Skip to content

Advanced usage

Matthieu Monsch edited this page Apr 13, 2016 · 69 revisions

Wrapped unions

TODO

Schema evolution

Schema evolution allows a type to deserialize binary data written by another compatible type. This is done via createResolver, and is particularly useful when we are only interested in a subset of the fields inside a record. By selectively decoding fields, we can significantly increase throughput.

As a motivating example, consider the following event:

var heavyType = avro.parse({
  name: 'Event',
  type: 'record',
  fields: [
    {name: 'time', type: 'long'},
    {name: 'userId', type: 'int'},
    {name: 'actions', type: {type: 'array', items: 'string'}},
  ]
});

Let's assume that we would like to compute statistics on users' actions but only for a few user IDs. One approach would be to decode the full record each time, but this is wasteful if very few users match our filter. We can do better by using the following reader's schema, and creating the corresponding resolver:

var lightType = avro.parse({
  name: 'LightEvent',
  aliases: ['Event'],
  type: 'record',
  fields: [
    {name: 'userId', type: 'int'},
  ]
});

var resolver = lightType.createResolver(heavyType);

We decode only the userId field, and then, if the ID matches, process the full record. The function below implements this logic, returning a fully decoded record if the ID matches, and undefined otherwise.

function fastDecode(buf) {
  var lightRecord = lightType.fromBuffer(buf, resolver, true);
  if (lightRecord.userId % 100 === 48) { // Arbitrary check.
    return heavyType.fromBuffer(buf);
  }
}

In the above example, using randomly generated records, if the filter matches roughly 1% of the time, we are able to get a 400% throughput increase compared to decoding the full record each time! The heavier the schema (and the closer to the beginning of the record the used fields are), the higher this increase will be.

Logical types

The built-in types provided by Avro are sufficient for many use-cases, but it can often be much more convenient to work with native JavaScript objects. As a quick motivating example, let's imagine we have the following schema:

var schema = {
  name: 'Transaction',
  type: 'record',
  fields: [
    {name: 'amount', type: 'int'},
    {name: 'time', type: {type: 'long', logicalType: 'timestamp-millis'}}
  ]
};

The time field encodes a timestamp as a long, but it would be better if we could deserialize it directly into a native Date object. This is possible using Avro's logical types, with the following two steps:

  • Adding a logicalType attribute to the type's definition (e.g. 'timestamp-millis' above).
  • Implementing a corresponding LogicalType and adding it to parse's logicalTypes.

For example, we can use this DateType to transparently deserialize/serialize native Date objects:

var type = avro.parse(schema, {logicalTypes: {'timestamp-millis': DateType}});

// We create a new transaction.
var transaction = {
  amount: 32,
  time: new Date('Thu Nov 05 2015 11:38:05 GMT-0800 (PST)')
};

// Our type is able to directly serialize it, including the date.
var buf = type.toBuffer(transaction);

// And we can get the date back just as easily.
var date = type.fromBuffer(buf).time; // `Date` object.

Logical types can also be used with schema evolution. This is done by implementing an additional _resolve method. It should return a function which converts values of the writer's type into the logical type's values. For example, the above DateType can read dates which were serialized as strings:

var stringType = avro.parse('string');
var str = 'Thu Nov 05 2015 11:38:05 GMT-0800 (PST)';
var buf = stringType.toBuffer(str);
var resolver = dateType.createResolver(stringType);
var date = dateType.fromBuffer(buf, resolver); // Date corresponding to `str`.

TODO: Export attributes.

As a more fully featured example, you can also take a look at this DecimalType which implements the decimal logical type described in the spec. Or, see how to use a logical type to implement a MetaType, the type of all types.

Custom long types

JavaScript represents all numbers as doubles internally, which means that it is possible to lose precision when using very large numbers (absolute value greater than 9e+15 or so). For example:

Number.parseInt('9007199254740995') === 9007199254740996 // true

In most cases, these bounds are so large that this is not a problem (timestamps fit nicely inside the supported precision). However it might happen that the full range must be supported. (To avoid silently corrupting data, the default LongType will throw an error when encountering a number outside the supported precision range.)

There are multiple JavaScript libraries to represent 64-bit integers, with different characteristics (e.g. some are faster but do not run in the browser). Rather than tie us to any particular one, avsc lets us choose the most adequate with LongType.__with. Below are a few sample implementations for popular libraries (refer to the API documentation for details on each option):

  • node-int64:

    var Long = require('node-int64');
    
    var longType = avro.types.LongType.__with({
      fromBuffer: function (buf) { return new Long(buf); },
      toBuffer: function (n) { return n.toBuffer(); },
      fromJSON: function (obj) { return new Long(obj); },
      toJSON: function (n) { return +n; },
      isValid: function (n) { return n instanceof Long; },
      compare: function (n1, n2) { return n1.compare(n2); }
    });
  • int64-native:

    var Long = require('int64-native');
    
    var longType = avro.types.LongType.__with({
      fromBuffer: function (buf) { return new Long('0x' + buf.toString('hex')); },
      toBuffer: function (n) { return new Buffer(n.toString().slice(2), 'hex'); },
      fromJSON: function (obj) { return new Long(obj); },
      toJSON: function (n) { return +n; },
      isValid: function (n) { return n instanceof Long; },
      compare: function (n1, n2) { return n1.compare(n2); }
    });
  • long:

    var Long = require('long');
    
    var longType = avro.types.LongType.__with({
      fromBuffer: function (buf) {
        return new Long(buf.readInt32LE(), buf.readInt32LE(4));
      },
      toBuffer: function (n) {
        var buf = new Buffer(8);
        buf.writeInt32LE(n.getLowBits());
        buf.writeInt32LE(n.getHighBits(), 4);
        return buf;
      },
      fromJSON: Long.fromValue,
      toJSON: function (n) { return +n; },
      isValid: Long.isLong,
      compare: Long.compare
    });

Any such implementation can then be used in place of the default LongType to provide full 64-bit support when decoding and encoding binary data. To do so, we override the default type used for longs by adding our implementation to the registry when parsing a schema:

// Our schema here is very simple, but this would work for arbitrarily complex
// ones (applying to all longs inside of it).
var type = avro.parse('long', {registry: {'long': longType}});

// Avro serialization of Number.MAX_SAFE_INTEGER + 4 (which is incorrectly
// rounded when represented as a double):
var buf = new Buffer([0x86, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x20]);

// Assuming we are using the `node-int64` implementation.
var obj = new Long(buf);
var encoded = type.toBuffer(obj); // == buf
var decoded = type.fromBuffer(buf); // == obj (No precision loss.)

Because the built-in JSON parser is itself limited by JavaScript's internal number representation, using the toString and fromString methods is generally still unsafe (see LongType.__with's documentation for a possible workaround).

Finally, to make integration easier, toBuffer and fromBuffer deal with already unpacked buffers by default. To leverage an external optimized packing and unpacking routine (for example when using a native C++ addon), we can disable this behavior by setting LongType.__with's noUnpack argument to true.

Remote procedure calls

avsc provides an efficient and "type-safe" API for communicating with remote node processes via Protocols. To enable this, we first declare the types involved inside an Avro protocol. For example, consider the following simple protocol which supports two calls (defined using Avro IDL notation and saved as ./math.avdl):

protocol Math {
  // One to multiply numbers.
  double multiply(array<double> numbers);
  // And another to add numbers, with an optional delay.
  int add(array<int> numbers, float delay = 0);
}

Servers and clients then share the same protocol and respectively:

  • Implement interface calls (servers):

    avro.assemble('math.avdl', function (err, attrs) {
      var protocol = avro.parse(attrs)
        .on('add', function (req, ee, cb) {
          var sum = req.numbers.reduce(function (agg, el) { return agg + el; }, 0);
          setTimeout(function () { cb(null, sum); }, 1000 * req.delay);
        })
        .on('multiply', function (req, ee, cb) {
          var prod = req.numbers.reduce(function (agg, el) { return agg * el; }, 1);
          cb(null, prod);
        });
    });
  • Call the interface (clients):

    avro.assemble('math.avdl', function (err, attrs) {
      var protocol = avro.parse(attrs);
      var ee; // Message emitter, see below for various instantiation examples.
      protocol.emit('add', {numbers: [1, 3, 5], delay: 2}, ee, function (err, res) {
        console.log(res); // 9!
      });
      protocol.emit('multiply', {numbers: [4, 2]}, ee, function (err, res) {
        console.log(res); // 8!
      });
    });

avsc supports communication between any two node processes connected by binary streams. See below for a few different common use-cases.

Persistent streams

E.g. UNIX sockets, TCP sockets, WebSockets, (and even stdin/stdout).

Client

var net = require('net');

var ee = protocol.createEmitter(net.createConnection({port: 8000}));

Server

var net = require('net');

net.createServer()
  .on('connection', function (con) { protocol.createListener(con); })
  .listen(8000);

Transient streams

For example HTTP requests/responses.

Client

var http = require('http');

var ee = protocol.createEmitter(function (cb) {
  return http.request({
    port: 3000,
    headers: {'content-type': 'avro/binary'},
    method: 'POST'
  }).on('response', function (res) { cb(null, res); });
});

Server

Using express for example:

var app = require('express')();

app.post('/', function (req, res) {
  protocol.createListener(function (cb) { cb(null, res); return req; });
});

app.listen(3000);
Clone this wiki locally