forked from ogrisel/parallel_ml_tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmmap_utils.py
68 lines (55 loc) · 2.32 KB
/
mmap_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
from IPython.parallel import interactive
@interactive
def persist_cv_splits(X, y, name=None, n_cv_iter=5, suffix="_cv_%03d.pkl",
train_size=None, test_size=0.25, random_state=None,
folder='.'):
"""Materialize randomized train test splits of a dataset."""
from sklearn.externals import joblib
from sklearn.cross_validation import ShuffleSplit
import os
import uuid
if name is None:
u = uuid.uuid4()
if hasattr(u, 'get_hex'):
# Python 2 compat
name = u.get_hex()
else:
name = u.hex
cv = ShuffleSplit(X.shape[0], n_iter=n_cv_iter,
test_size=test_size, random_state=random_state)
cv_split_filenames = []
for i, (train, test) in enumerate(cv):
cv_fold = (X[train], y[train], X[test], y[test])
cv_split_filename = os.path.join(folder, name + suffix % i)
cv_split_filename = os.path.abspath(cv_split_filename)
joblib.dump(cv_fold, cv_split_filename)
cv_split_filenames.append(cv_split_filename)
return cv_split_filenames
def warm_mmap_on_cv_splits(client, cv_split_filenames):
"""Trigger a disk load on all the arrays of the CV splits
Assume the files are shared on all the hosts using NFS.
"""
# First step: query cluster to fetch one engine id per host
all_engines = client[:]
@interactive
def hostname():
import socket
return socket.gethostname()
hostnames = all_engines.apply(hostname).get_dict()
one_engine_per_host = dict((hostname, engine_id)
for engine_id, hostname
in hostnames.items())
one_engine_per_host_ids = list(one_engine_per_host.values())
hosts_view = client[one_engine_per_host_ids]
# Second step: for each data file and host, mmap the arrays of the file
# and trigger a sequential read of all the arrays' data
@interactive
def load_in_memory(filenames):
from sklearn.externals import joblib
for filename in filenames:
arrays = joblib.load(filename, mmap_mode='r')
for array in arrays:
array.sum() # trigger the disk read
cv_split_filenames = [os.path.abspath(f) for f in cv_split_filenames]
hosts_view.apply_sync(load_in_memory, cv_split_filenames)