Follow previous works, our models are trained with Flickr1024 and Middlebury datasets, which is exactly the same as iPASSR. Please visit their homepage and follow their instructions to download and prepare the datasets.
The structure of datasets
directory should be like
datasets
├── StereoSR
│ ├── patches_x2
│ │ ├── 000001
│ │ ├── 000002
│ │ ├── ...
│ │ ├── 298142
│ │ └── 298143
│ ├── patches_x4
│ │ ├── 000001
│ │ ├── 000002
│ │ ├── ...
│ │ ├── 049019
│ │ └── 049020
| ├── test
│ | ├── Flickr1024
│ │ │ ├── hr
│ │ │ ├── lr_x2
│ │ │ └── lr_x4
│ | ├── KITTI2012
│ │ │ ├── hr
│ │ │ ├── lr_x2
│ │ │ └── lr_x4
│ | ├── KITTI2015
│ │ │ ├── hr
│ │ │ ├── lr_x2
│ │ │ └── lr_x4
│ │ └── Middlebury
│ │ ├── hr
│ │ ├── lr_x2
│ │ └── lr_x4
name | scale | #Params | PSNR | SSIM | pretrained models | configs |
---|---|---|---|---|---|---|
NAFSSR-T | x4 | 0.46M | 23.69 | 0.7384 | gdrive | baidu | train | test |
NAFSSR-S | x4 | 1.56M | 23.88 | 0.7468 | gdrive | baidu | train | test |
NAFSSR-B | x4 | 6.80M | 24.07 | 0.7551 | gdrive | baidu | train | test |
NAFSSR-L | x4 | 23.83M | 24.17 | 0.7589 | gdrive | baidu | train | test |
NAFSSR-T | x2 | 0.46M | 28.94 | 0.9128 | gdrive | baidu | train | test |
NAFSSR-S | x2 | 1.56M | 29.19 | 0.9160 | gdrive | baidu | train | test |
NAFSSR-B | x2 | 6.80M | 29.54 | 0.7551 | gdrive | baidu | train | test |
NAFSSR-L | x2 | 23.79M | 29.68 | 0.9221 | gdrive | baidu | train | test |
PSNR/SSIM are evaluate on Flickr1024 test set.
- NAFSSR-T for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-T_x4.yml --launcher pytorch
- NAFSSR-S for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-S_x4.yml --launcher pytorch
- NAFSSR-B for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-B_x4.yml --launcher pytorch
- NAFSSR-L for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-L_x4.yml --launcher pytorch
- NAFSSR-L for 2x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-L_x2.yml --launcher pytorch
- Test by a single gpu by default. Set
--nproc_per_node
to # of gpus for distributed validation.
-
NAFNet-B for 4x SR:
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/NAFSSR/NAFSSR-B_x4.yml --launcher pytorch
-
NAFNet-S for 4x SR:
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/NAFSSR/NAFSSR-S_x4.yml --launcher pytorch
-
8 gpus by default. Set
--nproc_per_node
to # of gpus for distributed validation.