-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathtest_elitism_operator.py
62 lines (51 loc) · 2.74 KB
/
test_elitism_operator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from typing import TYPE_CHECKING
import pytest
from fedot.core.optimisers.adapters import PipelineAdapter
from fedot.core.optimisers.gp_comp.evaluation import SimpleDispatcher
from fedot.core.optimisers.gp_comp.individual import Individual
from fedot.core.optimisers.gp_comp.operators.elitism import Elitism, ElitismTypesEnum
from test.unit.optimizer.test_evaluation import prepared_objective
from test.unit.pipelines.test_node_cache import pipeline_first, pipeline_second, pipeline_third, pipeline_fourth, \
pipeline_fifth
from fedot.core.optimisers.gp_comp.gp_params import GPGraphOptimizerParameters
@pytest.fixture()
def set_up():
adapter = PipelineAdapter()
pipelines = [pipeline_first(), pipeline_second(), pipeline_third(), pipeline_fourth()]
population = [Individual(adapter.adapt(pipeline)) for pipeline in pipelines]
best_individual = [Individual(adapter.adapt(pipeline_fourth())), Individual(adapter.adapt(pipeline_fifth()))]
dispatcher = SimpleDispatcher(adapter)
objective = prepared_objective
evaluator = dispatcher.dispatch(objective)
evaluated_population = evaluator(population)
evaluated_best_individuals = evaluator(best_individual)
return evaluated_best_individuals, evaluated_population
def test_keep_n_best_elitism(set_up):
best_individuals, population = set_up
elitism = Elitism(GPGraphOptimizerParameters(elitism_type=ElitismTypesEnum.keep_n_best))
new_population = elitism(best_individuals, population)
for best_ind in best_individuals:
assert best_ind in new_population
assert len(population) == len(new_population)
def test_replace_worst(set_up):
best_individuals, population = set_up
elitism = Elitism(GPGraphOptimizerParameters(elitism_type=ElitismTypesEnum.replace_worst))
new_population = elitism(best_individuals, population)
for best_ind in best_individuals:
assert any(best_ind.fitness > ind.fitness for ind in population) == \
(best_ind in new_population)
assert len(new_population) == len(population)
def test_elitism_not_applicable(set_up):
best_individuals, population = set_up
elitisms = [
Elitism(GPGraphOptimizerParameters(elitism_type=ElitismTypesEnum.replace_worst,
multi_objective=True)),
Elitism(GPGraphOptimizerParameters(elitism_type=ElitismTypesEnum.replace_worst,
pop_size=4, min_pop_size_with_elitism=5)),
Elitism(GPGraphOptimizerParameters(elitism_type=ElitismTypesEnum.none)),
]
for elitism in elitisms:
new_population = elitism(best_individuals, population)
for best_ind in best_individuals:
assert best_ind not in new_population
assert new_population == population