Skip to content

Latest commit

 

History

History
18 lines (8 loc) · 729 Bytes

README.md

File metadata and controls

18 lines (8 loc) · 729 Bytes

VGG16

Very Deep Convolutional Networks for Large-Scale Image Recognition on paper https://arxiv.org/abs/1409.1556

VGG16 implementation on MNIST and CIFAR10

The network can accept image resolution from 32x32 to 224x224, and converts the MNIST into 3 channel (RGB) format first.

  • To run VGG16 with MNIST dataset

python train.py --dataset mnist --model vgg16 --reshape '(32,32)' --batch_size 128 --epoch 10 --learning_rate 0.01 --dropout_rate 0.2 --activation_ch softmax --optimizer_ch sgd

  • To run VGG16 with CIFAR10 dataset

python train.py --dataset cifar --model vgg16 --reshape '(32,32)' --batch_size 128 --epoch 10 --learning_rate 0.01 --dropout_rate 0.2 --activation_ch softmax --optimizer_ch sgd