This page is for the paper appeared in CVPR2018. You can also find project page for the paper.
Here is the example of our results in watercolor images.
- Python 3.5+
- Chainer 3.0+
- ChainerCV 0.8
- Cupy 2.0+
- OpenCV 3+
- Matplotlib
Please install all the libraries. We recommend pip install -r requirements.txt
.
Please go to both models
and datasets
directory and follow the instructions.
For more details about arguments, please refer to -h
option or the actual codes.
python demo.py input/watercolor_142090457.jpg output.jpg --gpu 0 --load models/watercolor_dt_pl_ssd300
python eval_model.py --root datasets/clipart --data_type clipart --det_type ssd300 --gpu 0 --load models/clipart_dt_pl_ssd300
python train_model.py --root datasets/clipart --subset train --result result --det_type ssd300 --data_type clipart --gpu 0
Rest of this section shows examples for experiments in clipart
dataset.
-
(Preprocess): please follow instructions in
./datasets/README.md
to create folders. -
Domain transfer (DT) step
python train_model.py --root datasets/dt_clipart/VOC2007 --root datasets/dt_clipart/VOC2012 --subset trainval --result result/dt_clipart --det_type ssd300 --data_type clipart --gpu 0 --max_iter 500 --eval_root datasets/clipart
We provide models obtained in this step at
./models
. -
Pseudo labeling (PL) step
python pseudo_label.py --root datasets/clipart --data_type clipart --det_type ssd300 --gpu 0 --load models/clipart_dt_ssd300 --result datasets/dt_pl_clipart
python train_model.py --root datasets/dt_pl_clipart --subset train --result result/dt_pl_clipart --det_type ssd300 --data_type clipart --gpu 0 --load models/clipart_dt_ssd300 --eval_root datasets/clipart
If you find this code or dataset useful for your research, please cite our paper:
@inproceedings{inoue2018cross,
title={Cross-domain weakly-supervised object detection through progressive domain adaptation},
author={Inoue, Naoto and Furuta, Ryosuke and Yamasaki, Toshihiko and Aizawa, Kiyoharu},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5001--5009},
year={2018}
}