-
Notifications
You must be signed in to change notification settings - Fork 0
/
carro-2011.mmt
880 lines (834 loc) · 21.8 KB
/
carro-2011.mmt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
[[model]]
name: carro-2011
version: 20240904
mmt_authors: Michael Clerx
display_name: Carro et al., 2011
desc: """
The 2011 model of the human ventricular AP by Carro et al. [1], based
on the model by Grandi et al. [2].
This implementation is based on the CellML code provided by the study
authors [3]. It was checked against the original code numerically by
comparing the calculated derivatives.
The stimulus was set to 0.5 ms and approximately twice the threshold
value for depolarisation.
References:
[1] Carro, J., Rodríguez, J. F., Laguna, P., & Pueyo, E. (2011). A human
ventricular cell model for investigation of cardiac arrhythmias under
hyperkalaemic conditions. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 369(1954),
4205-4232.
https://doi.org/10.1098/rsta.2011.0127
[2] Grandi, E., Pasqualini, F. S., & Bers, D. M. (2010). A novel
computational model of the human ventricular action potential and Ca
transient. Journal of Molecular and Cellular Cardiology, 48, 112-121.
https://doi.org/10.1016/j.yjmcc.2009.09.019
[3] https://models.physiomeproject.org/workspace/66b
Accessed on 2024-09-03
"""
# Initial values
membrane.V = -84.13368
ina.m = 2.163678e-3
ina.h = 0.713497
ina.j = 0.7128671
ical.d = 1.871177e-6
ical.f = 0.9804391
ical.f2 = 0.999401
ical.fCa_jn = 2.847118e-2
ical.fCa_sl = 1.692189e-2
ito.xs = 3.584727e-4
ito.ys = 0.8087629
ito.xf = 3.584625e-4
ito.yf = 0.9999976
ikr.x = 1.516232e-2
iks.x = 3.549354e-3
ryr.r = 0.8886338
ryr.o = 1.126209e-6
ryr.i = 1.411382e-7
nabss.NaB_jn = 3.796195
nabss.NaB_sl = 0.8283308
cabct.TnCL = 9.757237e-3
cabct.TnCHCa = 0.1225914
cabct.TnCHMg = 8.12201e-3
cabct.CaM = 3.267494e-4
cabct.MyoCa = 2.520383e-3
cabct.MyoMg = 0.1369529
cabct.SRB = 2.373753e-3
cabss.SLL_jn = 8.563314e-3
cabss.SLL_sl = 1.097424e-2
cabss.SLH_jn = 8.053908e-2
cabss.SLH_sl = 0.1235381
cabsr.Csqn = 1.258048
cabsr.Ca_sr = 0.6093596
sodium.Na_jn = 10.07931
sodium.Na_sl = 10.0781
sodium.Na_i = 10.07825
calcium.Ca_jn = 2.038197e-4
calcium.Ca_sl = 1.184305e-4
calcium.Ca_i = 9.658067e-5
#
# Simulation
#
[engine]
time = 0 [ms]
in [ms]
bind time
pace = 0
bind pace
#
# Cell type
#
[mode]
epi = 1
desc: 1 For epicardial cell, 0 for endocardial cell
#
# Membrane potential
#
[membrane]
use stimulus.i_stim
dot(V) = -(i_ion + i_stim)
in [mV]
label membrane_potential
I_Na_tot = sodium.I_Na_tot_jn + sodium.I_Na_tot_sl
in [A/F]
I_Ca_tot = calcium.I_Ca_tot_jn + calcium.I_Ca_tot_sl
in [A/F]
I_Cl_tot = iclca.IClCa + iclb.IClB
in [A/F]
i_ion = I_Na_tot + I_Cl_tot + I_Ca_tot + potassium.I_K_tot
in [A/F]
label cellular_current
#
# Stimulus current
#
[stimulus]
i_stim = engine.pace * amplitude
in [A/F]
label stimulus_current
amplitude = -40 [A/F] * 2
in [A/F]
#
# Physical constants
#
# Unchanged from [2].
#
[phys]
F = 96485 [C/mol]
in [C/mol]
R = 8314 [mJ/mol/K]
in [mJ/mol/K]
T = 310 [K]
in [K]
RTF = R * T / F
in [mV]
FRT = F / R / T
in [1/mV]
#
# Cell geometry
#
# Unchanged from [2].
#
[cell]
C = 1.381e-10 [F]
in [F]
L = 100 [um]
in [um]
R = 10.25 [um]
in [um]
pi = 3.14159265358979312
Vcell = pi * R^2 * L * 1e-15 [L/um^3]
in [L]
Vmyo = 0.65 * Vcell
in [L]
Vsr = 0.035 * Vcell
in [L]
Vsl = 0.02 * Vcell
in [L]
Vjn = 0.000539 * Vcell
in [L]
fjn = 0.11
desc: Fraction of currents in junctional compartment
fsl = 1 - fjn
desc: Fraction of currents in subsarcolemmal compartment
fjn_CaL = 0.9
desc: Fraction of ICaL in junctional compartment
fsl_CaL = 1 - fjn_CaL
desc: Fraction of ICaL in subsarcolemmal compartment
#
# Fixed ion concentrations
#
[ion]
Na_o = 140 [mM]
desc: Extracellular Na
in [mM]
K_o = 5.4 [mM]
desc: Extracellular K
in [mM]
K_i = 138 [mM] # Increased from 120 in [2]
desc: Intracellular K
in [mM]
Ca_o = 1.8 [mM]
desc: Extracellular Ca
in [mM]
Cl_i = 15 [mM]
desc: Intracellular Cl
in [mM]
Cl_o = 150 [mM]
desc: Extracellular Cl
in [mM]
Mg_i = 1 [mM]
desc: Intracellular Mg
in [mM]
#
# Reversal potentials
#
# Unchanged from [2].
#
[rev]
use phys.RTF
ENa_jn = RTF * log(ion.Na_o / sodium.Na_jn)
in [mV]
ENa_sl = RTF * log(ion.Na_o / sodium.Na_sl)
in [mV]
ECa_jn = 0.5 * RTF * log(ion.Ca_o / calcium.Ca_jn)
in [mV]
ECa_sl = 0.5 * RTF * log(ion.Ca_o / calcium.Ca_sl)
in [mV]
ECl = RTF * log(ion.Cl_i / ion.Cl_o)
in [mV]
EK = RTF * log(ion.K_o / ion.K_i)
in [mV]
EKs = RTF * log((ion.K_o + pNaK * ion.Na_o) / (ion.K_i + pNaK * sodium.Na_i))
in [mV]
pNaK = 0.01833
#
# Fast sodium current
#
# Rescaled from [2], but otherwise unchanged.
#
[ina]
use membrane.V
INa = INa_jn + INa_sl
in [A/F]
INa_jn = cell.fjn * gNa * m^3 * h * j * (V - rev.ENa_jn)
in [A/F]
INa_sl = cell.fsl * gNa * m^3 * h * j * (V - rev.ENa_sl)
in [A/F]
gNa = 18.86 [mS/uF]
in [mS/uF]
dot(m) = (inf - m) / tau
inf = 1 / (1 + exp(-(56.86 [mV] + V) / 9.03 [mV]))^2
tau = 0.1292 [ms] * exp(-((V + 45.79 [mV]) / 15.54 [mV])^2) + 0.06487 [ms] * exp(-((V - 4.823 [mV]) / 51.12 [mV])^2)
in [ms]
dot(h) = (inf - h) / tau
a = if(V >= -40 [mV], 0 [1/ms],
0.057 [1/ms] * exp(-(V + 80 [mV]) / 6.8 [mV]))
in [1/ms]
b = if(V >= -40 [mV],
5.9231 [1/ms] / (1 + exp(-(V + 10.66 [mV]) / 11.1 [mV])),
2.7 [1/ms] * exp(0.079 [1/mV] * V) + 3.1e5 [1/ms] * exp(0.3485 [1/mV] * V))
in [1/ms]
tau = 1 / (a + b)
in [ms]
inf = 1 / (1 + exp((V + 71.55 [mV]) / 7.43 [mV]))^2
dot(j) = (inf - j) / tau
a = if(V >= -40 [mV], 0 [1/ms], (
(-2.5428e4 [1/mV/ms] * exp(0.2444 [1/mV] * V) - 6.948e-6 [1/mV/ms] * exp(-0.04391 [1/mV] * V))
* (V + 37.78 [mV]) / (1 + exp(0.311 [1/mV] * (V + 79.23 [mV])))
))
in [1/ms]
b = if(V >= -40 [mV],
0.6 [1/ms] * exp(0.057 [1/mV] * V) / (1 + exp(-0.1 [1/mV] * (V + 32 [mV]))),
0.02424 [1/ms] * exp(-0.01052 [1/mV] * V) / (1 + exp(-0.1378 [1/mV] * (V + 40.14 [mV]))))
in [1/ms]
tau = 1 / (a + b)
in [ms]
inf = 1 / (1 + exp((V + 71.55 [mV]) / 7.43 [mV]))^2
#
# Background sodium current
#
# Unchanged from [2].
#
[inab]
use membrane.V
INaB = INaB_jn + INaB_sl
in [A/F]
INaB_jn = cell.fjn * gNaB * (V - rev.ENa_jn)
in [A/F]
INaB_sl = cell.fsl * gNaB * (V - rev.ENa_sl)
in [A/F]
gNaB = 0.597e-3 [mS/uF]
in [mS/uF]
#
# Na/K pump current
#
# Rescaled, but otherwise unchanged from [2].
#
[inak]
use membrane.V, phys.FRT
use ion.K_o, sodium.Na_jn, sodium.Na_sl
INaK = INaK_jn + INaK_sl
in [A/F]
INaK_jn = cell.fjn * IbarNaK * fnak * K_o / ((1 + (KmNaip / Na_jn)^4) * (K_o + KmKo))
in [A/F]
INaK_sl = cell.fsl * IbarNaK * fnak * K_o / ((1 + (KmNaip / Na_sl)^4) * (K_o + KmKo))
in [A/F]
IbarNaK = 0.99 [A/F]
in [A/F]
fnak = 1 / (1 + 0.1245 * exp(-0.1 * V * FRT) + 0.0365 * sigma * exp(-V * FRT))
sigma = (exp(ion.Na_o / 67.3 [mM]) - 1) / 7
KmKo = 1.5 [mM]
in [mM]
KmNaip = 11 [mM]
in [mM]
#
# Rapidly activating potassium current
#
# Unchanged from [2].
#
[ikr]
use membrane.V
IKr = gKr * sqrt(ion.K_o / 5.4 [mM]) * x * r * (V - rev.EK)
in [A/F]
gKr = 0.035 [mS/uF]
in [mS/uF]
label g_Kr
dot(x) = (inf - x) / tau
inf = 1 / (1 + exp(-(V + 10 [mV]) / 5 [mV]))
tau = (+ 550 [ms] / (1 + exp((-22 [mV] - V) / 9 [mV])) * 6 / (1 + exp((V + 11 [mV]) / 9 [mV]))
+ 230 [ms] / (1 + exp((V + 40 [mV]) / 20 [mV])))
in [ms]
r = 1 / (1 + exp((V + 74 [mV]) / 24 [mV]))
#
# Slowly activating potassium current
#
# Unchanged from [2].
#
[iks]
use membrane.V
IKs = IKs_jn + IKs_sl
in [A/F]
IKs_jn = cell.fjn * gKs * x^2 * (V - rev.EKs)
in [A/F]
IKs_sl = cell.fsl * gKs * x^2 * (V - rev.EKs)
in [A/F]
gKs = 0.0035 [mS/uF]
in [mS/uF]
dot(x) = (inf - x) / tau
inf = 1 / (1 + exp(-(V + 3.8 [mV]) / 14.25 [mV]))
tau = 990.1 [ms] / (1 + exp(-(V + 2.436 [mV]) / 14.12 [mV]))
in [ms]
#
# Plateau potassium current
#
# No longer divided into (unused) jn and sl component, so essentially
# unchanged from [2].
#
[ikp]
use membrane.V
IKp = gKp * kp * (V - rev.EK)
in [A/F]
gKp = 0.002 [mS/uF]
in [mS/uF]
kp = 1 / (1 + exp(7.488 - V / 5.98 [mV]))
#
# Transient outward potassium current (fast and slow components)
#
# Unchanged from [2].
#
[ito]
use membrane.V
Ito = Itos + Itof
in [A/F]
Itof = gtof * xf * yf * (V - rev.EK)
in [A/F]
Itos = gtos * xs * ys * (V - rev.EK)
in [A/F]
gtof = if(mode.epi == 1, 0.1144 [mS/uF], 0.001404 [mS/uF])
in [mS/uF]
gtos = if(mode.epi == 1, 0.0156 [mS/uF], 0.037596 [mS/uF])
in [mS/uF]
x_inf = 1 / (1 + exp((V - 19 [mV]) / -13 [mV]))
y_inf = 1 / (1 + exp((V + 19.5 [mV]) / 5 [mV]))
dot(xf) = (x_inf - xf) / tau
tau = 8.5 [ms] * exp(-((V + 45 [mV]) / 50 [mV])^2) + 0.5 [ms]
in [ms]
dot(xs) = (x_inf - xs) / tau
tau = 9 [ms] / (1 + exp((V + 3 [mV]) / 15 [mV])) + 0.5 [ms]
in [ms]
dot(yf) = (y_inf - yf) / tau
tau = 85 [ms] * exp(-(V + 40 [mV])^2 / 220 [mV^2]) + 7 [ms]
in [ms]
dot(ys) = (y_inf - ys) / tau
tau = 800 [ms] / (1 + exp((V + 60 [mV]) / 10 [mV])) + 30 [ms]
in [ms]
#
# Inward recitifer potassium current
#
# Rescaled and with altered rectification.
#
[ik1]
use membrane.V, rev.EK
IK1 = gK1 * sqrt(ion.K_o / 5.4 [mM]) * inf * (V - EK)
in [A/F]
gK1 = 0.57153 [mS/uF]
in [mS/uF]
inf = a / (a + b)
a = 4.0938 / (1 + exp(0.12165 [1/mV] * (V - EK - 49.9344 [mV])))
b = (15.7197 * exp(0.06739 [1/mV] * (V - EK - 3.2571 [mV])) + exp(0.06175 [1/mV] * (V - EK - 594.31 [mV]))) / (1 + exp(-0.16285 [1/mV] * (V - EK + 14.2067 [mV])))
#
# Calcium activated chloride current
#
# Unchanged from [2].
#
[iclca]
use membrane.V
IClCa = IClCa_jn + IClCa_sl
in [A/F]
IClCa_jn = cell.fjn * gClCa / (1 + KdClCa / calcium.Ca_jn) * (V - rev.ECl)
in [A/F]
IClCa_sl = cell.fsl * gClCa / (1 + KdClCa / calcium.Ca_sl) * (V - rev.ECl)
in [A/F]
gClCa = 0.054813 [mS/uF]
in [mS/uF]
KdClCa = 0.1 [mM]
in [mM]
#
# Background chloride current
#
# Unchanged from [2].
#
[iclb]
IClB = gClB * (membrane.V - rev.ECl)
in [A/F]
gClB = 9e-3 [mS/uF]
in [mS/uF]
#
# L-type calcium current
#
# Updated voltage-dependent gates, and added new f2 gate.
#
[ical]
use membrane.V
use phys.F, phys.FRT
use calcium.Ca_jn, calcium.Ca_sl, ion.Ca_o
use sodium.Na_jn, sodium.Na_sl, ion.Na_o
use ion.K_i, ion.K_o
use cell.fjn_CaL, cell.fsl_CaL
ICaL = ICaL_Ca + ICaL_Na + ICaL_K
in [A/F]
ICaL_Ca = ICaL_Ca_jn + ICaL_Ca_sl
in [A/F]
ICaL_Ca_jn = fjn_CaL * ibarca_jn * d * f * f2 * (1 - fCa_jn)
in [A/F]
ICaL_Ca_sl = fsl_CaL * ibarca_sl * d * f * f2 * (1 - fCa_sl)
in [A/F]
ICaL_Na = ICaL_Na_jn + ICaL_Na_sl
in [A/F]
ICaL_Na_jn = fjn_CaL * ibarna_jn * d * f * f2 * (1 - fCa_jn)
in [A/F]
ICaL_Na_sl = fsl_CaL * ibarna_sl * d * f * f2 * (1 - fCa_sl)
in [A/F]
ICaL_K = ibark * d * f * f2 * (fjn_CaL * (1 - fCa_jn) + fsl_CaL * (1 - fCa_sl))
in [A/F]
# Permeability
PCa = 1.9887e-4 [L/F/ms]
in [L/F/ms]
PNa = 3.0375e-9 [L/F/ms]
in [L/F/ms]
PK = 5.4675e-8 [L/F/ms]
in [L/F/ms]
# Driving terms (gammas and 4s have all been absorbed into the P parameters)
ibarca_jn = PCa * V * F * FRT * (Ca_jn * exp(2 * V * FRT) - Ca_o) / (exp(2 * V * FRT) - 1)
in [A/F]
ibarca_sl = PCa * V * F * FRT * (Ca_sl * exp(2 * V * FRT) - Ca_o) / (exp(2 * V * FRT) - 1)
in [A/F]
ibarna_jn = PNa * V * F * FRT * (Na_jn * exp(V * FRT) - Na_o) / (exp(V * FRT) - 1)
in [A/F]
ibarna_sl = PNa * V * F * FRT * (Na_sl * exp(V * FRT) - Na_o) / (exp(V * FRT) - 1)
in [A/F]
ibark = PK * V * F * FRT * (K_i * exp(V * FRT) - K_o) / (exp(V * FRT) - 1)
in [A/F]
# Activation
dot(d) = (inf - d) / tau
inf = 1 / (1 + exp(-(V + 5 [mV]) / 6 [mV]))
tau = alpha * beta + gamma
in [ms]
alpha = 1.4 [ms] / (1 + exp((-35 [mV] - V) / 13 [mV])) + 0.25 [ms]
in [ms]
beta = 1.4 / (1 + exp((V + 5 [mV]) / 5 [mV]))
gamma = 1 [ms] / (1 + exp((50 [mV] - V) / 20 [mV]))
in [ms]
# Voltage-dependent inactivation
dot(f) = (inf - f) / tau
inf = 1 / (1 + exp((V + 20 [mV]) / 7 [mV]))
tau = alpha + beta + gamma
in [ms]
alpha = 1102.5 [ms] * exp(-((V + 27 [mV]) / 15 [mV])^2)
in [ms]
beta = 200 [ms] / (1 + exp((13 [mV] - V) / 10 [mV]))
in [ms]
gamma = 180 [ms] / (1 + exp((V + 30 [mV]) / 10 [mV])) + 20 [ms]
in [ms]
dot(f2) = (inf - f2) / tau
inf = 0.67 / (1 + exp((V + 35 [mV]) / 7 [mV])) + 0.33
tau = alpha + beta + gamma
in [ms]
alpha = 300 [ms] * exp(-(V + 25 [mV])^2 / 170 [mV^2])
in [ms]
beta = 31 [ms] / (1 + exp((25 [mV] - V) / 10 [mV]))
in [ms]
gamma = 16 [ms] / (1 + exp((V + 30 [mV]) / 10 [mV]))
in [ms]
# Calcium-dependent inactivation (gate = 1 minus these)
dot(fCa_jn) = 1.7 [1/mM/ms] * Ca_jn * (1 - fCa_jn) - 11.9e-3 [1/ms] * fCa_jn
dot(fCa_sl) = 1.7 [1/mM/ms] * Ca_sl * (1 - fCa_sl) - 11.9e-3 [1/ms] * fCa_sl
#
# Sodium/Calcium exchanger current
#
# Unchanged from [2].
#
[inaca]
use membrane.V
use phys.FRT
use sodium.Na_jn, sodium.Na_sl, ion.Na_o
use calcium.Ca_jn, calcium.Ca_sl, ion.Ca_o
INaCa = INaCa_jn + INaCa_sl
in [A/F]
INaCa_jn = cell.fjn * IbarNaCa * Ka * (s1 - s2) / (s3 * (1 + ksat * exp((nu - 1) * V * FRT)))
in [A/F]
s1 = exp(nu * V * FRT) * Na_jn^3 * Ca_o
in [mM^4]
s2 = exp((nu - 1) * V * FRT) * Na_o^3 * Ca_jn
in [mM^4]
s3 = KmCai * Na_o^3 * (1 + (Na_jn / KmNai)^3) + KmNao^3 * Ca_jn * (1 + Ca_jn / KmCai) + KmCao * Na_jn^3 + Na_jn^3 * Ca_o + Na_o^3 * Ca_jn
in [mM^4]
Ka = 1 / (1 + (Kdact / Ca_jn)^2)
INaCa_sl = cell.fsl * IbarNaCa * Ka * (s1 - s2) / (s3 * (1 + ksat * exp((nu - 1) * V * FRT)))
in [A/F]
s1 = exp(nu * V * FRT) * Na_sl^3 * Ca_o
in [mM^4]
s2 = exp((nu - 1) * V * FRT) * Na_o^3 * Ca_sl
in [mM^4]
s3 = KmCai * Na_o^3 * (1 + (Na_sl / KmNai)^3) + KmNao^3 * Ca_sl * (1 + Ca_sl / KmCai) + KmCao * Na_sl^3 + Na_sl^3 * Ca_o + Na_o^3 * Ca_sl
in [mM^4]
Ka = 1 / (1 + (Kdact / Ca_sl)^2)
IbarNaCa = 4.5 [A/F]
in [A/F]
Kdact = 0.15e-3 [mM]
in [mM]
KmNai = 12.29 [mM]
in [mM]
KmNao = 87.5 [mM]
in [mM]
KmCai = 0.00359 [mM]
in [mM]
KmCao = 1.3 [mM]
in [mM]
ksat = 0.32
nu = 0.27
#
# Sarcolemmal calcium pump current
#
# Unchanged from [2].
#
[ipca]
IpCa = IpCa_jn + IpCa_sl
in [A/F]
IpCa_jn = cell.fjn * Ibar_PMCA * a / (a + b)
in [A/F]
a = (calcium.Ca_jn / 1 [mM])^1.6
IpCa_sl = cell.fsl * Ibar_PMCA * a / (a + b)
in [A/F]
a = (calcium.Ca_sl / 1 [mM])^1.6
b = (KmPCa / 1 [mM])^1.6
KmPCa = 0.0005 [mM]
in [mM]
Ibar_PMCA = 0.0673 [A/F]
in [A/F]
#
# Background calcium current
#
# Unchanged from [2].
#
[icab]
use membrane.V
ICaB = ICaB_jn + ICaB_sl
in [A/F]
ICaB_jn = cell.fjn * gCaB * (V - rev.ECa_jn)
in [A/F]
ICaB_sl = cell.fsl * gCaB * (V - rev.ECa_sl)
in [A/F]
gCaB = 5.513e-4 [mS/uF]
in [mS/uF]
#
# SR calcium release
#
# Unchanged from [2].
#
[ryr]
use calcium.Ca_jn, cabsr.Ca_sr
J_SRCarel = ks * o * (Ca_sr - Ca_jn)
in [mM/ms]
ks = 25 [1/ms]
in [1/ms]
kom = 0.06 [1/ms]
in [1/ms]
kim = 0.005 [1/ms]
in [1/ms]
kiCa = 0.5 [1/mM/ms]
in [1/mM/ms]
koCa = 10 [1/mM^2/ms]
in [1/mM^2/ms]
ec50SR = 0.45 [mM]
in [mM]
MaxSR = 15
MinSR = 1
kCaSR = MaxSR - (MaxSR - MinSR) / (1 + (ec50SR / Ca_sr)^2.5)
koSRCa = koCa / kCaSR
in [1/mM^2/ms]
kiSRCa = kiCa * kCaSR
in [1/mM/ms]
dot(r) = kim * ri - kiSRCa * Ca_jn * r - (koSRCa * Ca_jn^2 * r - kom * o)
dot(o) = koSRCa * Ca_jn^2 * r - kom * o - (kiSRCa * Ca_jn * o - kim * i)
dot(i) = kiSRCa * Ca_jn * o - kim * i - (kom * i - koSRCa * Ca_jn^2 * ri)
ri = 1 - r - o - i
#
# SR calcium pump
#
# Unchanged from [2] (except Q factor removed)
#
[serca]
use calcium.Ca_i, cabsr.Ca_sr
J_serca = Vmax * ((Ca_i / Kmf)^h - (Ca_sr / Kmr)^h) / (1 + (Ca_i / Kmf)^h + (Ca_sr / Kmr)^h)
in [mM/ms]
Vmax = 5.3114e-3 [mM/ms]
in [mM/ms]
Kmr = 1.7 [mM]
in [mM]
Kmf = 0.246e-3 [mM]
in [mM]
h = 1.787
#
# SR calcium leak
#
# Unchanged from [2].
#
[caleak]
use cabsr.Ca_sr, calcium.Ca_jn
J_SRleak = 5.348e-6 [1/ms] * (Ca_sr - Ca_jn)
in [mM/ms]
#
# Cytosolic calcium buffering
#
# Unchanged from [2].
#
[cabct]
use cell.Vmyo, cell.Vjn, cell.Vsl
use calcium.Ca_i, calcium.Ca_jn, calcium.Ca_sl
use cabss.J_CaB_jn, cabss.J_CaB_sl
use ion.Mg_i
J_CaB_cytosol = dot(TnCL) + dot(TnCHCa) + dot(TnCHMg) + dot(CaM) + dot(MyoCa) + dot(MyoMg) + dot(SRB)
in [mM/ms]
# TnCl
Bmax_TnClow = 0.07 [mM]
in [mM]
koff_tncl = 19.6e-3 [1/ms]
in [1/ms]
kon_tncl = 32.7 [1/mM/ms]
in [1/mM/ms]
Bmax_TnChigh = 140e-3 [mM]
in [mM]
koff_tnchCa = 0.032e-3 [1/ms]
in [1/ms]
kon_tnchCa = 2.37 [1/mM/ms]
in [1/mM/ms]
koff_tnchMg = 3.33e-3 [1/ms]
in [1/ms]
kon_tnchMg = 3e-3 [1/mM/ms]
in [1/mM/ms]
dot(TnCL) = kon_tncl * Ca_i * (Bmax_TnClow - TnCL) - koff_tncl * TnCL
in [mM]
dot(TnCHCa) = kon_tnchCa * Ca_i * (Bmax_TnChigh - TnCHCa - TnCHMg) - koff_tnchCa * TnCHCa
in [mM]
dot(TnCHMg) = kon_tnchMg * Mg_i * (Bmax_TnChigh - TnCHCa - TnCHMg) - koff_tnchMg * TnCHMg
in [mM]
# Calmodulin
Bmax_CaM = 24e-3 [mM]
in [mM]
koff_cam = 238e-3 [1/ms]
in [1/ms]
kon_cam = 34 [1/mM/ms]
in [1/mM/ms]
dot(CaM) = kon_cam * Ca_i * (Bmax_CaM - CaM) - koff_cam * CaM
in [mM]
# Myosin-Ca and Myosin-Mg
Bmax_myosin = 140e-3 [mM]
in [mM]
koff_myoCa = 0.46e-3 [1/ms]
in [1/ms]
kon_myoCa = 13.8 [1/mM/ms]
in [1/mM/ms]
koff_myoMg = 0.057e-3 [1/ms]
in [1/ms]
kon_myoMg = 0.0157 [1/mM/ms]
in [1/mM/ms]
dot(MyoCa) = kon_myoCa * Ca_i * (Bmax_myosin - MyoCa - MyoMg) - koff_myoCa * MyoCa
in [mM]
dot(MyoMg) = kon_myoMg * Mg_i * (Bmax_myosin - MyoCa - MyoMg) - koff_myoMg * MyoMg
in [mM]
# SRB
Bmax_SR = 0.0171 [mM]
in [mM]
koff_sr = 60e-3 [1/ms]
in [1/ms]
kon_sr = 100 [1/mM/ms]
in [1/mM/ms]
dot(SRB) = kon_sr * Ca_i * (Bmax_SR - SRB) - koff_sr * SRB
in [mM]
#
# Junctional and SL calcium buffers
#
# Unchanged from [2].
#
[cabss]
use calcium.Ca_sl, calcium.Ca_jn
use cell.Vmyo, cell.Vsl, cell.Vjn
J_CaB_jn = dot(SLL_jn) + dot(SLH_jn)
in [mM/ms]
J_CaB_sl = dot(SLL_sl) + dot(SLH_sl)
in [mM/ms]
Bmax_SLlowjn = 4.6e-4 [mM] * Vmyo / Vjn
in [mM]
Bmax_SLlowsl = 37.4e-3 [mM] * Vmyo / Vsl
in [mM]
Bmax_SLhighjn = 1.65e-4 [mM] * Vmyo / Vjn
in [mM]
Bmax_SLhighsl = 13.4e-3 [mM] * Vmyo / Vsl
in [mM]
koff_sll = 1.3 [1/ms]
in [1/ms]
kon_sll = 100 [1/mM/ms]
in [1/mM/ms]
koff_slh = 0.03 [1/ms]
in [1/ms]
kon_slh = 100 [1/mM/ms]
in [1/mM/ms]
dot(SLL_jn) = kon_sll * Ca_jn * (Bmax_SLlowjn - SLL_jn) - koff_sll * SLL_jn
in [mM]
dot(SLL_sl) = kon_sll * Ca_sl * (Bmax_SLlowsl - SLL_sl) - koff_sll * SLL_sl
in [mM]
dot(SLH_jn) = kon_slh * Ca_jn * (Bmax_SLhighjn - SLH_jn) - koff_slh * SLH_jn
in [mM]
dot(SLH_sl) = kon_slh * Ca_sl * (Bmax_SLhighsl - SLH_sl) - koff_slh * SLH_sl
in [mM]
#
# SR calcium buffer
#
# Unchanged from [2].
#
[cabsr]
use cell.Vmyo, cell.Vsr
koff_csqn = 65 [1/ms]
in [1/ms]
kon_csqn = 100 [1/mM/ms]
in [1/mM/ms]
Bmax_Csqn = 0.14 [mM] * Vmyo / Vsr
in [mM]
dot(Csqn) = kon_csqn * Ca_sr * (Bmax_Csqn - Csqn) - koff_csqn * Csqn
in [mM]
dot(Ca_sr) = serca.J_serca - (caleak.J_SRleak * Vmyo / Vsr + ryr.J_SRCarel) - dot(Csqn)
in [mM]
#
# Calcium concentrations
#
# Unchanged from [2].
#
[calcium]
use cell.C, phys.F
use cell.Vjn, cell.Vsl, cell.Vmyo, cell.Vsr
use serca.J_serca, ryr.J_SRCarel, caleak.J_SRleak
use cabct.J_CaB_cytosol, cabss.J_CaB_jn, cabss.J_CaB_sl
J_Ca_jnsl = 8.2413e-13 [L/ms]
in [L/ms]
J_Ca_slmyo = 3.7243e-12 [L/ms]
in [L/ms]
I_Ca_tot_jn = ical.ICaL_Ca_jn + icab.ICaB_jn + ipca.IpCa_jn - 2 * inaca.INaCa_jn
in [A/F]
I_Ca_tot_sl = ical.ICaL_Ca_sl + icab.ICaB_sl + ipca.IpCa_sl - 2 * inaca.INaCa_sl
in [A/F]
dot(Ca_i) = -J_serca * Vsr / Vmyo - J_CaB_cytosol + J_Ca_slmyo / Vmyo * (Ca_sl - Ca_i)
in [mM]
dot(Ca_jn) = -I_Ca_tot_jn * C / (Vjn * 2 * F) + J_Ca_jnsl / Vjn * (Ca_sl - Ca_jn) - J_CaB_jn + J_SRCarel * Vsr / Vjn + J_SRleak * Vmyo / Vjn
in [mM]
dot(Ca_sl) = -I_Ca_tot_sl * C / (Vsl * 2 * F) + J_Ca_jnsl / Vsl * (Ca_jn - Ca_sl) + J_Ca_slmyo / Vsl * (Ca_i - Ca_sl) - J_CaB_sl
in [mM]
#
# Sodium buffering
#
# Unchanged from [2].
#
[nabss]
Bmax_Na_jn = 7.561 [mM]
in [mM]
Bmax_Na_sl = 1.65 [mM]
in [mM]
koff_na = 1e-3 [1/ms]
in [1/ms]
kon_na = 1e-4 [1/mM/ms]
in [1/mM/ms]
dot(NaB_jn) = kon_na * sodium.Na_jn * (Bmax_Na_jn - NaB_jn) - koff_na * NaB_jn
in [mM]
dot(NaB_sl) = kon_na * sodium.Na_sl * (Bmax_Na_sl - NaB_sl) - koff_na * NaB_sl
in [mM]
#
# Sodium concentrations
#
# Different Js compared to [2]
#
[sodium]
use cell.C, phys.F
use cell.Vjn, cell.Vsl, cell.Vmyo
J_Na_jnsl = 1.8313e-14 [m^3/s]
in [m^3/s]
J_Na_slmyo = 1.6386e-12 [m^3/s]
in [m^3/s]
I_Na_tot_jn = ina.INa_jn + inab.INaB_jn + 3 * inaca.INaCa_jn + 3 * inak.INaK_jn + ical.ICaL_Na_jn
in [A/F]
I_Na_tot_sl = ina.INa_sl + inab.INaB_sl + 3 * inaca.INaCa_sl + 3 * inak.INaK_sl + ical.ICaL_Na_sl
in [A/F]
dot(Na_jn) = -I_Na_tot_jn * C / (Vjn * F) + J_Na_jnsl / Vjn * (Na_sl - Na_jn) - dot(nabss.NaB_jn)
in [mM]
dot(Na_sl) = -I_Na_tot_sl * C / (Vsl * F) + J_Na_jnsl / Vsl * (Na_jn - Na_sl) + J_Na_slmyo / Vsl * (Na_i - Na_sl) - dot(nabss.NaB_sl)
in [mM]
dot(Na_i) = J_Na_slmyo / Vmyo * (Na_sl - Na_i)
in [mM]
#
# Potassium concentration
#
# Unchanged from [2].
#
[potassium]
I_K_tot = ito.Ito + ikr.IKr + iks.IKs + ik1.IK1 - 2 * inak.INaK + ical.ICaL_K + ikp.IKp
in [A/F]
[[protocol]]
# Level Start Length Period Multiplier
1 50 0.5 1000 0
[[script]]
import matplotlib.pyplot as plt
import myokit
# Get model and protocol, create simulation
m = get_model()
p = get_protocol()
s = myokit.Simulation(m, p)
# Run simulation
s.pre(10*1000)
d = s.run(2000, log=['engine.time', 'membrane.V', 'calcium.Ca_i'])
d = d.npview()
d['engine.time'] /= 1e3
# Display the results
plt.figure(figsize=(9, 7))
ax = plt.subplot(2, 1, 1)
ax.plot(d.time(), d['membrane.V'])
ax = plt.subplot(2, 1, 2)
ax.plot(d.time(), d['calcium.Ca_i'], label='Ca_i')
plt.show()