forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpickle.cpp
152 lines (133 loc) · 4 KB
/
pickle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include <torch/csrc/jit/serialization/pickle.h>
#include <ATen/core/ivalue.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import_read.h>
namespace torch {
namespace jit {
void pickle(
std::function<void(const char* data_start, size_t data_len)> writer,
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table) {
Pickler pickler(std::move(writer), tensor_table, nullptr, nullptr);
pickler.protocol();
pickler.pushIValue(ivalue);
pickler.stop();
}
std::vector<char> pickle(
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table) {
std::vector<char> data;
pickle(
[&](const char* bytes, size_t len) {
data.insert(data.end(), bytes, bytes + len);
},
ivalue,
tensor_table);
return data;
}
// This has to live here instead of the C++ API to mirror torch.save since the
// mobile build excludes the C++ API
std::vector<char> pickle_save(const at::IValue& ivalue) {
#ifndef C10_MOBILE
// Pickle the IValue into an array of bytes
std::vector<char> pickle_data;
Pickler pickler([&](const char* buf, size_t size) {
pickle_data.insert(pickle_data.end(), buf, buf + size);
});
pickler.protocol();
pickler.pushIValue(ivalue);
pickler.stop();
std::vector<char> container_data;
container_data.reserve(pickle_data.size());
caffe2::serialize::PyTorchStreamWriter writer(
[&](const void* void_bytes, size_t len) {
const char* bytes = reinterpret_cast<const char*>(void_bytes);
container_data.insert(container_data.end(), bytes, bytes + len);
return len;
});
// Write the generated bytes and the associated tensors into a data.pkl file
// and data/0, data/1, data/2... files for each of the tensors
writeArchiveAndTensors(
"data",
pickle_data.data(),
pickle_data.size(),
pickler.tensorData(),
writer);
return container_data;
#else
AT_ERROR(
"pickle_save not supported on mobile "
"(see https://github.com/pytorch/pytorch/pull/30108)");
#endif
}
#ifndef C10_MOBILE
class VectorReader : public caffe2::serialize::ReadAdapterInterface {
public:
VectorReader(std::vector<char> data) : data_(std::move(data)) {}
size_t size() const override {
return data_.size();
}
size_t read(uint64_t pos, void* buf, size_t n, const char* what)
const override {
std::copy(
data_.data() + pos,
data_.data() + pos + n,
reinterpret_cast<char*>(buf));
return n;
}
private:
std::vector<char> data_;
};
#endif
IValue pickle_load(const std::vector<char>& data) {
// Read in the pickle data
#ifndef C10_MOBILE
caffe2::serialize::PyTorchStreamReader reader(
std::make_unique<VectorReader>(data));
return readArchiveAndTensors(
"data",
/*pickle_prefix=*/"",
/*tensor_prefix=*/"",
/*type_resolver=*/c10::nullopt,
/*obj_loader=*/c10::nullopt,
/*device=*/c10::nullopt,
reader);
#else
AT_ERROR(
"pickle_load not supported on mobile "
"(see https://github.com/pytorch/pytorch/pull/30108)");
#endif
};
IValue unpickle(
std::function<size_t(char*, size_t)> reader,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table) {
Unpickler unpickler(
std::move(reader), std::move(type_resolver), tensor_table);
return unpickler.parse_ivalue();
}
IValue unpickle(
const char* data,
size_t size,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table) {
size_t bytes_read = 0;
return unpickle(
[&](char* buffer, size_t len) -> size_t {
if (bytes_read >= size) {
return 0;
}
len = std::min(size - bytes_read, len);
// Copy len bytes into buffer
const char* start = data + bytes_read;
std::memcpy(buffer, start, len);
bytes_read += len;
return len;
},
std::move(type_resolver),
tensor_table);
}
} // namespace jit
} // namespace torch