-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpypeline.py
1162 lines (865 loc) · 35.6 KB
/
pypeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''Object-oriented model for routing and online processing of data streams.
This file is part of the EARS project <https://github.com/nalamat/ears>
Copyright (C) 2017-2021 Nima Alamatsaz <nima.alamatsaz@gmail.com>
'''
import time
import queue
import logging
import fractions
import threading
import scipy.signal
import numpy as np
import scipy as sp
import datetime as dt
from collections import defaultdict
import misc
log = logging.getLogger(__name__)
class Route():
'''Store input and output nodes of a pipeline route.
Routes can be connected to other Route(s) using the | or >> operators.
A route can be thought of as a black box that doesn't contain any
functional data processing or flow control.
'''
@classmethod
def verify(cls, routes):
'''Verify the given object(s) as instance(s) of `Route`.
Return value will always be a tuple of the given routes.
'''
# cast to a tuple
if not hasattr(routes, '__len__'):
routes = (routes,)
else:
routes = tuple(routes)
# check if empty
# if not routes:
# raise ValueError('`routes` cannot be empty')
# check the type
for route in routes:
if not isinstance(route, Route):
raise TypeError('`routes` should be instance(s) of `Route`')
return routes
@classmethod
def merge(cls, routes):
'''Merge inputs and outputs of an iterable of parallel routes.
Construct and return a new route.
'''
# verify route types
routes = cls.verify(routes)
# extract inputs and outputs of all routes
inputs = tuple()
outputs = tuple()
for route in routes:
inputs += route._inputs
outputs += route._outputs
return Route(inputs, outputs)
@classmethod
def connect(cls, sources, sinks):
''''Connect outputs of all sources to inputs of all sinks.
Connection is made in a star-like formation and between every two nodes.
'''
# merge inputs and outputs of all sources and sinks
source = cls.merge(sources )
sink = cls.merge(sinks )
# connect source outputs to all sink inputs
for sourceOutput in source._outputs:
sourceOutput._addSinks(sink._inputs)
# connect sink inputs to all source outputs
for sinkInput in sink._inputs:
sinkInput._addSources(source._outputs)
# construct the new route
return Route(source._inputs, sink._outputs)
def __init__(self, inputs, outputs):
self._inputs = self.verify(inputs)
self._outputs = self.verify(outputs)
def __or__(self, sinks):
return self.connect(self, sinks)
def __ror__(self, sources):
return self.connect(sources, self)
def __rshift__(self, sinks):
return self.connect(self, sinks)
def __rrshift__(self, sources):
return self.connect(sources, self)
def _addSinks(self, sinks):
raise NotImplementedError()
def _addSources(self, sources):
raise NotImplementedError()
class Node(Route):
'''Receive data, allow manipulation and pass it downstream.'''
def __init__(self, **kwargs):
'''Keyword arguments are passed down as `params` to sinks. Depending on
child class implementation, nodes may choose to use them, stay
indifferent, or modify them before passing on to their sinks.
If keyword arguments are given, node is configured at the end of
__init__ fucntion. Hence, when overriding in child classes, call super
function at the end of child initialization to prevent an overwrite.
'''
# node is a route which both its input and output are the node itself
super().__init__(self, self)
self._sources = tuple()
self._sinks = tuple()
self._params = dict()
self._sinkParams = dict()
self._config(kwargs)
def _addSinks(self, sinks):
# config new sinks
for sink in sinks:
sink._config(self._sinkParams)
# keep track of connected sinks
self._sinks += sinks
def _addSources(self, sources):
# keep track of connected sources
self._sources += sources
def _config(self, params, sinkParams=None):
'''Verify params, save, send to sinks and notify child classes.
Best not to override.
'''
if not params or params == self._params:
return
params = params.copy()
sinkParams = params.copy() if sinkParams is None else sinkParams.copy()
# allow child classes to verify and change params
self._configuring(params, sinkParams)
# allow child classes to mask sink config behavior
self._configured(params, sinkParams)
def _configuring(self, params, sinkParams):
'''Allow child classes to verify or change params before their applied.
When overriding, best practice is to call super function first unless
behavior masking is intended, e.g. to allow reconfiguration.
'''
if self._params:
raise RuntimeError('Node can be configured only once')
def _configured(self, params, sinkParams):
'''Allow child classes to act on applied param changes.
Mostly needed for initializing local state based on params.
When overriding, best practice is to call super function first unless
behavior masking is intended, e.g. config each sink differently.
'''
# save params and sinkParams
self._params = params
self._sinkParams = sinkParams
# pass sinkParams to downstream nodes
for sink in self._sinks:
sink._config(sinkParams)
def _writing(self, data, source):
'''Called when writing new data to the Node and before passing to sinks.
Child classes can override to verify and preprocess data.
When overriding, best to call super function first.
'''
return data
def _written(self, data, source):
'''Called after data is verified and prepreprocessed.
Child classes can override to process data, change how data is passed to
sinks or perform post write operations.
When overriding, call super function at the end to pass data to sinks,
unless behavior masking is intended, e.g. to send different data to each
sink.
'''
# pass data to downstream sinks
for sink in self._sinks:
sink.write(data, self)
def write(self, data, source=None):
'''Write a chunk of data to the node and send downstream to sinks.'''
# allow child classes to verify and preprocess data
data = self._writing(data, source)
# allow child classes to process data, change how data is passed to
# sinks or perform post write operations
self._written(data, source)
def wait(self):
'''Wait for asynchronous sinks in the pipeline to finish processing.
Child classes can override to implement waiting. When overriding, call
super function at the end to wait for rest of the pipeline to finish.
'''
for sink in self._sinks:
sink.wait()
class DummySink(Node):
'''Dummy sink can have any number of inputs and but no outputs.'''
def __init__(self, inputs=1):
super().__init__()
self._inputs = (self,)*inputs
self._outputs = tuple()
class Print(Node):
'''Print each given chunk of data.'''
def _written(self, data, source):
print(data)
super()._written(data, source)
class Func(Node):
'''Apply the specified function to each chunk of data.'''
def __init__(self, func, **kwargs):
super().__init__(**kwargs)
if not callable(func):
raise TypeError('`func` should be callable')
self._func = func
def _written(self, data, source):
data = self._func(data)
super()._written(data, source)
class Thread(Node):
'''Pass data onto sink nodes in a daemon thread.'''
def __init__(self, **kwargs):
# autoStart=True, daemon=True, **kwargs):
super().__init__(**kwargs)
# self._autoStart = autoStart
# self._daemon = daemon
# self._thread = None
# self._threadStop = threading.Event()
self._queue = queue.Queue()
self._thread = threading.Thread(target=self._loop)
self._thread.daemon = True
def _loop(self):
# while not self._threadStop.isSet():
# try:
# data = self._queue.get(timeout=0.1)
# super().write(data)
# except queue.Queue.Empty:
# pass
while True:
(data, source) = self._queue.get()
super()._written(data, source)
# def start(self):
# if self._thread is None:
# self._thread = threading.Thread(target=self._loop)
# self._thread.daemon = self._daemon
#
# if not self._therad.isAlive():
# self._thread.start()
# def stop(self):
# if self._thread is not None and self._thread.isAlive():
# self._threadStop.set()
# self._thread.join()
# self._threadStop.clear()
# self._thread = None
def wait(self):
# TODO: fix. with current implementation data will have been read from
# the queue (hence empty queue) but not necessariliy completed
# processing in downstream nodes
while not self._queue.empty():
time.sleep(50e-3)
super().wait()
def _written(self, data, source):
# mask Node behavior
if not self._thread.isAlive():
self._thread.start()
self._queue.put((data, source))
class Split(Node):
'''Split iterable data into multiple sink nodes.'''
def _configuring(self, params, sinkParams):
super()._configuring(params, sinkParams)
# compatibility with Sampled Nodes
if 'channels' in sinkParams:
# each sink will only receive 1 channel
sinkParams['channels'] = 1
def _written(self, data, source):
if not misc.iterable(data):
raise TypeError('`data` should be iterable for splitting')
if len(data) != len(self._sinks):
raise ValueError('`data` size should match `sink` count')
# compatibility with Sampled Nodes
if ('channels' in self._params
and self._params['channels'] != len(self._sinks)):
raise ValueError('`channels` should match `sink` count')
# mask Node behavior
for sink, channelData in zip(self._sinks, data):
sink.write(channelData, self)
class Sampled(Node):
'''Specialized node for sampled, multichannel signals.
Data written to this node is constrained to 1D or 2D signals where the
first dimension (number of channels) is constant.
'''
@property
def fs(self):
'''Sampling frequency'''
return self._fs
@property
def channels(self):
return self._channels
@property
def ns(self):
'''Total number of samples (per line) written to Node'''
return self._ns
@property
def ts(self):
'''Current timestamp in seconds'''
if self._fs is None:
return 0
else:
return self._ns/self._fs
def __init__(self, **kwargs):
self._fs = None
self._channels = None
self._ns = 0
super().__init__(**kwargs)
def _configuring(self, params, sinkParams):
super()._configuring(params, sinkParams)
if 'fs' not in params or 'channels' not in params:
raise ValueError('Sampled node requires `fs` and `channels`')
def _configured(self, params, sinkParams):
super()._configured(params, sinkParams)
self._fs = params['fs']
self._channels = params['channels']
def _writing(self, data, source):
data = super()._writing(data, source)
if not isinstance(data, np.ndarray): data = np.array(data)
if data.ndim == 1: data = data[np.newaxis, :]
if data.ndim != 2: raise ValueError('`data` should be 1D or 2D')
if self._fs is None or self._channels is None:
raise RuntimeError('Node is not configured')
if self._channels != data.shape[0]:
raise ValueError('`data` channel count does not match `channels`')
self._ns += data.shape[1]
return data
class Auxillary(Sampled):
def __init__(self, cbConfigured=None, cbWritten=None, **kwargs):
'''
Args:
cbConfigured (callable): Callback when node is configured.
cbWritten (callable): Callback when data is written to the node.
'''
if cbConfigured and not callable(cbConfigured):
raise TypeError('`cbConfigured` should be callable')
if cbWritten and not callable(cbWritten):
raise TypeError('`cbWritten` should be callable')
self._cbConfigured = cbConfigured
self._cbWritten = cbWritten
super().__init__(**kwargs)
def _configured(self, params, sinkParams):
super()._configured(params, sinkParams)
if self._cbConfigured: self._cbConfigured()
def _written(self, data, source):
super()._written(data, source)
if self._cbWritten: self._cbWritten()
class LFilter(Sampled):
'''Causal IIR lowpass, highpass or bandpass filter.'''
@property
def fl(self):
'''Low cutoff frequency'''
return self._fl
@fl.setter
def fl(self, fl):
self._fl = fl
self._refresh()
@property
def fh(self):
'''High cutoff frequency'''
return self._fh
@fh.setter
def fh(self, fh):
self._fh = fh
self._refresh()
@property
def n(self):
'''Filter order'''
return self._n
@n.setter
def n(self, n):
self._n = n
self._zi = None
self._refresh()
def __init__(self, fl=None, fh=None, n=6, **kwargs):
'''
Args:
fl (float): Low cutoff frequency.
fh (float): High cutoff frequency.
n (int): Filter order.
'''
self._fl = fl
self._fh = fh
self._n = n
self._ba = None
self._zi = None
super().__init__(**kwargs)
def _configured(self, params, sinkParams):
super()._configured(params, sinkParams)
self._refresh()
def _refresh(self):
# called when any of the following changes: fs, channels, fl, fh, n
if self._fs is None or self._channels is None:
ba = None
# elif self._fl is not None and self._fh is not None:
elif self._fl and self._fh:
ba = sp.signal.butter(self._n,
(self._fl/self._fs*2, self._fh/self._fs*2), 'bandpass')
# elif self._fl is not None:
elif self._fl:
ba = sp.signal.butter(self._n, self._fl/self._fs*2, 'highpass')
# elif self._fh is not None:
elif self._fh:
ba = sp.signal.butter(self._n, self._fh/self._fs*2, 'lowpass')
else:
ba = None
# reset initial filter state
if ba is not None and np.any(np.array(self._ba) != np.array(ba)):
self._zi = None
self._ba = ba
def _written(self, data, source):
if self._ba is not None:
# initialize filter in steady state
if self._zi is None:
self._zi = sp.signal.lfilter_zi(*self._ba)
self._zi = np.tile(self._zi, self._channels
).reshape((self._channels, -1))
self._zi = self._zi * data[:,0].reshape((self._channels, -1))
# apply the IIR filter
dataOut, self._zi = sp.signal.lfilter(*self._ba, data, zi=self._zi)
dataOut[np.isnan(dataOut)] = 0
super()._written(dataOut, source)
class Scaler(Func):
'''Multiply data by the given scale.'''
@property
def scale(self):
'''Scale factor'''
return self._scale
@scale.setter
def scale(self, scale):
self._scale = scale
@property
def dB(self):
return self._dB
def __init__(self, scale=None, dB=False, **kwargs):
self._scale = scale
self._dB = dB
if dB:
if self._scale is None: self._scale = 0
func = lambda data: data * 10 ** (self._scale / 20)
else:
if self._scale is None: self._scale = 1
func = lambda data: data * self._scale
super().__init__(func, **kwargs)
class Downsample(Sampled):
def __init__(self, ds, bin=None, **kwargs):
if ds < 1: raise ValueError('`ds` should be >= 1')
if round(ds) != ds: raise ValueError('`ds` should be an integer')
self._ds = ds
self._bin = ds if bin is None else bin
self._buffer = None
super().__init__(**kwargs)
def _configuring(self, params, sinkParams):
super()._configuring(params, sinkParams)
sinkParams['fs'] = params['fs'] / self._ds
def _configured(self, params, sinkParams):
super()._configured(params, sinkParams)
self._buffer = misc.CircularBuffer((self._channels, int(self._fs*10)))
def _downsample(self, data):
raise NotImplementedError()
def _written(self, data, source):
# if ds==1, transparently pass data down the pipeline
if self._ds != 1:
# TODO: find a better solution than writing to a buffer
# all nodes should be able to process arbitrarily large signals
self._buffer.write(data)
ns = self._buffer.nsWritten
ns = ns // self._bin * self._bin
if ns <= self._buffer.nsRead: return
data = self._buffer.read(to=ns)
dataOut = self._downsample(data)
super()._written(dataOut, source)
class DownsampleAverage(Downsample):
def _downsample(self, data):
data = data.reshape(data.shape[0], -1, self._ds)
data = data.mean(axis=2)
return data
class DownsampleMinMax(Downsample):
'''Divide data into bins and choose only the min and max of each bin.'''
def __init__(self, ds, **kwargs):
super().__init__(ds, bin=ds*2, **kwargs)
def _downsample(self, data):
data = data.reshape(self._channels, -1, self._bin)
data = np.stack((data.min(axis=-1), data.max(axis=-1)), axis=2)
data = data.reshape(self._channels, -1)
return data
class DownsampleLTTB(Sampled):
''''Downsample using the Largest Triangle Three Buckets (LTTB) algorithm.
See Steinarsson (2013):
https://skemman.is/bitstream/1946/15343/3/SS_MSthesis.pdf
'''
def __init__(self, fsOut, **kwargs):
self._fsOut = fsOut
self._buffer = None
self._last = None
super().__init__(**kwargs)
def _configuring(self, params, sinkParams):
super()._configuring(params, sinkParams)
sinkParams['fs'] = self._fsOut
def _configured(self, params, sinkParams):
super()._configured(params, sinkParams)
if self._fs < self._fsOut:
raise ValueError('`fsOut` should be >= `fs`')
if self._fs != self._fsOut:
# use the Fraction class to determine the smallest number of input
# and output samples to yield the required downsampling ratio
frac = (fractions.Fraction(self._fs)
/ fractions.Fraction(self._fsOut))
self._nIn = frac.numerator
self._nOut = frac.denominator
if self._nIn > self._fs*5:
raise ValueError('Numerator of `fs`/`fsOut` is too large')
self._buffer = misc.CircularBuffer(
(self._channels, int(self._fs*10)))
def _written(self, data, source):
if self._fs != self._fsOut:
# buffer the input data
self._buffer.write(data)
ns = self._buffer.nsWritten
ns = ns // self._nIn * self._nIn
if ns <= self._buffer.nsRead: return
data = self._buffer.read(to=ns)
nIn = data.shape[1]
nOut = int(nIn / self._nIn * self._nOut)
if self._last is None:
last = data[:,0]
data = data[:,1:]
else:
last = self._last
nOut += 1
# init output data array
dataOut = np.zeros((self._channels, nOut))
dataOut[:, 0] = last
dataOut[:,-1] = data[:,-1]
# bin data points
nBins = nOut - 2
dataBins = np.array_split(data[:,:-1], nBins, axis=1)
# iterate over bins
for i in range(nBins):
if i < nBins-1:
nextBin = dataBins[i+1]
else:
nextBin = data[:,-1:]
a = dataOut[:,i:i+1]
b = dataBins[i]
c = np.mean(nextBin, axis=1)[:,np.newaxis]
# find the point in current bin that makes the largest triangle
areas = abs(a + c - 2*b)/2
argmax = np.argmax(areas, axis=1)
dataOut[:,i+1] = b[np.arange(b.shape[0]), argmax]
if self._last is not None:
dataOut = dataOut[:,1:]
self._last = dataOut[:,-1]
else:
# transparently pass the data down the pipeline
dataOut = data
super()._written(dataOut, source)
class GrandAverage(Sampled):
@property
def mask(self):
return self._mask
@mask.setter
def mask(self, mask):
if self._channels is None:
raise RuntimeError('Cannot set `mask` before number of `channels`')
# verify type and size
if not misc.listLike(mask):
raise TypeError('`mask` should be list-like')
if len(mask) != self._channels:
raise ValueError('Size of `mask` should match number of `channels`')
for m in mask:
if not isinstance(m, bool):
raise ValueError('All elements must be `bool` instances')
self._mask = mask
def __init__(self, **kwargs):
self._mask = None
super().__init__(**kwargs)
def _configured(self, params, sinkParams):
super()._configured(params, sinkParams)
self._mask = (True,) * self._channels
def _written(self, data, source):
dataOut = data.copy().astype(np.float64)
for channel in range(self._channels):
mask = np.array(self._mask)
if not mask[channel]: continue
mask[channel] = False
if not mask.any(): continue
dataOut[channel,:] -= data[mask,:].mean(axis=0)
super()._written(dataOut, source)
class CircularBuffer(Sampled):
@property
def data(self):
'''The underlying buffer.'''
return self._data
@property
def duration(self):
'''Duration of the underlying buffer along the circular axis.'''
return self._duration
@property
def size(self):
'''Size of the underlying buffer along the circular axis.'''
return self._size
@property
def shape(self):
'''Shape of the underlying buffer: channels x circular axis size.'''
return self._data.shape
def __init__(self, duration, **kwargs):
if duration <= 0:
raise ValueError('`duration` should be a number > 0')
self._duration = duration
self._size = None
self._data = None
super().__init__(**kwargs)
def _configuring(self, params, sinkParams):
super()._configuring(params, sinkParams)
size = int(self.duration * params['fs'])
# if round(size) != size:
# raise TypeError ('Total sample count should be an integer')
def _configured(self, params, sinkParams):
super()._configured(params, sinkParams)
self._size = int(self.duration * self.fs)
self._data = np.zeros((self.channels, self._size))
def _written(self, data, source):
n = data.shape[1]
inds = np.arange(self.ns-n, self.ns) % self._size
self._data[:,inds] = data
super()._written(data, source)
def read(self, n=None):
'''Read the last `n` samples written in the buffer.'''
if n is None: n = self._size
if n < 0: raise ValueError('`n` should be >= 0')
if self._size < n: raise ValueError('`n` should be <= `size`')
if self._ns < n: raise ValueError('`n` should be <= `ns`')
if round(n) != n: raise TypeError ('`n` should be an integer')
inds = np.arange(self._ns - n, self._ns) % self._size
return self._data[:,inds]
class Generator(Sampled):
@property
def paused(self):
return not self._continueEvent.isSet()
def __init__(self, fs, channels, **kwargs):
self._ns = 0
self._thread = threading.Thread(target=self._loop)
self._thread.daemon = True
self._continueEvent = threading.Event()
super().__init__(fs=fs, channels=channels, **kwargs)
def _addSources(self, sources):
raise RuntimeError('Cannot add source for a Generator')
def _loop(self):
start = dt.datetime.now()
pauseTS = 0
while True:
time.sleep(.01)
if not self._continueEvent.isSet():
pause = dt.datetime.now()
self._continueEvent.wait()
pauseTS += (dt.datetime.now()-pause).total_seconds()
ts = (dt.datetime.now()-start).total_seconds()-pauseTS
ns = int(ts * self._fs)
data = self._gen(self._ns, ns)
super().write(data, self)
self._ns = ns
def _gen(self, ns1, ns2):
raise NotImplementedError()
def start(self):
self._continueEvent.set()
if not self._thread.isAlive():
self._thread.start()
def pause(self):
self._continueEvent.clear()
def write(self, data, source):
raise RuntimeError('Cannot write to a Generator')
class SineGenerator(Generator):
def __init__(self, fs, channels, noisy=True, **kwargs):
# randomized channel parameters
self._phases = np.random.uniform(0 , np.pi, (channels,1))
self._freqs = np.random.uniform(1 , 5 , (channels,1))
self._amps = np.random.uniform(.05, .5 , (channels,1))
self._amps2 = np.random.uniform(.05, .2 , (channels,1))
if not noisy:
self._amps2 *= 0
super().__init__(fs=fs, channels=channels, **kwargs)
def _gen(self, ns1, ns2):
# generate data as a (channels, ns) array.
return (self._amps * np.sin(2 * np.pi * self._freqs
* np.arange(ns1, ns2) / self._fs + self._phases)
+ self._amps2 * np.random.randn(self._channels, ns2-ns1))
class SpikeGenerator(Generator):
def _gen(self, ns1, ns2):
data = .1*np.random.randn(self._channels, ns2-ns1)
dt = (ns2-ns1)/self._fs
counts = np.random.uniform(0, dt*1000/15, self._channels)
counts = np.round(counts).astype(np.int)
for channel in range(self._channels):
for i in range(counts[channel]):
# random spike length, amplitude, and location
length = int(np.random.uniform(.5e-3, 1e-3)*self._fs)
amp = np.random.uniform(.3, 1)
at = int(np.random.uniform(0, data.shape[1]-length))
spike = -amp*sp.signal.gaussian(length, length/7)
data[channel, at:at+length] += spike
return data
class SpikeDetector(Sampled):
def __init__(self, tl=4, th=20, spikeDuration=2e-3, **kwargs):
'''
Args:
tl (float): Lower detection threshold
th (float): Higher detection threshold
spikeDuration (float): Spike window duration
'''
self._tl = tl
self._th = th
self._spikeDuration = spikeDuration
self._spikeLength = None
self._lastData = None # keep a portion of last data
self._lastSpike = None # index of last spike for each channel
self._sd = None # standard deviation of the noise
self._buffer = None # buffer for calculating SD
# calculate SD asynchronously
self._thread = threading.Thread(target=self._loop)
self._thread.daemon = True
self._recalculate = threading.Event()
self._thread.start()
super().__init__(**kwargs)
def _configured(self, params, sinkParams):
self._spikeLength = int(self._spikeDuration*params['fs'])
sinkParams['spikeLength'] = self._spikeLength
super()._configured(params, sinkParams)
self._lastSpike = np.zeros(self._channels)
self._buffer = misc.CircularBuffer((self._channels, int(self._fs*10)))
def _written(self, data, source):
self._buffer.write(data)
nsRead = self._buffer.nsRead
nsAvailable = self._buffer.nsAvailable
if (nsRead < self.fs*.1 and nsAvailable > self.fs*.1
or nsRead < self.fs and nsAvailable > self.fs
or nsRead > self.fs and nsAvailable > self.fs*5):
self._recalculate.set()
# do not detect spikes until enough samples are available for
# calculating standard deviation of noise
if self._sd is None: return
# window required for extracting spikes of fixed length
windowHalf = self._spikeLength/2
windowStart = int(np.floor(windowHalf))
windowStop = int(np.ceil(windowHalf))
# list of lists containing tuples: (timestamp, peak amplitude, waveform)
dataOut = [[] for i in range(self._channels)]
# append last portion of data to the current data
if self._lastData is None:
lastLen = 0
else:
lastLen = self._lastData.shape[1]
data = np.c_[self._lastData, data]
# find spikes on each channel
for i in range(self._channels):