Learning Multiscale Geographically Weighted Regression (MGWR) can prove difficult and unaccesible. This website + clients aim to address this problem by creating easy-to-understand interactive visualizations of MGWR properties.
- Python client - ✔️
- visualize with local server ✔️
- save results to upload to web client ✔️
- Web client - 🟨 functional
- pre-built datasets to visualize - ❌
- upload dataset to visualize - ❌
- Spatial viz of covariate bandwith
- Spatial viz of attribute bandwith
- Dynamic chart of signifigant parameters at 95th confidence
- Model results
- Diagnostic information
Work in Progress
- viz model fit based on AIC versus bandwith
The Python client can do 2 main things
- Run a local
mgwrvisualizer
webclient server - Export formatted MGWR result objects for later visualization
pip install mgwrvisualizer
See examples
for full example Jupyter notebooks
from mgwrvisualizer import MGWRVisualizer
data_df = pd.DatFrame ... # non-spatial dataframe
geodata_df = gpd.GeoDataFrame ... # spatial dataframe
mgwr_results = MGWR(coords, _y, _X, mgwr_selector).fit()
viz = MGWRVisualizer(mgwr_results, data_df, geodata_df, merge_key="AreaKey")
viz.run() # run server
>> browser opens to local server
You can save a formatted version of the MGWR model results. You can then upload this file to the webclient for later visualization (in-progress)
from mgwrvisualizer import MGWRVisualizer
data_df = pd.DatFrame ... # non-spatial dataframe
geodata_df = gpd.GeoDataFrame ... # spatial dataframe
mgwr_results = MGWR(coords, _y, _X, mgwr_selector).fit()
viz = MGWRVisualizer(mgwr_results, data_df, geodata_df, merge_key="AreaKey")
viz.save_results("mgwr-results-file.json")