forked from chainer/chainer.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
88 lines (85 loc) · 3.56 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
layout: landing-page
---
<!-- One -->
<section id="one" class="wrapper style1">
<div class="container">
<div class="row">
<header class="major">
<h2>Bridge the gap between algorithms and implementations of deep learning</h2>
</header>
<div class="4u">
<section class="special box">
<i class="icon fa-rocket major"></i>
<h3>Powerful</h3>
<p>
Chainer supports CUDA computation.
It only requires few lines of codes to leverage a GPU.
It also runs on multiple GPUs with a little effort.
</p>
</section>
</div>
<div class="4u">
<section class="special box">
<i class="icon fa-puzzle-piece major"></i>
<h3>Flexible</h3>
<p>
Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures.
</p>
</section>
</div>
<div class="4u">
<section class="special box">
<i class="icon fa-bolt major"></i>
<h3>Intuitive</h3>
<p>
Forward computation can include any control flow statements of Python without lacking ability of backpropagation. It makes codes intuitive and easy to debug.
</p>
</section>
</div>
</div>
</div>
</section>
<section id="two" class="style1">
<div class="container">
<div class="row double">
<div id="quickstart" class="7u">
<header class="major">
<h2>Quick Start</h2>
</header>
<p>
Install Chainer:<br>
<pre><code>pip install chainer</code></pre>
</p>
<p>
Run the MNIST example:<br>
<pre><code>wget https://github.com/pfnet/chainer/archive/v{{ site.chainer_version }}.tar.gz
tar xzf v{{ site.chainer_version }}.tar.gz
python chainer-{{ site.chainer_version }}/examples/mnist/train_mnist.py</code></pre>
</p>
<p>
Learn more from <a href="http://docs.chainer.org">the official documentation</a>.
</p>
</div>
<div class="5u">
<a class="twitter-timeline" href="https://twitter.com/ChainerOfficial" data-widget-id="606658917934858240">@ChainerOfficial</a>
<script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+"://platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script>
</div>
</div>
</div>
</section>
<section id="three" class="wrapper style1">
<header class="major">
<h2>Slides</h2>
</header>
<div class="container">
<div class="row">
<div class="4u">
<section class="special">
<a href="http://www.slideshare.net/beam2d/introduction-to-chainer-a-flexible-framework-for-deep-learning" class="image fit" style="border: 1px solid #ccc"><img src="http://image.slidesharecdn.com/pfiseminarchainer-150618075108-lva1-app6891/95/slide-1-1024.jpg"/></a>
<p><a href="http://www.slideshare.net/beam2d/introduction-to-chainer-a-flexible-framework-for-deep-learning">Introduction to Chainer: A Flexible Framework for Deep Learning</a></p>
</section>
</div>
</div>
</div>
</section>