forked from sbinet/go-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
object.go
370 lines (316 loc) · 18 KB
/
object.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
package python
//#include "Python.h"
//#include <stdlib.h>
//#include <string.h>
//int _gopy_PyObject_DelAttr(PyObject *o, PyObject *attr_name)
//{return PyObject_DelAttr(o, attr_name);}
//int _gopy_PyObject_DelAttrString(PyObject *o, const char *attr_name)
//{return PyObject_DelAttrString(o,attr_name);}
import "C"
import "unsafe"
import "os"
import "fmt"
// PyObject layer
type PyObject struct {
ptr *C.PyObject
}
func (self *PyObject) topy() *C.PyObject {
return self.ptr
}
func topy(self *PyObject) *C.PyObject {
return self.ptr
}
func togo(obj *C.PyObject) *PyObject {
if obj == nil {
return nil
}
return &PyObject{ptr: obj}
}
func int2bool(i C.int) bool {
switch i {
case -1:
return false
case 0:
return false
case 1:
return true
default:
return true
}
return false
}
func long2bool(i C.long) bool {
switch i {
case -1:
return false
case 0:
return false
case 1:
return true
default:
return true
}
return false
}
func bool2int(i bool) C.int {
if i {
return C.int(1)
}
return C.int(0)
}
type gopy_err struct {
err string
}
func (self *gopy_err) Error() string {
return self.err
}
func int2err(i C.int) error {
if i == 0 {
return nil
}
//FIXME: also handle python exceptions ?
return &gopy_err{fmt.Sprintf("error in C-Python (rc=%i)", int(i))}
}
func file2py(f *os.File) *C.FILE {
return nil
}
func file2go(f *C.FILE) *os.File {
return nil
}
// void Py_IncRef(PyObject *o)
// Increment the reference count for object o. The object may be
// NULL, in which case the function has no effect.
func (self *PyObject) IncRef() {
C.Py_IncRef(self.ptr)
}
// void Py_DecRef(PyObject *o)
// Decrement the reference count for object o. If the object is
// NULL, nothing happens. If the reference count reaches zero, the
// object’s type’s deallocation function (which must not be NULL) is
// invoked.
// WARNING: The deallocation function can cause arbitrary Python
// code to be invoked. See the warnings and instructions in the
// Python docs, and consider using Clear instead.
func (self *PyObject) DecRef() {
C.Py_DecRef(self.ptr)
}
// void Py_CLEAR(PyObject *o)
// Clear sets the PyObject's internal pointer to nil
// before calling Py_DecRef. This avoids the potential issues with
// Python code called by the deallocator referencing invalid,
// partially-deallocated data.
func (self *PyObject) Clear() {
tmp := self.ptr
self.ptr = nil
C.Py_DecRef(tmp)
}
// int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
// Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression hasattr(o, attr_name). This function always succeeds.
func (self *PyObject) HasAttr(attr_name *PyObject) int {
return int(C.PyObject_HasAttr(self.ptr, attr_name.ptr))
}
// int PyObject_HasAttrString(PyObject *o, const char *attr_name)
// Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression hasattr(o, attr_name). This function always succeeds.
func (self *PyObject) HasAttrString(attr_name string) int {
c_attr_name := C.CString(attr_name)
defer C.free(unsafe.Pointer(c_attr_name))
return int(C.PyObject_HasAttrString(self.ptr, c_attr_name))
}
// PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)
// Return value: New reference.
// Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.
func (self *PyObject) GetAttr(attr_name *PyObject) *PyObject {
return togo(C.PyObject_GetAttr(self.ptr, attr_name.ptr))
}
// PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)
// Return value: New reference.
// Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.
func (self *PyObject) GetAttrString(attr_name string) *PyObject {
c_attr_name := C.CString(attr_name)
defer C.free(unsafe.Pointer(c_attr_name))
return togo(C.PyObject_GetAttrString(self.ptr, c_attr_name))
}
// PyObject* PyObject_GenericGetAttr(PyObject *o, PyObject *name)
// Generic attribute getter function that is meant to be put into a type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s __dict__ (if present). As outlined in Implementing Descriptors, data descriptors take preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.
func (self *PyObject) GenericGetAttr(name *PyObject) *PyObject {
return togo(C.PyObject_GenericGetAttr(self.ptr, name.ptr))
}
// int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
// Set the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure. This is the equivalent of the Python statement o.attr_name = v.
func (self *PyObject) SetAttr(attr_name, v *PyObject) int {
return int(C.PyObject_SetAttr(self.ptr, attr_name.ptr, v.ptr))
}
// int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
// Set the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure. This is the equivalent of the Python statement o.attr_name = v.
func (self *PyObject) SetAttrString(attr_name string, v *PyObject) int {
c_attr_name := C.CString(attr_name)
defer C.free(unsafe.Pointer(c_attr_name))
return int(C.PyObject_SetAttrString(self.ptr, c_attr_name, v.ptr))
}
// int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
// Generic attribute setter function that is meant to be put into a type object’s tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over setting the attribute in the instance dictionary. Otherwise, the attribute is set in the object’s __dict__ (if present). Otherwise, an AttributeError is raised and -1 is returned.
func (self *PyObject) GenericSetAttr(name, value *PyObject) int {
return int(C.PyObject_GenericSetAttr(self.ptr, name.ptr, value.ptr))
}
// int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
// Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the Python statement del o.attr_name.
func (self *PyObject) DelAttr(attr_name *PyObject) int {
return int(C._gopy_PyObject_DelAttr(self.ptr, attr_name.ptr))
}
// int PyObject_DelAttrString(PyObject *o, const char *attr_name)
// Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the Python statement del o.attr_name.
func (self *PyObject) DelAttrString(attr_name string) int {
c_attr_name := C.CString(attr_name)
defer C.free(unsafe.Pointer(c_attr_name))
return int(C._gopy_PyObject_DelAttrString(self.ptr, c_attr_name))
}
type Py_OPID C.int
const (
Py_LT Py_OPID = C.Py_LT
Py_LE Py_OPID = C.Py_LE
Py_EQ Py_OPID = C.Py_EQ
Py_NE Py_OPID = C.Py_NE
Py_GT Py_OPID = C.Py_GT
Py_GE Py_OPID = C.Py_GE
)
// PyObject* PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
// Return value: New reference.
// Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding to opid. Returns the value of the comparison on success, or NULL on failure.
func (self *PyObject) RichCompare(o2 *PyObject, opid Py_OPID) *PyObject {
return togo(C.PyObject_RichCompare(self.ptr, o2.ptr, C.int(opid)))
}
// int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
// Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns -1 on error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding to opid.
func (self *PyObject) RichCompareBool(o2 *PyObject, opid Py_OPID) int {
return int(C.PyObject_RichCompareBool(self.ptr, o2.ptr, C.int(opid)))
}
// int PyObject_Cmp(PyObject *o1, PyObject *o2, int *result)
// Compare the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine provided by o2. The result of the comparison is returned in result. Returns -1 on failure. This is the equivalent of the Python statement result = cmp(o1, o2).
func (self *PyObject) Cmp(o2 *PyObject) (err, result int) {
var c_result C.int = -1
var c_err C.int = -1
c_err = C.PyObject_Cmp(self.ptr, o2.ptr, &c_result)
return int(c_err), int(c_result)
}
// int PyObject_Compare(PyObject *o1, PyObject *o2)
// Compare the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine provided by o2. Returns the result of the comparison on success. On error, the value returned is undefined; use PyErr_Occurred() to detect an error. This is equivalent to the Python expression cmp(o1, o2).
func (self *PyObject) Compare(o2 *PyObject) int {
return int(C.PyObject_Compare(self.ptr, o2.ptr))
}
// PyObject* PyObject_Repr(PyObject *o)
// Return value: New reference.
// Compute a string representation of object o. Returns the string representation on success, NULL on failure. This is the equivalent of the Python expression repr(o). Called by the repr() built-in function and by reverse quotes.
func (self *PyObject) Repr() *PyObject {
return togo(C.PyObject_Repr(self.ptr))
}
// PyObject* PyObject_Str(PyObject *o)
// Return value: New reference.
// Compute a string representation of object o. Returns the string representation on success, NULL on failure. This is the equivalent of the Python expression str(o). Called by the str() built-in function and by the print statement.
func (self *PyObject) Str() *PyObject {
return togo(C.PyObject_Str(self.ptr))
}
// PyObject* PyObject_Bytes(PyObject *o)
// Compute a bytes representation of object o. In 2.x, this is just a alias for PyObject_Str().
func (self *PyObject) Bytes() *PyObject {
return togo(C.PyObject_Bytes(self.ptr))
}
// PyObject* PyObject_Unicode(PyObject *o)
// Return value: New reference.
// Compute a Unicode string representation of object o. Returns the Unicode string representation on success, NULL on failure. This is the equivalent of the Python expression unicode(o). Called by the unicode() built-in function.
func (self *PyObject) Unicode() *PyObject {
return togo(C.PyObject_Unicode(self.ptr))
}
// int PyObject_IsInstance(PyObject *inst, PyObject *cls)
// Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1 and sets an exception. If cls is a type object rather than a class object, PyObject_IsInstance() returns 1 if inst is of type cls. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks returns 1, otherwise it will be 0. If inst is not a class instance and cls is neither a type object, nor a class object, nor a tuple, inst must have a __class__ attribute — the class relationship of the value of that attribute with cls will be used to determine the result of this function.
//
// New in version 2.1.
//
// Changed in version 2.2: Support for a tuple as the second argument added.
//
// Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions to the class system may want to be aware of. If A and B are class objects, B is a subclass of A if it inherits from A either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class relationship of the two objects. When testing if B is a subclass of A, if A is B, PyObject_IsSubclass() returns true. If A and B are different objects, B‘s __bases__ attribute is searched in a depth-first fashion for A — the presence of the __bases__ attribute is considered sufficient for this determination.
func (self *PyObject) IsInstance(cls *PyObject) int {
return int(C.PyObject_IsInstance(self.ptr, cls.ptr))
}
// int PyObject_IsSubclass(PyObject *derived, PyObject *cls)
// Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In case of an error, returns -1. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks returns 1, otherwise it will be 0. If either derived or cls is not an actual class object (or tuple), this function uses the generic algorithm described above.
//
// New in version 2.1.
//
// Changed in version 2.3: Older versions of Python did not support a tuple as the second argument.
func (self *PyObject) IsSubclass(cls *PyObject) int {
return int(C.PyObject_IsSubclass(self.ptr, cls.ptr))
}
// int PyCallable_Check(PyObject *o)
// Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always succeeds.
// PyObject* PyObject_Call(PyObject *callable_object, PyObject *args, PyObject *kw)
// Return value: New reference.
// Call a callable Python object callable_object, with arguments given by the tuple args, and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL. args must not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or NULL on failure. This is the equivalent of the Python expression apply(callable_object, args, kw) or callable_object(*args, **kw).
//
// New in version 2.2.
func (self *PyObject) Check_Callable() bool {
return int2bool(C.PyCallable_Check(self.ptr))
}
// PyObject* PyObject_CallObject(PyObject *callable_object, PyObject *args)
// Return value: New reference.
// Call a callable Python object callable_object, with arguments given by the tuple args. If no arguments are needed, then args may be NULL. Returns the result of the call on success, or NULL on failure. This is the equivalent of the Python expression apply(callable_object, args) or callable_object(*args).
func (self *PyObject) CallObject(args *PyObject) *PyObject {
return togo(C.PyObject_CallObject(self.ptr, args.ptr))
}
// PyObject* PyObject_CallFunction(PyObject *callable, char *format, ...)
// Return value: New reference.
// Call a callable Python object callable, with a variable number of C arguments. The C arguments are described using a Py_BuildValue() style format string. The format may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is the equivalent of the Python expression apply(callable, args) or callable(*args). Note that if you only pass PyObject * args, PyObject_CallFunctionObjArgs() is a faster alternative.
func (self *PyObject) CallFunction(format string, args ...interface{}) *PyObject {
//FIXME
panic("not implemented")
return nil
}
// PyObject* PyObject_CallMethod(PyObject *o, char *method, char *format, ...)
// Return value: New reference.
// Call the method named method of object o with a variable number of C arguments. The C arguments are described by a Py_BuildValue() format string that should produce a tuple. The format may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is the equivalent of the Python expression o.method(args). Note that if you only pass PyObject * args, PyObject_CallMethodObjArgs() is a faster alternative.
func (self *PyObject) CallMethod(format string, args ...interface{}) *PyObject {
//FIXME
panic("not implemented")
return nil
}
/*
FIXME: varargs in cgo ?
PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference.
Call a callable Python object callable, with a variable number of PyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result of the call on success, or NULL on failure.
New in version 2.2.
*/
/*
PyObject* PyObject_CallMethodObjArgs(PyObject *o, PyObject *name, ..., NULL)
Return value: New reference.
Calls a method of the object o, where the name of the method is given as a Python string object in name. It is called with a variable number of PyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result of the call on success, or NULL on failure.
New in version 2.2.
*/
// long PyObject_Hash(PyObject *o)
// Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the Python expression hash(o).
func (self *PyObject) Hash() int64 {
return int64(C.PyObject_Hash(topy(self)))
}
// long PyObject_HashNotImplemented(PyObject *o)
// Set a TypeError indicating that type(o) is not hashable and return -1. This function receives special treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.
//
// New in version 2.6.
func (self *PyObject) HashNotImplemented() bool {
return long2bool(C.PyObject_HashNotImplemented(topy(self)))
}
// int PyObject_IsTrue(PyObject *o)
// Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not not o. On failure, return -1.
func (self *PyObject) IsTrue() bool {
return int2bool(C.PyObject_IsTrue(topy(self)))
}
// int PyObject_Not(PyObject *o)
// Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not o. On failure, return -1.
func (self *PyObject) Not() bool {
return int2bool(C.PyObject_Not(topy(self)))
}
// PyObject* PyObject_Type(PyObject *o)
// Return value: New reference.
// When o is non-NULL, returns a type object corresponding to the object type of object o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type(o). This function increments the reference count of the return value. There’s really no reason to use this function instead of the common expression o->ob_type, which returns a pointer of type PyTypeObject*, except when the incremented reference count is needed.
func (self *PyObject) Type() *PyObject {
return togo(C.PyObject_Type(topy(self)))
}
// EOF