-
Notifications
You must be signed in to change notification settings - Fork 6
/
get_top3_QA.py
116 lines (91 loc) · 3.39 KB
/
get_top3_QA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
from matplotlib.cm import get_cmap
from scipy.special import expit
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import constants
plt.rc('font', family='serif')
plt.rc('xtick', labelsize='x-small')
plt.rc('ytick', labelsize='x-small')
def gini(populations, accuracy):
assert(len(populations) == len(accuracy))
N = len(populations)
sum_nom = 0
sum_denom = 0
for i in range(N):
for j in range(N):
sum_nom += populations[i] * populations[j] * np.abs(accuracy[i]-accuracy[j])
sum_denom += populations[i]*accuracy[i]
return sum_nom/(2*np.sum(populations)*sum_denom)
def METRIC(populations,accuracy):
# normalized populations (sum to 1)
# normalized accuracy (max is 1)
mu = 0
area_covered = []
area_missing = []
for p,a in zip(populations, accuracy):
mu += p*a
area_covered.append(p*a)
area_missing.append(p*(1-a))
return mu, area_covered, area_missing
task='qa'
total_lang = 6500
TOTAL_POPULATION = constants.TOTAL_POPULATION/1000000
all_populations = constants.read_qa_populations()
languages = constants.get_qa_languages()
languageso = constants.get_qa_languages()
pop_denom = constants.TOTAL_POPULATION /1000000
all_bleus = constants.read_qa_acc()
populationso = [all_populations[l] for l in languages]
accuracyo = [all_bleus[l] for l in languages]
if total_lang == -1:
TOTAL_LANGS = len(languages)
else:
TOTAL_LANGS = 6500
def include_diversity(l, T=1):
acc_arr = np.array(l)
acc_arr = [f**T for f in acc_arr]
N = sum(acc_arr)
acc_arr = [f/N for f in acc_arr]
return list(acc_arr)
langs_to_show = set()
#temperatures = list(np.flip(np.arange(1,11)/10)) + [0.01]
temperatures = [1]
for temperature in temperatures:
remaining = TOTAL_LANGS - len(languages)
# remaining = 28
accuracy = accuracyo + [0]*remaining
languages = languageso + ['rest']*remaining
if remaining:
tosplit = (TOTAL_POPULATION - sum(populationso))/remaining
populations = populationso + [tosplit]*remaining
else:
populations = list(populationso)
populations = include_diversity(populations, T=temperature)
inds = np.flip(np.argsort(accuracy))
populations = [populations[i] for i in inds]
accuracies = [accuracy[i] for i in inds]
languages = [languages[i] for i in inds]
N = np.sum(populations)
old_populations = [p/N for p in populations]
populations = include_diversity(old_populations, T=temperature)
gini_coeff = gini(np.array(populations)*N, accuracies)
#normalize accuracy
M = max(accuracies)
accuracies = [a/M for a in accuracies]
MU, area_covered, area_missing = METRIC(populations, accuracies)
#print(f"Total area covered: M={sum(area_covered)}")
#print(f"Total area missing: RoI={sum(area_missing)}")
'''
inds = np.flip(np.argsort(area_covered))
print(f"Top 10 Covered with tau = {temperature}")
for i in inds[:10]:
print(f"{i}\t{languages[i]}\t{area_covered[i]}\t{area_missing[i]}")
'''
print(f"Score with tau = {temperature} is {MU}")
inds = np.flip(np.argsort(area_missing))
print(f"Top 3 Missing with tau = {temperature}")
for i in inds[:3]:
print(f"\t{i}\t{languages[i]}\t{area_missing[i]}")