stokes’ theorem also implies that gl
is not the boundary of a compact regular domain in R?\{0}. O
In fact this example is a particular case of the following corollary

of Stokes’ theorem.

Corollary 8.3.9. Suppose M is a smooth manifolds with or without
boundary,S < M is an oriented compact smooth k-submanifold (without
boundary) and w is a closed k-form on M. If (g w # 0 then the following
are true:

1. w is not exact on M;

2. S is not the boundary of an oriented compact smooth submanifold with
boundary in M.

Exercise 8.3.10. Prove this corollary.
Hint: look at the previous corollaries. A

Exercise 8.3.11. Let F : M — N be a diffeomorphism between smooth
manifolds and let w € (3" (N) be compactly supported. Then,

f F*w:f w.
M N
>

Corollary 8.3.12. Let F : M — M be a diffeomorphism and w € OO (M)
an invariant volume form, that is, F*w = w. Then, for all compactly
supported smooth functions f € C{*(M), the following holds

| fo=] ropre.

Proof. Follows form the previous exercise by observing

F*(fw) = (fe F)Ffw = (fo F)w

This corollary has deep consequences in classical mechanics,
which I am going to teach in the master and you are welcome to
attend!
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TODO

¢ Add proof of fixed point thm using Stokes

* Mention Hodge star operator and maybe Laplace-Beltrami after
volume forms

* May be worth adding plenty more commutative diagrams when
we use pullbacks and pushforwards

* Add exercise on Liouville theorem for hamiltonians in symplec-
tic geometry

e Add exercise on fixed-points for gradient flows and Hamiltonian
flows

* More computational exercises






B
Frobenius theorem

Integrable and nonintegrable distributions, Contact geometry,
Frobenius theorem.






C
Vector bundles and connections

Hopefully we can cut on differential forms since they were treated
in multivariable analysis and get to this.
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