-
Notifications
You must be signed in to change notification settings - Fork 3
/
tensor_diff_calc.lyx
7465 lines (5605 loc) · 134 KB
/
tensor_diff_calc.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\usepackage{tikz}
\usepackage{url}
\usepackage{enumitem}
\end_preamble
\use_default_options true
\begin_modules
enumitem
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 2
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type numerical
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Matrix Differential Calculus with Tensors
\begin_inset Newline newline
\end_inset
(for
\emph on
Machine Learning
\emph default
)
\end_layout
\begin_layout Author
Massimiliano Tomassoli
\begin_inset Newline newline
\end_inset
(reverse(
\emph on
5102mnhuik
\emph default
)@gmail.com)
\end_layout
\begin_layout Date
08/21/2016
\begin_inset Newline newline
\end_inset
(
\emph on
alpha
\emph default
version)
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Standard
\emph on
\begin_inset FormulaMacro
\newcommand{\tr}{\mathrm{\mathrm{tr}}}
{\mathrm{tr}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\diag}{\mathrm{\mathrm{diag}}}
{\mathrm{diag}}
\end_inset
\end_layout
\begin_layout Standard
\emph on
\begin_inset FormulaMacro
\newcommand{\len}{\mathrm{\mathrm{length}}}
{\mathrm{length}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\marked}{\mathrm{\mathrm{marked}}}
{\mathrm{marked}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\myodot}[2]{\prescript{#1}{}\odot^{#2}}
{^{#1}\odot^{#2}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\mycdot}[2]{\prescript{#1}{}\cdot^{#2}}
{^{#1}\cdot^{#2}}
\end_inset
\end_layout
\begin_layout Standard
\emph on
\begin_inset FormulaMacro
\newcommand{\argmin}{\operatornamewithlimits{argmin}}
{\mathrm{argmin}}
\end_inset
\end_layout
\begin_layout Standard
\emph on
\begin_inset FormulaMacro
\newcommand{\argmax}{\operatornamewithlimits{argmax}}
{\mathrm{argmax}}
\end_inset
\end_layout
\begin_layout Standard
\emph on
\begin_inset FormulaMacro
\newcommand{\skipeq}{\hphantom{=\;\:}}
{\mathrm{\hphantom{=\;\:}}}
\end_inset
\end_layout
\begin_layout Section
Introduction
\end_layout
\begin_layout Standard
The goal of this tutorial is to give the reader a deep understanding of
\emph on
Matrix Differential Calculus
\emph default
(MDC) and simplify previous methods by using
\emph on
tensors
\emph default
(i.e.
\emph on
multidimensional arrays
\emph default
).
\end_layout
\begin_layout Standard
MDC is a specialization of regular calculus for easily differentiating functions
which involve matrices and vectors.
With MDC, we can compute the gradient of, say,
\begin_inset Formula $f(x)=x^{T}Ax$
\end_inset
directly without having to deal with the single elements of
\begin_inset Formula $x$
\end_inset
and
\begin_inset Formula $A$
\end_inset
.
\end_layout
\begin_layout Standard
The classic approach to MDC is that by Magnus and Neudecker's
\begin_inset CommandInset citation
LatexCommand cite
key "citeulike:670056"
\end_inset
.
For a quick overview you can read a concise introduction I wrote a few
years ago
\begin_inset CommandInset citation
LatexCommand cite
key "tomassoli-matcalc"
\end_inset
.
\end_layout
\begin_layout Standard
Recently I came across a paper by Pollock
\begin_inset CommandInset citation
LatexCommand cite
key "RePEc:lec:leecon:14/02"
\end_inset
which claims that MDC is still not well understood by all practitioners
and proposes to use a notation (basically,
\emph on
Einstein notation
\emph default
\begin_inset CommandInset citation
LatexCommand citep
key "wiki:einstein"
\end_inset
) which reveals the tensor structure of the matrices.
\end_layout
\begin_layout Standard
Both approaches rely on the concept of
\emph on
vectorization
\emph default
.
Basically, we convert matrices into vectors so that we can keep using the
usual rules for vectors.
While this is undoubtedly a smart move, I think it makes things more complicate
d than necessary, at least on a conceptual level.
\end_layout
\begin_layout Standard
My idea is to get rid of vectorization completely by using full-fledged
tensors.
One shouldn't need to remember properties about vectorization and the
\emph on
Kronecker
\emph default
operator, or tricks involving the
\emph on
trace
\emph default
operator.
\end_layout
\begin_layout Standard
I propose a simple alternative to index notation which I call
\emph on
bracket notation
\emph default
, and
\emph on
\emph default
which, I believe, is more convenient for our goal.
Note that I'm not claiming that my approach reduces computations, but just
that it makes them more regular and conceptually simpler.
\end_layout
\begin_layout Standard
Since I rely exclusively on the community for suggestions and corrections,
I warmly welcome any kind of constructive feedback.
\end_layout
\begin_layout Part
Theory
\begin_inset CommandInset label
LatexCommand label
name "part:Theory"
\end_inset
\end_layout
\begin_layout Section
Tensors
\end_layout
\begin_layout Subsection
Informal introduction
\end_layout
\begin_layout Standard
Think of
\emph on
tensors
\emph default
as
\emph on
multidimensional arrays
\emph default
.
In particular, a
\emph on
scalar
\emph default
is a 0-dimensional tensor, a
\emph on
vector
\emph default
is a 1-dimensional tensor and a
\emph on
matrix
\emph default
is a 2-dimensional tensor.
What about
\emph on
row vectors
\emph default
and
\emph on
column vectors
\emph default
? Some authors use an
\emph on
index-notation
\emph default
called
\emph on
Einstein notation
\emph default
\begin_inset CommandInset citation
LatexCommand citep
key "wiki:einstein"
\end_inset
where
\begin_inset Formula $x_{i}$
\end_inset
is a row vector and
\begin_inset Formula $x^{i}$
\end_inset
a column vector, or vice versa
\begin_inset CommandInset citation
LatexCommand citep
key "RePEc:lec:leecon:14/02"
\end_inset
, but we'll introduce a different notation which doesn't make this distinction
because there's no need to.
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $A$
\end_inset
be a 3-dimensional array where
\begin_inset Formula $A_{ijk}$
\end_inset
is the element
\begin_inset Formula $A[i,j,k]$
\end_inset
,
\begin_inset Formula $A[i][j][k]$
\end_inset
or similar depending on the programming language used.
We'll use
\begin_inset Formula $e_{ijk}$
\end_inset
to indicate a 3-dimensional array whose elements are all 0 except for a
single 1 in position
\begin_inset Formula $i,j,k$
\end_inset
.
These
\begin_inset Formula $e_{ijk}$
\end_inset
tensors form the canonical base for
\begin_inset Formula $3$
\end_inset
-dimensional tensors.
\end_layout
\begin_layout Standard
If arrays behave analogously to vectors and matrices when multiplied by
a scalar, then
\begin_inset Formula
\[
A=\sum_{i,j,k}A_{ijk}e_{ijk}.
\]
\end_inset
\end_layout
\begin_layout Standard
This is analogous to rewriting a vector
\begin_inset Formula $v=(v_{1},\ldots,v_{n})$
\end_inset
as
\begin_inset Formula
\[
v=\sum_{i=1}^{n}v_{i}e_{i}.
\]
\end_inset
\end_layout
\begin_layout Standard
Now let's say we have two 2-dimensional arrays, i.e.
matrices,
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
:
\begin_inset Formula
\begin{align*}
A & =\sum_{i,j}A_{ij}e_{ij}\\
B & =\sum_{l,m}B_{lm}e_{lm}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
The product
\begin_inset Formula $C=AB$
\end_inset
is a matrix whose generic element in position
\begin_inset Formula $[i,m]$
\end_inset
is equal to
\begin_inset Formula $\sum_{k}A_{ik}B_{km}$
\end_inset
as dictated by the
\emph on
row-column multiplication rule
\emph default
.
\end_layout
\begin_layout Standard
The product is thus computed as follows:
\end_layout
\begin_layout Enumerate
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\end_layout
\end_inset
\series bold
for
\series default
all
\begin_inset Formula $i$
\end_inset
:
\end_layout
\begin_deeper
\begin_layout Enumerate
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
setlength{
\backslash
vspace}{-4pt}
\end_layout
\end_inset
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\end_layout
\end_inset
\series bold
for
\series default
all
\begin_inset Formula $m$
\end_inset
:
\end_layout
\begin_deeper
\begin_layout Enumerate
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
setlength{
\backslash
vspace}{0pt}
\end_layout
\end_inset
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\end_layout
\end_inset
\begin_inset Formula $C[i,m]=\sum_{k}A_{ik}B_{km}$
\end_inset
\end_layout
\end_deeper
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Standard
A more general way to see this is the following:
\end_layout
\begin_layout Enumerate
We form
\begin_inset Formula
\[
M^{1}=A\otimes B=\sum_{i,j,l,m}A_{ij}B_{lm}e_{ijlm},
\]
\end_inset
which is a 4-dimensional array whose generic element in position
\begin_inset Formula $i,j,l,m$
\end_inset
is
\begin_inset Formula $A_{ij}B_{lm}$
\end_inset
.
\end_layout
\begin_layout Enumerate
We fuse the second and third dimensions, corresponding to the indices
\begin_inset Formula $j$
\end_inset
and
\begin_inset Formula $l$
\end_inset
, by performing an
\emph on
element-wise
\emph default
multiplication by walking along the second and third dimensions in parallel:
\begin_inset Formula
\[
M^{2}=\sum_{i,j,m}A_{ij}B_{jm}e_{ijm}.
\]
\end_inset
Note that
\begin_inset Formula $M^{2}$
\end_inset
is a 3-dimensional tensor.
\end_layout
\begin_layout Enumerate
Finally, we sum along the second dimension corresponding to the index
\begin_inset Formula $j$
\end_inset
:
\begin_inset Formula
\[
M^{3}=M^{2}.\mathrm{sum}(\mathrm{axis=(2-1)})=\sum_{i,m}\left(\sum_{j}A_{ij}B_{jm}\right)e_{im},
\]
\end_inset
where we included
\emph on
numpy
\emph default
notation for the same operation (remember that axis is 0-based, which explains
the
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $-1$
\end_inset
\begin_inset Quotes erd
\end_inset
).
Note that
\begin_inset Formula $M^{3}$
\end_inset
is exactly
\begin_inset Formula $C=AB$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Standard
If you understand the
\begin_inset Formula $e_{ij\cdots}$
\end_inset
notation then you should have no problems understanding the 3 steps above.
\end_layout
\begin_layout Standard
Let's simplify the notation a little.
We'll rewrite the expressions above as
\begin_inset Formula
\begin{align}
M^{1} & =\left(A_{ij}B_{lm}\middle|ijlm\right)\nonumber \\
M^{2} & =\left(A_{ij}B_{jm}\middle|ijm\right)\nonumber \\
M^{3} & =\left(A_{ij}B_{jm}\middle|im\right).\label{eq:M^3}
\end{align}
\end_inset
Note that
\emph on
repeated indices
\emph default
which don't appear on the right of
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\mid$
\end_inset
\begin_inset Quotes erd
\end_inset
are summed over.
For instance,
\begin_inset Formula $j$
\end_inset
is repeated in equation
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:M^3"
\end_inset
and doesn't appear on the right of
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\mid$
\end_inset
\begin_inset Quotes erd
\end_inset
so equation
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:M^3"
\end_inset
is equivalent to
\begin_inset Formula
\[
M^{3}=\left(\sum_{j}A_{ij}B_{jm}\middle|im\right).
\]
\end_inset
Note also that the order of the dimensions is indicated by the part on the
right of
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\mid$
\end_inset
\begin_inset Quotes erd
\end_inset
alone.
For instance,
\begin_inset Formula
\[
\left(A_{ij}B_{jm}\middle|im\right)=\left(B_{jm}A_{ij}\middle|im\right).
\]
\end_inset
\end_layout
\begin_layout Subsection
Formal definitions
\begin_inset CommandInset label
LatexCommand label
name "subsec:Formal-definitions"
\end_inset
\end_layout
\begin_layout Standard
Let's define the 3 operations introduced above more formally.
\end_layout
\begin_layout Standard
We'll be using the following two tensors:
\begin_inset Formula
\begin{align*}
A & =(A_{i_{1}i_{2}\cdots i_{N}}\mid i_{1}i_{2}\cdots i_{N})\\
B & =(B_{j_{1}j_{2}\cdots j_{N}}\mid j_{1}j_{2}\cdots j_{N}).
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
We define the
\emph on
Kronecker product
\emph default
as
\begin_inset Formula
\[
A\otimes B=(A_{i_{1}\cdots i_{N}}B_{j_{1}\cdots j_{M}}\mid i_{1}\cdots i_{N}j_{1}\cdots j_{M})
\]
\end_inset
Note that, in general,
\begin_inset Formula $A\otimes B\neq B\otimes A$
\end_inset
.
\end_layout
\begin_layout Standard
As an example, consider the
\emph on
outer product
\emph default
between vectors:
\begin_inset Formula
\[
vw^{T}=(v_{i}w_{j}\mid ij)=v\otimes w.
\]
\end_inset
\end_layout
\begin_layout Standard
The
\emph on
element-wise product
\emph default
is hard to write in general form, so let's consider an example:
\begin_inset Formula
\begin{equation}
A\myodot{23}{14}B=(A_{i_{1}khi_{4}\cdots i_{N}}B_{kj_{2}j_{3}hj_{5}\cdots j_{M}}\mid i_{1}khi_{4}\cdots i_{N}j_{2}j_{3}j_{5}\cdots j_{M}).\label{eq:elementwise-product-example}
\end{equation}
\end_inset
In words, the second dimension of
\begin_inset Formula $A$
\end_inset
is multiplied element-wise by the first dimension of
\begin_inset Formula $B$
\end_inset
and the third dimension of
\begin_inset Formula $A$
\end_inset
is multiplied element-wise by the fourth dimension of
\begin_inset Formula $B$
\end_inset
.
Note that the positions of the multiplied dimensions in the result are
indicated by the numbers on the left of the operator
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\odot$
\end_inset
\begin_inset Quotes erd
\end_inset
, i.e.
\begin_inset Formula $23$
\end_inset
in this example.
\end_layout
\begin_layout Standard
Let's give a general definition.
Let
\begin_inset Formula $I=i_{1}\cdots i_{N}$
\end_inset
and
\begin_inset Formula $J=j_{1}\cdots j_{M}$
\end_inset
be lists of indices.
In general, if
\begin_inset Formula $L=l_{1}\cdots l_{S}$
\end_inset
is a list and
\begin_inset Formula $P=p_{1}\cdots p_{K}$
\end_inset
a list of positions in
\begin_inset Formula $\{1,\ldots,S\}$
\end_inset
\emph on
without repetitions
\emph default
(i.e.
\begin_inset Formula $p_{i}=p_{j}\iff i=j$