forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
825 lines (674 loc) · 31.9 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
r"""
The torch package contains data structures for multi-dimensional
tensors and defines mathematical operations over these tensors.
Additionally, it provides many utilities for efficient serializing of
Tensors and arbitrary types, and other useful utilities.
It has a CUDA counterpart, that enables you to run your tensor computations
on an NVIDIA GPU with compute capability >= 3.0.
"""
import os
import sys
import platform
import textwrap
import ctypes
import warnings
if sys.version_info < (3,):
raise Exception("Python 2 has reached end-of-life and is no longer supported by PyTorch.")
from ._utils import _import_dotted_name, classproperty
from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \
USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS
# TODO(torch_deploy) figure out how to freeze version.py in fbcode build
if sys.executable == 'torch_deploy':
__version__ = "torch-deploy-1.8"
else:
from .torch_version import __version__ as __version__
from ._six import string_classes as _string_classes
from typing import Set, Type, TYPE_CHECKING
__all__ = [
'typename', 'is_tensor', 'is_storage', 'set_default_tensor_type',
'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed',
'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
'no_grad', 'enable_grad', 'rand', 'randn', 'inference_mode',
'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage',
'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor',
'lobpcg', 'use_deterministic_algorithms',
'are_deterministic_algorithms_enabled',
'set_warn_always', 'is_warn_always_enabled',
]
################################################################################
# Load the extension module
################################################################################
if sys.platform == 'win32':
pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files')
py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin')
th_dll_path = os.path.join(os.path.dirname(__file__), 'lib')
# When users create a virtualenv that inherits the base environment,
# we will need to add the corresponding library directory into
# DLL search directories. Otherwise, it will rely on `PATH` which
# is dependent on user settings.
if sys.exec_prefix != sys.base_exec_prefix:
base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin')
else:
base_py_dll_path = ''
dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path]))
if all([not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths]):
nvtoolsext_dll_path = os.path.join(
os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64')
else:
nvtoolsext_dll_path = ''
from .version import cuda as cuda_version
import glob
if cuda_version and all([not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths]):
cuda_version_1 = cuda_version.replace('.', '_')
cuda_path_var = 'CUDA_PATH_V' + cuda_version_1
default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version)
cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin')
else:
cuda_path = ''
dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path]))
kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
prev_error_mode = kernel32.SetErrorMode(0x0001)
kernel32.LoadLibraryW.restype = ctypes.c_void_p
if with_load_library_flags:
kernel32.AddDllDirectory.restype = ctypes.c_void_p
kernel32.LoadLibraryExW.restype = ctypes.c_void_p
for dll_path in dll_paths:
if sys.version_info >= (3, 8):
os.add_dll_directory(dll_path)
elif with_load_library_flags:
res = kernel32.AddDllDirectory(dll_path)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error adding "{dll_path}" to the DLL directories.'
raise err
try:
ctypes.CDLL('vcruntime140.dll')
ctypes.CDLL('msvcp140.dll')
ctypes.CDLL('vcruntime140_1.dll')
except OSError:
print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.
It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')
dlls = glob.glob(os.path.join(th_dll_path, '*.dll'))
path_patched = False
for dll in dlls:
is_loaded = False
if with_load_library_flags:
res = kernel32.LoadLibraryExW(dll, None, 0x00001100)
last_error = ctypes.get_last_error()
if res is None and last_error != 126:
err = ctypes.WinError(last_error)
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
raise err
elif res is not None:
is_loaded = True
if not is_loaded:
if not path_patched:
os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']])
path_patched = True
res = kernel32.LoadLibraryW(dll)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
raise err
kernel32.SetErrorMode(prev_error_mode)
# See Note [Global dependencies]
def _load_global_deps():
if platform.system() == 'Windows' or sys.executable == 'torch_deploy':
return
lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so')
here = os.path.abspath(__file__)
lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name)
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \
platform.system() != 'Windows':
# Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a
# few circumstances:
#
# 1. You're in a build environment (e.g., fbcode) where
# libtorch_global_deps is not available, but you still need
# to get mkl to link in with RTLD_GLOBAL or it will just
# not work.
#
# 2. You're trying to run PyTorch under UBSAN and you need
# to ensure that only one copy of libtorch is loaded, so
# vptr checks work properly
#
# If you're using this setting, you must verify that all the libraries
# you load consistently use the same libstdc++, or you may have
# mysterious segfaults.
#
import os as _dl_flags
if not hasattr(_dl_flags, 'RTLD_GLOBAL') or not hasattr(_dl_flags, 'RTLD_LAZY'):
try:
# next try if DLFCN exists
import DLFCN as _dl_flags # type: ignore[import, no-redef]
except ImportError:
# as a last attempt, use compile-time constants
import torch._dl as _dl_flags # type: ignore[import, no-redef]
old_flags = sys.getdlopenflags()
sys.setdlopenflags(_dl_flags.RTLD_GLOBAL | _dl_flags.RTLD_LAZY)
from torch._C import * # noqa: F403
sys.setdlopenflags(old_flags)
del old_flags
del _dl_flags
else:
# Easy way. You want this most of the time, because it will prevent
# C++ symbols from libtorch clobbering C++ symbols from other
# libraries, leading to mysterious segfaults.
#
# If building in an environment where libtorch_global_deps isn't available
# like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will
# want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False
#
# See Note [Global dependencies]
if USE_GLOBAL_DEPS:
_load_global_deps()
from torch._C import * # noqa: F403
# Appease the type checker; ordinarily this binding is inserted by the
# torch._C module initialization code in C
if TYPE_CHECKING:
import torch._C as _C
# Check to see if we can load C extensions, and if not provide some guidance
# on what the problem might be.
try:
# _initExtension is chosen (arbitrarily) as a sentinel.
from torch._C import _initExtension
except ImportError:
import torch._C as _C_for_compiled_check
# The __file__ check only works for Python 3.7 and above.
if sys.version_info >= (3, 7) and _C_for_compiled_check.__file__ is None:
raise ImportError(textwrap.dedent('''
Failed to load PyTorch C extensions:
It appears that PyTorch has loaded the `torch/_C` folder
of the PyTorch repository rather than the C extensions which
are expected in the `torch._C` namespace. This can occur when
using the `install` workflow. e.g.
$ python setup.py install && python -c "import torch"
This error can generally be solved using the `develop` workflow
$ python setup.py develop && python -c "import torch" # This should succeed
or by running Python from a different directory.
''').strip()) from None
raise # If __file__ is not None the cause is unknown, so just re-raise.
__all__ += [name for name in dir(_C)
if name[0] != '_' and
not name.endswith('Base')]
if not TYPE_CHECKING:
# issue 38137 and python issue 43367. Submodules of a C extension are
# non-standard, and attributes of those submodules cannot be pickled since
# pickle expect to be able to import them as "from _C.sub import attr"
# which fails with "_C is not a package
for attr in dir(_C):
candidate = getattr(_C, attr)
if type(candidate) is type(_C):
# submodule
if f'torch._C.{attr}' not in sys.modules:
sys.modules[f'torch._C.{attr}'] = candidate
################################################################################
# Define basic utilities
################################################################################
def typename(o):
if isinstance(o, torch.Tensor):
return o.type()
module = ''
class_name = ''
if hasattr(o, '__module__') and o.__module__ != 'builtins' \
and o.__module__ != '__builtin__' and o.__module__ is not None:
module = o.__module__ + '.'
if hasattr(o, '__qualname__'):
class_name = o.__qualname__
elif hasattr(o, '__name__'):
class_name = o.__name__
else:
class_name = o.__class__.__name__
return module + class_name
def is_tensor(obj):
r"""Returns True if `obj` is a PyTorch tensor.
Note that this function is simply doing ``isinstance(obj, Tensor)``.
Using that ``isinstance`` check is better for typechecking with mypy,
and more explicit - so it's recommended to use that instead of
``is_tensor``.
Args:
obj (Object): Object to test
Example::
>>> x=torch.tensor([1,2,3])
>>> torch.is_tensor(x)
True
"""
return isinstance(obj, torch.Tensor)
def is_storage(obj):
r"""Returns True if `obj` is a PyTorch storage object.
Args:
obj (Object): Object to test
"""
return type(obj) in _storage_classes
def set_default_tensor_type(t):
r"""Sets the default ``torch.Tensor`` type to floating point tensor type
``t``. This type will also be used as default floating point type for
type inference in :func:`torch.tensor`.
The default floating point tensor type is initially ``torch.FloatTensor``.
Args:
t (type or string): the floating point tensor type or its name
Example::
>>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32
torch.float32
>>> torch.set_default_tensor_type(torch.DoubleTensor)
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
torch.float64
"""
if isinstance(t, _string_classes):
t = _import_dotted_name(t)
_C._set_default_tensor_type(t)
def set_default_dtype(d):
r"""
Sets the default floating point dtype to :attr:`d`. Supports torch.float32
and torch.float64 as inputs. Other dtypes may be accepted without complaint
but are not supported and are unlikely to work as expected.
When PyTorch is initialized its default floating point dtype is torch.float32,
and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like
type inference. The default floating point dtype is used to:
1. Implicitly determine the default complex dtype. When the default floating point
type is float32 the default complex dtype is complex64, and when the default
floating point type is float64 the default complex type is complex128.
2. Infer the dtype for tensors constructed using Python floats or complex Python
numbers. See examples below.
3. Determine the result of type promotion between bool and integer tensors and
Python floats and complex Python numbers.
Args:
d (:class:`torch.dtype`): the floating point dtype to make the default.
Either torch.float32 or torch.float64.
Example:
>>> # initial default for floating point is torch.float32
>>> # Python floats are interpreted as float32
>>> torch.tensor([1.2, 3]).dtype
torch.float32
>>> # initial default for floating point is torch.complex64
>>> # Complex Python numbers are interpreted as complex64
>>> torch.tensor([1.2, 3j]).dtype
torch.complex64
>>> torch.set_default_dtype(torch.float64)
>>> # Python floats are now interpreted as float64
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
torch.float64
>>> # Complex Python numbers are now interpreted as complex128
>>> torch.tensor([1.2, 3j]).dtype # a new complex tensor
torch.complex128
"""
_C._set_default_dtype(d)
def use_deterministic_algorithms(mode, *, warn_only=False):
r""" Sets whether PyTorch operations must use "deterministic"
algorithms. That is, algorithms which, given the same input, and when
run on the same software and hardware, always produce the same output.
When enabled, operations will use deterministic algorithms when available,
and if only nondeterministic algorithms are available they will throw a
:class:`RuntimeError` when called.
The following normally-nondeterministic operations will act
deterministically when ``mode=True``:
* :class:`torch.nn.Conv1d` when called on CUDA tensor
* :class:`torch.nn.Conv2d` when called on CUDA tensor
* :class:`torch.nn.Conv3d` when called on CUDA tensor
* :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor
* :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor
* :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor
* :func:`torch.bmm` when called on sparse-dense CUDA tensors
* :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor
and the index is a list of tensors
* :func:`torch.Tensor.index_put` with ``accumulate=False``
* :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU
tensor
* :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU
tensor
* :func:`torch.Tensor.scatter_add_` when ``input`` dimension is one and called
on a CUDA tensor
* :func:`torch.gather` when ``input`` dimension is one and called
on a CUDA tensor that requires grad
* :func:`torch.index_add` when called on CUDA tensor
* :func:`torch.index_select` when attempting to differentiate a CUDA tensor
* :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor
* :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor
The following normally-nondeterministic operations will throw a
:class:`RuntimeError` when ``mode=True``:
* :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor
* :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor
and one of the following modes is used:
- ``linear``
- ``bilinear``
- ``bicubic``
- ``trilinear``
* :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReflectionPad3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.NLLLoss` when called on a CUDA tensor
* :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when
``mode='max'``
* :func:`torch.Tensor.scatter_add_` when ``input`` dimension is larger than one
and called on a CUDA tensor
* :func:`torch.gather` when ``input`` dimension is larger than one
and called on a CUDA tensor that requires grad
* :func:`torch.Tensor.put_` when ``accumulate=False``
* :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor
* :func:`torch.histc` when called on a CUDA tensor
* :func:`torch.bincount` when called on a CUDA tensor
* :func:`torch.kthvalue` with called on a CUDA tensor
* :func:`torch.median` with indices output when called on a CUDA tensor
* :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor
A handful of CUDA operations are nondeterministic if the CUDA version is
10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8``
or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more
details: `<https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility>`_
If one of these environment variable configurations is not set, a :class:`RuntimeError`
will be raised from these operations when called with CUDA tensors:
* :func:`torch.mm`
* :func:`torch.mv`
* :func:`torch.bmm`
Note that deterministic operations tend to have worse performance than
nondeterministic operations.
.. note::
This flag does not detect or prevent nondeterministic behavior caused
by calling an inplace operation on a tensor with an internal memory
overlap or by giving such a tensor as the :attr:`out` argument for an
operation. In these cases, multiple writes of different data may target
a single memory location, and the order of writes is not guaranteed.
Args:
mode (:class:`bool`): If True, makes potentially nondeterministic
operations switch to a deterministic algorithm or throw a runtime
error. If False, allows nondeterministic operations.
Keyword args:
warn_only (:class:`bool`, optional): If True, operations that do not
have a deterministic implementation will throw a warning instead of
an error. Default: ``False``
Example::
>>> torch.use_deterministic_algorithms(True)
# Forward mode nondeterministic error
>>> torch.randn(10).index_copy(0, torch.tensor([0]), torch.randn(1))
...
RuntimeError: index_copy does not have a deterministic implementation...
# Backward mode nondeterministic error
>>> torch.randn(10, requires_grad=True, device='cuda').index_select(0, torch.tensor([0], device='cuda')).backward()
...
RuntimeError: index_add_cuda_ does not have a deterministic implementation...
"""
_C._set_deterministic_algorithms(mode, warn_only=warn_only)
def are_deterministic_algorithms_enabled():
r"""Returns True if the global deterministic flag is turned on. Refer to
:func:`torch.use_deterministic_algorithms` documentation for more details.
"""
return _C._get_deterministic_algorithms()
def is_deterministic_algorithms_warn_only_enabled():
r"""Returns True if the global deterministic flag is set to warn only.
Refer to :func:`torch.use_deterministic_algorithms` documentation for more
details.
"""
return _C._get_deterministic_algorithms_warn_only()
def set_warn_always(b):
r"""When this flag is False (default) then some PyTorch warnings may only
appear once per process. This helps avoid excessive warning information.
Setting it to True causes these warnings to always appear, which may be
helpful when debugging.
Args:
b (:class:`bool`): If True, force warnings to always be emitted
If False, set to the default behaviour
"""
_C._set_warnAlways(b)
def is_warn_always_enabled():
r"""Returns True if the global warn_always flag is turned on. Refer to
:func:`torch.set_warn_always` documentation for more details.
"""
return _C._get_warnAlways()
################################################################################
# Define numeric constants
################################################################################
# For Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html) and
# NumPy consistency (https://numpy.org/devdocs/reference/constants.html)
from math import e , nan , inf , pi
__all__.extend(['e', 'pi', 'nan', 'inf'])
################################################################################
# Define Storage and Tensor classes
################################################################################
from ._tensor import Tensor
from .storage import _StorageBase, TypedStorage
# NOTE: New <type>Storage classes should never be added. When adding a new
# dtype, use torch.storage.TypedStorage directly.
class UntypedStorage(_C.ByteStorageBase, _StorageBase):
pass
class ByteStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.uint8
class DoubleStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.double
class FloatStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.float
class HalfStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.half
class LongStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.long
class IntStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.int
class ShortStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.short
class CharStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.int8
class BoolStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.bool
class BFloat16Storage(TypedStorage):
@classproperty
def dtype(self):
return torch.bfloat16
class ComplexDoubleStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.cdouble
class ComplexFloatStorage(TypedStorage):
@classproperty
def dtype(self):
return torch.cfloat
class QUInt8Storage(TypedStorage):
@classproperty
def dtype(self):
return torch.quint8
class QInt8Storage(TypedStorage):
@classproperty
def dtype(self):
return torch.qint8
class QInt32Storage(TypedStorage):
@classproperty
def dtype(self):
return torch.qint32
class QUInt4x2Storage(TypedStorage):
@classproperty
def dtype(self):
return torch.quint4x2
class QUInt2x4Storage(TypedStorage):
@classproperty
def dtype(self):
return torch.quint2x4
_storage_classes = {
UntypedStorage, DoubleStorage, FloatStorage, LongStorage, IntStorage,
ShortStorage, CharStorage, ByteStorage, HalfStorage, BoolStorage,
QUInt8Storage, QInt8Storage, QInt32Storage, BFloat16Storage,
ComplexFloatStorage, ComplexDoubleStorage, QUInt4x2Storage, QUInt2x4Storage,
}
# The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings()
_tensor_classes: Set[Type] = set()
# If you edit these imports, please update torch/__init__.py.in as well
from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed
from .serialization import save, load
from ._tensor_str import set_printoptions
################################################################################
# Initialize extension
################################################################################
def manager_path():
if platform.system() == 'Windows' or sys.executable == 'torch_deploy':
return b""
path = get_file_path('torch', 'bin', 'torch_shm_manager')
prepare_multiprocessing_environment(get_file_path('torch'))
if not os.path.exists(path):
raise RuntimeError("Unable to find torch_shm_manager at " + path)
return path.encode('utf-8')
from .autocast_mode import autocast
# Shared memory manager needs to know the exact location of manager executable
_C._initExtension(manager_path())
del manager_path
# Appease the type checker: it can't deal with direct setting of globals().
# Note that we will see "too many" functions when reexporting this way; there
# is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions
# so that this import is good enough
if TYPE_CHECKING:
# Some type signatures pulled in from _VariableFunctions here clash with
# signatures already imported. For now these clashes are ignored; see
# PR #43339 for details.
from torch._C._VariableFunctions import * # type: ignore[misc] # noqa: F403
# Ops not to be exposed in `torch` namespace,
# mostly helper ops.
PRIVATE_OPS = (
'unique_dim',
)
for name in dir(_C._VariableFunctions):
if name.startswith('__') or name in PRIVATE_OPS:
continue
globals()[name] = getattr(_C._VariableFunctions, name)
__all__.append(name)
################################################################################
# Import interface functions defined in Python
################################################################################
# needs to be after the above ATen bindings so we can overwrite from Python side
from .functional import * # noqa: F403
################################################################################
# Remove unnecessary members
################################################################################
del ByteStorageBase
################################################################################
# Define _assert
################################################################################
# needs to be before the submodule imports to avoid circular dependencies
def _assert(condition, message):
r"""A wrapper around Python's assert which is symbolically traceable.
"""
from .overrides import has_torch_function, handle_torch_function
if type(condition) is not torch.Tensor and has_torch_function((condition,)):
return handle_torch_function(_assert, (condition,), condition, message)
assert condition, message
################################################################################
# Import most common subpackages
################################################################################
# Use the redundant form so that type checkers know that these are a part of
# the public API. The "regular" import lines are there solely for the runtime
# side effect of adding to the imported module's members for other users.
from torch import cuda as cuda
from torch import cpu as cpu
from torch import autograd as autograd
from torch.autograd import (
no_grad as no_grad,
enable_grad as enable_grad,
set_grad_enabled as set_grad_enabled,
inference_mode as inference_mode,
)
from torch import fft as fft
from torch import futures as futures
from torch import nn as nn
import torch.nn.intrinsic
import torch.nn.quantizable
import torch.nn.quantized
# AO depends on nn, as well as quantized stuff -- so should be after those.
from torch import ao as ao
from torch import optim as optim
import torch.optim._multi_tensor
from torch import multiprocessing as multiprocessing
from torch import sparse as sparse
from torch import special as special
import torch.utils.backcompat
from torch import onnx as onnx
from torch import jit as jit
from torch import linalg as linalg
from torch import hub as hub
from torch import random as random
from torch import distributions as distributions
from torch import testing as testing
import torch.backends.cuda
import torch.backends.mkl
import torch.backends.mkldnn
import torch.backends.openmp
import torch.backends.quantized
import torch.utils.data
from torch import __config__ as __config__
from torch import __future__ as __future__
from torch import profiler as profiler
_C._init_names(list(torch._storage_classes))
# attach docstrings to torch and tensor functions
from . import _torch_docs, _tensor_docs, _storage_docs
del _torch_docs, _tensor_docs, _storage_docs
def compiled_with_cxx11_abi():
r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""
return _C._GLIBCXX_USE_CXX11_ABI
# Import the ops "namespace"
from torch._ops import ops
from torch._classes import classes
# quantization depends on torch.fx
# Import quantization
from torch import quantization as quantization
# Import the quasi random sampler
from torch import quasirandom as quasirandom
# If you are seeing this, it means that this call site was not checked if
# the memory format could be preserved, and it was switched to old default
# behaviour of contiguous
legacy_contiguous_format = contiguous_format
# Register fork handler to initialize OpenMP in child processes (see gh-28389)
from torch.multiprocessing._atfork import register_after_fork
register_after_fork(torch.get_num_threads)
del register_after_fork
# Import tools that require fully imported torch (for applying
# torch.jit.script as a decorator, for instance):
from ._lobpcg import lobpcg as lobpcg
from ._vmap_internals import vmap as vmap
# These were previously defined in native_functions.yaml and appeared on the
# `torch` namespace, but we moved them to c10 dispatch to facilitate custom
# class usage. We add these lines here to preserve backward compatibility.
quantized_lstm = torch.ops.aten.quantized_lstm
quantized_gru = torch.ops.aten.quantized_gru
from torch.utils.dlpack import from_dlpack, to_dlpack
# Import experimental masked operations support. See
# [RFC-0016](https://github.com/pytorch/rfcs/pull/27) for more
# information.
from . import _masked
def _register_device_module(device_type, module):
r"""Register an external runtime module of the specific :attr:`device_type`
supported by torch.
After the :attr:`module` is registered correctly, the user can refer
the external runtime module as part of torch with attribute torch.xxx.
"""
# Make sure the device_type represent a supported device type for torch.
device_type = torch.device(device_type).type
m = sys.modules[__name__]
if hasattr(m, device_type):
raise RuntimeError("The runtime module of '{}' has already "
"been registered with '{}'".format(device_type, getattr(m, device_type)))
setattr(m, device_type, module)