-
Notifications
You must be signed in to change notification settings - Fork 9
/
lib.rs
567 lines (533 loc) · 21.4 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright © 2014, Simonas Kazlauskas <rdrand@kazlauskas.me>
//
// Permission to use, copy, modify, and/or distribute this software for any purpose with or without
// fee is hereby granted, provided that the above copyright notice and this permission notice
// appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
// SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
// NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
// OF THIS SOFTWARE.
//! An implementation of random number generators based on `rdrand` and `rdseed` instructions.
//!
//! The random number generators provided by this crate are fairly slow (the latency for these
//! instructions is pretty high), but provide high quality random bits. Caveat is: neither AMD’s
//! nor Intel’s designs are public and therefore are not verifiable for lack of backdoors.
//!
//! Unless you know what you are doing, use the random number generators provided by the `rand`
//! crate (such as `OsRng`) instead.
//!
//! Here are a measurements for select processor architectures. Check [Agner’s instruction tables]
//! for up-to-date listings.
//!
//! <table>
//! <tr>
//! <th>Architecture</th>
//! <th colspan="3">Latency (cycles)</th>
//! <th>Maximum throughput (per core)</th>
//! </tr>
//! <tr>
//! <td></td>
//! <td>u16</td>
//! <td>u32</td>
//! <td>u64</td>
//! <td></td>
//! </tr>
//! <tr>
//! <td>AMD Ryzen</td>
//! <td>~1200</td>
//! <td>~1200</td>
//! <td>~2500</td>
//! <td>~12MB/s @ 3.7GHz</td>
//! </tr>
//! <tr>
//! <td>Intel Skylake</td>
//! <td>460</td>
//! <td>460</td>
//! <td>460</td>
//! <td>~72MB/s @ 4.2GHz</td>
//! </tr>
//! <tr>
//! <td>Intel Haswell</td>
//! <td>320</td>
//! <td>320</td>
//! <td>320</td>
//! <td>~110MB/s @ 4.4GHz</td>
//! </tr>
//! </table>
//!
//! [Agner’s instruction tables]: http://agner.org/optimize/
#![cfg_attr(not(feature = "std"), no_std)]
pub mod changelog;
mod errors;
pub use errors::ErrorCode;
use rand_core::{CryptoRng, Error, RngCore};
#[cold]
#[inline(never)]
pub(crate) fn busy_loop_fail(code: ErrorCode) -> ! {
panic!("{}", code);
}
/// A cryptographically secure statistically uniform, non-periodic and non-deterministic random bit
/// generator.
///
/// Note that this generator may be implemented using a deterministic algorithm that is reseeded
/// routinely from a non-deterministic entropy source to achieve the desirable properties.
///
/// This generator is a viable replacement to any generator, however, since nobody has audited
/// this hardware implementation yet, the usual disclaimers as to their suitability apply.
///
/// It is potentially faster than `OsRng`, but is only supported by more recent architectures such
/// as Intel Ivy Bridge and AMD Zen.
#[derive(Clone, Copy)]
pub struct RdRand(());
/// A cryptographically secure non-deterministic random bit generator.
///
/// This generator produces high-entropy output and is suited to seed other pseudo-random
/// generators.
///
/// This instruction is only supported by recent architectures such as Intel Broadwell and AMD Zen.
///
/// This generator is not intended for general random number generation purposes and should be used
/// to seed other generators implementing [rand_core::SeedableRng].
#[derive(Clone, Copy)]
pub struct RdSeed(());
impl CryptoRng for RdRand {}
impl CryptoRng for RdSeed {}
mod arch {
#[cfg(target_arch = "x86")]
pub use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
pub use core::arch::x86_64::*;
#[cfg(target_arch = "x86")]
pub(crate) unsafe fn _rdrand64_step(dest: &mut u64) -> i32 {
let mut ret1: u32 = 0;
let mut ret2: u32 = 0;
let ok = _rdrand32_step(&mut ret1) & _rdrand32_step(&mut ret2);
*dest = (ret1 as u64) << 32 | (ret2 as u64);
ok
}
#[cfg(target_arch = "x86")]
pub(crate) unsafe fn _rdseed64_step(dest: &mut u64) -> i32 {
let mut ret1: u32 = 0;
let mut ret2: u32 = 0;
let ok = _rdseed32_step(&mut ret1) & _rdseed32_step(&mut ret2);
*dest = (ret1 as u64) << 32 | (ret2 as u64);
ok
}
}
// See the following documentation for usage (in particular wrt retries) recommendations:
//
// https://software.intel.com/content/www/us/en/develop/articles/intel-digital-random-number-generator-drng-software-implementation-guide.html
macro_rules! loop_rand {
("rdrand", $el: ty, $step: path) => {{
let mut idx = 0;
loop {
let mut el: $el = 0;
if $step(&mut el) != 0 {
break Ok(el);
} else if idx == 10 {
break Err(ErrorCode::HardwareFailure);
}
idx += 1;
}
}};
("rdseed", $el: ty, $step: path) => {{
let mut idx = 0;
loop {
let mut el: $el = 0;
if $step(&mut el) != 0 {
break Ok(el);
} else if idx == 127 {
break Err(ErrorCode::HardwareFailure);
}
idx += 1;
arch::_mm_pause();
}
}};
}
#[inline(always)]
fn authentic_amd() -> bool {
let cpuid0 = unsafe { arch::__cpuid(0) };
matches!(
(cpuid0.ebx, cpuid0.ecx, cpuid0.edx),
(0x68747541, 0x444D4163, 0x69746E65)
)
}
#[inline(always)]
fn amd_family(cpuid1: &arch::CpuidResult) -> u32 {
((cpuid1.eax >> 8) & 0xF) + ((cpuid1.eax >> 20) & 0xFF)
}
#[inline(always)]
fn has_rdrand(cpuid1: &arch::CpuidResult) -> bool {
const FLAG: u32 = 1 << 30;
cpuid1.ecx & FLAG == FLAG
}
#[inline(always)]
fn has_rdseed() -> bool {
const FLAG: u32 = 1 << 18;
unsafe { arch::__cpuid(7).ebx & FLAG == FLAG }
}
/// NB: On AMD processor families < 0x17, we want to unconditionally disable RDRAND
/// and RDSEED. Executing these instructions on these processors can return
/// non-random data (0) while also reporting a success.
///
/// See:
/// * https://github.com/systemd/systemd/issues/11810
/// * https://lore.kernel.org/all/776cb5c2d33e7fd0d2893904724c0e52b394f24a.1565817448.git.thomas.lendacky@amd.com/
///
/// We take extra care to do so even if `-Ctarget-features=+rdrand` have been
/// specified, in order to prevent users from shooting themselves in their feet.
const FIRST_GOOD_AMD_FAMILY: u32 = 0x17;
macro_rules! is_available {
("rdrand") => {{
if authentic_amd() {
let cpuid1 = unsafe { arch::__cpuid(1) };
has_rdrand(&cpuid1) && amd_family(&cpuid1) >= FIRST_GOOD_AMD_FAMILY
} else {
cfg!(target_feature = "rdrand") || has_rdrand(&unsafe { arch::__cpuid(1) })
}
}};
("rdseed") => {{
if authentic_amd() {
amd_family(&unsafe { arch::__cpuid(1) }) >= FIRST_GOOD_AMD_FAMILY && has_rdseed()
} else {
cfg!(target_feature = "rdrand") || has_rdseed()
}
}};
}
macro_rules! impl_rand {
($gen:ident, $feat:tt, $step16: path, $step32:path, $step64:path,
maxstep = $maxstep:path, maxty = $maxty: ty) => {
impl $gen {
/// Create a new instance of the random number generator.
///
/// This constructor checks whether the CPU the program is running on supports the
/// instruction necessary for this generator to operate. If the instruction is not
/// supported, an error is returned.
pub fn new() -> Result<Self, ErrorCode> {
if cfg!(target_env = "sgx") {
if cfg!(target_feature = $feat) {
Ok($gen(()))
} else {
Err(ErrorCode::UnsupportedInstruction)
}
} else if is_available!($feat) {
Ok($gen(()))
} else {
Err(ErrorCode::UnsupportedInstruction)
}
}
/// Create a new instance of the random number generator.
///
/// # Safety
///
/// This constructor is unsafe because it doesn't check that the CPU supports the
/// instruction, but devolves this responsibility to the caller.
pub unsafe fn new_unchecked() -> Self {
$gen(())
}
/// Generate a single random `u16` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return `None`.
///
/// In case `Err` is returned, the caller should assume that a non-recoverable failure
/// has occured and use another random number genrator instead.
#[inline(always)]
pub fn try_next_u16(&self) -> Result<u16, ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp() -> Result<u16, ErrorCode> {
loop_rand!($feat, u16, $step16)
}
unsafe { imp() }
}
/// Generate a single random `u32` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return `None`.
///
/// In case `Err` is returned, the caller should assume that a non-recoverable failure
/// has occured and use another random number genrator instead.
#[inline(always)]
pub fn try_next_u32(&self) -> Result<u32, ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp() -> Result<u32, ErrorCode> {
loop_rand!($feat, u32, $step32)
}
unsafe { imp() }
}
/// Generate a single random `u64` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return `None`.
///
/// In case `Err` is returned, the caller should assume that a non-recoverable failure
/// has occured and use another random number genrator instead.
///
/// Note, that on 32-bit targets, there’s no underlying instruction to generate a
/// 64-bit number, so it is emulated with the 32-bit version of the instruction.
#[inline(always)]
pub fn try_next_u64(&self) -> Result<u64, ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp() -> Result<u64, ErrorCode> {
loop_rand!($feat, u64, $step64)
}
unsafe { imp() }
}
/// Fill a buffer `dest` with random data.
///
/// This method will use the most appropriate variant of the instruction available on
/// the machine to achieve the greatest single-core throughput, however it has a
/// slightly higher setup cost than the plain `next_u32` or `next_u64` methods.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return an error.
///
/// If an error is returned, the caller should assume that an non-recoverable hardware
/// failure has occured and use another random number genrator instead.
#[inline(always)]
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp(dest: &mut [u8]) -> Result<(), ErrorCode> {
fn slow_fill_bytes<'a>(
mut left: &'a mut [u8],
mut right: &'a mut [u8],
) -> Result<(), ErrorCode> {
let mut word;
let mut buffer: &[u8] = &[];
loop {
if left.is_empty() {
if right.is_empty() {
break;
}
::core::mem::swap(&mut left, &mut right);
}
if buffer.is_empty() {
word =
unsafe { loop_rand!($feat, $maxty, $maxstep) }?.to_ne_bytes();
buffer = &word[..];
}
let len = left.len().min(buffer.len());
let (copy_src, leftover) = buffer.split_at(len);
let (copy_dest, dest_leftover) = { left }.split_at_mut(len);
buffer = leftover;
left = dest_leftover;
copy_dest.copy_from_slice(copy_src);
}
Ok(())
}
let destlen = dest.len();
if destlen > ::core::mem::size_of::<$maxty>() {
let (left, mid, right) = dest.align_to_mut();
for el in mid {
*el = loop_rand!($feat, $maxty, $maxstep)?;
}
slow_fill_bytes(left, right)
} else {
slow_fill_bytes(dest, &mut [])
}
}
unsafe { imp(dest) }
}
}
impl RngCore for $gen {
/// Generate a single random `u32` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// # Panic
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will `panic`.
///
/// In case `panic` occurs, the caller should assume that an non-recoverable
/// hardware failure has occured and use another random number genrator instead.
#[inline(always)]
fn next_u32(&mut self) -> u32 {
match self.try_next_u32() {
Ok(result) => result,
Err(c) => busy_loop_fail(c),
}
}
/// Generate a single random `u64` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// Note, that on 32-bit targets, there’s no underlying instruction to generate a
/// 64-bit number, so it is emulated with the 32-bit version of the instruction.
///
/// # Panic
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will `panic`.
///
/// In case `panic` occurs, the caller should assume that an non-recoverable
/// hardware failure has occured and use another random number genrator instead.
#[inline(always)]
fn next_u64(&mut self) -> u64 {
match self.try_next_u64() {
Ok(result) => result,
Err(c) => busy_loop_fail(c),
}
}
/// Fill a buffer `dest` with random data.
///
/// See `try_fill_bytes` for a more extensive documentation.
///
/// # Panic
///
/// This method will panic any time `try_fill_bytes` would return an error.
#[inline(always)]
fn fill_bytes(&mut self, dest: &mut [u8]) {
match self.try_fill_bytes(dest) {
Ok(result) => result,
Err(c) => busy_loop_fail(c),
}
}
/// Fill a buffer `dest` with random data.
///
/// This method will use the most appropriate variant of the instruction available on
/// the machine to achieve the greatest single-core throughput, however it has a
/// slightly higher setup cost than the plain `next_u32` or `next_u64` methods.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return an error.
///
/// If an error is returned, the caller should assume that an non-recoverable hardware
/// failure has occured and use another random number genrator instead.
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.try_fill_bytes(dest).map_err(Into::into)
}
}
};
}
#[cfg(target_arch = "x86_64")]
impl_rand!(
RdRand,
"rdrand",
arch::_rdrand16_step,
arch::_rdrand32_step,
arch::_rdrand64_step,
maxstep = arch::_rdrand64_step,
maxty = u64
);
#[cfg(target_arch = "x86_64")]
impl_rand!(
RdSeed,
"rdseed",
arch::_rdseed16_step,
arch::_rdseed32_step,
arch::_rdseed64_step,
maxstep = arch::_rdseed64_step,
maxty = u64
);
#[cfg(target_arch = "x86")]
impl_rand!(
RdRand,
"rdrand",
arch::_rdrand16_step,
arch::_rdrand32_step,
arch::_rdrand64_step,
maxstep = arch::_rdrand32_step,
maxty = u32
);
#[cfg(target_arch = "x86")]
impl_rand!(
RdSeed,
"rdseed",
arch::_rdseed16_step,
arch::_rdseed32_step,
arch::_rdseed64_step,
maxstep = arch::_rdseed32_step,
maxty = u32
);
#[cfg(test)]
mod test {
use super::{RdRand, RdSeed};
use rand_core::RngCore;
#[test]
fn rdrand_works() {
let _ = RdRand::new().map(|mut r| {
r.next_u32();
r.next_u64();
});
}
#[repr(C, align(8))]
struct FillBuffer([u8; 64]);
#[test]
fn fill_fills_all_bytes() {
let _ = RdRand::new().map(|mut r| {
let mut test_buffer;
let mut fill_buffer = FillBuffer([0; 64]); // make sure buffer is aligned to 8-bytes...
let test_cases = [
(0, 64), // well aligned
(8, 64), // well aligned
(0, 64), // well aligned
(5, 64), // left is non-empty, right is empty.
(0, 63), // left is empty, right is non-empty.
(5, 63), // left and right both are non-empty.
(5, 61), // left and right both are non-empty.
(0, 8), // 1 word-worth of data, aligned.
(1, 9), // 1 word-worth of data, misaligned.
(0, 7), // less than 1 word of data.
(1, 7), // less than 1 word of data.
];
'outer: for &(start, end) in &test_cases {
test_buffer = [0; 64];
for _ in 0..512 {
fill_buffer.0 = [0; 64];
r.fill_bytes(&mut fill_buffer.0[start..end]);
for (b, p) in test_buffer.iter_mut().zip(fill_buffer.0.iter()) {
*b = *b | *p;
}
if (&test_buffer[start..end]).iter().all(|x| *x != 0) {
assert!(
test_buffer[..start].iter().all(|x| *x == 0),
"all other values must be 0"
);
assert!(
test_buffer[end..].iter().all(|x| *x == 0),
"all other values must be 0"
);
continue 'outer;
}
}
panic!("wow, we broke it? {} {} {:?}", start, end, &test_buffer[..])
}
});
}
#[test]
fn rdseed_works() {
let _ = RdSeed::new().map(|mut r| {
r.next_u32();
r.next_u64();
});
}
}