-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_summary.py
462 lines (364 loc) · 15.8 KB
/
model_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import torch.nn as nn
import torch
import numpy as np
'''
---- 1) FLOPs: floating point operations
---- 2) #Activations: the number of elements of all ‘Conv2d’ outputs
---- 3) #Conv2d: the number of ‘Conv2d’ layers
# --------------------------------------------
# Kai Zhang (github: https://github.com/cszn)
# 21/July/2020
# --------------------------------------------
# Reference
https://github.com/sovrasov/flops-counter.pytorch.git
# If you use this code, please consider the following citation:
@inproceedings{zhang2020aim, %
title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results},
author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others},
booktitle={European Conference on Computer Vision Workshops},
year={2020}
}
# --------------------------------------------
'''
def get_model_flops(model, input_res, print_per_layer_stat=True,
input_constructor=None):
assert type(input_res) is tuple, 'Please provide the size of the input image.'
assert len(input_res) >= 3, 'Input image should have 3 dimensions.'
flops_model = add_flops_counting_methods(model)
flops_model.eval().start_flops_count()
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
device = list(flops_model.parameters())[-1].device
batch = torch.Tensor(1, *input_res).type(next(model.parameters()).dtype).to(device)
_ = flops_model(batch)
if print_per_layer_stat:
print_model_with_flops(flops_model)
flops_count = flops_model.compute_average_flops_cost()
flops_model.stop_flops_count()
return flops_count
def get_model_activation(model, input_res, input_constructor=None):
assert type(input_res) is tuple, 'Please provide the size of the input image.'
assert len(input_res) >= 3, 'Input image should have 3 dimensions.'
activation_model = add_activation_counting_methods(model)
activation_model.eval().start_activation_count()
if input_constructor:
input = input_constructor(input_res)
_ = activation_model(**input)
else:
device = list(activation_model.parameters())[-1].device
batch = torch.FloatTensor(1, *input_res).to(device)
_ = activation_model(batch)
activation_count, num_conv = activation_model.compute_average_activation_cost()
activation_model.stop_activation_count()
return activation_count, num_conv
def get_model_complexity_info(model, input_res, print_per_layer_stat=True, as_strings=True,
input_constructor=None):
assert type(input_res) is tuple
assert len(input_res) >= 3
flops_model = add_flops_counting_methods(model)
flops_model.eval().start_flops_count()
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
batch = torch.FloatTensor(1, *input_res)
_ = flops_model(batch)
if print_per_layer_stat:
print_model_with_flops(flops_model)
flops_count = flops_model.compute_average_flops_cost()
params_count = get_model_parameters_number(flops_model)
flops_model.stop_flops_count()
if as_strings:
return flops_to_string(flops_count), params_to_string(params_count)
return flops_count, params_count
def flops_to_string(flops, units='GMac', precision=2):
if units is None:
if flops // 10**9 > 0:
return str(round(flops / 10.**9, precision)) + ' GMac'
elif flops // 10**6 > 0:
return str(round(flops / 10.**6, precision)) + ' MMac'
elif flops // 10**3 > 0:
return str(round(flops / 10.**3, precision)) + ' KMac'
else:
return str(flops) + ' Mac'
else:
if units == 'GMac':
return str(round(flops / 10.**9, precision)) + ' ' + units
elif units == 'MMac':
return str(round(flops / 10.**6, precision)) + ' ' + units
elif units == 'KMac':
return str(round(flops / 10.**3, precision)) + ' ' + units
else:
return str(flops) + ' Mac'
def params_to_string(params_num):
if params_num // 10 ** 6 > 0:
return str(round(params_num / 10 ** 6, 2)) + ' M'
elif params_num // 10 ** 3:
return str(round(params_num / 10 ** 3, 2)) + ' k'
else:
return str(params_num)
def print_model_with_flops(model, units='GMac', precision=3):
total_flops = model.compute_average_flops_cost()
def accumulate_flops(self):
if is_supported_instance(self):
return self.__flops__ / model.__batch_counter__
else:
sum = 0
for m in self.children():
sum += m.accumulate_flops()
return sum
def flops_repr(self):
accumulated_flops_cost = self.accumulate_flops()
return ', '.join([flops_to_string(accumulated_flops_cost, units=units, precision=precision),
'{:.3%} MACs'.format(accumulated_flops_cost / total_flops),
self.original_extra_repr()])
def add_extra_repr(m):
m.accumulate_flops = accumulate_flops.__get__(m)
flops_extra_repr = flops_repr.__get__(m)
if m.extra_repr != flops_extra_repr:
m.original_extra_repr = m.extra_repr
m.extra_repr = flops_extra_repr
assert m.extra_repr != m.original_extra_repr
def del_extra_repr(m):
if hasattr(m, 'original_extra_repr'):
m.extra_repr = m.original_extra_repr
del m.original_extra_repr
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
model.apply(add_extra_repr)
print(model)
model.apply(del_extra_repr)
def get_model_parameters_number(model):
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params_num
def add_flops_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
# embed()
net_main_module.start_flops_count = start_flops_count.__get__(net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module)
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(net_main_module)
net_main_module.reset_flops_count()
return net_main_module
def compute_average_flops_cost(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Returns current mean flops consumption per image.
"""
flops_sum = 0
for module in self.modules():
if is_supported_instance(module):
flops_sum += module.__flops__
return flops_sum
def start_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Activates the computation of mean flops consumption per image.
Call it before you run the network.
"""
self.apply(add_flops_counter_hook_function)
def stop_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Stops computing the mean flops consumption per image.
Call whenever you want to pause the computation.
"""
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
self.apply(add_flops_counter_variable_or_reset)
def add_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
if isinstance(module, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d)):
handle = module.register_forward_hook(conv_flops_counter_hook)
elif isinstance(module, (nn.ReLU, nn.PReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6)):
handle = module.register_forward_hook(relu_flops_counter_hook)
elif isinstance(module, nn.Linear):
handle = module.register_forward_hook(linear_flops_counter_hook)
elif isinstance(module, (nn.BatchNorm2d)):
handle = module.register_forward_hook(bn_flops_counter_hook)
else:
handle = module.register_forward_hook(empty_flops_counter_hook)
module.__flops_handle__ = handle
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
module.__flops__ = 0
# ---- Internal functions
def is_supported_instance(module):
if isinstance(module,
(
nn.Conv2d, nn.ConvTranspose2d,
nn.BatchNorm2d,
nn.Linear,
nn.ReLU, nn.PReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6,
)):
return True
return False
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
# input = input[0]
batch_size = output.shape[0]
output_dims = list(output.shape[2:])
kernel_dims = list(conv_module.kernel_size)
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = np.prod(kernel_dims) * in_channels * filters_per_channel
active_elements_count = batch_size * np.prod(output_dims)
overall_conv_flops = int(conv_per_position_flops) * int(active_elements_count)
# overall_flops = overall_conv_flops
conv_module.__flops__ += int(overall_conv_flops)
# conv_module.__output_dims__ = output_dims
def relu_flops_counter_hook(module, input, output):
active_elements_count = output.numel()
module.__flops__ += int(active_elements_count)
# print(module.__flops__, id(module))
# print(module)
def linear_flops_counter_hook(module, input, output):
input = input[0]
if len(input.shape) == 1:
batch_size = 1
module.__flops__ += int(batch_size * input.shape[0] * output.shape[0])
else:
batch_size = input.shape[0]
module.__flops__ += int(batch_size * input.shape[1] * output.shape[1])
def bn_flops_counter_hook(module, input, output):
# input = input[0]
# TODO: need to check here
# batch_flops = np.prod(input.shape)
# if module.affine:
# batch_flops *= 2
# module.__flops__ += int(batch_flops)
batch = output.shape[0]
output_dims = output.shape[2:]
channels = module.num_features
batch_flops = batch * channels * np.prod(output_dims)
if module.affine:
batch_flops *= 2
module.__flops__ += int(batch_flops)
# ---- Count the number of convolutional layers and the activation
def add_activation_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
# embed()
net_main_module.start_activation_count = start_activation_count.__get__(net_main_module)
net_main_module.stop_activation_count = stop_activation_count.__get__(net_main_module)
net_main_module.reset_activation_count = reset_activation_count.__get__(net_main_module)
net_main_module.compute_average_activation_cost = compute_average_activation_cost.__get__(net_main_module)
net_main_module.reset_activation_count()
return net_main_module
def compute_average_activation_cost(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Returns current mean activation consumption per image.
"""
activation_sum = 0
num_conv = 0
for module in self.modules():
if is_supported_instance_for_activation(module):
activation_sum += module.__activation__
num_conv += module.__num_conv__
return activation_sum, num_conv
def start_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Activates the computation of mean activation consumption per image.
Call it before you run the network.
"""
self.apply(add_activation_counter_hook_function)
def stop_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Stops computing the mean activation consumption per image.
Call whenever you want to pause the computation.
"""
self.apply(remove_activation_counter_hook_function)
def reset_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
self.apply(add_activation_counter_variable_or_reset)
def add_activation_counter_hook_function(module):
if is_supported_instance_for_activation(module):
if hasattr(module, '__activation_handle__'):
return
if isinstance(module, (nn.Conv2d, nn.ConvTranspose2d)):
handle = module.register_forward_hook(conv_activation_counter_hook)
module.__activation_handle__ = handle
def remove_activation_counter_hook_function(module):
if is_supported_instance_for_activation(module):
if hasattr(module, '__activation_handle__'):
module.__activation_handle__.remove()
del module.__activation_handle__
def add_activation_counter_variable_or_reset(module):
if is_supported_instance_for_activation(module):
module.__activation__ = 0
module.__num_conv__ = 0
def is_supported_instance_for_activation(module):
if isinstance(module,
(
nn.Conv2d, nn.ConvTranspose2d, nn.Conv1d, nn.Linear, nn.ConvTranspose1d
)):
return True
return False
def conv_activation_counter_hook(module, input, output):
"""
Calculate the activations in the convolutional operation.
Reference: Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár, Designing Network Design Spaces.
:param module:
:param input:
:param output:
:return:
"""
module.__activation__ += output.numel()
module.__num_conv__ += 1
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def upsample_flops_counter_hook(module, input, output):
output_size = output[0]
batch_size = output_size.shape[0]
output_elements_count = batch_size
for val in output_size.shape[1:]:
output_elements_count *= val
module.__flops__ += int(output_elements_count)
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += int(np.prod(input.shape))
def dconv_flops_counter_hook(dconv_module, input, output):
input = input[0]
batch_size = input.shape[0]
output_dims = list(output.shape[2:])
m_channels, in_channels, kernel_dim1, _, = dconv_module.weight.shape
out_channels, _, kernel_dim2, _, = dconv_module.projection.shape
# groups = dconv_module.groups
# filters_per_channel = out_channels // groups
conv_per_position_flops1 = kernel_dim1 ** 2 * in_channels * m_channels
conv_per_position_flops2 = kernel_dim2 ** 2 * out_channels * m_channels
active_elements_count = batch_size * np.prod(output_dims)
overall_conv_flops = (conv_per_position_flops1 + conv_per_position_flops2) * active_elements_count
overall_flops = overall_conv_flops
dconv_module.__flops__ += int(overall_flops)
# dconv_module.__output_dims__ = output_dims