-
Notifications
You must be signed in to change notification settings - Fork 6
/
get_MT_scores_by_year.py
169 lines (137 loc) · 5.46 KB
/
get_MT_scores_by_year.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import constants
import copy
def gini(populations, accuracy):
assert(len(populations) == len(accuracy))
N = len(populations)
sum_nom = 0
sum_denom = 0
for i in range(N):
for j in range(N):
sum_nom += populations[i] * populations[j] * np.abs(accuracy[i]-accuracy[j])
sum_denom += populations[i]*accuracy[i]
return sum_nom/(2*np.sum(populations)*sum_denom)
def include_diversity(l, T=1):
acc_arr = np.array(l)
acc_arr = [f**T for f in acc_arr]
N = sum(acc_arr)
acc_arr = [f/N for f in acc_arr]
return list(acc_arr)
TOTAL_POPULATION = constants.TOTAL_POPULATION/1000000
all_populations = constants.read_mt_populations()
languages1 = constants.get_mt_languages()
languages2 = constants.get_mt_languages()
languageso = constants.get_mt_languages()
#pop_denom = (constants.TOTAL_POPULATION - constants.TOTAL_ENG_POPULATION)/1000000
pop_denom = constants.TOTAL_POPULATION /1000000
'''
prev_all_bleus = {}
for year in range(2014, 2021):
all_bleus = constants.read_BLEUs_by_year(year=year)
if prev_all_bleus:
for key in prev_all_bleus:
if key not in all_bleus:
all_bleus[key] = prev_all_bleus[key]
elif prev_all_bleus[key] > all_bleus[key]:
all_bleus[key] = prev_all_bleus[key]
prev_all_bleus = copy.deepcopy(all_bleus)
languages = set()
for key in all_bleus:
languages.add(key[0])
languages.add(key[1])
if 'nno' in languages:
languages.remove('nno')
languages = sorted(list(languages))
languageso = list(languages)
populationso = [all_populations[l] for l in languages]
populationso = []
languageso = []
accuracyo = []
for l1 in languages:
if l1 != 'eng':
accuracyo.append(all_bleus[l1,'deu'])
populationso.append(all_populations[l1])
languageso.append(l1)
languages = list(languageso)
#accuracyo = [all_bleus[l1, 'eng'] for l1 in languages if l1!='eng']
print(f"Year: {year}")
print(f"Pairs: {len(accuracyo)}")
langs_to_show = set()
TOTAL_LANGS = 1000
for temperature in [1,0.01]:
if temperature == 1:
remaining = 1
else:
remaining = TOTAL_LANGS - len(languages)
accuracy = accuracyo + [0]*remaining
languages = languageso + ['rest']*remaining
if temperature == 1:
tosplit = (TOTAL_POPULATION - sum(populationso))
populations = populationso + [tosplit]
else:
populations = [1 for l in languages]
inds = np.flip(np.argsort(accuracy))
N = np.sum(populations)
populations = [populations[i]/N for i in inds]
accuracy = [accuracy[i]/100 for i in inds]
languages = [languages[i] for i in inds]
N = np.sum(populations)
old_populations = [p/N for p in populations]
populations = include_diversity(old_populations, T=temperature)
gini_coeff = gini(np.array(populations)*N, accuracy)
M_score = np.sum(np.array(populations)*np.array(accuracy))
print(f"temperature {temperature}: {M_score} ({len(languageso)} languages)")
'''
prev_all_bleus = {}
print(f"year\tx (tau=1)\ty (tau->0)")
for year in range(2014, 2022):
all_bleus = constants.read_BLEUs_by_year(year=year)
if prev_all_bleus:
for key in prev_all_bleus:
if key not in all_bleus:
all_bleus[key] = prev_all_bleus[key]
elif prev_all_bleus[key] > all_bleus[key]:
all_bleus[key] = prev_all_bleus[key]
languages1 = constants.get_mt_languages()
languages2 = constants.get_mt_languages()
languageso = constants.get_mt_languages()
#print(all_bleus)
for l in languages1:
all_bleus[l,l] = 100
prev_all_bleus = copy.deepcopy(all_bleus)
#languages1 = constants.get_mt_languages()
#populationso = [all_populations[l] for l in languages2 if l !='eng' ]
populationso = [all_populations[l] for l in languages2]
#accuracyo = [all_bleus['eng',l1] for l1 in languages2]
accuracyo = [np.average([all_bleus[l2, l1] for l1 in languages1]) for l2 in languages2]
languages = list(languageso)
#print(f"Year: {year}")
#print(f"Pairs: {len(accuracyo)}")
langs_to_show = set()
TOTAL_LANGS = 6500
answers = []
for temperature in [1,0.01]:
if temperature == 1:
remaining = 1
else:
remaining = TOTAL_LANGS - len(languages)
accuracy = accuracyo + [0]*remaining
languages = languageso + ['rest']*remaining
if temperature == 1:
tosplit = (TOTAL_POPULATION - sum(populationso))
populations = populationso + [tosplit]
else:
populations = [1 for l in languages]
inds = np.flip(np.argsort(accuracy))
N = np.sum(populations)
populations = [populations[i]/N for i in inds]
accuracy = [accuracy[i]/100 for i in inds]
languages = [languages[i] for i in inds]
N = np.sum(populations)
old_populations = [p/N for p in populations]
populations = include_diversity(old_populations, T=temperature)
gini_coeff = gini(np.array(populations)*N, accuracy)
M_score = np.sum(np.array(populations)*np.array(accuracy))
#print(f"temperature {temperature}: {M_score} ({len(languageso)} languages)")
answers.append(M_score)
print(f"{year}\t{answers[0]}\t{answers[1]}")