-
Notifications
You must be signed in to change notification settings - Fork 1
/
bench.py
240 lines (180 loc) · 8.64 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from multiprocessing.pool import Pool, ThreadPool
from os import path, listdir, mkdir
from pathlib import Path
from tqdm import tqdm
from glob import glob
import numpy as np
import subprocess
import argparse
import warnings
import json
import cv2
cv2.setNumThreads(0)
eps = np.finfo(np.float32).eps
warnings.filterwarnings("error")
###metrics###
def nss(s_map, gt):
s_map_norm = (s_map - np.mean(s_map))/(np.std(s_map) + 1e-7)
temp = s_map_norm[gt[:, 0], gt[:, 1]]
return np.mean(temp)
def similarity(s_map, gt):
s_map = s_map / (np.sum(s_map) + 1e-7)
gt = gt / (np.sum(gt) + 1e-7)
return np.sum(np.minimum(s_map, gt))
def cc(s_map, gt):
a = (s_map - np.mean(s_map))/(np.std(s_map) + 1e-7)
b = (gt - np.mean(gt))/(np.std(gt) + 1e-7)
r = (a*b).sum() / np.sqrt((a*a).sum() * (b*b).sum() + 1e-7)
return r
def auc_judd(S, F):
Sth = S[F[:, 0], F[:, 1]]
Nfixations = len(Sth)
Uniqe_fixations = np.unique(F, axis=1).shape[-1]
Possible_fixations = np.prod(S.shape) + (Nfixations - Uniqe_fixations)
allthreshes = np.sort(Sth)[::-1]
tp = np.zeros(Nfixations + 2)
fp = np.zeros(Nfixations + 2)
tp[0] = fp[0] = 0
tp[-1] = fp[-1] = 1
# Vectorized computation of aboveth
aboveth = np.sum(S >= allthreshes[:, np.newaxis, np.newaxis], axis=(1, 2))
arange = np.arange(1, Nfixations + 1)
fp[1:-1] = (aboveth - arange) / (Possible_fixations - Nfixations)
tp[1:-1] = arange / Nfixations
# Trapezoidal integration to compute AUC-Judd
return np.trapz(tp, fp)
def kldiv(s_map, gt):
s_map = s_map / (np.sum(s_map) * 1.0)
gt = gt / (np.sum(gt) * 1.0)
eps = 2.2204e-16
res = np.sum(gt * np.log(eps + gt / (s_map + eps)))
return res
######
def xrgb2gray(img):
assert len(img.shape) in (2, 3)
return img.mean(axis=2) if len(img.shape) == 3 else img
# Returns SM in [0; 1] range
def read_sm(path):
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
img = xrgb2gray(img)
img = (img - img.min()) / (img.max() - img.min() + eps)
return img
def calculate_frame_metrics(frame):
gt_fix = np.array(frame['gt_fixations'])
gt_120_sm = read_sm(frame['gt_saliency_path'])
pred_sm = cv2.resize(read_sm(frame['predictions_path']), (gt_120_sm.shape[1], gt_120_sm.shape[0]))
return {
'sim_score': similarity(pred_sm, gt_120_sm),
'nss_score': nss(pred_sm, gt_fix),
'cc_score': cc(pred_sm, gt_120_sm),
'auc_judd_score': auc_judd(pred_sm, gt_fix),
}
def calculate_metrics(video_name, temp_predictions_path, temp_gt_saliency_path, temp_gt_fixations_path, num_workers=4):
predictions_path = glob(temp_predictions_path)[0]
gt_saliency_path = glob(temp_gt_saliency_path)[0]
with open(temp_gt_fixations_path) as f:
gt_fixations = json.load(f)
scores = []
assert_func = lambda path: set([int(x.split('.')[0]) for x in listdir(path)])
assert assert_func(gt_saliency_path) == assert_func(predictions_path)
frames = [
{
'gt_fixations': gt_fix,
'gt_saliency_path': gt_sal,
'predictions_path': pred,
} for gt_fix, gt_sal, pred in zip(
gt_fixations,
[path.join(gt_saliency_path, x) for x in sorted(listdir(gt_saliency_path))],
[path.join(predictions_path, x) for x in sorted(listdir(predictions_path))]
)]
with Pool(num_workers) as pool:
scores = pool.map(calculate_frame_metrics, frames)
conv_scores = {metric: [x[metric] for x in scores] for metric in scores[0].keys()}
return {
'video_name' : video_name,
'cc' : np.mean(conv_scores['cc_score']),
'sim' : np.mean(conv_scores['sim_score']),
'nss' : np.mean(conv_scores['nss_score']),
'auc_judd' : np.mean(conv_scores['auc_judd_score']),
}
def calculate_all_videos(video_names, model_extracted_frames, gt_extracted_frames, gt_fixations_path, num_workers=4):
detail_result = []
for video_name in tqdm(video_names):
if len([x for x in detail_result if x['video_name'] == video_name]) > 0:
continue
short_video_name = Path(video_name).name
model_output = str(Path(model_extracted_frames) / f'{short_video_name}*')
gt_gaussians = str(Path(gt_extracted_frames) / f'{short_video_name}*')
gt_fixations = Path(gt_fixations_path) / short_video_name / 'fixations.json'
cur_result = calculate_metrics(video_name, model_output, gt_gaussians, gt_fixations, num_workers)
detail_result += [cur_result]
np.save("tmp2.npy", detail_result)
return detail_result
def make_bench(model_extracted_frames, gt_extracted_frames, gt_fixations_path, split_json='TrainTestSplit.json', results_json='results.json', mode='public_test', num_workers=4):
print(num_workers, 'worker(s)')
print(f'Testing {model_extracted_frames}')
sm_listdir = listdir(model_extracted_frames)
gt_listdir = listdir(gt_extracted_frames)
if len(sm_listdir) < len(gt_listdir):
msg = f'There are results for only a few videos ({len(sm_listdir)}/{len(gt_listdir)})!'
raise ValueError(msg)
video_names = sorted(sm_listdir)
with open(split_json) as f:
splits = set(json.load(f)[mode])
video_names = [name for name in video_names if name in splits]
detail_result = calculate_all_videos(video_names, model_extracted_frames, gt_extracted_frames, gt_fixations_path, num_workers)
detail_result = sorted(detail_result, key=lambda res: res['video_name'])
result = {'cc' : [], 'sim' : [], 'nss' : [], 'auc_judd' : []}
for i in result:
for j in detail_result:
result[i].append(j[i])
with open(results_json, 'w') as f:
json.dump(result, f)
model_res = {'Model': [model_extracted_frames], 'Mode': [mode]}
[model_res.update({key: [np.mean(result[key])]}) for key in result.keys()]
print(model_res)
def extract_frames(input_dir, output_dir, split_json='TrainTestSplit.json', mode='public_test', num_workers=4):
def poolfunc(x):
if x.stem not in splits[mode]:
return
dst_vid = dst / x.stem
if dst_vid.exists():
pbar.update(1)
return
dst_vid.mkdir()
subprocess.check_call(f'ffmpeg -v error -i {x} {dst_vid}/%03d.png'.split())
pbar.update(1)
with open(split_json) as f:
splits = json.load(f)
root = Path(input_dir)
dst = Path(output_dir)
dst.mkdir(exist_ok=True)
videos = list(root.iterdir())
pbar = tqdm(total=len(splits[mode]))
with ThreadPool(num_workers) as p:
p.map(poolfunc, videos)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_video_predictions', default='./SampleSubmission-CenterPrior',
help='Folder with predicted saliency videos')
parser.add_argument('--model_extracted_frames', default='./SampleSubmission-CenterPrior-Frames',
help='Folder to store prediction frames (should not exist at launch time), requires ~170 GB of free space')
parser.add_argument('--gt_video_predictions', default='./SaliencyTest/Test',
help='Folder from dataset page with gt saliency videos')
parser.add_argument('--gt_extracted_frames', default='./SaliencyTest-Frames',
help='Folder to store ground-truth frames (should not exist at launch time), requires ~170 GB of free space')
parser.add_argument('--gt_fixations_path', default='./FixationsTest/Test',
help='Folder from dataset page with gt saliency fixations')
parser.add_argument('--split_json', default='./TrainTestSplit.json',
help='Json from dataset page with names splitting')
parser.add_argument('--results_json', default='./results.json')
parser.add_argument('--mode', default='public_test', help='public_test/private_test')
parser.add_argument('--num_workers', type=int, default=4)
args = parser.parse_args()
if not path.exists(args.model_extracted_frames):
print("Extracting", args.model_video_predictions, 'to', args.model_extracted_frames)
extract_frames(args.model_video_predictions, args.model_extracted_frames, args.split_json, args.mode, args.num_workers)
if not path.exists(args.gt_extracted_frames):
print("Extracting", args.gt_video_predictions, 'to', args.gt_extracted_frames)
extract_frames(args.gt_video_predictions, args.gt_extracted_frames, args.split_json, args.mode, args.num_workers)
make_bench(args.model_extracted_frames, args.gt_extracted_frames, args.gt_fixations_path, args.split_json, args.results_json, args.mode, args.num_workers)