Skip to content

Project training recurrent neural networks to learn to verify sentences with quantifiers with the goal of explaining semantic universals

License

Notifications You must be signed in to change notification settings

vishwali/quantifier-rnn-learning

 
 

Repository files navigation

Quantifier RNN learning (NLU project)

Run on HPC

First, follow the instructions on "Logging in to the NYU HPC Clusters" to log into the Prince cluster.

If you already have an account and just want to run things, you should be able to log into Prince like this:

$ ssh -L 8026:prince:22 netID@gw.hpc.nyu.edu
netID@hpc-bastion1~>$ ssh prince

Next, clone the GitHub repository and load the following modules:

[netID@log-0 ~]$ git clone https://github.com/mvishwali28/quantifier-rnn-learning
[netID@log-0 ~]$ module load anaconda3/4.3.1 cuda/9.0.176 cudnn/9.0v7.0.5
[netID@log-0 ~]$ module list  # Check currently loaded modules

Create a new conda environment, activate it, and install the required dependencies using pip:

[netID@log-0 ~]$ conda create -n nlu python=3.6
[netID@log-0 ~]$ source activate nlu
(nlu) [netID@log-0 ~]$ pip install pandas tensorflow-gpu

Interactive

Use srun to request a bash command shell session with 1 GPU node:

(nlu) [netID@log-0 ~]$ srun --gres=gpu:1 --pty /bin/bash

Run the training script:

(nlu) [netID@gpu-xx ~]$ cd quantifier-rnn-learning
(nlu) [netID@gpu-xx quantifier-rnn-learning]$ python quant_verify.py --exp one_a --out_path data/<dir>  # Replace <dir> with the name of your desired output directory

Using sbatch

Alternatively, modify and run the bash script using sbatch:

(nlu) [netID@log-0 quantifier-rnn-learning]$ sbatch run-exp_x_x.sh
Submitted batch job 123

Slurm will then generate a log file containing all the output called slurm-123.out in the same directory. An output file will be generated in the same directory that would have the results from the terminal. Once you have a job running on HPC, here are some useful commands:

  • squeue -u <user_ID>: list all your jobs and allocated resources
  • scancel <job_ID>: end/cancel a job
  • scancel -u <user_ID>: cancel all your jobs
  • sinfo: get current status of all GPUs and CPUs

You can also ssh into the GPU node your job is running on and check how much processing power you are using:

(nlu) [netID@log-0 quantifier-rnn-learning]$ ssh gpu-xx
(nlu) [netID@gpu-xx ~]$ nvidia-smi
Sun Apr 15 21:15:43 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.81                 Driver Version: 384.81                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           On   | 00000000:0F:00.0 Off |                    0 |
| N/A   34C    P0    75W / 149W |  10896MiB / 11439MiB |      0%   E. Process |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      3483      C   python                                     10883MiB |
+-----------------------------------------------------------------------------+

Other useful Linux commands:

  • watch
  • top
  • htop
  • pstree

When you're done, exit the GPU node, deactivate the environment, and log out of Prince:

(nlu) [netID@gpu-xx quantifier-rnn-learning]$ exit
(nlu) [netID@log-0 ~]$ source deactivate
[netID@log-0 ~]$ logout

Divide and conquer

Double check your bash script before you run it.

! Make sure to replace netID with your actual ID so you can receive email notifications when your jobs are finished.

! Make sure you used module load to load the Anaconda/CUDA modules, otherwise TensorFlow will not actually run on the GPU.

run-exp_1_x.sh trains with 10k training samples. run-exp_1_2_x.sh trains with 30k training samples. The output files in both scripts are different, so they can be run in parallel.

  • run-exp_1_a.sh : Melanie
  • run-exp_1_b.sh : Ildi
  • run-exp_1_c.sh : Sheng-Fu
  • run-exp_1_d.sh : Vishwali
  • run-exp_1_e.sh : Melanie or Vishwali

About

Project training recurrent neural networks to learn to verify sentences with quantifiers with the goal of explaining semantic universals

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.1%
  • R 5.0%
  • Shell 4.9%