forked from asrivathsan/miniBarcoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminiBarcoder.py
800 lines (705 loc) · 29.5 KB
/
miniBarcoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
# minibarcoder: a pipeline for BLAST based read identifications
# Copyright 2017 Amrita Srivathsan
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# Contact: asrivathsan@gmail.com
import sys,os,fileinput,re,time,numpy,argparse,random
from distutils.spawn import find_executable
from collections import Counter
parser=argparse.ArgumentParser(description='Script for obtaining barcodes')
parser.add_argument('-f','--infasta',help='Path to input fasta file',dest="infasta",required=True)
parser.add_argument('-d','--demfile',help='Path to demultiplexing file',dest="demfile",required=True)
parser.add_argument('-o','--outdir',help='set output directory path',dest="outdir",required=True)
parser.add_argument('-l','--minlen',help='exclude barcode sequences identified that are shorter than specified length',dest="minlen",required=True)
parser.add_argument('-m','--mode',help='run with unique tag mode (1) or dual tag mode (2)',dest="mode",default="2")
parser.add_argument('-mm','--mismatch',type=int,choices=range(0,6),help='number of mismatches allowed in tags, must be <=5, default 2',dest="mismatch",default=2)
parser.add_argument('-e','--evalue',help='evalue for primer search using glsearch36,default 1e+6',dest="evalue",default="1000000")
parser.add_argument('-g','--gaps',help='number of gaps allowed for primer identification, default 5',dest="gaps",default="5")
parser.add_argument('-D','--maxdepth',type=int,help='set max depth per coverage to improve speed, default 100, must be >2',dest="maxdepth",default=100)
parser.add_argument('-t','--threads',help='number of threads for glsearch and mafft',dest="threads",default="4")
parser.add_argument('-bl','--barcodelength',type=int,help='estimated barcode length, used for unique tag mode only, please keep it slightly shorter than actual barcode length, due to indel errors',dest="blen",default="300")
args=parser.parse_args()
def is_inpath(toolname):
return find_executable(toolname) is not None
if is_inpath("glsearch36")==False:
print "glsearch36 is not in path"
sys.exit()
if is_inpath("mafft")==False:
print "mafft is not in path"
sys.exit()
if os.path.isdir(args.outdir):
print "output directory exists, please delete or name another"
sys.exit()
else:
os.system("mkdir "+args.outdir)
# checks length of file to ensure the file is not empty
def chklen(inputfile):
with open(inputfile) as input:
l=input.readlines()
return len(l)
#reads input file and filters all sequences shorter than specified length threshold and writes output file
def parselength(i,o,length):
with open(i) as infile:
with open(o,'w') as outfile:
l=infile.readlines()
for i,j in enumerate(l):
if ">" in j:
if len(l[i+1].strip())>length:
outfile.write(j+l[i+1])
#collates information on glsearch of primer f and r and predicts start and end of barcode sequence. NEEDS RENAMING STUFF
def collate(f1,f2,f3,f4,o):
# builds dictionaries of primer positions
primerf_startdict=builddict_position(f1)
primerf_enddict=builddict_position(f2)
primerr_startdict=builddict_position(f3)
primerr_enddict=builddict_position(f4)
# identifies sequences with both primerf and primerr recovered
intdict={}
for id in list(set(primerf_startdict.keys())&set(primerr_enddict.keys())):
intdict[id]=[primerf_startdict[id],primerr_enddict[id]]
for id in list(set(primerr_startdict.keys())&set(primerf_enddict.keys())):
intdict[id]=[primerr_startdict[id],primerf_enddict[id]]
dmp=[]
for id in list(set(primerf_startdict.keys())&set(primerr_startdict.keys())):
dmp.append(id)
for id in list(set(primerf_enddict.keys())&set(primerr_enddict.keys())):
dmp.append(id)
# identifies sequences with primerf or primerr only
if args.mode=="1":
nonintdict={}
for id in list(set(primerf_startdict.keys())-set(primerr_enddict.keys())):
nonintdict[id]=[primerf_startdict[id],str(int(primerf_startdict[id])+args.blen)]
for id in list(set(primerr_startdict.keys())-set(primerf_enddict.keys())):
nonintdict[id]=[primerr_startdict[id],str(int(primerr_startdict[id])+args.blen)]
for id in list(set(primerf_enddict.keys())-set(primerr_startdict.keys())):
if int(primerf_enddict[id])-args.blen >=0:
nonintdict[id]=[str(int(primerf_enddict[id])-args.blen),primerf_enddict[id]]
for id in list(set(primerr_enddict.keys())-set(primerf_startdict.keys())):
if int(primerr_enddict[id])-args.blen >=0:
nonintdict[id]=[str(int(primerr_enddict[id])-args.blen),primerr_enddict[id]]
for id in dmp:
nonintdict.pop(id, None)
# writes output with start and end positions for retrieving sequences.
with open(o,'w') as outfile:
for each in intdict.keys():
outfile.write(each+" 1 "+ intdict[each][0]+' '+intdict[each][1]+'\n')
if args.mode=="1":
for each in nonintdict.keys():
outfile.write(each+" 1 "+ nonintdict[each][0]+' '+nonintdict[each][1]+'\n')
#parses glsearch output for each primer to get start end positions of alignments
def parseglsearch_primermatch (infilename):
with open(infilename) as infile:
l=infile.readlines()
hitseqs,hitseqs2,inseqs,inseqs2={},{},{},{}
for line in l:
m=line.split('\t')
if len(m)==12:
hitseqs[m[1]],hitseqs2[m[1]]=["",""],["",""]
inseqs[m[1]],inseqs2[m[1]]="",""
for each in l:
m=each.split('\t')
if len(m)==12:
qse, se = [int(m[6]),int(m[7])] , [int(m[8]),int(m[9])]
if qse[0]<qse[1]:
if se[0]-taglen>0:
hitseqs[m[1]][0]=se[0]-taglen
hitseqs[m[1]][1]=se[0]-1
inseqs[m[1]]=se[1]+1
else:
hitseqs2[m[1]][0]=se[1]+1
hitseqs2[m[1]][1]=se[1]+taglen
inseqs2[m[1]]=se[0]-1
with open(infilename+"parsed_f",'w') as outfile1:
with open(infilename+"start_f","w") as outfile3:
for each in hitseqs.keys():
f=[]
for v in hitseqs[each]:
if isinstance( v, ( int, long ) ) == True:
f.append(1)
if f==[1,1]:
if inseqs[each]<avglen/2 :
outfile1.write(each+' 1 '+str(hitseqs[each][0])+' '+str(hitseqs[each][1])+'\n')
outfile3.write(each+' ' + str(inseqs[each])+'\n')
with open(infilename+"parsed_r",'w') as outfile2:
with open(infilename+"start_r","w") as outfile4:
for each in hitseqs2.keys():
f=[]
for v in hitseqs2[each]:
if isinstance( v, ( int, long ) ) == True:
f.append(1)
if f==[1,1]:
if inseqs2[each]>avglen/2:
outfile2.write(each+' 2 '+str(hitseqs2[each][0])+' '+str(hitseqs2[each][1])+'\n')
outfile4.write(each+' ' + str(inseqs2[each])+'\n')
#reformats input fasta to a noninterleaved file
def reformat_minion(inputfile, outputfile):
with open(outputfile,'w') as output:
n=0
for line in fileinput.input([inputfile]):
if n==0 and ">" in line:
output.write(">"+str(n)+'\n')
elif ">" in line:
output.write("\n>"+str(n)+'\n')
else:
output.write(line.strip())
n+=1
# reversecomplments input sequence
def rev_comp(inseq,comps):
comp_seq=''
for nucl in inseq:
comp_seq=comp_seq+comps[nucl]
return comp_seq[::-1]
# given sequence, length, and orientation, function retrieves a subsection in the given orientation
def retrieve_partseq_fn(seq,range,direction):
if direction==1:
try:
return seq[range[0]-1:range[1]]
except IndexError:
pass
elif direction==2:
try:
return rev_comp(seq[range[0]-1:range[1]],comps)
except IndexError:
pass
# uses retrieve_partseq_fn for getting sections of sequences from an entire file
def retrieve_partseq(seqdict,inputfile,outfile):
with open(outfile,'w') as retrievedfile:
with open(inputfile) as startendfile:
startendlines=startendfile.readlines()
for each in startendlines:
m=each.strip().split(' ')
outseq=retrieve_partseq_fn(inputseqs[m[0]],[int(m[2]),int(m[3])],int(m[1]))
retrievedfile.write(">"+m[0]+'\n'+outseq+'\n')
#create the various possible primer sequences if a primer has an ambiguity code
def createprimers(seq,ambcodes):
seqset=[seq[0]]
for bp in seq[1:]:
newseqset=[]
for item in seqset:
for amb in ambcodes[bp]:
newseq=item+amb
newseqset.append(newseq)
seqset[:]=newseqset
return seqset
# runs glsearch36 for a given primer sequence fasta to the fasta file
def runglsearch(primerfile,infile,i,iter):
cmd="glsearch36 -m 8 -E "+args.evalue+" -T "+args.threads+" "+primerfile+" "+infile+" > "+args.outdir+"/temp"+str(i)+"_"+str(iter)+"_glsearch"
os.system(cmd)
# builds dictionary of start/end position of primer match
def builddict_position(infile):
outdict={}
with open(infile) as file1:
for each in file1.readlines():
each=each.strip()
m=each.split(" ")
outdict[m[0]]=m[1]
return outdict
# filter glsearch output to retain matches with best identity
def parse_by_id(InFileName,gapCutoff):
PassedHits=[]
# Hits that meet the overlap requirement
for line in fileinput.input([InFileName]):
if "\t" in line:
HitValues=line.split('\t')
if int(HitValues[5])<=gapCutoff:
PassedHits.append(line)
fileinput.close()
IdsWithHits={}
# Dictionary of unique ids that meet the overlap requirement
for hit in PassedHits:
HitValues=hit.split('\t')
IdsWithHits[HitValues[1]]=[]
for hit in PassedHits:
HitValues=hit.split('\t')
IdsWithHits[HitValues[1]].append(hit)
FilteredHits={}
# Dictionary of unique ids such that the hit with best ID is retained.
for ID in IdsWithHits.keys():
FilteredHits[ID]=[]
for ID in IdsWithHits.keys():
IDsublist=[]
Gaplist=[]
for hit in IdsWithHits[ID]:
HitValues=hit.split('\t')
IdentityToSubject=HitValues[4]
Identity=IdentityToSubject.strip()
IDsublist.append(float(IdentityToSubject))
BestIdentity=min(IDsublist)
for hit in IdsWithHits[ID]:
HitValues=hit.split('\t')
IdentityToSubject=HitValues[4]
IdentityToSubject=IdentityToSubject.replace('\n','')
if BestIdentity==float(IdentityToSubject):
Gaplist.append(float(HitValues[5]))
Bestgaps=min(Gaplist)
for hit in IdsWithHits[ID]:
HitValues=hit.split('\t')
IdentityToSubject=HitValues[4]
IdentityToSubject=IdentityToSubject.replace('\n','')
if BestIdentity==float(IdentityToSubject) and Bestgaps==float(HitValues[5]):
FilteredHits[ID].append(hit)
outfile=open(InFileName+".parsed.lencutoff"+str(5),'w')
for ID in FilteredHits.keys():
for hit in FilteredHits[ID]:
outfile.write(hit)
outfile.close()
def search_parse_primerseq(primerset,name,inputseqs):
print inputseqs.keys()[0:10]
findprimer(primerset,name,inputseqs)
parse_by_id(args.outdir+"/"+"all_"+name+"_primerglsearch",int(args.gaps))
os.system("rm "+args.outdir+"/temp*")
parseglsearch_primermatch(args.outdir+"/"+"all_"+name+"_primerglsearch.parsed.lencutoff5")
retrieve_partseq(inputseqs, args.outdir+"/"+"all_"+name+"_primerglsearch.parsed.lencutoff5parsed_f",args.outdir+"/"+"all_"+name+"_primerglsearch.parsed.lencutoff5parsed_f.retrieved")
retrieve_partseq(inputseqs, args.outdir+"/"+"all_"+name+"_primerglsearch.parsed.lencutoff5parsed_r",args.outdir+"/"+"all_"+name+"_primerglsearch.parsed.lencutoff5parsed_r.retrieved")
os.system("cat "+ args.outdir+"/all_"+name+"_primerglsearch.parsed.lencutoff5parsed_f.retrieved " + args.outdir+"/all_"+name+"_primerglsearch.parsed.lencutoff5parsed_r.retrieved > "+ args.outdir+"/all_"+name+"_primerglsearch.parsed.lencutoff5parsed_fr.retrieved")
with open( args.outdir+"/"+"all_"+name+"_primerglsearch.parsed.lencutoff5parsed_fr.retrieved") as primertagfile:
with open( args.outdir+"/"+"all_"+name+"_primerglsearch.parsed.lencutoff5parsed_fr.retrievedcleaned",'w') as primertagfile_cleaned:
taglines=primertagfile.readlines()
ids=[]
seqs={}
for n,line in enumerate(taglines):
if ">" in line:
ids.append(line)
seqs[line]=taglines[n+1]
idcounts=Counter(ids)
nseqs=0
for id in ids:
if idcounts[id]==1:
nseqs+=1
primertagfile_cleaned.write(id+seqs[id])
def findprimer(primerset,name,indict2):
indict=dict(indict2)
infasta=args.outdir+"/"+basename+"_reformat_out"
for i,each in enumerate(primerset):
iternum=0
while True:
with open(args.outdir+"/"+"tempfile.fa",'w') as temp:
temp.write(">primerf\n"+each+'\n')
runglsearch(args.outdir+"/"+"tempfile.fa",infasta,i,iternum)
parse_by_id(args.outdir+"/"+"temp"+str(i)+"_"+str(iternum)+"_glsearch",int(args.gaps))
with open(args.outdir+"/"+"temp"+str(i)+"_"+str(iternum)+"_glsearch.parsed.lencutoff5") as compfile:
t=compfile.readlines()
if len(t)==0:
break
toremove={}
for line in t:
if "\t" in line:
toremove[line.split('\t')[1]]=''
for id in toremove.keys():
indict.pop(id)
with open(args.outdir+"/"+"tempfastasubset"+str(i)+"_"+str(iternum)+".fa",'w') as newfastafile:
for id in indict.keys():
newfastafile.write(">"+id+'\n'+indict[id]+'\n')
if iternum!=0:
os.system("rm "+args.outdir+"/"+"tempfastasubset"+str(i)+"_"+str(iternum-1)+".fa")
infasta=args.outdir+"/"+"tempfastasubset"+str(i)+"_"+str(iternum)+".fa"
if os.path.getsize(infasta)==0:
break
iternum+=1
if os.path.getsize(infasta)==0:
break
os.system("cat "+args.outdir+"/temp*_glsearch > "+args.outdir+"/all_"+name+"_primerglsearch")
# this function applies a hierarchical approach to demultiplexing, used only for unique tag mode. Highest demultiplexing priority is given to perfect matches on both tags, to perfect match to one and imperfect match to other, to imperfect match to both, to perfect match to only one and no match to other and finally to imperfect match to one and not the other.
def findmatch_m1(taglistf,taglistr,muttags_f,muttags_r,indict,seqdict):
dmpfile=open(args.outdir+"/dmpfile",'a')
for each in indict.keys():
#search perfect tag matches
if indict[each][0] in taglistf.keys() and indict[each][1] in taglistr.keys():
if taglistf[indict[each][0]] != taglistr[indict[each][1]]:
dmpfile.write(each+'\t'+indict[each][0]+'\t'+indict[each][1]+'\t'+taglistf[indict[each][0]]+'\t'+taglistr[indict[each][1]]+'\n')
elif taglistf[indict[each][0]] == taglistr[indict[each][1]]:
with open(args.outdir+"/"+taglistf[indict[each][0]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+taglistf[indict[each][0]]+"; "+indict[each][0]+"\n"+seqdict[each]+"\n")
# search perfect forward, mutant reverse
elif indict[each][0] in taglistf.keys() and indict[each][1] in muttags_r.keys():
if taglistf[indict[each][0]] != muttags_r[indict[each][1]]:
dmpfile.write(each+'\t'+indict[each][0]+'\t'+indict[each][1]+'\t'+taglistf[indict[each][0]]+'\t'+muttags_r[indict[each][1]]+'\n')
elif taglistf[indict[each][0]] == muttags_r[indict[each][1]]:
with open(args.outdir+"/"+taglistf[indict[each][0]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+taglistf[indict[each][0]]+"; "+indict[each][0]+"\n"+seqdict[each]+"\n")
# search perfect reverse, mutant forwards
elif indict[each][0] in muttags_f.keys() and indict[each][1] in taglistr.keys():
if muttags_f[indict[each][0]] != taglistr[indict[each][1]]:
dmpfile.write(each+'\t'+indict[each][0]+'\t'+indict[each][1]+'\t'+muttags_f[indict[each][0]]+'\t'+taglistr[indict[each][1]]+'\n')
elif muttags_f[indict[each][0]] == taglistr[indict[each][1]]:
with open(args.outdir+"/"+muttags_f[indict[each][0]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+muttags_f[indict[each][0]]+"; "+indict[each][0]+"\n"+seqdict[each]+"\n")
# search mutant forward and mutant reverse
elif indict[each][0] in muttags_f.keys() and indict[each][1] in muttags_r.keys():
if muttags_f[indict[each][0]] != muttags_r[indict[each][1]]:
dmpfile.write(each+'\t'+indict[each][0]+'\t'+indict[each][1]+'\t'+muttags_f[indict[each][0]]+'\t'+muttags_r[indict[each][1]]+'\n')
elif muttags_f[indict[each][0]] == muttags_r[indict[each][1]]:
with open(args.outdir+"/"+muttags_f[indict[each][0]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+muttags_f[indict[each][0]]+"; "+indict[each][0]+"\n"+seqdict[each]+"\n")
#search single end matches
#perfect forward only
elif indict[each][0] in taglistf.keys():
with open(args.outdir+"/"+taglistf[indict[each][0]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+taglistf[indict[each][0]]+"; " +indict[each][0]+"\n"+seqdict[each]+"\n")
# perfect reverse only
elif indict[each][1] in taglistr.keys():
with open(args.outdir+"/"+taglistr[indict[each][1]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+taglistr[indict[each][1]]+"; " +indict[each][1]+"\n"+seqdict[each]+"\n")
# mutant f only
elif indict[each][0] in muttags_f.keys():
with open(args.outdir+"/"+muttags_f[indict[each][0]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+muttags_f[indict[each][0]]+"; " +indict[each][0]+"\n"+seqdict[each]+"\n")
# mutant r only
elif indict[each][1] in muttags_r.keys():
with open(args.outdir+"/"+muttags_r[indict[each][1]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"; "+muttags_r[indict[each][1]]+"; " +indict[each][1]+"\n"+seqdict[each]+"\n")
dmpfile.close()
def findmatch_m2(taglist,muttags_fr,indict,seqdict,sampledict):
dmpfile=open(args.outdir+"/dmpfile",'a')
idcombs={}
for each in indict.keys():
try:
idcombs[each]=(taglist[indict[each][0]], taglist[indict[each][1]])
except KeyError:
pass
print len(idcombs)
matched_idcombs={}
for each in idcombs.keys():
try:
with open(args.outdir+"/"+sampledict[idcombs[each]]+"_all.fa",'a') as outfile:
outfile.write(">"+each+"\n"+seqdict[each]+"\n")
except KeyError:
pass
dmpfile.close()
def readprimertagfasta(filef,filer):
indict2,indict1,indict={},{},{}
with open(filef) as infile1:
with open(filer) as infile2:
l1=infile1.readlines()
l2=infile2.readlines()
for i,j in enumerate(l1):
if ">" in j:
indict1[j.strip().replace(">","")]=l1[i+1].strip()
indict[j.strip().replace(">","")]=[0,0]
for i,j in enumerate(l2):
if ">" in j:
indict2[j.strip().replace(">","")]=l2[i+1].strip()
indict[j.strip().replace(">","")]=[0,0]
return indict1,indict2,indict
def builddict_sequences(infile):
seqdict={}
with open(infile) as inseqs:
l=inseqs.readlines()
for i,j in enumerate(l):
if ">" in j:
seqdict[j.strip().replace(">","")]=l[i+1].strip()
return seqdict
def create_all_mutants(tagdict):
muttags,newtags={},[]
for tag in tagdict.keys():
submutant=createsubmutant(tag)
delmutant=createdelmutant(tag)
insmutant=createinsmutant(tag)
mutantset=list(set(submutant)|set(delmutant)|set(insmutant))
mutantset[:]=[x for x in mutantset if x != tag]
for mutant in mutantset:
newtags.append(mutant)
muttags[mutant]= tagdict[tag]
return muttags,newtags
def crmutant_m1(tfile,pf,pr,seqdict):
tagfdict,tagrdict={},{}
with open(tfile) as tagfile:
t=tagfile.readlines()
for each in t:
tagfdict[each.split(',')[1]]=each.split(',')[0].strip()
tagrdict[each.split(',')[2]]=each.split(',')[0].strip()
indict1,indict2,indict=readprimertagfasta(pf,pr)
for each in indict.keys():
try:
indict[each][0]=indict1[each]
except KeyError:
pass
try:
indict[each][1]=indict2[each]
except KeyError:
pass
for k in indict.keys():
if k not in seqdict.keys():
del indict[k]
muttags_f,newtags_f=create_all_mutants(tagfdict)
muttags_r,newtags_r=create_all_mutants(tagrdict)
newtags_f_counts=Counter(newtags_f)
newtags_r_counts=Counter(newtags_r)
for k in newtags_f_counts.keys():
if newtags_f_counts[k]>1:
del muttags_f[k]
for k in newtags_r_counts.keys():
if newtags_r_counts[k]>1:
del muttags_r[k]
with open("dmpfile_tagf",'w') as tagfdmp:
for tag in muttags_f.keys():
tagfdmp.write(tag+'\t'+muttags_f[tag]+'\n')
with open("dmpfile_tagr",'w') as tagrdmp:
for tag in muttags_r.keys():
tagrdmp.write(tag+'\t'+muttags_r[tag]+'\n')
findmatch_m1(tagfdict, tagrdict,muttags_f,muttags_r,indict,seqdict)
def crmutant_m2(tfile,pf,pr,seqdict,nbp):
tagdict={}
sampledict={}
with open(tfile) as tagfile:
t=tagfile.readlines()
for each in t:
tagdict[each.split(',')[1]]=''
tagdict[each.split(',')[2]]=''
counter=1
for each in tagdict.keys():
tagdict[each]="t"+str(counter)
counter+=1
with open(tfile) as tagfile:
t=tagfile.readlines()
for each in t:
sampledict[(tagdict[each.split(',')[1]],tagdict[each.split(',')[2]])]=each.split(',')[0]
indict1,indict2,indict=readprimertagfasta(pf,pr)
for each in indict.keys():
try:
indict[each][0]=indict1[each]
indict[each][1]=indict2[each]
except KeyError:
del indict[each]
n=1
while n<=nbp:
muttags_fr,newtags_fr=create_all_mutants(tagdict)
newtags_fr_counts=Counter(newtags_fr)
# for k in newtags_fr_counts.keys():
# if newtags_fr_counts[k]>1:
# del muttags_fr[k]
tagdict.update(muttags_fr)
n+=1
with open(args.outdir+"/temp1.fas",'w') as outfile:
for k in tagdict.keys():
outfile.write(k+'\t'+tagdict[k]+'\n')
with open(args.outdir+"/dmpfile_tagfr",'w') as tagfrdmp:
for tag in muttags_fr.keys():
tagfrdmp.write(tag+'\t'+muttags_fr[tag]+'\n')
findmatch_m2(tagdict, muttags_fr,indict,seqdict,sampledict)
#def cr_tag_mutants(tag)
def createsubmutant(tag):
newlist=[]
bpset=["A","T","G","C"]
for i,v in enumerate(tag):
for bp in [x for x in bpset if x != v]:
if i==0:
newlist.append(bp+tag[i+1:])
if i>0 and i<len(tag)-1:
newlist.append(tag[0:i]+bp+tag[i+1:])
if i==len(tag)-1:
newlist.append(tag[0:i]+bp)
return newlist
def createdelmutant(tag):
newlist=[]
bpset=["A","T","G","C"]
for i,v in enumerate(tag):
for bp in bpset:
if i>0 and i<len(tag)-1:
newlist.append(bp+tag[0:i]+tag[i+1:])
if i==len(tag)-1:
newlist.append(bp+tag[0:i])
return newlist
def createinsmutant(tag):
newlist=[]
bpset=["A","T","G","C"]
for i,v in enumerate(tag):
for bp in bpset:
if i>0 and i<len(tag)-1:
newlist.append(tag[1:i]+bp+tag[i:])
if i==len(tag)-1:
newlist.append(tag[1:]+bp)
return newlist
def reverse_comp(inseq):
comp_seq=''
flag=True
ambiguity_codes=['N','K','M','R','Y','S','W','B','V','H','D','N','X']
for base in ambiguity_codes:
if base in inseq:
flag==False
if flag==True:
for nucl in inseq:
if nucl=='A':
comp_seq=comp_seq+'T'
elif nucl=='T':
comp_seq=comp_seq+'A'
elif nucl=='G':
comp_seq=comp_seq+'C'
elif nucl=='C':
comp_seq=comp_seq+'G'
elif flag==False:
comp_seq=0
return comp_seq[::-1]
def allunique(i,o):
with open(i,'r') as infile:
l=infile.readlines()
seqdict={}
poslist=[]
for i,j in enumerate(l):
if ">" in j:
seqdict[j.strip().split('>')[1]]=l[i+1].strip()
seqlist=seqdict.values()
seqlistuniques={}
for seq in seqlist:
if seq not in seqlistuniques.keys():
if reverse_comp(seq) not in seqlistuniques.keys():
seqlistuniques[seq]=0
for each in seqlist:
try:
seqlistuniques[each]=seqlistuniques[each]+1
except KeyError:
seqlistuniques[reverse_comp(each)]=seqlistuniques[reverse_comp(each)]+1
with open(o,'w') as outfile:
for i,each in enumerate(seqlistuniques.keys()):
outfile.write(">Unique_"+str(i)+"; "+str(seqlistuniques[each])+'\n'+each+'\n')
outfile.close()
def consensus(indict,perc_thresh,abs_thresh):
if sum(indict.values())>=abs_thresh:
poslist=[]
n=0
while n<len(indict.keys()[0]):
newlist=[]
for each in indict.keys():
m=0
while m<indict[each]:
newlist.append(each[n])
m+=1
poslist.append(newlist)
n+=1
sequence=[]
countpos=1
for character in poslist:
charcounter=Counter(character)
baseset={}
for k,v in charcounter.iteritems():
percbp=float(v)/float(len(character))
if percbp>perc_thresh:
baseset[k]=v
if len(baseset)==0:
bp='N'
if len(baseset)==1:
bp=baseset.keys()[0]
if len(baseset)>1:
bp='N'
sequence.append(bp)
countpos+=1
return ''.join(sequence)
else:
return ''
def callconsensus(i,perc_thresh,abs_thresh,o,name):
with open(i) as infile:
l=infile.readlines()
seqdict,poslist={},[]
for i,j in enumerate(l):
if ">" in j:
poslist.append(i)
for i,j in enumerate(poslist):
ambcounts=0
k01=l[j].strip().split('>')[1]
if i!=len(poslist)-1:
k3=l[j+1:poslist[i+1]]
if i==len(poslist)-1:
k3=l[j+1:]
k4=''.join(k3).replace('\n','')
seqdict[k4]=int(k01.split(";")[-1].strip())
conseq=consensus(seqdict,perc_thresh,abs_thresh)
conseq=conseq.replace("-",'')
if len(conseq)!=0:
with open(o,'w') as outfile:
outfile.write(">"+name.split(".")[0]+";"+str(len(conseq))+";"+str(sum(seqdict.values()))+'\n'+conseq+'\n')
def subset_randomly (infile,outfile,n):
with open(infile) as fulldata:
with open(outfile,'w') as subsetdata:
l=fulldata.readlines()
if len(l)/2<=n:
subsetdata.write("".join(l))
else:
subsetlist=[x*2 for x in random.sample(range(len(l)/2),n)]
for i in subsetlist:
subsetdata.write(l[i]+l[i+1])
if __name__ == '__main__':
minlen=int(args.minlen)
#defines nucleotides
ambcodes={'N':['A','G','C','T'],'K':['G','T'],'M':['A','C'],'R':['A','G'],'Y':['C','T'],'S':['C','G'],'W':['A','T'],'B':['C','G','T'],'V':['A','C','G'],'H':['A','C','T'],'D':['A','G','T'],'G':['G'],'C':['C'],'T':['T'],'A':['A']}
comps={'A':'T','T':'A','C':'G','G':'C'}
basename=os.path.basename(args.infasta)
start_time=time.time()
#reformats MinION input fasta to non-interleaved fasta and fix headers
reformat_minion(args.infasta,args.outdir+"/"+basename+"_reformat_out")
print "Non-interleaved file generated"
#Builds dictionary of sequences from reformated file
inputseqs=builddict_sequences(args.outdir+"/"+basename+"_reformat_out")
print "Input sequence dictionary built"
seqlens=[len(i.strip()) for i in inputseqs.values()]
avglen=numpy.mean(seqlens)
print avglen
# #Reads demultiplexing file for generating primer sets
with open(args.demfile) as demulfile:
demullines=demulfile.readlines()
primerf=demullines[0].split(',')[3]
primerr=demullines[0].split(',')[4].strip()
taglen=len(demullines[0].split(',')[1])
primerfset=createprimers(primerf,ambcodes)
primerrset=createprimers(primerr,ambcodes)
print taglen
print "Generated the primersets, predicting primer start end"
#identifies primerF in all reads
search_parse_primerseq(primerfset,"primerf",inputseqs)
print "Identified primerF in sequences"
#identifies primerR in all reads
search_parse_primerseq(primerrset,"primerr",inputseqs)
print "Identified primerR in sequences"
#parses sequences to get tag sequences and COIbarcode sequences
collate(args.outdir+"/"+"all_primerf_primerglsearch.parsed.lencutoff5start_f",args.outdir+"/"+"all_primerf_primerglsearch.parsed.lencutoff5start_r",args.outdir+"/"+"all_primerr_primerglsearch.parsed.lencutoff5start_f",args.outdir+"/"+"all_primerr_primerglsearch.parsed.lencutoff5start_r", args.outdir+"/"+basename+"_reformat_out"+"_COIpred")
print "Identified tags and COI barcodes"
#retrieves COI and tag sequences
retrieve_partseq(inputseqs,args.outdir+"/"+basename+"_reformat_out_COIpred",args.outdir+"/"+basename+"_reformat_out_COIpred.retrieved")
print "COI barcodes retrieved"
#excludes short sequences
parselength(args.outdir+"/"+basename+"_reformat_out_COIpred.retrieved", args.outdir+"/"+basename+"_reformat_out_COIpred.retrieved_len"+str(minlen), minlen)
print "Sequences < (minlen) bp excluded"
inputseqs=builddict_sequences(args.outdir+"/"+basename+"_reformat_out_COIpred.retrieved_len"+str(minlen))
#demultiplexes data
if int(args.mode)==1:
crmutant_m1(args.demfile, args.outdir+"/"+"all_primerf_primerglsearch.parsed.lencutoff5parsed_fr.retrievedcleaned",args.outdir+"/"+"all_primerr_primerglsearch.parsed.lencutoff5parsed_fr.retrievedcleaned", inputseqs)
elif int(args.mode)==2:
crmutant_m2(args.demfile, args.outdir+"/"+"all_primerf_primerglsearch.parsed.lencutoff5parsed_fr.retrievedcleaned",args.outdir+"/"+"all_primerr_primerglsearch.parsed.lencutoff5parsed_fr.retrievedcleaned", inputseqs,int(args.mismatch))
print "Sequences have been demultiplexed"
os.system("mkdir "+args.outdir+"/temp_alls")
os.system("mv "+args.outdir+"/*all.fa "+ args.outdir+"/temp_alls")
# #aligning and consensus calling
if args.maxdepth!=0:
os.system("mkdir "+args.outdir+"/"+"temp_alls_"+str(args.maxdepth))
os.system("mkdir "+args.outdir+"/temp_alls_uniqs")
os.system("mkdir "+args.outdir+"/temp_alls_uniqs_mafft")
os.system("mkdir "+args.outdir+"/temp_alls_uniqs_mafft_consensus")
dirlist=os.listdir(args.outdir+"/temp_alls")
#merging sequences to uniques
for name in dirlist:
if args.maxdepth!=0:
subset_randomly(args.outdir+"/temp_alls/"+name,args.outdir+"/temp_alls_"+str(args.maxdepth)+"/"+name,int(args.maxdepth))
allunique(args.outdir+"/temp_alls_"+str(args.maxdepth)+"/"+name, args.outdir+"/temp_alls_uniqs/"+name+".uniq")
else:
allunique(args.outdir+"/temp_alls/"+name, args.outdir+"/temp_alls_uniqs/"+name+".uniq")
#align sequences
dirlist=os.listdir(args.outdir+"/temp_alls_uniqs")
for name in dirlist:
os.system('mafft --adjustdirection --op 0 --thread '+args.threads+' '+args.outdir+'/temp_alls_uniqs/'+ name + ' > ' +args.outdir+'/temp_alls_uniqs_mafft/'+name + '_aln.fasta')
#majority rule consensus
dirlist=os.listdir(args.outdir+"/temp_alls_uniqs_mafft")
for name in dirlist:
callconsensus(args.outdir+"/temp_alls_uniqs_mafft/"+name,0.5,10,args.outdir+"/temp_alls_uniqs_mafft_consensus/"+name.split(".")[0]+"_consensus.fa",name)
print "Alignment and consensus calling completed"
os.system("cat "+args.outdir+"/temp_alls_uniqs_mafft_consensus/* > " + args.outdir+"/all_barcodes.fa")
with open("runtime",'w') as runtimefile:
runtimefile.write(str(round(time.time() - start_time, 2)))