-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathvidrl_upload.py
366 lines (312 loc) · 16 KB
/
vidrl_upload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os, re, time, datetime, csv, sys, json, errno
import pandas as pd
from upload import upload
from rethinkdb import r
from Bio import SeqIO
import argparse
import subprocess
from parse import parse
from upload import parser
import xlrd
sys.path.append('') # need to import from base
from base.rethink_io import rethink_io
from vdb.flu_upload import flu_upload
from titer_block import find_titer_block, find_serum_rows, find_virus_columns
parser.add_argument('--assay_type', default='hi')
parser.add_argument('--human-ref-only', action="store_true",
help="Only ingest human sera references, used for backfilling data that was skipped in previous ingests.")
ELIFE_COLUMNS = ["virus_strain", "serum_strain","serum_id", "titer", "source", "virus_passage", "virus_passage_category", "serum_passage", "serum_passage_category", "assay_type"]
EXPECTED_SUBTYPES = {"h1n1pdm", "h3n2", "vic", "yam"}
# Vaccine mapping used for mapping human pooled sera to a specific reference virus
# This is based on the vaccine composition for the Southern Hemisphere
# because all human pooled sera should be from Australia
VACCINE_MAPPING = {
"2023": {
"egg": {
"h1n1pdm": "A/Sydney/5/2021",
"h3n2": "A/Darwin/9/2021",
"vic": "B/Austria/1359417/2021",
"yam": "B/Phuket/3073/2013"
},
"cell": {
"h1n1pdm": "A/Sydney/5/2021",
"h3n2": "A/Darwin/6/2021",
"vic": "B/Austria/1359417/2021",
"yam": "B/Phuket/3073/2013"
}
},
"2024": {
"egg": {
"h1n1pdm": "A/Victoria/4897/2022",
"h3n2": "A/Thailand/8/2022",
"vic": "B/Austria/1359417/2021",
"yam": "B/Phuket/3073/2013"
},
"cell": {
"h1n1pdm": "A/Wisconsin/67/2022",
"h3n2": "A/Massachusetts/18/2022",
"vic": "B/Austria/1359417/2021",
"yam": "B/Phuket/3073/2013"
}
}
}
def parse_tsv_mapping_to_dict(tsv_file):
map_dict = {}
with open(tsv_file, 'r') as f:
for line in f:
(key, value) = line.split('\t')
key = key.lower()
map_dict[key] = value.rstrip('\n')
return map_dict
def parse_human_serum_references(human_serum_data, subtype):
"""
Expects the *human_serum_data* from titer_block.find_serum_rows
Returns parsed human serum references, where keys are the column number of
the human serum reference in the Excel sheet and the values are the serum
data with serum id, serum passage, and serum strain.
"""
human_serum_references = {}
year_regex = r"SH(vax|VAX|\s)?(\d{4})"
egg_or_cell_regex = r"^(egg|cell)$" # Used with re.IGNORECASE
potential_year_fields = ['serum_id', 'serum_passage', 'serum_abbrev']
potential_egg_or_cell_fields = ['serum_passage', 'extra_info']
for human_serum in human_serum_data:
column = human_serum['col_idx']
# First try to parse the year from the human serum data
year = new_serum_id = None
for field in potential_year_fields:
matches = re.match(year_regex, human_serum[field])
# Use the first match of the potential fields
if matches is not None:
year = matches.group(2)
# Follow a standard pattern where serum_id is `Human pool <year>`
# Need "human" in serum_id because this is how we match for human sera in seasonal flu
# <https://github.com/nextstrain/seasonal-flu/blob/89f6cfd11481b2c51c50d68822c18d46ed56db51/workflow/snakemake_rules/download_from_fauna.smk#L93>
new_serum_id = f"Human pool {year}"
break
# year is required to know which vaccine reference strain to use
# Raise an error because this info should _always_ be available
if year is None:
raise Exception(f"Unable to process human sera column {column} ",
f"because none of {potential_year_fields} fields ",
f"matched the year regex {year_regex!r}")
# Then try to parse egg or cell from the human serum data
egg_or_cell = None
for field in potential_egg_or_cell_fields:
matches = re.match(egg_or_cell_regex, human_serum[field], re.IGNORECASE)
# Use the first match of the potential fields
if matches is not None:
egg_or_cell = matches.group(1).lower()
break
# egg_or_cell is required to know which vaccine reference strain to use,
# so skip the human serum if it can't be parsed
# Only outputting a warning because I've seen Excel worksheets _without_
# any egg/cell distinctions from 2023. This will require extra correspondence
# with VIDRL, so don't let it block ingest of other data.
# -Jover, 28 August 2024
if egg_or_cell is None:
print(f"WARNING: Skipping human sera column {column} ",
f"because none of {potential_egg_or_cell_fields} fields ",
f"matched the regex {egg_or_cell_regex!r}")
continue
# Raise a loud error so we know to update the VACCINE_MAPPING as needed
try:
serum_strain = VACCINE_MAPPING[year][egg_or_cell][subtype]
except KeyError as err:
raise Exception(f"VACCINE_MAPPING needs to be updated!") from err
human_serum_references[column] = {
"serum_id": new_serum_id,
"serum_passage": egg_or_cell,
"serum_strain": serum_strain
}
return human_serum_references
def read_vidrl(path, fstem, assay_type, subtype, human_ref_only):
'''
Read all csv tables in path, create data frame with reference viruses as columns
'''
exten = [ os.path.isfile(path + fstem + ext) for ext in ['.xls', '.xlsm', '.xlsx'] ]
if True in exten:
ind = exten.index(True)
convert_vidrl_xls_to_tsv(path, fstem, ind, assay_type, subtype, human_ref_only)
else:
print("Unable to recognize file {}/{}".format(path,fstem))
sys.exit()
def convert_vidrl_xls_to_tsv(path, fstem, ind, assay_type, subtype, human_ref_only):
exts = ['.xls', '.xlsm', '.xlsx']
workbook = xlrd.open_workbook(path+fstem + exts[ind])
# Default patterns, VIDRL
virus_pattern = r"[A-Z]/[\w\s-]+/.+/\d{4}"
virus_passage_pattern = r"(MDCK|SIAT|E\d+|hCK)"
serum_id_pattern = r"^[A-Z]\d{4,8}"
serum_passage_pattern = r"(MDCK\d+|SIAT\d+|E\d+)"
serum_abbrev_pattern = r"\w+\s{0,1}\w+/\d+.*"
human_serum_pattern = r"(^SH\d+|SHVAX|SHvax|sera|vaxpool).*"
crick = False
for worksheet_index, worksheet in enumerate(workbook.sheets(), start=1):
print(f"Reading worksheet {worksheet_index} '{worksheet.name}' in file '{fstem}'")
# autodetecting titer, strain, serum blocks
titer_block = find_titer_block(worksheet)
if len(titer_block["col_start"]) == 0:
print("No titer block found.")
break
titer_coords = {
'col_start': titer_block["col_start"][0][0],
'col_end': titer_block["col_end"][0][0],
'row_start': titer_block["row_start"][0][0],
'row_end': titer_block["row_end"][0][0]
}
virus_block = find_virus_columns(
worksheet=worksheet,
titer_coords=titer_coords,
virus_pattern=virus_pattern,
virus_passage_pattern=virus_passage_pattern,
)
# If no virus names are found, might not be a valid worksheet, skip worksheet to avoid breaking find_serum_rows
if virus_block["virus_names"] is None:
print(f"Virus names not found. Check the virus pattern: '{virus_pattern}'")
break
serum_block = find_serum_rows(
worksheet=worksheet,
titer_coords=titer_coords,
virus_names=virus_block["virus_names"],
serum_id_pattern=serum_id_pattern,
serum_passage_pattern=serum_passage_pattern,
serum_abbrev_pattern=serum_abbrev_pattern,
ignore_serum_pattern=human_serum_pattern,
log_human_sera=True,
crick=crick,
)
# Print the most likely row and column indices for the titer block and the vote counts
print("Titer block:")
print(f" Most likely (n={titer_block['col_start'][0][1]}) col_start: {titer_block['col_start'][0][0]}")
print(f" Most likely (n={titer_block['col_end'][0][1]}) col_end: {titer_block['col_end'][0][0]}")
print(f" Most likely (n={titer_block['row_start'][0][1]}) row_start: {titer_block['row_start'][0][0]}")
print(f" Most likely (n={titer_block['row_end'][0][1]}) row_end: {titer_block['row_end'][0][0]}")
# Print virus and serum annotations row and column indices
print("Virus (antigen) block: left and right of the titer block")
print(f" virus column index: {virus_block['virus_col_idx']}")
print(f" virus passage column index: {virus_block['virus_passage_col_idx']}")
print(f" virus names: {virus_block['virus_names']}")
print("Serum (antisera) block: above the titer block")
print(f" serum ID row index: {serum_block['serum_id_row_idx']}")
print(f" serum passage row index: {serum_block['serum_passage_row_idx']}")
print(f" serum abbreviated name row index: {serum_block['serum_abbrev_row_idx']}")
# Match abbreviated names across the top to the full names along the left side and auto convert to full names
if serum_block["serum_abbrev_row_idx"] is not None:
print("serum_mapping = {")
for abbrev, full in serum_block["serum_mapping"].items():
print(f" '{abbrev}': '{full}',")
print("}")
serum_mapping = serum_block["serum_mapping"]
# # Use manual correction when needed
# serum_mapping = {
# 'Dar/6': 'A/Darwin/6/2021',
# 'Thai/8': 'A/Thailand/8/2022',
# 'Syd/856': 'A/Sydney/856/2023',
# 'Can/327': 'A/Canberra/327/2023',
# 'Can/302': 'A/Canberra/302/2023',
# 'Vic/2997': 'A/Victoria/2997/2023',
# 'Can/373': 'A/Canberra/373/2023',
# 'Can/309': 'A/Canberra/309/2023',
# }
# print(f"corrected: serum_mapping={json.dumps(serum_mapping, indent=4)}")
human_serum_references = parse_human_serum_references(serum_block['human_serum_data'], args.subtype)
print("Human pooled serum references parsed from serum block")
for col, values in human_serum_references.items():
print(f"Column {col!r}: {values}")
# Check if all the necessary indices were found
if virus_block["virus_col_idx"] is None:
print(f"Virus column index not found. Check the virus pattern: '{virus_pattern}'")
break
if virus_block["virus_passage_col_idx"] is None:
print(f"Virus passage column index not found. Check the virus passage pattern: '{virus_passage_pattern}'")
break
if serum_block["serum_id_row_idx"] is None:
print(f"Serum ID row index not found. Check the serum ID pattern: '{serum_id_pattern}'")
break
if serum_block["serum_passage_row_idx"] is None:
print(f"Serum passage row index not found. Check the serum passage pattern: '{serum_passage_pattern}'")
break
if serum_block["serum_abbrev_row_idx"] is None:
print(f"Serum abbreviated name row index not found. Check the serum abbreviated name pattern: '{serum_abbrev_pattern}'")
break
mat=worksheet
with open('data/tmp/%s.tsv'%(fstem), 'w') as outfile:
outfile.write("%s\n" % ("\t".join(ELIFE_COLUMNS)))
print("assay_type: " + assay_type)
# Zero-indexed positions
row_start = titer_coords['row_start']
row_end = titer_coords['row_end']
col_start = titer_coords['col_start']
col_end = titer_coords['col_end']
virus_strain_col_index = virus_block['virus_col_idx']
virus_passage_col_index = virus_block['virus_passage_col_idx']
serum_id_row_index = serum_block['serum_id_row_idx']
serum_passage_row_index = serum_block['serum_passage_row_idx']
serum_strain_row_index = serum_block['serum_abbrev_row_idx']
source = "vidrl_%s"%(fstem).strip()
virus_passage_category = ''
serum_passage_category = ''
for i in range(row_start, (row_end+1)):
virus_strain = str(mat.cell_value(i,virus_strain_col_index)).strip()
virus_passage = str(mat.cell_value(i,virus_passage_col_index)).strip()
for j in range(col_start, (col_end+1)):
# Special handling of human pooled sera that were matched to
# vaccine reference strain instead of the normal serum mapping
if j in human_serum_references:
serum_id = human_serum_references[j]['serum_id']
serum_passage = human_serum_references[j]['serum_passage']
serum_strain = human_serum_references[j]['serum_strain']
# Skip other titer measurements if we only want to ingest human serum references
elif human_ref_only:
continue
else:
serum_id = str(mat.cell_value(serum_id_row_index,j)).strip().replace(' ','')
serum_passage = str(mat.cell_value(serum_passage_row_index,j)).strip()
serum_abbr = str(mat.cell_value(serum_strain_row_index,j)).strip()
serum_abbr = serum_abbr.replace(' ','')
serum_strain = serum_mapping.get(serum_abbr, serum_abbr)
titer = str(mat.cell_value(i,j)).strip()
line = "%s\n" % ("\t".join([ virus_strain, serum_strain, serum_id, titer, source, virus_passage, virus_passage_category, serum_passage, serum_passage_category, assay_type]))
outfile.write(line)
def read_flat_vidrl(path, fstem, assay_type):
"""
Read the flat CSV file with *fstem* in the provided *path* and convert
to the expected TSV file at `data/tmp/<fstem>.tsv` for tdb/elife_upload.
"""
column_map = parse_tsv_mapping_to_dict("source-data/vidrl_flat_file_column_map.tsv")
filepath = path + fstem + ".csv"
titer_measurements = pd.read_csv(filepath, usecols=column_map.keys()) \
.rename(columns=column_map)
titer_measurements["assay_type"] = assay_type
titer_measurements["virus_passage_category"] = ""
titer_measurements["serum_passage_category"] = ""
titer_measurements["source"] = "vidrl_{}.csv".format(fstem)
titer_measurements[ELIFE_COLUMNS].to_csv("data/tmp/{}.tsv".format(fstem), sep="\t", index=False)
if __name__=="__main__":
args = parser.parse_args()
# Asserting here because this is using a shared parser
# other tdb scripts do not require subtype
assert args.subtype is not None, "Subtype needs to be specified with --subtype"
assert args.subtype in EXPECTED_SUBTYPES, f"Subtype must be one of {EXPECTED_SUBTYPES!r}"
if args.path is None:
args.path = "data/"
else:
if not args.path.endswith('/'):
args.path = args.path + '/'
if args.database is None:
args.database = "vidrl_tdb"
if not os.path.isdir(args.path):
os.makedirs(args.path)
if args.ftype == "flat":
read_flat_vidrl(args.path, args.fstem, args.assay_type)
else:
read_vidrl(args.path, args.fstem, args.assay_type, args.subtype, args.human_ref_only)
if args.preview:
command = "python tdb/elife_upload.py -db " + args.database + " --subtype " + args.subtype + " --path data/tmp/ --fstem " + args.fstem + " --preview"
print(command)
subprocess.call(command, shell=True)
else:
command = "python tdb/elife_upload.py -db " + args.database + " --subtype " + args.subtype + " --path data/tmp/ --fstem " + args.fstem
print(command)
subprocess.call(command, shell=True)