-
Notifications
You must be signed in to change notification settings - Fork 148
Advanced usage
Schema evolution allows a type to deserialize binary data written by another
compatible type. This is done via
createResolver
, and is particularly useful when we are
only interested in a subset of the fields inside a record. By selectively
decoding fields, we can significantly increase throughput.
As a motivating example, consider the following event:
var heavyType = avsc.parse({
name: 'Event',
type: 'record',
fields: [
{name: 'time', type: 'long'},
{name: 'userId', type: 'int'},
{name: 'actions', type: {type: 'array', items: 'string'}},
]
});
Let's assume that we would like to compute statistics on users' actions but only for a few user IDs. One approach would be to decode the full record each time, but this is wasteful if very few users match our filter. We can do better by using the following reader's schema, and creating the corresponding resolver:
var lightType = avsc.parse({
name: 'LightEvent',
aliases: ['Event'],
type: 'record',
fields: [
{name: 'userId', type: 'int'},
]
});
var resolver = lightType.createResolver(heavyType);
We decode only the userId
field, and then, if the ID matches, process the
full record. The function below implements this logic, returning a fully
decoded record if the ID matches, and undefined
otherwise.
function fastDecode(buf) {
var lightRecord = lightType.fromBuffer(buf, resolver, true);
if (lightRecord.userId % 100 === 48) { // Arbitrary check.
return heavyType.fromBuffer(buf);
}
}
In the above example, using randomly generated records, if the filter matches roughly 1% of the time, we are able to get a 400% throughput increase compared to decoding the full record each time! The heavier the schema (and the closer to the beginning of the record the used fields are), the higher this increase will be.
The built-in types provided by Avro are sufficient for many use-cases, but it can often be much more convenient to work with native JavaScript objects. As a quick motivating example, let's imagine we have the following schema:
var schema = {
name: 'Transaction',
type: 'record',
fields: [
{name: 'amount', type: 'int'},
{name: 'time', type: {type: 'long', logicalType: 'timestamp-millis'}}
]
};
The time
field encodes a timestamp as a long
, but it would be better if we
could deserialize it directly into a native Date
object. This is possible
using Avro's logical types, with the following two steps:
- Adding a
logicalType
attribute to the type's definition (e.g.'timestamp-millis'
above). - Implementing a corresponding
LogicalType
and adding it toparse
'slogicalTypes
.
Below is a sample implementation for a suitable DateType
which will
transparently deserialize/serialize native Date
objects:
var util = require('util');
function DateType(attrs, opts) {
LogicalType.call(this, attrs, opts, [LongType]); // Require underlying `long`.
}
util.inherits(DateType, LogicalType);
DateType.prototype._fromValue = function (val) { return new Date(val); };
DateType.prototype._toValue = function (date) { return +date; };
Usage is straightforward:
var type = avsc.parse(schema, {logicalTypes: {'timestamp-millis': DateType}});
// We create a new transaction.
var transaction = {
amount: 32,
time: new Date('Thu Nov 05 2015 11:38:05 GMT-0800 (PST)')
};
// Our type is able to directly serialize it, including the date.
var buf = type.toBuffer(transaction);
// And we can get the date back just as easily.
var date = type.fromBuffer(buf).time; // `Date` object.
Logical types can also be used with schema evolution. This is done by
implementing an additional _resolve
method. It should return a function which
converts values of the writer's type into the logical type's values. For
example, we can allow our DateType
to read dates which were serialized as
strings:
DateType.prototype._resolve = function (type) {
if (
type instanceof StringType || // Support parsing strings.
type instanceof LongType ||
type instanceof DateType
) {
return this._fromValue;
}
};
And use it as follows:
var stringType = avsc.parse('string');
var str = 'Thu Nov 05 2015 11:38:05 GMT-0800 (PST)';
var buf = stringType.toBuffer(str);
var resolver = dateType.createResolver(stringType);
var date = dateType.fromBuffer(buf, resolver); // Date corresponding to `str`.
Finally, as a more fully featured example, we provide a sample implementation of the decimal logical type described in the spec:
/**
* Sample decimal logical type implementation.
*
* It wraps its values in a very simple custom `Decimal` class.
*
*/
function DecimalType(attrs, opts) {
LogicalType.call(this, attrs, opts, [BytesType, FixedType]);
// Validate attributes.
var precision = attrs.precision;
if (precision !== (precision | 0) || precision <= 0) {
throw new Error('invalid precision');
}
var scale = attrs.scale;
if (scale !== (scale | 0) || scale < 0 || scale > precision) {
throw new Error('invalid scale');
}
var type = this.getUnderlyingType();
if (type instanceof FixedType) {
var size = type.getSize();
var maxPrecision = Math.log(Math.pow(2, 8 * size - 1) - 1) / Math.log(10);
if (precision > (maxPrecision | 0)) {
throw new Error('fixed size too small to hold required precision');
}
}
// A basic decimal class for this precision and scale.
function Decimal(unscaled) { this.unscaled = unscaled; }
Decimal.prototype.precision = precision;
Decimal.prototype.scale = scale;
Decimal.prototype.toNumber = function () {
return this.unscaled * Math.pow(10, -scale);
};
this.Decimal = Decimal;
}
util.inherits(DecimalType, LogicalType);
DecimalType.prototype._fromValue = function (buf) {
return new this.Decimal(buf.readIntBE(0, buf.length));
};
DecimalType.prototype._toValue = function (dec) {
if (!(dec instanceof this.Decimal)) {
throw new Error('invalid decimal');
}
var type = this.getUnderlyingType();
var buf;
if (type instanceof FixedType) {
buf = new Buffer(type.getSize());
} else {
var size = Math.log(dec > 0 ? dec : - 2 * dec) / (Math.log(2) * 8) | 0;
buf = new Buffer(size + 1);
}
buf.writeIntBE(dec.unscaled, 0, buf.length);
return buf;
};
DecimalType.prototype._resolve = function (type) {
if (
type instanceof DecimalType &&
type.Decimal.prototype.precision === this.Decimal.prototype.precision &&
type.Decimal.prototype.scale === this.Decimal.prototype.scale
) {
return function (dec) { return dec; };
}
};
JavaScript represents all numbers as doubles internally, which means that it is
possible to lose precision when using very large numbers (absolute value
greater than 9e+15
or so). For example:
Number.parseInt('9007199254740995') === 9007199254740996 // true
In most cases, these bounds are so large that this is not a problem (timestamps
fit nicely inside the supported precision). However it might happen that the
full range must be supported. (To avoid silently corrupting data, the default
LongType
will throw an error when
encountering a number outside the supported precision range.)
There are multiple JavaScript libraries to represent 64-bit integers, with
different characteristics (e.g. some are faster but do not run in the browser).
Rather than tie us to any particular one, avsc
lets us choose the most
adequate with LongType.using
. Below
are a few sample implementations for popular libraries (refer to the API
documentation for details on each option):
-
var Long = require('node-int64'); var longType = avsc.types.LongType.using({ fromBuffer: function (buf) { return new Long(buf); }, toBuffer: function (n) { return n.toBuffer(); }, fromJSON: function (obj) { return new Long(obj); }, toJSON: function (n) { return +n; }, isValid: function (n) { return n instanceof Long; }, compare: function (n1, n2) { return n1.compare(n2); } });
-
var Long = require('int64-native'); var longType = avsc.types.LongType.using({ fromBuffer: function (buf) { return new Long('0x' + buf.toString('hex')); }, toBuffer: function (n) { return new Buffer(n.toString().slice(2), 'hex'); }, fromJSON: function (obj) { return new Long(obj); }, toJSON: function (n) { return +n; }, isValid: function (n) { return n instanceof Long; }, compare: function (n1, n2) { return n1.compare(n2); } });
-
long
:var Long = require('long'); var longType = avsc.types.LongType.using({ fromBuffer: function (buf) { return new Long(buf.readInt32LE(), buf.readInt32LE(4)); }, toBuffer: function (n) { var buf = new Buffer(8); buf.writeInt32LE(n.getLowBits()); buf.writeInt32LE(n.getHighBits(), 4); return buf; }, fromJSON: Long.fromValue, toJSON: function (n) { return +n; }, isValid: Long.isLong, compare: Long.compare });
Any such implementation can then be used in place of the default LongType
to
provide full 64-bit support when decoding and encoding binary data. To do so,
we override the default type used for long
s by adding our implementation to
the registry
when parsing a schema:
// Our schema here is very simple, but this would work for arbitrarily complex
// ones (applying to all longs inside of it).
var type = avsc.parse('long', {registry: {'long': longType}});
// Avro serialization of Number.MAX_SAFE_INTEGER + 4 (which is incorrectly
// rounded when represented as a double):
var buf = new Buffer([0x86, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x20]);
// Assuming we are using the `node-int64` implementation.
var obj = new Long(buf);
var encoded = type.toBuffer(obj); // == buf
var decoded = type.fromBuffer(buf); // == obj (No precision loss.)
Because the built-in JSON parser is itself limited by JavaScript's internal
number representation, using the toString
and fromString
methods is
generally still unsafe (see LongType.using
's documentation for a possible
workaround).
Finally, to make integration easier, toBuffer
and fromBuffer
deal with
already unpacked buffers by default. To leverage an external optimized packing
and unpacking routine (for example when using a native C++ addon), we can
disable this behavior by setting LongType.using
's noUnpack
argument to
true
.