Skip to content

Advanced usage

Matthieu Monsch edited this page Jan 6, 2016 · 69 revisions

Schema evolution

Schema evolution allows a type to deserialize binary data written by another compatible type. This is done via createResolver, and is particularly useful when we are only interested in a subset of the fields inside a record. By selectively decoding fields, we can significantly increase throughput.

As a motivating example, consider the following event:

var heavyType = avsc.parse({
  name: 'Event',
  type: 'record',
  fields: [
    {name: 'time', type: 'long'},
    {name: 'userId', type: 'int'},
    {name: 'actions', type: {type: 'array', items: 'string'}},
  ]
});

Let's assume that we would like to compute statistics on users' actions but only for a few user IDs. One approach would be to decode the full record each time, but this is wasteful if very few users match our filter. We can do better by using the following reader's schema, and creating the corresponding resolver:

var lightType = avsc.parse({
  name: 'LightEvent',
  aliases: ['Event'],
  type: 'record',
  fields: [
    {name: 'userId', type: 'int'},
  ]
});

var resolver = lightType.createResolver(heavyType);

We decode only the userId field, and then, if the ID matches, process the full record. The function below implements this logic, returning a fully decoded record if the ID matches, and undefined otherwise.

function fastDecode(buf) {
  var lightRecord = lightType.fromBuffer(buf, resolver, true);
  if (lightRecord.userId % 100 === 48) { // Arbitrary check.
    return heavyType.fromBuffer(buf);
  }
}

In the above example, using randomly generated records, if the filter matches roughly 1% of the time, we are able to get a 400% throughput increase compared to decoding the full record each time! The heavier the schema (and the closer to the beginning of the record the used fields are), the higher this increase will be.

Logical types

The built-in types provided by Avro are sufficient for many use-cases, but it can often be much more convenient to work with native JavaScript objects. As a quick motivating example, let's imagine we have the following schema:

var schema = {
  name: 'Transaction',
  type: 'record',
  fields: [
    {name: 'amount', type: 'int'},
    {name: 'time', type: {type: 'long', logicalType: 'timestamp-millis'}}
  ]
};

The time field encodes a timestamp as a long, but it would be better if we could deserialize it directly into a native Date object. This is possible using Avro's logical types, with the following two steps:

  • Adding a logicalType attribute to the type's definition (e.g. 'timestamp-millis' above).
  • Implementing a corresponding LogicalType and adding it to parse's logicalTypes.

Below is a sample implementation for a suitable DateType which will transparently deserialize/serialize native Date objects:

var util = require('util');

function DateType(attrs, opts) {
  LogicalType.call(this, attrs, opts, [LongType]); // Require underlying `long`.
}
util.inherits(DateType, LogicalType);

DateType.prototype._fromValue = function (val) { return new Date(val); };
DateType.prototype._toValue = function (date) { return +date; };

Usage is straightforward:

var type = avsc.parse(schema, {logicalTypes: {'timestamp-millis': DateType}});

// We create a new transaction.
var transaction = {
  amount: 32,
  time: new Date('Thu Nov 05 2015 11:38:05 GMT-0800 (PST)')
};

// Our type is able to directly serialize it, including the date.
var buf = type.toBuffer(transaction);

// And we can get the date back just as easily.
var date = type.fromBuffer(buf).time; // `Date` object.

Logical types can also be used with schema evolution. This is done by implementing an additional _resolve method. It should return a function which converts values of the writer's type into the logical type's values. For example, we can allow our DateType to read dates which were serialized as strings:

DateType.prototype._resolve = function (type) {
  if (
    type instanceof StringType || // Support parsing strings.
    type instanceof LongType ||
    type instanceof DateType
  ) {
    return this._fromValue;
  }
};

And use it as follows:

var stringType = avsc.parse('string');
var str = 'Thu Nov 05 2015 11:38:05 GMT-0800 (PST)';
var buf = stringType.toBuffer(str);
var resolver = dateType.createResolver(stringType);
var date = dateType.fromBuffer(buf, resolver); // Date corresponding to `str`.

Finally, as a more fully featured example, we provide a sample implementation of the decimal logical type described in the spec:

/**
 * Sample decimal logical type implementation.
 *
 * It wraps its values in a very simple custom `Decimal` class.
 *
 */
function DecimalType(attrs, opts) {
  LogicalType.call(this, attrs, opts, [BytesType, FixedType]);

  // Validate attributes.
  var precision = attrs.precision;
  if (precision !== (precision | 0) || precision <= 0) {
    throw new Error('invalid precision');
  }
  var scale = attrs.scale;
  if (scale !== (scale | 0) || scale < 0 || scale > precision) {
    throw new Error('invalid scale');
  }
  var type = this.getUnderlyingType();
  if (type instanceof FixedType) {
    var size = type.getSize();
    var maxPrecision = Math.log(Math.pow(2, 8 * size - 1) - 1) / Math.log(10);
    if (precision > (maxPrecision | 0)) {
      throw new Error('fixed size too small to hold required precision');
    }
  }

  // A basic decimal class for this precision and scale.
  function Decimal(unscaled) { this.unscaled = unscaled; }
  Decimal.prototype.precision = precision;
  Decimal.prototype.scale = scale;
  Decimal.prototype.toNumber = function () {
    return this.unscaled * Math.pow(10, -scale);
  };

  this.Decimal = Decimal;
}
util.inherits(DecimalType, LogicalType);

DecimalType.prototype._fromValue = function (buf) {
  return new this.Decimal(buf.readIntBE(0, buf.length));
};

DecimalType.prototype._toValue = function (dec) {
  if (!(dec instanceof this.Decimal)) {
    throw new Error('invalid decimal');
  }

  var type = this.getUnderlyingType();
  var buf;
  if (type instanceof FixedType) {
    buf = new Buffer(type.getSize());
  } else {
    var size = Math.log(dec > 0 ? dec : - 2 * dec) / (Math.log(2) * 8) | 0;
    buf = new Buffer(size + 1);
  }
  buf.writeIntBE(dec.unscaled, 0, buf.length);
  return buf;
};

DecimalType.prototype._resolve = function (type) {
  if (
    type instanceof DecimalType &&
    type.Decimal.prototype.precision === this.Decimal.prototype.precision &&
    type.Decimal.prototype.scale === this.Decimal.prototype.scale
  ) {
    return function (dec) { return dec; };
  }
};

Custom long types

JavaScript represents all numbers as doubles internally, which means that it is possible to lose precision when using very large numbers (absolute value greater than 9e+15 or so). For example:

Number.parseInt('9007199254740995') === 9007199254740996 // true

In most cases, these bounds are so large that this is not a problem (timestamps fit nicely inside the supported precision). However it might happen that the full range must be supported. (To avoid silently corrupting data, the default LongType will throw an error when encountering a number outside the supported precision range.)

There are multiple JavaScript libraries to represent 64-bit integers, with different characteristics (e.g. some are faster but do not run in the browser). Rather than tie us to any particular one, avsc lets us choose the most adequate with LongType.using. Below are a few sample implementations for popular libraries (refer to the API documentation for details on each option):

  • node-int64:

    var Long = require('node-int64');
    
    var longType = avsc.types.LongType.using({
      fromBuffer: function (buf) { return new Long(buf); },
      toBuffer: function (n) { return n.toBuffer(); },
      fromJSON: function (obj) { return new Long(obj); },
      toJSON: function (n) { return +n; },
      isValid: function (n) { return n instanceof Long; },
      compare: function (n1, n2) { return n1.compare(n2); }
    });
  • int64-native:

    var Long = require('int64-native');
    
    var longType = avsc.types.LongType.using({
      fromBuffer: function (buf) { return new Long('0x' + buf.toString('hex')); },
      toBuffer: function (n) { return new Buffer(n.toString().slice(2), 'hex'); },
      fromJSON: function (obj) { return new Long(obj); },
      toJSON: function (n) { return +n; },
      isValid: function (n) { return n instanceof Long; },
      compare: function (n1, n2) { return n1.compare(n2); }
    });
  • long:

    var Long = require('long');
    
    var longType = avsc.types.LongType.using({
      fromBuffer: function (buf) {
        return new Long(buf.readInt32LE(), buf.readInt32LE(4));
      },
      toBuffer: function (n) {
        var buf = new Buffer(8);
        buf.writeInt32LE(n.getLowBits());
        buf.writeInt32LE(n.getHighBits(), 4);
        return buf;
      },
      fromJSON: Long.fromValue,
      toJSON: function (n) { return +n; },
      isValid: Long.isLong,
      compare: Long.compare
    });

Any such implementation can then be used in place of the default LongType to provide full 64-bit support when decoding and encoding binary data. To do so, we override the default type used for longs by adding our implementation to the registry when parsing a schema:

// Our schema here is very simple, but this would work for arbitrarily complex
// ones (applying to all longs inside of it).
var type = avsc.parse('long', {registry: {'long': longType}});

// Avro serialization of Number.MAX_SAFE_INTEGER + 4 (which is incorrectly
// rounded when represented as a double):
var buf = new Buffer([0x86, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x20]);

// Assuming we are using the `node-int64` implementation.
var obj = new Long(buf);
var encoded = type.toBuffer(obj); // == buf
var decoded = type.fromBuffer(buf); // == obj (No precision loss.)

Because the built-in JSON parser is itself limited by JavaScript's internal number representation, using the toString and fromString methods is generally still unsafe (see LongType.using's documentation for a possible workaround).

Finally, to make integration easier, toBuffer and fromBuffer deal with already unpacked buffers by default. To leverage an external optimized packing and unpacking routine (for example when using a native C++ addon), we can disable this behavior by setting LongType.using's noUnpack argument to true.

Clone this wiki locally