From 6e0f1d8a7e5dfc2f7606a6d995da0649b69f7902 Mon Sep 17 00:00:00 2001 From: Zhufei Chu Date: Sun, 15 Sep 2024 18:03:20 +0800 Subject: [PATCH] matrix chain multiplication --- docs/stp_compute.rst | 67 ++++++++++++++++++++++++++++++++++++--- examples/mc_mul_test.cpp | 17 +++------- include/stp/stp_eigen.hpp | 7 ++-- test/stp_eigen.cpp | 45 ++++++++++++++++++++++++-- 4 files changed, 115 insertions(+), 21 deletions(-) diff --git a/docs/stp_compute.rst b/docs/stp_compute.rst index 1c12642..c1b3a6e 100644 --- a/docs/stp_compute.rst +++ b/docs/stp_compute.rst @@ -1,10 +1,13 @@ STP Computation =============== -Semi-Tensor Product (STP) Computation based on Eigen Library +The basic Semi-Tensor Product (STP) Computation based on Eigen Library + +Basic STP Computation +---------------------- Native Definition ------------------ +^^^^^^^^^^^^^^^^^^^^^ Given two matrices :math:`A_{m \times n}` and :math:`B_{p \times q}`, the STP of :math:`A` and :math:`B` is defined as @@ -58,7 +61,7 @@ According to the definition, \end{align} Copy Definition ------------------ +^^^^^^^^^^^^^^^^^^^^^ Continue with the above example, we can view :math:`A` be composed by two submatrices :math:`A_{left}=\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}` and :math:`A_{right} = \begin{bmatrix}0 & 0 \\ 1 & 1\end{bmatrix}`. When we @@ -69,7 +72,7 @@ partial result; otherwise, we copy :math:`A_{right}`. One can verify the results are exactly the same as the ones computed by native definition. Functions ----------------- +^^^^^^^^^^^^^^^^^^^^^ In header file ``stp/stp_eigen.hpp``, we provide function:: matrix semi_tensor_product( const matrix& A, const matrix& B @@ -96,3 +99,59 @@ Example auto result = stp::semi_tensor_product( A, B, true, stp::stp_method::native_method ); One can find more examples or test cases in ``examples/stp_eigen.cpp`` and ``test/stp_eigen.cpp``. + +Matrix Chain STP Computation +---------------------------- +When we have :math:`n` matrices multiplication and :math:`n \ge 3`, we call +this as matrix chain STP computation. + +Sequence +^^^^^^^^^^^^^^^^^^^^^ +The matrix are multiplied one by one in sequence. For example, we have 4 +matrices :math:`A`, :math:`B`, :math:`C`, and :math:`D`. The parenthesis of +the matrix chain is + +.. math:: + ABCD = (((AB)C)D). + +Dynamic Programming +^^^^^^^^^^^^^^^^^^^^^ +As the computation complexity is distinct if we use different parenthesis +method, we also propose a dynamic programming method for matrix chain STP +computation. We may have an optimal parenthesis for the matrix chain as + +.. math:: + ABCD = ((AB)(CD)). + +Multi-threads +^^^^^^^^^^^^^^^^^^^^^ +Once we obtained the computation orders based on dynamic programming, the +computation can also invoke multi-threads to accerlerate. + +Functions +^^^^^^^^^^^^^^^^^^^^^ +In header file ``stp/stp_eigen.hpp``, we provide function:: + + matrix matrix_chain_multiply( const matrix_chain& mc, + const bool verbose = false, + const mc_multiply_method method = mc_multiply_method::dynamic_programming ) + +to compute the STP of matrix chain :math:`mc`, where toggle ``verbose`` is off and toggle ``mc_multiply_method`` +is used by the dynamic programming by default. + +Example + +.. code-block:: c++ + + matrix_chain mc; + + //default + auto result = stp::matrix_chain_multiply( mc ); + + //print verbose information + auto result = stp::matrix_chain_multiply( mc, true ); + + //use sequence method for matrix chain STP computation + auto result = stp::matrix_chain_multiply( mc, false, mc_multiply_method::sequence ); + +One can find more test cases in ``test/stp_eigen.cpp``. diff --git a/examples/mc_mul_test.cpp b/examples/mc_mul_test.cpp index fe6d277..45bd46d 100644 --- a/examples/mc_mul_test.cpp +++ b/examples/mc_mul_test.cpp @@ -13,21 +13,12 @@ void print(const matrix_chain& mc) } } -matrix random_generation(int row, int col) -{ - matrix result(row, col); - for(int i = 0; i < row; i++) - for(int j = 0; j < col; j++) - result(i, j) = rand() % 2; - return result; -} - void test1() { matrix_chain mc; for(int i = 0; i < 22; i++) { - mc.push_back(random_generation(2, 4)); + mc.push_back(stp::matrix_random_generation(2, 4)); } // print(mc); matrix r1 = stp::matrix_chain_multiply(mc, true); @@ -40,7 +31,7 @@ void test2() matrix_chain mc; for(int i = 0; i < 22; i++) { - mc.push_back(random_generation(4, 2)); + mc.push_back(stp::matrix_random_generation(4, 2)); } // print(mc); matrix r1 = stp::matrix_chain_multiply(mc, true); @@ -53,8 +44,8 @@ void test3() matrix_chain mc; for(int i = 0; i < 100; i++) { - if(rand() % 2 == 1) mc.push_back(random_generation(4, 2)); - else mc.push_back(random_generation(2, 4)); + if(rand() % 2 == 1) mc.push_back(stp::matrix_random_generation(4, 2)); + else mc.push_back(stp::matrix_random_generation(2, 4)); } // print(mc); matrix r1 = stp::matrix_chain_multiply(mc, true); diff --git a/include/stp/stp_eigen.hpp b/include/stp/stp_eigen.hpp index 351aca8..5a184b5 100755 --- a/include/stp/stp_eigen.hpp +++ b/include/stp/stp_eigen.hpp @@ -315,7 +315,7 @@ namespace stp if(verbose) { - print(); + report(); } return result; @@ -492,11 +492,13 @@ namespace stp return stacks[0]; } - void print() + void report() { + std::cout << "------------------Matrix Chain STP Computation-----------------\n"; if( method == mc_multiply_method::dynamic_programming ) { std::cout << "Use dynamic programming method for matrix chain multiply.\n"; + std::cout << "The parenthesis are added as shown in the following.\n"; for( int t : orders ) { if( t == -1 ) std::cout << "("; @@ -511,6 +513,7 @@ namespace stp std::cout << "Use sequence method for matrix chain multiply.\n"; std::cout << "Total time: " << to_millisecond( time ) << "ms\n"; } + std::cout << "-------------------------------------------------------------\n"; } private: diff --git a/test/stp_eigen.cpp b/test/stp_eigen.cpp index 310967c..130dcdb 100644 --- a/test/stp_eigen.cpp +++ b/test/stp_eigen.cpp @@ -82,6 +82,47 @@ TEST_CASE( "STP calculation by two methods", "[eigen]" ) int p2 = 4 << 5; matrix A2 = stp::matrix_random_generation( m, n2 ); matrix B2 = stp::matrix_random_generation( p2, q ); - CHECK( stp::semi_tensor_product( A2, B2, false, stp::stp_method::copy_method ) == - stp::semi_tensor_product( A2, B2, false, stp::stp_method::native_method ) ); + + matrix r1 = stp::semi_tensor_product( A2, B2, false, stp::stp_method::copy_method ); + matrix r2 = stp::semi_tensor_product( A2, B2, false, stp::stp_method::native_method ); + CHECK( r1 == r2 ); +} + +TEST_CASE( "Matrix chain STP calculation by two methods", "[eigen]" ) +{ + matrix_chain mc1, mc2, mc3; + + for( int i = 0; i < 100; i++ ) + { + if( rand() % 2 == 1 ) + { + mc1.push_back( matrix_random_generation( 4, 2 ) ); + } + else + { + mc1.push_back( matrix_random_generation( 2, 4 ) ); + } + } + + matrix r1 = stp::matrix_chain_multiply( mc1, false, stp::mc_multiply_method::dynamic_programming ); + matrix r2 = stp::matrix_chain_multiply( mc1, false, stp::mc_multiply_method::sequence ); + CHECK( r1 == r2 ); + + for( int i = 0; i < 22; i++ ) + { + mc2.push_back( stp::matrix_random_generation( 2, 4 ) ); + } + + matrix r3 = stp::matrix_chain_multiply( mc2, false, stp::mc_multiply_method::dynamic_programming ); + matrix r4 = stp::matrix_chain_multiply( mc2, false, stp::mc_multiply_method::sequence ); + CHECK( r3 == r4 ); + + for( int i = 0; i < 22; i++ ) + { + mc3.push_back( stp::matrix_random_generation( 4, 2 ) ); + } + + matrix r5 = stp::matrix_chain_multiply( mc3, false, stp::mc_multiply_method::dynamic_programming ); + matrix r6 = stp::matrix_chain_multiply( mc3, false, stp::mc_multiply_method::sequence ); + CHECK( r5 == r6 ); }