From 1801d9ba2ac3890e2272cd8f7ce41a33d69ed9d3 Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Tue, 5 Mar 2024 10:34:54 +0800 Subject: [PATCH 01/17] Explore the bug --- demo/dev/executable_smartnoise.ipynb | 211 +++++++++++++++++++++++++++ 1 file changed, 211 insertions(+) create mode 100644 demo/dev/executable_smartnoise.ipynb diff --git a/demo/dev/executable_smartnoise.ipynb b/demo/dev/executable_smartnoise.ipynb new file mode 100644 index 00000000..42acbe6c --- /dev/null +++ b/demo/dev/executable_smartnoise.ipynb @@ -0,0 +1,211 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/alex/PETsARD\n" + ] + } + ], + "source": [ + "%cd /Users/alex/PETsARD" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loader - Benchmarker: file benchmark/adult.csv already exist and match SHA-256.\n", + " PETsARD will ignore download and use local data directly.\n" + ] + } + ], + "source": [ + "from PETsARD import (\n", + " Loader,\n", + " Processor,\n", + " Synthesizer\n", + ")\n", + "\n", + "\n", + "load = Loader(\n", + " filepath='benchmark://adult',\n", + " na_values={k: '?' for k in [\n", + " 'workclass',\n", + " 'occupation',\n", + " 'native-country'\n", + " ]}\n", + ")\n", + "load.load()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pprint\n", + "\n", + "\n", + "def issue332(\n", + " load: Loader,\n", + " synthesizing_method: str,\n", + " scaler_inhibit: bool = False\n", + "):\n", + " pp = pprint.PrettyPrinter(depth=2)\n", + "\n", + " proc_discretizing = Processor(\n", + " metadata=load.metadata,\n", + " )\n", + "\n", + " if scaler_inhibit:\n", + " print(\"Preproc config of Scaler before update as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + " proc_discretizing.update_config(\n", + " {'scaler': {\n", + " col: None for col in load.data.columns\n", + " }}\n", + " )\n", + " print(\"Preproc config of Scaler before after as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + "\n", + " proc_discretizing.fit(\n", + " data=load.data,\n", + " sequence=[\n", + " 'missing',\n", + " 'outlier',\n", + " 'scaler',\n", + " 'discretizing'\n", + " ]\n", + " )\n", + " preproc_discretizing_data = proc_discretizing.transform(\n", + " data=load.data\n", + " )\n", + " print(\"Preproc data as ...\")\n", + " print(preproc_discretizing_data.head(1))\n", + "\n", + "\n", + "\n", + " syn = Synthesizer(\n", + " method=synthesizing_method,\n", + " epsilon=10.0,\n", + " )\n", + " syn.create(data=preproc_discretizing_data)\n", + " syn.fit_sample()\n", + " print(\"Sync data as ...\")\n", + " print(syn.data_syn.head(1))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 3 0.0 1 0.0 4 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 38 0 \n", + "Synthesizer (SmartNoise): Fitting aim.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/mbi/__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", + " warnings.warn('MixtureInference disabled, please install jax and jaxlib')\n" + ] + }, + { + "ename": "ValueError", + "evalue": "The transformer appears to have some continuous columns. Please provide only categorical or ordinal.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43missue332\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43mload\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msynthesizing_method\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msmartnoise-aim\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m)\u001b[49m\n", + "Cell \u001b[0;32mIn[5], line 48\u001b[0m, in \u001b[0;36missue332\u001b[0;34m(load, synthesizing_method, scaler_inhibit)\u001b[0m\n\u001b[1;32m 43\u001b[0m syn \u001b[38;5;241m=\u001b[39m Synthesizer(\n\u001b[1;32m 44\u001b[0m method\u001b[38;5;241m=\u001b[39msynthesizing_method,\n\u001b[1;32m 45\u001b[0m epsilon\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10.0\u001b[39m,\n\u001b[1;32m 46\u001b[0m )\n\u001b[1;32m 47\u001b[0m syn\u001b[38;5;241m.\u001b[39mcreate(data\u001b[38;5;241m=\u001b[39mpreproc_discretizing_data)\n\u001b[0;32m---> 48\u001b[0m \u001b[43msyn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_sample\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 49\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSync data as ...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 50\u001b[0m \u001b[38;5;28mprint\u001b[39m(syn\u001b[38;5;241m.\u001b[39mdata_syn\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n", + "File \u001b[0;32m~/PETsARD/PETsARD/synthesizer/synthesizer.py:121\u001b[0m, in \u001b[0;36mSynthesizer.fit_sample\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_syn \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloader\u001b[38;5;241m.\u001b[39mdata\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 121\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_syn \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSynthesizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_sample\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/PETsARD/PETsARD/synthesizer/smartnoise.py:130\u001b[0m, in \u001b[0;36mSmartNoise.fit_sample\u001b[0;34m(self, sample_num_rows, reset_sampling, output_file_path)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfit_sample\u001b[39m(\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 113\u001b[0m sample_num_rows: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 114\u001b[0m reset_sampling: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 115\u001b[0m output_file_path: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 116\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame:\n\u001b[1;32m 117\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;124;03m Fit and sample from the synthesizer.\u001b[39;00m\n\u001b[1;32m 119\u001b[0m \u001b[38;5;124;03m The combination of the methods `fit()` and `sample()`.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[38;5;124;03m data_syn (pd.DataFrame): The synthesized data.\u001b[39;00m\n\u001b[1;32m 129\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 130\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msample(sample_num_rows, reset_sampling, output_file_path)\n", + "File \u001b[0;32m~/PETsARD/PETsARD/synthesizer/smartnoise.py:47\u001b[0m, in \u001b[0;36mSmartNoise.fit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 42\u001b[0m t \u001b[38;5;241m=\u001b[39m TableTransformer([IdentityTransformer() \n\u001b[1;32m 43\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m])])\n\u001b[1;32m 45\u001b[0m \u001b[38;5;66;03m# TODO - Only support cube-style synthesizer. \u001b[39;00m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;66;03m# GAN-style synthesizer needed to be implemented.\u001b[39;00m\n\u001b[0;32m---> 47\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_Synthesizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtransformer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 48\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 49\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSynthesizer (SmartNoise): \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 50\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFitting \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msyn_method\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m spent \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 51\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mround\u001b[39m(time\u001b[38;5;241m.\u001b[39mtime()\u001b[38;5;241m-\u001b[39mtime_start\u001b[38;5;250m \u001b[39m,\u001b[38;5;241m4\u001b[39m)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m sec.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 52\u001b[0m )\n\u001b[1;32m 53\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", + "File \u001b[0;32m~/miniforge3/envs/dev310/lib/python3.10/site-packages/snsynth/aim/aim.py:121\u001b[0m, in \u001b[0;36mAIMSynthesizer.fit\u001b[0;34m(self, data, transformer, categorical_columns, ordinal_columns, continuous_columns, preprocessor_eps, nullable, *ignore)\u001b[0m\n\u001b[1;32m 119\u001b[0m cards \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_transformer\u001b[38;5;241m.\u001b[39mcardinality\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m(c \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mfor\u001b[39;00m c \u001b[38;5;129;01min\u001b[39;00m cards):\n\u001b[0;32m--> 121\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe transformer appears to have some continuous columns. Please provide only categorical or ordinal.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 123\u001b[0m dimensionality \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mprod(cards)\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose:\n", + "\u001b[0;31mValueError\u001b[0m: The transformer appears to have some continuous columns. Please provide only categorical or ordinal." + ] + } + ], + "source": [ + "issue332(\n", + " load=load,\n", + " synthesizing_method='smartnoise-aim',\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "dev310", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 5f9345614ededc1c10b78bb89fa5c75ddc390336 Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Tue, 5 Mar 2024 16:03:44 +0800 Subject: [PATCH 02/17] change the output of transform to categorical --- PETsARD/processor/discretizing.py | 2 +- PETsARD/processor/encoder.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/PETsARD/processor/discretizing.py b/PETsARD/processor/discretizing.py index ae82fda3..4bc70eaa 100644 --- a/PETsARD/processor/discretizing.py +++ b/PETsARD/processor/discretizing.py @@ -50,7 +50,7 @@ def transform(self, data: pd.Series) -> np.ndarray: if not self._is_fitted: raise UnfittedError('The object is not fitted. Use .fit() first.') - return self._transform(data) + return pd.Categorical(self._transform(data)) def _transform(): """ diff --git a/PETsARD/processor/encoder.py b/PETsARD/processor/encoder.py index de78aff0..dbcf3c5b 100644 --- a/PETsARD/processor/encoder.py +++ b/PETsARD/processor/encoder.py @@ -64,7 +64,7 @@ def transform(self, data: pd.Series) -> np.ndarray: " in the fitting process.", " Please check the data categories again.") - return self._transform(data) + return pd.Categorical(self._transform(data)) def _transform(): """ From 8994fc61e27cad8b252eb70f74e6886b183f4e72 Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Tue, 5 Mar 2024 16:05:17 +0800 Subject: [PATCH 03/17] edit TableTransformer in smartnoise --- PETsARD/synthesizer/smartnoise.py | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) diff --git a/PETsARD/synthesizer/smartnoise.py b/PETsARD/synthesizer/smartnoise.py index 788118f7..eca86d98 100644 --- a/PETsARD/synthesizer/smartnoise.py +++ b/PETsARD/synthesizer/smartnoise.py @@ -37,14 +37,9 @@ def fit(self) -> None: f"Synthesizer (SmartNoise): Fitting {self.syn_method}." ) - # TODO - for mst and pacsynth, - # we need to implement other transformer rather than IdentityTransformer - t = TableTransformer([IdentityTransformer() - for i in range(self.data.shape[1])]) - # TODO - Only support cube-style synthesizer. # GAN-style synthesizer needed to be implemented. - self._Synthesizer.fit(self.data, transformer=t) + self._Synthesizer.fit(self.data, categorical_columns=self.data.columns) print( f"Synthesizer (SmartNoise): " f"Fitting {self.syn_method} spent " From 987447eaf14f06e1b46f9fd05f12eddeb9020750 Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Tue, 5 Mar 2024 16:14:04 +0800 Subject: [PATCH 04/17] Edit inverse_transform dtype --- PETsARD/processor/encoder.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/PETsARD/processor/encoder.py b/PETsARD/processor/encoder.py index dbcf3c5b..51b3a37b 100644 --- a/PETsARD/processor/encoder.py +++ b/PETsARD/processor/encoder.py @@ -92,7 +92,7 @@ def inverse_transform(self, data: pd.Series) -> pd.Series | np.ndarray: if not self._is_fitted: raise UnfittedError('The object is not fitted. Use .fit() first.') - return self._inverse_transform(data) + return self._inverse_transform(data.to_numpy()) def _inverse_transform(): """ @@ -168,12 +168,12 @@ def _transform(self, data: pd.Series) -> np.ndarray: uniform(self.cat_to_val[x][0], self.cat_to_val[x][1], size=1)[0]).values - def _inverse_transform(self, data: pd.Series) -> pd.Series: + def _inverse_transform(self, data: np.ndarray) -> pd.Series: """ Inverse the transformed data to the categorical data. Args: - data (pd.Series): The categorical data needed to + data (np.ndarray): The categorical data needed to be transformed inversely. Return: @@ -231,12 +231,12 @@ def _transform(self, data: pd.Series) -> np.ndarray: return self.model.transform(data) - def _inverse_transform(self, data: pd.Series) -> np.ndarray: + def _inverse_transform(self, data: np.ndarray) -> np.ndarray: """ Inverse the transformed data to the categorical data. Args: - data (pd.Series): The categorical data needed to + data (np.ndarray): The categorical data needed to be transformed inversely. Return: @@ -285,13 +285,13 @@ def _transform(self, data: pd.Series) -> None: return data - def _inverse_transform(self, data: pd.Series) -> None: + def _inverse_transform(self, data: np.ndarray) -> None: """ Inverse the transformed data to the categorical data. This is a dummy method, and it is implemented in MediatorEncoder. Args: - data (pd.Series): The categorical data needed to + data (np.ndarray): The categorical data needed to be transformed inversely. Return: From af94b5e16a4d077f3e444a875c28a124151d4f15 Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Tue, 5 Mar 2024 16:14:44 +0800 Subject: [PATCH 05/17] demo file --- demo/dev/AlexTest.ipynb | 905 ++++++++++----------------- demo/dev/executable_smartnoise.ipynb | 110 ++-- 2 files changed, 399 insertions(+), 616 deletions(-) diff --git a/demo/dev/AlexTest.ipynb b/demo/dev/AlexTest.ipynb index 3140f461..736639be 100644 --- a/demo/dev/AlexTest.ipynb +++ b/demo/dev/AlexTest.ipynb @@ -42,7 +42,16 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], "source": [ "import PETsARD" ] @@ -85,7 +94,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -100,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -109,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -118,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -127,7 +136,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -136,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -181,7 +190,7 @@ "0 4190 12 0" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -192,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -524,7 +533,7 @@ "qm NaN 0 4.0 NaN " ] }, - "execution_count": 13, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -535,7 +544,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -544,7 +553,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -554,7 +563,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -582,24 +591,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 16, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No self-defined config passed. Generate a config automatically.\n" - ] - } - ], + "outputs": [], "source": [ "pm = PETsARD.Processor(m)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -611,7 +612,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -621,7 +622,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -633,7 +634,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -642,75 +643,75 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'missing': {'gen': ,\n", - " 'age': ,\n", - " 'race': ,\n", - " 'edu': ,\n", - " 'mar': ,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", - " 'qm': ,\n", - " 'dia': },\n", + "{'missing': {'gen': ,\n", + " 'age': ,\n", + " 'race': ,\n", + " 'edu': ,\n", + " 'mar': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", + " 'qm': ,\n", + " 'dia': },\n", " 'outlier': {'gen': None,\n", - " 'age': ,\n", + " 'age': ,\n", " 'race': None,\n", " 'edu': None,\n", " 'mar': None,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", " 'qm': None,\n", - " 'dia': },\n", - " 'encoder': {'gen': ,\n", + " 'dia': },\n", + " 'encoder': {'gen': ,\n", " 'age': None,\n", - " 'race': ,\n", - " 'edu': ,\n", - " 'mar': ,\n", + " 'race': ,\n", + " 'edu': ,\n", + " 'mar': ,\n", " 'bmi': None,\n", " 'dep': None,\n", " 'pir': None,\n", " 'gh': None,\n", " 'mets': None,\n", - " 'qm': ,\n", + " 'qm': ,\n", " 'dia': None},\n", " 'scaler': {'gen': None,\n", - " 'age': ,\n", + " 'age': ,\n", " 'race': None,\n", " 'edu': None,\n", " 'mar': None,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", " 'qm': None,\n", - " 'dia': },\n", - " 'discretizing': {'gen': ,\n", - " 'age': ,\n", - " 'race': ,\n", - " 'edu': ,\n", - " 'mar': ,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", - " 'qm': ,\n", - " 'dia': }}" + " 'dia': },\n", + " 'discretizing': {'gen': ,\n", + " 'age': ,\n", + " 'race': ,\n", + " 'edu': ,\n", + " 'mar': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", + " 'qm': ,\n", + " 'dia': }}" ] }, - "execution_count": 13, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -721,7 +722,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -730,43 +731,16 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 23, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Male', 'Male', 'Male', 'Female', 'Female', ..., 'Male', 'Female', 'Female', 'Male', 'Female']\n", - "Length: 4190\n", - "Categories (2, object): ['Female', 'Male']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['White', 'White', 'White', 'White', 'Black', ..., 'Other', 'White', 'White', 'White', 'White']\n", - "Length: 4190\n", - "Categories (5, object): ['Black', 'Hispanic', 'Mexican', 'Other', 'White']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Graduate', 'HighSchool', 'HighSchool', 'Graduate', 'College', ..., 'Graduate', 'HighSchool', 'College', '9th', 'Graduate']\n", - "Length: 4190\n", - "Categories (5, object): ['11th', '9th', 'College', 'Graduate', 'HighSchool']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Married', 'Divorced', 'Married', 'Parther', 'Divorced', ..., 'Never', 'Widowed', 'Widowed', 'Married', 'Never']\n", - "Length: 4190\n", - "Categories (6, object): ['Divorced', 'Married', 'Never', 'Parther', 'Separated', 'Widowed']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Q2', 'Q1', 'Q3', 'Q3', 'Q4', ..., 'Q1', 'Q1', 'Q1', 'Q1', 'Q3']\n", - "Length: 4190\n", - "Categories (4, object): ['Q1', 'Q2', 'Q3', 'Q4']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n" - ] - } - ], + "outputs": [], "source": [ "df_transformed = pm.transform(df)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -813,14 +787,14 @@ " \n", " 0\n", " 0.700000\n", - " 0.501014\n", - " 0.510496\n", + " 0.528095\n", + " 0.331861\n", " -0.202041\n", " -0.514504\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.439481\n", + " 0.353997\n", " 1.949241\n", " 0.0\n", " 1.0\n", @@ -833,14 +807,14 @@ " \n", " 1\n", " 0.550000\n", - " 0.593540\n", - " 0.722505\n", + " 0.683797\n", + " 0.697654\n", " 0.235906\n", " -0.514504\n", " 1.933861\n", " 0.0\n", " 0.0\n", - " 0.221088\n", + " 0.021236\n", " -0.513020\n", " 0.0\n", " 1.0\n", @@ -853,14 +827,14 @@ " \n", " 2\n", " 0.966667\n", - " 0.570027\n", - " 0.511464\n", + " 0.619753\n", + " 0.256406\n", " -0.056059\n", " -0.514504\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.941341\n", + " 0.983815\n", " 1.949241\n", " 0.0\n", " 1.0\n", @@ -873,14 +847,14 @@ " \n", " 3\n", " 0.600000\n", - " 0.440567\n", - " 0.843059\n", + " 0.485426\n", + " 0.837900\n", " 1.929305\n", " 1.943618\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.878165\n", + " 0.984964\n", " -0.513020\n", " 1.0\n", " 0.0\n", @@ -893,14 +867,14 @@ " \n", " 4\n", " 0.366667\n", - " 0.250450\n", - " 0.798162\n", + " 0.195866\n", + " 0.726425\n", " -1.296911\n", " 1.943618\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.571218\n", + " 0.589998\n", " -0.513020\n", " 1.0\n", " 0.0\n", @@ -933,14 +907,14 @@ " \n", " 4162\n", " 0.083333\n", - " 0.309831\n", - " 0.691554\n", + " 0.321372\n", + " 0.674615\n", " -1.194723\n", " -0.514504\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.171890\n", + " 0.244652\n", " -0.513020\n", " 0.0\n", " 1.0\n", @@ -953,14 +927,14 @@ " \n", " 4163\n", " 0.933333\n", - " 0.571986\n", - " 0.940840\n", + " 0.655997\n", + " 0.907691\n", " -1.121732\n", " 1.943618\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.230822\n", + " 0.089844\n", " -0.513020\n", " 1.0\n", " 0.0\n", @@ -973,14 +947,14 @@ " \n", " 4164\n", " 1.000000\n", - " 0.198564\n", - " 0.934402\n", + " 0.195312\n", + " 0.923717\n", " 0.265103\n", " -0.514504\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.265541\n", + " 0.067132\n", " -0.513020\n", " 1.0\n", " 0.0\n", @@ -993,14 +967,14 @@ " \n", " 4165\n", " 0.250000\n", - " 0.834683\n", - " 0.126036\n", + " 0.846496\n", + " 0.476420\n", " -0.464810\n", " -0.514504\n", " 1.933861\n", " 0.0\n", " 0.0\n", - " 0.056893\n", + " 0.213837\n", " -0.513020\n", " 0.0\n", " 1.0\n", @@ -1013,14 +987,14 @@ " \n", " 4166\n", " 0.066667\n", - " 0.484015\n", - " 0.626134\n", + " 0.331822\n", + " 0.621483\n", " -1.136330\n", " -0.514504\n", " -0.517100\n", " 0.0\n", " 0.0\n", - " 0.797874\n", + " 0.799186\n", " -0.513020\n", " 1.0\n", " 0.0\n", @@ -1037,30 +1011,30 @@ ], "text/plain": [ " age edu mar bmi dep pir gh mets \\\n", - "0 0.700000 0.501014 0.510496 -0.202041 -0.514504 -0.517100 0.0 0.0 \n", - "1 0.550000 0.593540 0.722505 0.235906 -0.514504 1.933861 0.0 0.0 \n", - "2 0.966667 0.570027 0.511464 -0.056059 -0.514504 -0.517100 0.0 0.0 \n", - "3 0.600000 0.440567 0.843059 1.929305 1.943618 -0.517100 0.0 0.0 \n", - "4 0.366667 0.250450 0.798162 -1.296911 1.943618 -0.517100 0.0 0.0 \n", + "0 0.700000 0.528095 0.331861 -0.202041 -0.514504 -0.517100 0.0 0.0 \n", + "1 0.550000 0.683797 0.697654 0.235906 -0.514504 1.933861 0.0 0.0 \n", + "2 0.966667 0.619753 0.256406 -0.056059 -0.514504 -0.517100 0.0 0.0 \n", + "3 0.600000 0.485426 0.837900 1.929305 1.943618 -0.517100 0.0 0.0 \n", + "4 0.366667 0.195866 0.726425 -1.296911 1.943618 -0.517100 0.0 0.0 \n", "... ... ... ... ... ... ... ... ... \n", - "4162 0.083333 0.309831 0.691554 -1.194723 -0.514504 -0.517100 0.0 0.0 \n", - "4163 0.933333 0.571986 0.940840 -1.121732 1.943618 -0.517100 0.0 0.0 \n", - "4164 1.000000 0.198564 0.934402 0.265103 -0.514504 -0.517100 0.0 0.0 \n", - "4165 0.250000 0.834683 0.126036 -0.464810 -0.514504 1.933861 0.0 0.0 \n", - "4166 0.066667 0.484015 0.626134 -1.136330 -0.514504 -0.517100 0.0 0.0 \n", + "4162 0.083333 0.321372 0.674615 -1.194723 -0.514504 -0.517100 0.0 0.0 \n", + "4163 0.933333 0.655997 0.907691 -1.121732 1.943618 -0.517100 0.0 0.0 \n", + "4164 1.000000 0.195312 0.923717 0.265103 -0.514504 -0.517100 0.0 0.0 \n", + "4165 0.250000 0.846496 0.476420 -0.464810 -0.514504 1.933861 0.0 0.0 \n", + "4166 0.066667 0.331822 0.621483 -1.136330 -0.514504 -0.517100 0.0 0.0 \n", "\n", " qm dia gen_Female gen_Male race_Black race_Hispanic \\\n", - "0 0.439481 1.949241 0.0 1.0 0.0 0.0 \n", - "1 0.221088 -0.513020 0.0 1.0 0.0 0.0 \n", - "2 0.941341 1.949241 0.0 1.0 0.0 0.0 \n", - "3 0.878165 -0.513020 1.0 0.0 0.0 0.0 \n", - "4 0.571218 -0.513020 1.0 0.0 1.0 0.0 \n", + "0 0.353997 1.949241 0.0 1.0 0.0 0.0 \n", + "1 0.021236 -0.513020 0.0 1.0 0.0 0.0 \n", + "2 0.983815 1.949241 0.0 1.0 0.0 0.0 \n", + "3 0.984964 -0.513020 1.0 0.0 0.0 0.0 \n", + "4 0.589998 -0.513020 1.0 0.0 1.0 0.0 \n", "... ... ... ... ... ... ... \n", - "4162 0.171890 -0.513020 0.0 1.0 0.0 0.0 \n", - "4163 0.230822 -0.513020 1.0 0.0 0.0 0.0 \n", - "4164 0.265541 -0.513020 1.0 0.0 0.0 0.0 \n", - "4165 0.056893 -0.513020 0.0 1.0 0.0 0.0 \n", - "4166 0.797874 -0.513020 1.0 0.0 0.0 0.0 \n", + "4162 0.244652 -0.513020 0.0 1.0 0.0 0.0 \n", + "4163 0.089844 -0.513020 1.0 0.0 0.0 0.0 \n", + "4164 0.067132 -0.513020 1.0 0.0 0.0 0.0 \n", + "4165 0.213837 -0.513020 0.0 1.0 0.0 0.0 \n", + "4166 0.799186 -0.513020 1.0 0.0 0.0 0.0 \n", "\n", " race_Mexican race_Other race_White \n", "0 0.0 0.0 1.0 \n", @@ -1078,7 +1052,7 @@ "[4167 rows x 17 columns]" ] }, - "execution_count": 16, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1089,7 +1063,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1098,7 +1072,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -1337,7 +1311,7 @@ "[4167 rows x 12 columns]" ] }, - "execution_count": 18, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1348,7 +1322,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -1370,15 +1344,15 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 25 Private 226802 11th 7 Never-married \n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 25.0 Private 226802 11th 7 Never-married \n", "\n", " occupation relationship race gender capital-gain capital-loss \\\n", "0 Machine-op-inspct Own-child Black Male 0 0 \n", @@ -1396,12 +1370,14 @@ " ]\n", " }\n", " )\n", + "loader2.load()\n", + "\n", "print(loader2.data.head(1))" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -1410,7 +1386,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -1441,7 +1417,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -1451,107 +1427,99 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 33, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No self-defined config passed. Generate a config automatically.\n" - ] - } - ], + "outputs": [], "source": [ "pm2 = PETsARD.Processor(m2)" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'missing': {'age': ,\n", - " 'workclass': ,\n", - " 'fnlwgt': ,\n", - " 'education': ,\n", - " 'educational-num': ,\n", - " 'marital-status': ,\n", - " 'occupation': ,\n", - " 'relationship': ,\n", - " 'race': ,\n", - " 'gender': ,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'hours-per-week': ,\n", - " 'native-country': ,\n", - " 'income': },\n", - " 'outlier': {'age': ,\n", + "{'missing': {'age': ,\n", + " 'workclass': ,\n", + " 'fnlwgt': ,\n", + " 'education': ,\n", + " 'educational-num': ,\n", + " 'marital-status': ,\n", + " 'occupation': ,\n", + " 'relationship': ,\n", + " 'race': ,\n", + " 'gender': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'hours-per-week': ,\n", + " 'native-country': ,\n", + " 'income': },\n", + " 'outlier': {'age': ,\n", " 'workclass': None,\n", - " 'fnlwgt': ,\n", + " 'fnlwgt': ,\n", " 'education': None,\n", - " 'educational-num': ,\n", + " 'educational-num': ,\n", " 'marital-status': None,\n", " 'occupation': None,\n", " 'relationship': None,\n", " 'race': None,\n", " 'gender': None,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'hours-per-week': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'hours-per-week': ,\n", " 'native-country': None,\n", " 'income': None},\n", " 'encoder': {'age': None,\n", - " 'workclass': ,\n", + " 'workclass': ,\n", " 'fnlwgt': None,\n", - " 'education': ,\n", + " 'education': ,\n", " 'educational-num': None,\n", - " 'marital-status': ,\n", - " 'occupation': ,\n", - " 'relationship': ,\n", - " 'race': ,\n", - " 'gender': ,\n", + " 'marital-status': ,\n", + " 'occupation': ,\n", + " 'relationship': ,\n", + " 'race': ,\n", + " 'gender': ,\n", " 'capital-gain': None,\n", " 'capital-loss': None,\n", " 'hours-per-week': None,\n", - " 'native-country': ,\n", - " 'income': },\n", - " 'scaler': {'age': ,\n", + " 'native-country': ,\n", + " 'income': },\n", + " 'scaler': {'age': ,\n", " 'workclass': None,\n", - " 'fnlwgt': ,\n", + " 'fnlwgt': ,\n", " 'education': None,\n", - " 'educational-num': ,\n", + " 'educational-num': ,\n", " 'marital-status': None,\n", " 'occupation': None,\n", " 'relationship': None,\n", " 'race': None,\n", " 'gender': None,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'hours-per-week': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'hours-per-week': ,\n", " 'native-country': None,\n", " 'income': None},\n", - " 'discretizing': {'age': ,\n", - " 'workclass': ,\n", - " 'fnlwgt': ,\n", - " 'education': ,\n", - " 'educational-num': ,\n", - " 'marital-status': ,\n", - " 'occupation': ,\n", - " 'relationship': ,\n", - " 'race': ,\n", - " 'gender': ,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'hours-per-week': ,\n", - " 'native-country': ,\n", - " 'income': }}" + " 'discretizing': {'age': ,\n", + " 'workclass': ,\n", + " 'fnlwgt': ,\n", + " 'education': ,\n", + " 'educational-num': ,\n", + " 'marital-status': ,\n", + " 'occupation': ,\n", + " 'relationship': ,\n", + " 'race': ,\n", + " 'gender': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'hours-per-week': ,\n", + " 'native-country': ,\n", + " 'income': }}" ] }, - "execution_count": 25, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -1562,7 +1530,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -1571,59 +1539,16 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 36, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Private', 'Private', 'Local-gov', 'Private', 'Private', ..., 'Private', 'Private', 'Private', 'Private', 'Self-emp-inc']\n", - "Length: 45222\n", - "Categories (8, object): ['Federal-gov', 'Local-gov', 'Never-worked', 'Private', 'Self-emp-inc', 'Self-emp-not-inc', 'State-gov', 'Without-pay']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['11th', 'HS-grad', 'Assoc-acdm', 'Some-college', '10th', ..., 'Assoc-acdm', 'HS-grad', 'HS-grad', 'HS-grad', 'HS-grad']\n", - "Length: 45222\n", - "Categories (16, object): ['10th', '11th', '12th', '1st-4th', ..., 'Masters', 'Preschool', 'Prof-school', 'Some-college']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Never-married', 'Married-civ-spouse', 'Married-civ-spouse', 'Married-civ-spouse', 'Never-married', ..., 'Married-civ-spouse', 'Married-civ-spouse', 'Widowed', 'Never-married', 'Married-civ-spouse']\n", - "Length: 45222\n", - "Categories (7, object): ['Divorced', 'Married-AF-spouse', 'Married-civ-spouse', 'Married-spouse-absent', 'Never-married', 'Separated', 'Widowed']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Machine-op-inspct', 'Farming-fishing', 'Protective-serv', 'Machine-op-inspct', 'Other-service', ..., 'Tech-support', 'Machine-op-inspct', 'Adm-clerical', 'Adm-clerical', 'Exec-managerial']\n", - "Length: 45222\n", - "Categories (14, object): ['Adm-clerical', 'Armed-Forces', 'Craft-repair', 'Exec-managerial', ..., 'Protective-serv', 'Sales', 'Tech-support', 'Transport-moving']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Own-child', 'Husband', 'Husband', 'Husband', 'Not-in-family', ..., 'Wife', 'Husband', 'Unmarried', 'Own-child', 'Wife']\n", - "Length: 45222\n", - "Categories (6, object): ['Husband', 'Not-in-family', 'Other-relative', 'Own-child', 'Unmarried', 'Wife']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Black', 'White', 'White', 'Black', 'White', ..., 'White', 'White', 'White', 'White', 'White']\n", - "Length: 45222\n", - "Categories (5, object): ['Amer-Indian-Eskimo', 'Asian-Pac-Islander', 'Black', 'Other', 'White']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['Male', 'Male', 'Male', 'Male', 'Male', ..., 'Female', 'Male', 'Female', 'Male', 'Female']\n", - "Length: 45222\n", - "Categories (2, object): ['Female', 'Male']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['United-States', 'United-States', 'United-States', 'United-States', 'United-States', ..., 'United-States', 'United-States', 'United-States', 'United-States', 'United-States']\n", - "Length: 45222\n", - "Categories (41, object): ['Cambodia', 'Canada', 'China', 'Columbia', ..., 'Trinadad&Tobago', 'United-States', 'Vietnam', 'Yugoslavia']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n", - "/Users/alex/PETsARD/PETsARD/processor/mediator.py:169: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '['<=50K', '<=50K', '>50K', '>50K', '<=50K', ..., '<=50K', '>50K', '<=50K', '<=50K', '>50K']\n", - "Length: 45222\n", - "Categories (2, object): ['<=50K', '>50K']' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.\n", - " transformed.loc[:, col] = self._config.get(col,\n" - ] - } - ], + "outputs": [], "source": [ "df_transformed2 = pm2.transform(df2)" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -1869,49 +1794,49 @@ "" ], "text/plain": [ - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 3 0.0 1 2.0 4 \n", - "1 1.0 3 0.0 11 2.0 2 \n", - "2 0.0 1 1.0 7 3.0 2 \n", - "3 1.0 3 0.0 15 3.0 2 \n", - "4 1.0 3 0.0 0 1.0 4 \n", - "... ... ... ... ... ... ... \n", - "45217 0.0 3 0.0 7 3.0 2 \n", - "45218 1.0 3 0.0 11 2.0 2 \n", - "45219 2.0 3 0.0 11 2.0 6 \n", - "45220 0.0 3 0.0 11 2.0 4 \n", - "45221 2.0 4 0.0 11 2.0 2 \n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 3 0.0 1 2.0 4 \n", + "1 1.0 3 0.0 11 2.0 2 \n", + "2 0.0 1 1.0 7 3.0 2 \n", + "3 1.0 3 0.0 15 3.0 2 \n", + "4 1.0 3 0.0 0 1.0 4 \n", + "... ... ... ... ... ... ... \n", + "45217 0.0 3 0.0 7 3.0 2 \n", + "45218 1.0 3 0.0 11 2.0 2 \n", + "45219 2.0 3 0.0 11 2.0 6 \n", + "45220 0.0 3 0.0 11 2.0 4 \n", + "45221 2.0 4 0.0 11 2.0 2 \n", "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 3 2 1 0.0 0.0 \n", - "1 4 0 4 1 0.0 0.0 \n", - "2 10 0 4 1 0.0 0.0 \n", - "3 6 0 2 1 0.0 0.0 \n", - "4 7 1 4 1 0.0 0.0 \n", - "... ... ... ... ... ... ... \n", - "45217 12 5 4 0 0.0 0.0 \n", - "45218 6 0 4 1 0.0 0.0 \n", - "45219 0 4 4 0 0.0 0.0 \n", - "45220 0 3 4 1 0.0 0.0 \n", - "45221 3 5 4 0 0.0 0.0 \n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", + "1 4 0 4 1 0.0 0.0 \n", + "2 10 0 4 1 0.0 0.0 \n", + "3 6 0 2 1 0.0 0.0 \n", + "4 7 1 4 1 0.0 0.0 \n", + "... ... ... ... ... ... ... \n", + "45217 12 5 4 0 0.0 0.0 \n", + "45218 6 0 4 1 0.0 0.0 \n", + "45219 0 4 4 0 0.0 0.0 \n", + "45220 0 3 4 1 0.0 0.0 \n", + "45221 3 5 4 0 0.0 0.0 \n", "\n", - " hours-per-week native-country income \n", - "0 1.0 38 0 \n", - "1 2.0 38 0 \n", - "2 1.0 38 1 \n", - "3 1.0 38 1 \n", - "4 1.0 38 0 \n", - "... ... ... ... \n", - "45217 1.0 38 0 \n", - "45218 1.0 38 1 \n", - "45219 1.0 38 0 \n", - "45220 0.0 38 0 \n", - "45221 1.0 38 1 \n", + " hours-per-week native-country income \n", + "0 1.0 38 0 \n", + "1 2.0 38 0 \n", + "2 1.0 38 1 \n", + "3 1.0 38 1 \n", + "4 1.0 38 0 \n", + "... ... ... ... \n", + "45217 1.0 38 0 \n", + "45218 1.0 38 1 \n", + "45219 1.0 38 0 \n", + "45220 0.0 38 0 \n", + "45221 1.0 38 1 \n", "\n", "[45222 rows x 15 columns]" ] }, - "execution_count": 28, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -1922,7 +1847,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -1931,7 +1856,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -2102,12 +2027,12 @@ " \n", " 45218\n", " 38.9\n", - " Private\n", + " NaN\n", " 160096.5\n", " HS-grad\n", " 8.5\n", " Married-civ-spouse\n", - " Machine-op-inspct\n", + " NaN\n", " Husband\n", " White\n", " Male\n", @@ -2185,7 +2110,7 @@ "4 38.9 Private 160096.5 10th 5.5 \n", "... ... ... ... ... ... \n", "45217 24.3 Private 160096.5 Assoc-acdm 11.5 \n", - "45218 38.9 Private 160096.5 HS-grad 8.5 \n", + "45218 38.9 NaN 160096.5 HS-grad 8.5 \n", "45219 53.5 Private 160096.5 HS-grad 8.5 \n", "45220 24.3 Private 160096.5 HS-grad 8.5 \n", "45221 53.5 Self-emp-inc 160096.5 HS-grad 8.5 \n", @@ -2198,7 +2123,7 @@ "4 Never-married Other-service Not-in-family White Male \n", "... ... ... ... ... ... \n", "45217 Married-civ-spouse Tech-support Wife White Female \n", - "45218 Married-civ-spouse Machine-op-inspct Husband White Male \n", + "45218 Married-civ-spouse NaN Husband White Male \n", "45219 Widowed Adm-clerical Unmarried White Female \n", "45220 Never-married Adm-clerical Own-child White Male \n", "45221 Married-civ-spouse Exec-managerial Wife White Female \n", @@ -2219,7 +2144,7 @@ "[45222 rows x 15 columns]" ] }, - "execution_count": 30, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -2230,7 +2155,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -2274,7 +2199,7 @@ " \n", " \n", " 0\n", - " 25\n", + " 25.0\n", " Private\n", " 226802\n", " 11th\n", @@ -2292,7 +2217,7 @@ " \n", " \n", " 1\n", - " 38\n", + " 38.0\n", " Private\n", " 89814\n", " HS-grad\n", @@ -2310,7 +2235,7 @@ " \n", " \n", " 2\n", - " 28\n", + " 28.0\n", " Local-gov\n", " 336951\n", " Assoc-acdm\n", @@ -2328,7 +2253,7 @@ " \n", " \n", " 3\n", - " 44\n", + " 44.0\n", " Private\n", " 160323\n", " Some-college\n", @@ -2346,7 +2271,7 @@ " \n", " \n", " 4\n", - " 18\n", + " 18.0\n", " NaN\n", " 103497\n", " Some-college\n", @@ -2382,7 +2307,7 @@ " \n", " \n", " 48837\n", - " 27\n", + " 27.0\n", " Private\n", " 257302\n", " Assoc-acdm\n", @@ -2400,7 +2325,7 @@ " \n", " \n", " 48838\n", - " 40\n", + " 40.0\n", " Private\n", " 154374\n", " HS-grad\n", @@ -2418,7 +2343,7 @@ " \n", " \n", " 48839\n", - " 58\n", + " 58.0\n", " Private\n", " 151910\n", " HS-grad\n", @@ -2436,7 +2361,7 @@ " \n", " \n", " 48840\n", - " 22\n", + " 22.0\n", " Private\n", " 201490\n", " HS-grad\n", @@ -2454,7 +2379,7 @@ " \n", " \n", " 48841\n", - " 52\n", + " 52.0\n", " Self-emp-inc\n", " 287927\n", " HS-grad\n", @@ -2476,18 +2401,18 @@ "" ], "text/plain": [ - " age workclass fnlwgt education educational-num \\\n", - "0 25 Private 226802 11th 7 \n", - "1 38 Private 89814 HS-grad 9 \n", - "2 28 Local-gov 336951 Assoc-acdm 12 \n", - "3 44 Private 160323 Some-college 10 \n", - "4 18 NaN 103497 Some-college 10 \n", - "... ... ... ... ... ... \n", - "48837 27 Private 257302 Assoc-acdm 12 \n", - "48838 40 Private 154374 HS-grad 9 \n", - "48839 58 Private 151910 HS-grad 9 \n", - "48840 22 Private 201490 HS-grad 9 \n", - "48841 52 Self-emp-inc 287927 HS-grad 9 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 25.0 Private 226802 11th 7 \n", + "1 38.0 Private 89814 HS-grad 9 \n", + "2 28.0 Local-gov 336951 Assoc-acdm 12 \n", + "3 44.0 Private 160323 Some-college 10 \n", + "4 18.0 NaN 103497 Some-college 10 \n", + "... ... ... ... ... ... \n", + "48837 27.0 Private 257302 Assoc-acdm 12 \n", + "48838 40.0 Private 154374 HS-grad 9 \n", + "48839 58.0 Private 151910 HS-grad 9 \n", + "48840 22.0 Private 201490 HS-grad 9 \n", + "48841 52.0 Self-emp-inc 287927 HS-grad 9 \n", "\n", " marital-status occupation relationship race gender \\\n", "0 Never-married Machine-op-inspct Own-child Black Male \n", @@ -2518,7 +2443,7 @@ "[48842 rows x 15 columns]" ] }, - "execution_count": 31, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -2529,7 +2454,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -2553,7 +2478,7 @@ "dtype: float64" ] }, - "execution_count": 32, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2564,16 +2489,16 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.07098314979434789" + "0.0712706204944496" ] }, - "execution_count": 33, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -2584,60 +2509,60 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'missing': {'gen': ,\n", - " 'age': ,\n", - " 'race': ,\n", - " 'edu': ,\n", - " 'mar': ,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", - " 'qm': ,\n", - " 'dia': },\n", - " 'outlier': {'gen': ,\n", - " 'age': ,\n", - " 'race': ,\n", - " 'edu': ,\n", - " 'mar': ,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", - " 'qm': ,\n", - " 'dia': },\n", - " 'encoder': {'gen': ,\n", + "{'missing': {'gen': ,\n", + " 'age': ,\n", + " 'race': ,\n", + " 'edu': ,\n", + " 'mar': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", + " 'qm': ,\n", + " 'dia': },\n", + " 'outlier': {'gen': ,\n", + " 'age': ,\n", + " 'race': ,\n", + " 'edu': ,\n", + " 'mar': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", + " 'qm': ,\n", + " 'dia': },\n", + " 'encoder': {'gen': ,\n", " 'age': None,\n", - " 'race': ,\n", - " 'edu': ,\n", - " 'mar': ,\n", + " 'race': ,\n", + " 'edu': ,\n", + " 'mar': ,\n", " 'bmi': None,\n", " 'dep': None,\n", " 'pir': None,\n", " 'gh': None,\n", " 'mets': None,\n", - " 'qm': ,\n", + " 'qm': ,\n", " 'dia': None},\n", " 'scaler': {'gen': None,\n", - " 'age': ,\n", + " 'age': ,\n", " 'race': None,\n", " 'edu': None,\n", " 'mar': None,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", " 'qm': None,\n", - " 'dia': ,\n", + " 'dia': ,\n", " 'gen_Female': None,\n", " 'gen_Male': None,\n", " 'race_Black': None,\n", @@ -2645,21 +2570,21 @@ " 'race_Mexican': None,\n", " 'race_Other': None,\n", " 'race_White': None},\n", - " 'discretizing': {'gen': ,\n", - " 'age': ,\n", - " 'race': ,\n", - " 'edu': ,\n", - " 'mar': ,\n", - " 'bmi': ,\n", - " 'dep': ,\n", - " 'pir': ,\n", - " 'gh': ,\n", - " 'mets': ,\n", - " 'qm': ,\n", - " 'dia': }}" + " 'discretizing': {'gen': ,\n", + " 'age': ,\n", + " 'race': ,\n", + " 'edu': ,\n", + " 'mar': ,\n", + " 'bmi': ,\n", + " 'dep': ,\n", + " 'pir': ,\n", + " 'gh': ,\n", + " 'mets': ,\n", + " 'qm': ,\n", + " 'dia': }}" ] }, - "execution_count": 34, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -2670,7 +2595,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -2829,7 +2754,7 @@ "14 encoder race EncoderOneHot EncoderUniform" ] }, - "execution_count": 35, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -2838,188 +2763,6 @@ "pm.get_changes()" ] }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "from PETsARD.synthesizer import Synthesizer" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "syn = Synthesizer(df_transformed2[['age', 'workclass', 'marital-status']], synthesizing_method='smartnoise-mwem')" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesizer (SmartNoise): Fitting mwem.\n", - "Synthesizer (SmartNoise): Fitting mwem spent 10.7503 sec.\n" - ] - } - ], - "source": [ - "syn.fit()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesizer (SmartNoise): Sampling mwem # 45222 rows (same as raw) in 0.6409 sec.\n" - ] - } - ], - "source": [ - "syn.sample()" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ageworkclassmarital-status
0242
1130
2034
3352
4232
............
45217052
45218164
45219034
45220152
45221132
\n", - "

45222 rows × 3 columns

\n", - "
" - ], - "text/plain": [ - " age workclass marital-status\n", - "0 2 4 2\n", - "1 1 3 0\n", - "2 0 3 4\n", - "3 3 5 2\n", - "4 2 3 2\n", - "... ... ... ...\n", - "45217 0 5 2\n", - "45218 1 6 4\n", - "45219 0 3 4\n", - "45220 1 5 2\n", - "45221 1 3 2\n", - "\n", - "[45222 rows x 3 columns]" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "syn.data_syn" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/demo/dev/executable_smartnoise.ipynb b/demo/dev/executable_smartnoise.ipynb index 42acbe6c..828a3d48 100644 --- a/demo/dev/executable_smartnoise.ipynb +++ b/demo/dev/executable_smartnoise.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -12,7 +12,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -29,7 +29,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -70,7 +70,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "load.data = load.data.loc[:1000, :]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -115,7 +124,6 @@ " print(preproc_discretizing_data.head(1))\n", "\n", "\n", - "\n", " syn = Synthesizer(\n", " method=synthesizing_method,\n", " epsilon=10.0,\n", @@ -128,7 +136,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -136,49 +144,81 @@ "output_type": "stream", "text": [ "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status occupation \\\n", + "0 0.0 2 0.0 1 0.0 4 6 \n", + "\n", + " relationship race gender capital-gain capital-loss hours-per-week \\\n", + "0 3 2 1 0.0 0.0 0.0 \n", + "\n", + " native-country income \n", + "0 25 0 \n", + "age category\n", + "workclass category\n", + "fnlwgt category\n", + "education category\n", + "educational-num category\n", + "marital-status category\n", + "occupation category\n", + "relationship category\n", + "race category\n", + "gender category\n", + "capital-gain category\n", + "capital-loss category\n", + "hours-per-week category\n", + "native-country category\n", + "income category\n", + "dtype: object\n", + "Synthesizer (SmartNoise): Fitting mst.\n", + "Synthesizer (SmartNoise): Fitting mst spent 41.2776 sec.\n", + "Synthesizer (SmartNoise): Sampling mst # 558 rows (same as raw) in 0.0326 sec.\n", + "Sync data as ...\n", " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 3 0.0 1 0.0 4 \n", + "0 0.0 2 0.0 8 0.0 2 \n", "\n", " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 3 2 1 0.0 0.0 \n", + "0 2 0 4 1 0.0 0.0 \n", "\n", " hours-per-week native-country income \n", - "0 0.0 38 0 \n", - "Synthesizer (SmartNoise): Fitting aim.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/mbi/__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", - " warnings.warn('MixtureInference disabled, please install jax and jaxlib')\n" - ] - }, - { - "ename": "ValueError", - "evalue": "The transformer appears to have some continuous columns. Please provide only categorical or ordinal.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43missue332\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43mload\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msynthesizing_method\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msmartnoise-aim\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[5], line 48\u001b[0m, in \u001b[0;36missue332\u001b[0;34m(load, synthesizing_method, scaler_inhibit)\u001b[0m\n\u001b[1;32m 43\u001b[0m syn \u001b[38;5;241m=\u001b[39m Synthesizer(\n\u001b[1;32m 44\u001b[0m method\u001b[38;5;241m=\u001b[39msynthesizing_method,\n\u001b[1;32m 45\u001b[0m epsilon\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10.0\u001b[39m,\n\u001b[1;32m 46\u001b[0m )\n\u001b[1;32m 47\u001b[0m syn\u001b[38;5;241m.\u001b[39mcreate(data\u001b[38;5;241m=\u001b[39mpreproc_discretizing_data)\n\u001b[0;32m---> 48\u001b[0m \u001b[43msyn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_sample\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 49\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSync data as ...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 50\u001b[0m \u001b[38;5;28mprint\u001b[39m(syn\u001b[38;5;241m.\u001b[39mdata_syn\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n", - "File \u001b[0;32m~/PETsARD/PETsARD/synthesizer/synthesizer.py:121\u001b[0m, in \u001b[0;36mSynthesizer.fit_sample\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_syn \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloader\u001b[38;5;241m.\u001b[39mdata\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 121\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_syn \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSynthesizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_sample\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/PETsARD/PETsARD/synthesizer/smartnoise.py:130\u001b[0m, in \u001b[0;36mSmartNoise.fit_sample\u001b[0;34m(self, sample_num_rows, reset_sampling, output_file_path)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfit_sample\u001b[39m(\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 113\u001b[0m sample_num_rows: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 114\u001b[0m reset_sampling: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 115\u001b[0m output_file_path: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 116\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame:\n\u001b[1;32m 117\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;124;03m Fit and sample from the synthesizer.\u001b[39;00m\n\u001b[1;32m 119\u001b[0m \u001b[38;5;124;03m The combination of the methods `fit()` and `sample()`.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[38;5;124;03m data_syn (pd.DataFrame): The synthesized data.\u001b[39;00m\n\u001b[1;32m 129\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 130\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msample(sample_num_rows, reset_sampling, output_file_path)\n", - "File \u001b[0;32m~/PETsARD/PETsARD/synthesizer/smartnoise.py:47\u001b[0m, in \u001b[0;36mSmartNoise.fit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 42\u001b[0m t \u001b[38;5;241m=\u001b[39m TableTransformer([IdentityTransformer() \n\u001b[1;32m 43\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m])])\n\u001b[1;32m 45\u001b[0m \u001b[38;5;66;03m# TODO - Only support cube-style synthesizer. \u001b[39;00m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;66;03m# GAN-style synthesizer needed to be implemented.\u001b[39;00m\n\u001b[0;32m---> 47\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_Synthesizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtransformer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 48\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 49\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSynthesizer (SmartNoise): \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 50\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFitting \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msyn_method\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m spent \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 51\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mround\u001b[39m(time\u001b[38;5;241m.\u001b[39mtime()\u001b[38;5;241m-\u001b[39mtime_start\u001b[38;5;250m \u001b[39m,\u001b[38;5;241m4\u001b[39m)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m sec.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 52\u001b[0m )\n\u001b[1;32m 53\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", - "File \u001b[0;32m~/miniforge3/envs/dev310/lib/python3.10/site-packages/snsynth/aim/aim.py:121\u001b[0m, in \u001b[0;36mAIMSynthesizer.fit\u001b[0;34m(self, data, transformer, categorical_columns, ordinal_columns, continuous_columns, preprocessor_eps, nullable, *ignore)\u001b[0m\n\u001b[1;32m 119\u001b[0m cards \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_transformer\u001b[38;5;241m.\u001b[39mcardinality\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m(c \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mfor\u001b[39;00m c \u001b[38;5;129;01min\u001b[39;00m cards):\n\u001b[0;32m--> 121\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe transformer appears to have some continuous columns. Please provide only categorical or ordinal.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 123\u001b[0m dimensionality \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mprod(cards)\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose:\n", - "\u001b[0;31mValueError\u001b[0m: The transformer appears to have some continuous columns. Please provide only categorical or ordinal." + "0 0.0 25 0 \n" ] } ], "source": [ "issue332(\n", " load=load,\n", - " synthesizing_method='smartnoise-aim',\n", + " synthesizing_method='smartnoise-mst',\n", ")" ] }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([1,2,3])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.Categorical(a).to_numpy()" + ] + }, { "cell_type": "code", "execution_count": null, From 2be8c03ba5dc60d33ba1f20e189426fac9157e8a Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Tue, 5 Mar 2024 16:25:50 +0800 Subject: [PATCH 06/17] remove mwem part --- docs/_posts/2024-02-20-Synthesizer.md | 7 ------- 1 file changed, 7 deletions(-) diff --git a/docs/_posts/2024-02-20-Synthesizer.md b/docs/_posts/2024-02-20-Synthesizer.md index 0ad55bed..0e95abf8 100644 --- a/docs/_posts/2024-02-20-Synthesizer.md +++ b/docs/_posts/2024-02-20-Synthesizer.md @@ -91,7 +91,6 @@ In this section, we provide a comprehensive list of supported synthesizer types | `sdv` | `GaussianCopulaSynthesizer` | 'sdv-singletable-gaussiancopula' | | | | `sdv` | `TVAESynthesizer` | 'sdv-singletable-tvae' | | | | `smartnoise` | `SmartNoiseCreator` (AIM) | 'smartnoise-aim' | ✅ | ✅ | -| `smartnoise` | `SmartNoiseCreator` (MWEM) | 'smartnoise-mwem' | ✅ | ✅ | | `smartnoise` | `SmartNoiseCreator` (MST) | 'smartnoise-mst' | ✅ | ✅ | | `smartnoise` | `SmartNoiseCreator` (PAC-Synth) | 'smartnoise-pacsynth' | ✅ | ✅ | @@ -159,12 +158,6 @@ Use the Adaptive Iterative Mechanism (AIM) algorithm provided in `smartnoise`. S See [document](https://docs.smartnoise.org/synth/synthesizers/aim.html) for further details. 詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/aim.html)。 -### `'smartnoise-mwem'` - -Use the Multiplicative Weights Exponential Mechanism (MWEM) algorithm provided in `smartnoise`. See [document](https://docs.smartnoise.org/synth/synthesizers/mwem.html) for further details. - -使用 `smartnoise` 提供的 Multiplicative Weights Exponential Mechanism (MWEM) 演算法。詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/mwem.html)。 - **Parameters** See [document](https://docs.smartnoise.org/synth/synthesizers/mwem.html) for further details. 詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/mwem.html)。 From cb0ce893d03f5caef2ce2e36f797e880421a725f Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Thu, 7 Mar 2024 10:42:14 +0800 Subject: [PATCH 07/17] add GAN method --- PETsARD/synthesizer/smartnoise.py | 22 +++++++++++++++++++--- 1 file changed, 19 insertions(+), 3 deletions(-) diff --git a/PETsARD/synthesizer/smartnoise.py b/PETsARD/synthesizer/smartnoise.py index eca86d98..a0fcd272 100644 --- a/PETsARD/synthesizer/smartnoise.py +++ b/PETsARD/synthesizer/smartnoise.py @@ -1,8 +1,7 @@ import time import pandas as pd -from snsynth.transform import NoTransformer, TableTransformer -from snsynth.transform.identity import IdentityTransformer +from snsynth.transform import TableTransformer, MinMaxTransformer from snsynth import Synthesizer as SNSyn from PETsARD.error import UnfittedError, UnsupportedMethodError @@ -17,6 +16,9 @@ class SmartNoise: as well as common functionality. """ + CUBE = ['aim', 'mwem', 'mst', 'pacsynth'] + GAN = ['dpctgan', 'patectgan'] + def __init__(self, data: pd.DataFrame, **kwargs) -> None: """ Args: @@ -39,7 +41,21 @@ def fit(self) -> None: # TODO - Only support cube-style synthesizer. # GAN-style synthesizer needed to be implemented. - self._Synthesizer.fit(self.data, categorical_columns=self.data.columns) + + if self.syn_method in self.CUBE: + self._Synthesizer.fit( + self.data, + categorical_columns=self.data.columns + ) + else: + tt = TableTransformer([ + MinMaxTransformer(lower=self.data[col].min(), + upper=self.data[col].max(), + negative=False) + for col in self.data.columns + ]) + + self._Synthesizer.fit(self.data, transformer=tt) print( f"Synthesizer (SmartNoise): " f"Fitting {self.syn_method} spent " From 279524d109255fc3469603a54a82f3e338b75091 Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Thu, 7 Mar 2024 10:48:47 +0800 Subject: [PATCH 08/17] revert transform output type to numerical rather than categorical --- PETsARD/processor/discretizing.py | 2 +- PETsARD/processor/encoder.py | 16 ++++++++-------- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/PETsARD/processor/discretizing.py b/PETsARD/processor/discretizing.py index 4bc70eaa..ae82fda3 100644 --- a/PETsARD/processor/discretizing.py +++ b/PETsARD/processor/discretizing.py @@ -50,7 +50,7 @@ def transform(self, data: pd.Series) -> np.ndarray: if not self._is_fitted: raise UnfittedError('The object is not fitted. Use .fit() first.') - return pd.Categorical(self._transform(data)) + return self._transform(data) def _transform(): """ diff --git a/PETsARD/processor/encoder.py b/PETsARD/processor/encoder.py index 51b3a37b..de78aff0 100644 --- a/PETsARD/processor/encoder.py +++ b/PETsARD/processor/encoder.py @@ -64,7 +64,7 @@ def transform(self, data: pd.Series) -> np.ndarray: " in the fitting process.", " Please check the data categories again.") - return pd.Categorical(self._transform(data)) + return self._transform(data) def _transform(): """ @@ -92,7 +92,7 @@ def inverse_transform(self, data: pd.Series) -> pd.Series | np.ndarray: if not self._is_fitted: raise UnfittedError('The object is not fitted. Use .fit() first.') - return self._inverse_transform(data.to_numpy()) + return self._inverse_transform(data) def _inverse_transform(): """ @@ -168,12 +168,12 @@ def _transform(self, data: pd.Series) -> np.ndarray: uniform(self.cat_to_val[x][0], self.cat_to_val[x][1], size=1)[0]).values - def _inverse_transform(self, data: np.ndarray) -> pd.Series: + def _inverse_transform(self, data: pd.Series) -> pd.Series: """ Inverse the transformed data to the categorical data. Args: - data (np.ndarray): The categorical data needed to + data (pd.Series): The categorical data needed to be transformed inversely. Return: @@ -231,12 +231,12 @@ def _transform(self, data: pd.Series) -> np.ndarray: return self.model.transform(data) - def _inverse_transform(self, data: np.ndarray) -> np.ndarray: + def _inverse_transform(self, data: pd.Series) -> np.ndarray: """ Inverse the transformed data to the categorical data. Args: - data (np.ndarray): The categorical data needed to + data (pd.Series): The categorical data needed to be transformed inversely. Return: @@ -285,13 +285,13 @@ def _transform(self, data: pd.Series) -> None: return data - def _inverse_transform(self, data: np.ndarray) -> None: + def _inverse_transform(self, data: pd.Series) -> None: """ Inverse the transformed data to the categorical data. This is a dummy method, and it is implemented in MediatorEncoder. Args: - data (np.ndarray): The categorical data needed to + data (pd.Series): The categorical data needed to be transformed inversely. Return: From b426ed32ad08fb065ef3fa281f8e875f0955b0cc Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Thu, 7 Mar 2024 10:49:06 +0800 Subject: [PATCH 09/17] demo update --- demo/dev/executable_smartnoise.ipynb | 182 ++++++++++++++++----------- 1 file changed, 109 insertions(+), 73 deletions(-) diff --git a/demo/dev/executable_smartnoise.ipynb b/demo/dev/executable_smartnoise.ipynb index 828a3d48..16a6b941 100644 --- a/demo/dev/executable_smartnoise.ipynb +++ b/demo/dev/executable_smartnoise.ipynb @@ -29,17 +29,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 26, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -70,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -79,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -131,12 +123,77 @@ " syn.create(data=preproc_discretizing_data)\n", " syn.fit_sample()\n", " print(\"Sync data as ...\")\n", - " print(syn.data_syn.head(1))" + " print(syn.data_syn.head(1))\n", + " postproc_discretizing_data = proc_discretizing.inverse_transform(\n", + " data=syn.data_syn\n", + " )\n", + " print(postproc_discretizing_data.head(1))" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "import pprint\n", + "\n", + "\n", + "def issue332_gan(\n", + " load: Loader,\n", + " synthesizing_method: str,\n", + " scaler_inhibit: bool = False\n", + "):\n", + " pp = pprint.PrettyPrinter(depth=2)\n", + "\n", + " proc_discretizing = Processor(\n", + " metadata=load.metadata,\n", + " )\n", + "\n", + " if scaler_inhibit:\n", + " print(\"Preproc config of Scaler before update as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + " proc_discretizing.update_config(\n", + " {'scaler': {\n", + " col: None for col in load.data.columns\n", + " }}\n", + " )\n", + " print(\"Preproc config of Scaler before after as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + "\n", + " proc_discretizing.fit(\n", + " data=load.data,\n", + " sequence=[\n", + " 'missing',\n", + " 'outlier',\n", + " 'encoder',\n", + " 'scaler'\n", + " ]\n", + " )\n", + " preproc_discretizing_data = proc_discretizing.transform(\n", + " data=load.data\n", + " )\n", + " print(\"Preproc data as ...\")\n", + " print(preproc_discretizing_data.head(1))\n", + "\n", + "\n", + " syn = Synthesizer(\n", + " method=synthesizing_method,\n", + " epsilon=10.0,\n", + " )\n", + " syn.create(data=preproc_discretizing_data)\n", + " syn.fit_sample()\n", + " print(\"Sync data as ...\")\n", + " print(syn.data_syn.head(1))\n", + " postproc_discretizing_data = proc_discretizing.inverse_transform(\n", + " data=syn.data_syn\n", + " )\n", + " print(postproc_discretizing_data.head(1))" + ] + }, + { + "cell_type": "code", + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -144,87 +201,66 @@ "output_type": "stream", "text": [ "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status occupation \\\n", - "0 0.0 2 0.0 1 0.0 4 6 \n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2 0.0 1 0.0 4 \n", "\n", - " relationship race gender capital-gain capital-loss hours-per-week \\\n", - "0 3 2 1 0.0 0.0 0.0 \n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", "\n", - " native-country income \n", - "0 25 0 \n", - "age category\n", - "workclass category\n", - "fnlwgt category\n", - "education category\n", - "educational-num category\n", - "marital-status category\n", - "occupation category\n", - "relationship category\n", - "race category\n", - "gender category\n", - "capital-gain category\n", - "capital-loss category\n", - "hours-per-week category\n", - "native-country category\n", - "income category\n", - "dtype: object\n", - "Synthesizer (SmartNoise): Fitting mst.\n", - "Synthesizer (SmartNoise): Fitting mst spent 41.2776 sec.\n", - "Synthesizer (SmartNoise): Sampling mst # 558 rows (same as raw) in 0.0326 sec.\n", + " hours-per-week native-country income \n", + "0 0.0 25 0 \n", + "Synthesizer (SmartNoise): Fitting aim.\n", + "15\n", + "Initial Sigma 11.056041228448832\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/mbi/__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", + " warnings.warn('MixtureInference disabled, please install jax and jaxlib')\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Synthesizer (SmartNoise): Fitting aim spent 103.6998 sec.\n", + "Synthesizer (SmartNoise): Sampling aim # 558 rows (same as raw) in 0.0282 sec.\n", "Sync data as ...\n", " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 8 0.0 2 \n", + "0 0.0 2 0.0 7 0.0 2 \n", "\n", " occupation relationship race gender capital-gain capital-loss \\\n", - "0 2 0 4 1 0.0 0.0 \n", + "0 4 0 4 1 0.0 0.0 \n", "\n", " hours-per-week native-country income \n", - "0 0.0 25 0 \n" + "0 0.0 25 1 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 371.264583 Private 8.479563e+09 Assoc-acdm 16.57591 \n", + "\n", + " marital-status occupation relationship race gender \\\n", + "0 Married-civ-spouse Farming-fishing Husband White Male \n", + "\n", + " capital-gain capital-loss hours-per-week native-country income \n", + "0 9.268677e+07 96578.239577 172.18284 United-States >50K \n" ] } ], "source": [ "issue332(\n", " load=load,\n", - " synthesizing_method='smartnoise-mst',\n", + " synthesizing_method='smartnoise-aim'\n", ")" ] }, { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "a = np.array([1,2,3])" - ] - }, - { - "cell_type": "code", - "execution_count": 15, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2, 3])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "pd.Categorical(a).to_numpy()" + "上述執行會出現 `RuntimeError: all elements of input should be between 0 and 1`,原因是 input 中含有 NA 值,來自於前處理過程中將離群值去除掉,導致 `capital-gain`, `capital-loss` 兩個欄位的值皆相同,在 `smartnoise` 中進行 `MinMaxTransformer` 時會讓運算結果為 NA (分母為 0)。因此針對 adult 資料集,將其中的 `outlier` 前處理拿掉,就可以正常運行了。" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From b79a33af987c569e297e171e5d68abfb1df1bc10 Mon Sep 17 00:00:00 2001 From: Alex Chen Date: Thu, 7 Mar 2024 11:01:27 +0800 Subject: [PATCH 10/17] update doc for the new methods --- docs/_posts/2024-02-20-Synthesizer.md | 24 ++++++++++++++++++++++-- 1 file changed, 22 insertions(+), 2 deletions(-) diff --git a/docs/_posts/2024-02-20-Synthesizer.md b/docs/_posts/2024-02-20-Synthesizer.md index 0e95abf8..cabdf2c0 100644 --- a/docs/_posts/2024-02-20-Synthesizer.md +++ b/docs/_posts/2024-02-20-Synthesizer.md @@ -93,6 +93,8 @@ In this section, we provide a comprehensive list of supported synthesizer types | `smartnoise` | `SmartNoiseCreator` (AIM) | 'smartnoise-aim' | ✅ | ✅ | | `smartnoise` | `SmartNoiseCreator` (MST) | 'smartnoise-mst' | ✅ | ✅ | | `smartnoise` | `SmartNoiseCreator` (PAC-Synth) | 'smartnoise-pacsynth' | ✅ | ✅ | +| `smartnoise` | `SmartNoiseCreator` (DP-CTGAN) | 'smartnoise-dpctgan' | ✅ | | +| `smartnoise` | `SmartNoiseCreator` (PATE-CTGAN) | 'smartnoise-patectgan' | ✅ | | [^1]: In the `Processor` within `PETsARD`, whether `'discretizing'` should be in the `sequence`. If so, it should be the last elements in the `'sequence'`, and `'encoder'` should not be in the `'sequence'`. 若您使用 `PETsARD` 的 `Processor`,請確認在 `sequence` 中的最後一個元素為 `'discretizing'`,且`'encoder'` 不能在 `sequence` 中。 @@ -144,9 +146,9 @@ See [document](https://docs.sdv.dev/sdv/single-table-data/modeling/synthesizers/ ## SmartNoise -`smartnoise` is a synthetic data generation package that emphasizes differential privacy (DP), thereby enhancing privacy protection. For more details, please refer to its official [document](https://docs.smartnoise.org/synth/index.html#synthesizers-reference) and [GitHub](https://github.com/opendp/smartnoise-sdk/tree/main/synth). Within our package, we intentionally disable the default preprocessing procedure in `smartnoise` to enhance customization flexibility. it's worth noting that we only support the utilization of cube-style (histogram-based) synthesizers, as listed above. Please ensure that your input data is exclusively in categorical format before initiating training. Specifically, in the `Processor` within `PETsARD`, ensure that the last element in the `sequence` is set to `'discretizing'`, and `'encoder'` must not be in the `'sequence'`. +`smartnoise` is a synthetic data generation package that emphasizes differential privacy (DP), thereby enhancing privacy protection. For more details, please refer to its official [document](https://docs.smartnoise.org/synth/index.html#synthesizers-reference) and [GitHub](https://github.com/opendp/smartnoise-sdk/tree/main/synth). Within our package, we intentionally disable the default preprocessing procedure in `smartnoise` to enhance customization flexibility. It's worth noting that for the methods which `discretizing` is needed, please ensure that your input data is exclusively in categorical format before initiating training. Specifically, in the `Processor` within `PETsARD`, ensure that the last element in the `sequence` is set to `'discretizing'`, and `'encoder'` must not be in the `'sequence'`. Also noted that if you use the method which `discretizing` is not needed, the instance will perform min-max scaling implicitly to make the programme functional. -`smartnoise` 是一個著重在差分隱私 (DP) 的合成資料套件,以提升隱私保護力。詳見其官方[說明文件](https://docs.smartnoise.org/synth/index.html#synthesizers-reference)及 [GitHub](https://github.com/opendp/smartnoise-sdk/tree/main/synth)。在本套件中,我們抑制了 `smartnoise` 原生的資料前處理流程以提升客製化的彈性。同時我們也只支援 cube-style (基於長條圖的) 合成資料演算法,如上表所附。在訓練前請確保您的資料皆是類別格式。亦即,若您使用 `PETsARD` 的 `Processor`,請確認在 `sequence` 中的最後一個元素為 `'discretizing'`,且`'encoder'` 不能在 `sequence` 中。 +`smartnoise` 是一個著重在差分隱私 (DP) 的合成資料套件,以提升隱私保護力。詳見其官方[說明文件](https://docs.smartnoise.org/synth/index.html#synthesizers-reference)及 [GitHub](https://github.com/opendp/smartnoise-sdk/tree/main/synth)。在本套件中,我們抑制了 `smartnoise` 原生的資料前處理流程以提升客製化的彈性。請注意,若您使用需要 `discretizing` 的演算法,在訓練前請確保您的資料皆是類別格式。亦即,若您使用 `PETsARD` 的 `Processor`,請確認在 `sequence` 中的最後一個元素為 `'discretizing'`,且`'encoder'` 不能在 `sequence` 中。另外提醒,若使用不需要 `discretizing` 的演算法,該物件會內隱執行 min-max 轉換,以確保程式能正常執行。 ### `'smartnoise-aim'` @@ -182,4 +184,22 @@ Use the PAC-Synth algorithm provided in `smartnoise`. See [document](https://doc See [document](https://docs.smartnoise.org/synth/synthesizers/pac_synth.html) for further details. 詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/pac_synth.html)。 +### `'smartnoise-dpctgan'` +Use the DP-CTGAN algorithm provided in `smartnoise`. See [document](https://docs.smartnoise.org/synth/synthesizers/dpctgan.html) for further details. + +使用 `smartnoise` 提供的 DP-CTGAN 演算法。詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/dpctgan.html)。 + +**Parameters** + +See [document](https://docs.smartnoise.org/synth/synthesizers/dpctgan.html) for further details. 詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/dpctgan.html)。 + +### `'smartnoise-patectgan'` + +Use the PATE-CTGAN algorithm provided in `smartnoise`. See [document](https://docs.smartnoise.org/synth/synthesizers/patectgan.html) for further details. + +使用 `smartnoise` 提供的 PATE-CTGAN 演算法。詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/patectgan.html)。 + +**Parameters** + +See [document](https://docs.smartnoise.org/synth/synthesizers/patectgan.html) for further details. 詳見[說明文件](https://docs.smartnoise.org/synth/synthesizers/patectgan.html)。 \ No newline at end of file From 08eb8da8d8db6fd438744ddf1dbd902d904821d8 Mon Sep 17 00:00:00 2001 From: matheme-justyn Date: Thu, 7 Mar 2024 17:08:03 +0800 Subject: [PATCH 11/17] 20240307, 2024-01-11-Synthesizer.md by #350 --- .../{2024-02-20-Synthesizer.md => 2024-01-11-Synthesizer.md} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename docs/_posts/{2024-02-20-Synthesizer.md => 2024-01-11-Synthesizer.md} (100%) diff --git a/docs/_posts/2024-02-20-Synthesizer.md b/docs/_posts/2024-01-11-Synthesizer.md similarity index 100% rename from docs/_posts/2024-02-20-Synthesizer.md rename to docs/_posts/2024-01-11-Synthesizer.md From 2e8ddd85af24c8e396add226c6d799bb0cd591b0 Mon Sep 17 00:00:00 2001 From: matheme-justyn Date: Fri, 8 Mar 2024 08:45:56 +0800 Subject: [PATCH 12/17] 20240308, poetry lock --- poetry.lock | 144 ++++++++++++++++++++++++++-------------------------- 1 file changed, 72 insertions(+), 72 deletions(-) diff --git a/poetry.lock b/poetry.lock index 2a93ac8e..3ccb1a46 100644 --- a/poetry.lock +++ b/poetry.lock @@ -74,17 +74,17 @@ files = [ [[package]] name = "boto3" -version = "1.34.42" +version = "1.34.58" description = "The AWS SDK for Python" optional = false python-versions = ">= 3.8" files = [ - {file = "boto3-1.34.42-py3-none-any.whl", hash = "sha256:5069b2c647c73c8428378e88b32bd23f568001f897a6f01179fae25de72a7ca6"}, - {file = "boto3-1.34.42.tar.gz", hash = "sha256:2ed136f9cf79e783e12424db23e970d1c50e65a8d7a9077efa71cbf8496fb7a3"}, + {file = "boto3-1.34.58-py3-none-any.whl", hash = "sha256:d213a6fea9db6d537b1e65924133d8279ada79a40bc840d4930e1b64be869d4c"}, + {file = "boto3-1.34.58.tar.gz", hash = "sha256:09e3d17c718bc938a76774f31bc557b20733c0f5f9135a3e7782b55f3459cbdd"}, ] [package.dependencies] -botocore = ">=1.34.42,<1.35.0" +botocore = ">=1.34.58,<1.35.0" jmespath = ">=0.7.1,<2.0.0" s3transfer = ">=0.10.0,<0.11.0" @@ -93,13 +93,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] [[package]] name = "botocore" -version = "1.34.42" +version = "1.34.58" description = "Low-level, data-driven core of boto 3." optional = false python-versions = ">= 3.8" files = [ - {file = "botocore-1.34.42-py3-none-any.whl", hash = "sha256:93755c3ede4bd9f6180b3118f6b607acca8b633fd2668226794a543ce79a2434"}, - {file = "botocore-1.34.42.tar.gz", hash = "sha256:cf4fad50d09686f03e44418fcae9dd24369658daa556357cedc0790cfcd6fdac"}, + {file = "botocore-1.34.58-py3-none-any.whl", hash = "sha256:8086a6ea27d0f658505ac81e6d7314e013561469c40db9b5a4692127eb5c97cf"}, + {file = "botocore-1.34.58.tar.gz", hash = "sha256:d75216952886dc513ea1b5e2979a6af08feed2f537e3fc102e4a0a2ead563a35"}, ] [package.dependencies] @@ -872,32 +872,32 @@ files = [ [[package]] name = "importlib-metadata" -version = "7.0.1" +version = "7.0.2" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-7.0.1-py3-none-any.whl", hash = "sha256:4805911c3a4ec7c3966410053e9ec6a1fecd629117df5adee56dfc9432a1081e"}, - {file = "importlib_metadata-7.0.1.tar.gz", hash = "sha256:f238736bb06590ae52ac1fab06a3a9ef1d8dce2b7a35b5ab329371d6c8f5d2cc"}, + {file = "importlib_metadata-7.0.2-py3-none-any.whl", hash = "sha256:f4bc4c0c070c490abf4ce96d715f68e95923320370efb66143df00199bb6c100"}, + {file = "importlib_metadata-7.0.2.tar.gz", hash = "sha256:198f568f3230878cb1b44fbd7975f87906c22336dba2e4a7f05278c281fbd792"}, ] [package.dependencies] zipp = ">=0.5" [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] -testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] +testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] [[package]] name = "importlib-resources" -version = "6.1.1" +version = "6.1.3" description = "Read resources from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_resources-6.1.1-py3-none-any.whl", hash = "sha256:e8bf90d8213b486f428c9c39714b920041cb02c184686a3dee24905aaa8105d6"}, - {file = "importlib_resources-6.1.1.tar.gz", hash = "sha256:3893a00122eafde6894c59914446a512f728a0c1a45f9bb9b63721b6bacf0b4a"}, + {file = "importlib_resources-6.1.3-py3-none-any.whl", hash = "sha256:4c0269e3580fe2634d364b39b38b961540a7738c02cb984e98add8b4221d793d"}, + {file = "importlib_resources-6.1.3.tar.gz", hash = "sha256:56fb4525197b78544a3354ea27793952ab93f935bb4bf746b846bb1015020f2b"}, ] [package.dependencies] @@ -905,7 +905,7 @@ zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-ruff", "zipp (>=3.17)"] +testing = ["jaraco.collections", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] [[package]] name = "iniconfig" @@ -1720,13 +1720,13 @@ files = [ [[package]] name = "nvidia-nvjitlink-cu12" -version = "12.3.101" +version = "12.4.99" description = "Nvidia JIT LTO Library" optional = false python-versions = ">=3" files = [ - {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c"}, - {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-win_amd64.whl", hash = "sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1"}, + {file = "nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c6428836d20fe7e327191c175791d38570e10762edc588fb46749217cd444c74"}, + {file = "nvidia_nvjitlink_cu12-12.4.99-py3-none-win_amd64.whl", hash = "sha256:991905ffa2144cb603d8ca7962d75c35334ae82bf92820b6ba78157277da1ad2"}, ] [[package]] @@ -2204,13 +2204,13 @@ windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pyparsing" -version = "3.1.1" +version = "3.1.2" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, - {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, ] [package.extras] @@ -2218,13 +2218,13 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pytest" -version = "8.0.0" +version = "8.0.2" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.8" files = [ - {file = "pytest-8.0.0-py3-none-any.whl", hash = "sha256:50fb9cbe836c3f20f0dfa99c565201fb75dc54c8d76373cd1bde06b06657bdb6"}, - {file = "pytest-8.0.0.tar.gz", hash = "sha256:249b1b0864530ba251b7438274c4d251c58d868edaaec8762893ad4a0d71c36c"}, + {file = "pytest-8.0.2-py3-none-any.whl", hash = "sha256:edfaaef32ce5172d5466b5127b42e0d6d35ebbe4453f0e3505d96afd93f6b096"}, + {file = "pytest-8.0.2.tar.gz", hash = "sha256:d4051d623a2e0b7e51960ba963193b09ce6daeb9759a451844a21e4ddedfc1bd"}, ] [package.dependencies] @@ -2749,57 +2749,57 @@ smartnoise-sql = ">=0.2.6,<0.3.0" [[package]] name = "sqlalchemy" -version = "1.4.51" +version = "1.4.52" description = "Database Abstraction Library" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ - {file = "SQLAlchemy-1.4.51-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:1a09d5bd1a40d76ad90e5570530e082ddc000e1d92de495746f6257dc08f166b"}, - {file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2be4e6294c53f2ec8ea36486b56390e3bcaa052bf3a9a47005687ccf376745d1"}, - {file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca484ca11c65e05639ffe80f20d45e6be81fbec7683d6c9a15cd421e6e8b340"}, - {file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0535d5b57d014d06ceeaeffd816bb3a6e2dddeb670222570b8c4953e2d2ea678"}, - {file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af55cc207865d641a57f7044e98b08b09220da3d1b13a46f26487cc2f898a072"}, - {file = "SQLAlchemy-1.4.51-cp310-cp310-win32.whl", hash = "sha256:7af40425ac535cbda129d9915edcaa002afe35d84609fd3b9d6a8c46732e02ee"}, - {file = "SQLAlchemy-1.4.51-cp310-cp310-win_amd64.whl", hash = "sha256:8d1d7d63e5d2f4e92a39ae1e897a5d551720179bb8d1254883e7113d3826d43c"}, - {file = "SQLAlchemy-1.4.51-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:eaeeb2464019765bc4340214fca1143081d49972864773f3f1e95dba5c7edc7d"}, - {file = "SQLAlchemy-1.4.51-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7deeae5071930abb3669b5185abb6c33ddfd2398f87660fafdb9e6a5fb0f3f2f"}, - {file = "SQLAlchemy-1.4.51-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0892e7ac8bc76da499ad3ee8de8da4d7905a3110b952e2a35a940dab1ffa550e"}, - {file = "SQLAlchemy-1.4.51-cp311-cp311-win32.whl", hash = "sha256:50e074aea505f4427151c286955ea025f51752fa42f9939749336672e0674c81"}, - {file = "SQLAlchemy-1.4.51-cp311-cp311-win_amd64.whl", hash = "sha256:3b0cd89a7bd03f57ae58263d0f828a072d1b440c8c2949f38f3b446148321171"}, - {file = "SQLAlchemy-1.4.51-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a33cb3f095e7d776ec76e79d92d83117438b6153510770fcd57b9c96f9ef623d"}, - {file = "SQLAlchemy-1.4.51-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6cacc0b2dd7d22a918a9642fc89840a5d3cee18a0e1fe41080b1141b23b10916"}, - {file = "SQLAlchemy-1.4.51-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:245c67c88e63f1523e9216cad6ba3107dea2d3ee19adc359597a628afcabfbcb"}, - {file = "SQLAlchemy-1.4.51-cp312-cp312-win32.whl", hash = "sha256:8e702e7489f39375601c7ea5a0bef207256828a2bc5986c65cb15cd0cf097a87"}, - {file = "SQLAlchemy-1.4.51-cp312-cp312-win_amd64.whl", hash = "sha256:0525c4905b4b52d8ccc3c203c9d7ab2a80329ffa077d4bacf31aefda7604dc65"}, - {file = "SQLAlchemy-1.4.51-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:1980e6eb6c9be49ea8f89889989127daafc43f0b1b6843d71efab1514973cca0"}, - {file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ec7a0ed9b32afdf337172678a4a0e6419775ba4e649b66f49415615fa47efbd"}, - {file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:352df882088a55293f621328ec33b6ffca936ad7f23013b22520542e1ab6ad1b"}, - {file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:86a22143a4001f53bf58027b044da1fb10d67b62a785fc1390b5c7f089d9838c"}, - {file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c37bc677690fd33932182b85d37433845de612962ed080c3e4d92f758d1bd894"}, - {file = "SQLAlchemy-1.4.51-cp36-cp36m-win32.whl", hash = "sha256:d0a83afab5e062abffcdcbcc74f9d3ba37b2385294dd0927ad65fc6ebe04e054"}, - {file = "SQLAlchemy-1.4.51-cp36-cp36m-win_amd64.whl", hash = "sha256:a61184c7289146c8cff06b6b41807c6994c6d437278e72cf00ff7fe1c7a263d1"}, - {file = "SQLAlchemy-1.4.51-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:3f0ef620ecbab46e81035cf3dedfb412a7da35340500ba470f9ce43a1e6c423b"}, - {file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c55040d8ea65414de7c47f1a23823cd9f3fad0dc93e6b6b728fee81230f817b"}, - {file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ef80328e3fee2be0a1abe3fe9445d3a2e52a1282ba342d0dab6edf1fef4707"}, - {file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f8cafa6f885a0ff5e39efa9325195217bb47d5929ab0051636610d24aef45ade"}, - {file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8f2df79a46e130235bc5e1bbef4de0583fb19d481eaa0bffa76e8347ea45ec6"}, - {file = "SQLAlchemy-1.4.51-cp37-cp37m-win32.whl", hash = "sha256:f2e5b6f5cf7c18df66d082604a1d9c7a2d18f7d1dbe9514a2afaccbb51cc4fc3"}, - {file = "SQLAlchemy-1.4.51-cp37-cp37m-win_amd64.whl", hash = "sha256:5e180fff133d21a800c4f050733d59340f40d42364fcb9d14f6a67764bdc48d2"}, - {file = "SQLAlchemy-1.4.51-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7d8139ca0b9f93890ab899da678816518af74312bb8cd71fb721436a93a93298"}, - {file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb18549b770351b54e1ab5da37d22bc530b8bfe2ee31e22b9ebe650640d2ef12"}, - {file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55e699466106d09f028ab78d3c2e1f621b5ef2c8694598242259e4515715da7c"}, - {file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2ad16880ccd971ac8e570550fbdef1385e094b022d6fc85ef3ce7df400dddad3"}, - {file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b97fd5bb6b7c1a64b7ac0632f7ce389b8ab362e7bd5f60654c2a418496be5d7f"}, - {file = "SQLAlchemy-1.4.51-cp38-cp38-win32.whl", hash = "sha256:cecb66492440ae8592797dd705a0cbaa6abe0555f4fa6c5f40b078bd2740fc6b"}, - {file = "SQLAlchemy-1.4.51-cp38-cp38-win_amd64.whl", hash = "sha256:39b02b645632c5fe46b8dd30755682f629ffbb62ff317ecc14c998c21b2896ff"}, - {file = "SQLAlchemy-1.4.51-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:b03850c290c765b87102959ea53299dc9addf76ca08a06ea98383348ae205c99"}, - {file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e646b19f47d655261b22df9976e572f588185279970efba3d45c377127d35349"}, - {file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3cf56cc36d42908495760b223ca9c2c0f9f0002b4eddc994b24db5fcb86a9e4"}, - {file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0d661cff58c91726c601cc0ee626bf167b20cc4d7941c93c5f3ac28dc34ddbea"}, - {file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3823dda635988e6744d4417e13f2e2b5fe76c4bf29dd67e95f98717e1b094cad"}, - {file = "SQLAlchemy-1.4.51-cp39-cp39-win32.whl", hash = "sha256:b00cf0471888823b7a9f722c6c41eb6985cf34f077edcf62695ac4bed6ec01ee"}, - {file = "SQLAlchemy-1.4.51-cp39-cp39-win_amd64.whl", hash = "sha256:a055ba17f4675aadcda3005df2e28a86feb731fdcc865e1f6b4f209ed1225cba"}, - {file = "SQLAlchemy-1.4.51.tar.gz", hash = "sha256:e7908c2025eb18394e32d65dd02d2e37e17d733cdbe7d78231c2b6d7eb20cdb9"}, + {file = "SQLAlchemy-1.4.52-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:f68016f9a5713684c1507cc37133c28035f29925c75c0df2f9d0f7571e23720a"}, + {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24bb0f81fbbb13d737b7f76d1821ec0b117ce8cbb8ee5e8641ad2de41aa916d3"}, + {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e93983cc0d2edae253b3f2141b0a3fb07e41c76cd79c2ad743fc27eb79c3f6db"}, + {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:84e10772cfc333eb08d0b7ef808cd76e4a9a30a725fb62a0495877a57ee41d81"}, + {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:427988398d2902de042093d17f2b9619a5ebc605bf6372f7d70e29bde6736842"}, + {file = "SQLAlchemy-1.4.52-cp310-cp310-win32.whl", hash = "sha256:1296f2cdd6db09b98ceb3c93025f0da4835303b8ac46c15c2136e27ee4d18d94"}, + {file = "SQLAlchemy-1.4.52-cp310-cp310-win_amd64.whl", hash = "sha256:80e7f697bccc56ac6eac9e2df5c98b47de57e7006d2e46e1a3c17c546254f6ef"}, + {file = "SQLAlchemy-1.4.52-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2f251af4c75a675ea42766880ff430ac33291c8d0057acca79710f9e5a77383d"}, + {file = "SQLAlchemy-1.4.52-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb8f9e4c4718f111d7b530c4e6fb4d28f9f110eb82e7961412955b3875b66de0"}, + {file = "SQLAlchemy-1.4.52-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afb1672b57f58c0318ad2cff80b384e816735ffc7e848d8aa51e0b0fc2f4b7bb"}, + {file = "SQLAlchemy-1.4.52-cp311-cp311-win32.whl", hash = "sha256:6e41cb5cda641f3754568d2ed8962f772a7f2b59403b95c60c89f3e0bd25f15e"}, + {file = "SQLAlchemy-1.4.52-cp311-cp311-win_amd64.whl", hash = "sha256:5bed4f8c3b69779de9d99eb03fd9ab67a850d74ab0243d1be9d4080e77b6af12"}, + {file = "SQLAlchemy-1.4.52-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:49e3772eb3380ac88d35495843daf3c03f094b713e66c7d017e322144a5c6b7c"}, + {file = "SQLAlchemy-1.4.52-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:618827c1a1c243d2540314c6e100aee7af09a709bd005bae971686fab6723554"}, + {file = "SQLAlchemy-1.4.52-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de9acf369aaadb71a725b7e83a5ef40ca3de1cf4cdc93fa847df6b12d3cd924b"}, + {file = "SQLAlchemy-1.4.52-cp312-cp312-win32.whl", hash = "sha256:763bd97c4ebc74136ecf3526b34808c58945023a59927b416acebcd68d1fc126"}, + {file = "SQLAlchemy-1.4.52-cp312-cp312-win_amd64.whl", hash = "sha256:f12aaf94f4d9679ca475975578739e12cc5b461172e04d66f7a3c39dd14ffc64"}, + {file = "SQLAlchemy-1.4.52-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:853fcfd1f54224ea7aabcf34b227d2b64a08cbac116ecf376907968b29b8e763"}, + {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f98dbb8fcc6d1c03ae8ec735d3c62110949a3b8bc6e215053aa27096857afb45"}, + {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e135fff2e84103bc15c07edd8569612ce317d64bdb391f49ce57124a73f45c5"}, + {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5b5de6af8852500d01398f5047d62ca3431d1e29a331d0b56c3e14cb03f8094c"}, + {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3491c85df263a5c2157c594f54a1a9c72265b75d3777e61ee13c556d9e43ffc9"}, + {file = "SQLAlchemy-1.4.52-cp36-cp36m-win32.whl", hash = "sha256:427c282dd0deba1f07bcbf499cbcc9fe9a626743f5d4989bfdfd3ed3513003dd"}, + {file = "SQLAlchemy-1.4.52-cp36-cp36m-win_amd64.whl", hash = "sha256:ca5ce82b11731492204cff8845c5e8ca1a4bd1ade85e3b8fcf86e7601bfc6a39"}, + {file = "SQLAlchemy-1.4.52-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:29d4247313abb2015f8979137fe65f4eaceead5247d39603cc4b4a610936cd2b"}, + {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a752bff4796bf22803d052d4841ebc3c55c26fb65551f2c96e90ac7c62be763a"}, + {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7ea11727feb2861deaa293c7971a4df57ef1c90e42cb53f0da40c3468388000"}, + {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d913f8953e098ca931ad7f58797f91deed26b435ec3756478b75c608aa80d139"}, + {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a251146b921725547ea1735b060a11e1be705017b568c9f8067ca61e6ef85f20"}, + {file = "SQLAlchemy-1.4.52-cp37-cp37m-win32.whl", hash = "sha256:1f8e1c6a6b7f8e9407ad9afc0ea41c1f65225ce505b79bc0342159de9c890782"}, + {file = "SQLAlchemy-1.4.52-cp37-cp37m-win_amd64.whl", hash = "sha256:346ed50cb2c30f5d7a03d888e25744154ceac6f0e6e1ab3bc7b5b77138d37710"}, + {file = "SQLAlchemy-1.4.52-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:4dae6001457d4497736e3bc422165f107ecdd70b0d651fab7f731276e8b9e12d"}, + {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5d2e08d79f5bf250afb4a61426b41026e448da446b55e4770c2afdc1e200fce"}, + {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bbce5dd7c7735e01d24f5a60177f3e589078f83c8a29e124a6521b76d825b85"}, + {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:bdb7b4d889631a3b2a81a3347c4c3f031812eb4adeaa3ee4e6b0d028ad1852b5"}, + {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c294ae4e6bbd060dd79e2bd5bba8b6274d08ffd65b58d106394cb6abbf35cf45"}, + {file = "SQLAlchemy-1.4.52-cp38-cp38-win32.whl", hash = "sha256:bcdfb4b47fe04967669874fb1ce782a006756fdbebe7263f6a000e1db969120e"}, + {file = "SQLAlchemy-1.4.52-cp38-cp38-win_amd64.whl", hash = "sha256:7d0dbc56cb6af5088f3658982d3d8c1d6a82691f31f7b0da682c7b98fa914e91"}, + {file = "SQLAlchemy-1.4.52-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:a551d5f3dc63f096ed41775ceec72fdf91462bb95abdc179010dc95a93957800"}, + {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ab773f9ad848118df7a9bbabca53e3f1002387cdbb6ee81693db808b82aaab0"}, + {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2de46f5d5396d5331127cfa71f837cca945f9a2b04f7cb5a01949cf676db7d1"}, + {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7027be7930a90d18a386b25ee8af30514c61f3852c7268899f23fdfbd3107181"}, + {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99224d621affbb3c1a4f72b631f8393045f4ce647dd3262f12fe3576918f8bf3"}, + {file = "SQLAlchemy-1.4.52-cp39-cp39-win32.whl", hash = "sha256:c124912fd4e1bb9d1e7dc193ed482a9f812769cb1e69363ab68e01801e859821"}, + {file = "SQLAlchemy-1.4.52-cp39-cp39-win_amd64.whl", hash = "sha256:2c286fab42e49db23c46ab02479f328b8bdb837d3e281cae546cc4085c83b680"}, + {file = "SQLAlchemy-1.4.52.tar.gz", hash = "sha256:80e63bbdc5217dad3485059bdf6f65a7d43f33c8bde619df5c220edf03d87296"}, ] [package.dependencies] From 6817af10cef6582c435f80fd515ebacf4f00f120 Mon Sep 17 00:00:00 2001 From: matheme-justyn Date: Fri, 8 Mar 2024 10:58:48 +0800 Subject: [PATCH 13/17] 20240308, update poetry require poetry install --- pyproject.toml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/pyproject.toml b/pyproject.toml index 5e9351fb..7d5a9baa 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -17,6 +17,9 @@ # - Activate virtual environment. # - 啟動虛擬環境。 # 4. poetry lock +# - update poetry.lock based on the current pyproject.toml. +# - 根據當前的 pyproject.toml 更新 poetry.lock。 +# 5. poetry install # - Install the required packages based on poetry.lock. # - 依據 poetry.lock 安裝所需的套件。 # From b536c874de0763932db871ec5ffd669c0cbd63d7 Mon Sep 17 00:00:00 2001 From: matheme-justyn Date: Fri, 8 Mar 2024 13:54:37 +0800 Subject: [PATCH 14/17] 20240308, reset requirements.txt and related work --- demo/dev/executable_smartnoise.ipynb | 1213 +++++++++++++++++++++- poetry.lock | 8 +- pyproject.toml | 18 - requirements-dev.txt | 1444 -------------------------- requirements.txt | Bin 96931 -> 3354 bytes 5 files changed, 1187 insertions(+), 1496 deletions(-) delete mode 100644 requirements-dev.txt diff --git a/demo/dev/executable_smartnoise.ipynb b/demo/dev/executable_smartnoise.ipynb index 16a6b941..aad74b2d 100644 --- a/demo/dev/executable_smartnoise.ipynb +++ b/demo/dev/executable_smartnoise.ipynb @@ -19,25 +19,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "/Users/alex/PETsARD\n" + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\n" ] } ], "source": [ - "%cd /Users/alex/PETsARD" + "# %cd /Users/alex/PETsARD\n", + "\n", + "import os\n", + "import sys\n", + "\n", + "path_petsard = os.path.dirname(os.path.dirname(os.getcwd()))\n", + "print(path_petsard)\n", + "sys.path.append(path_petsard)" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Loader - Benchmarker: file benchmark/adult.csv already exist and match SHA-256.\n", - " PETsARD will ignore download and use local data directly.\n" + "Loader - Benchmarker : Success download the benchmark dataset from https://petsard-benchmark.s3.amazonaws.com/adult-income.csv.\n" ] } ], @@ -50,7 +56,7 @@ "\n", "\n", "load = Loader(\n", - " filepath='benchmark://adult',\n", + " filepath='benchmark://adult-income',\n", " na_values={k: '?' for k in [\n", " 'workclass',\n", " 'occupation',\n", @@ -62,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +77,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -142,7 +148,8 @@ "def issue332_gan(\n", " load: Loader,\n", " synthesizing_method: str,\n", - " scaler_inhibit: bool = False\n", + " scaler_inhibit: bool = False,\n", + " outlier_inhibit: bool = False\n", "):\n", " pp = pprint.PrettyPrinter(depth=2)\n", "\n", @@ -161,6 +168,18 @@ " print(\"Preproc config of Scaler before after as ...\")\n", " pp.pprint(proc_discretizing.get_config()['scaler'])\n", "\n", + " if outlier_inhibit:\n", + " print(\"Preproc config of Outlier before update as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + " proc_discretizing.update_config(\n", + " {'outlier': {\n", + " col: None for col in load.data.columns\n", + " }}\n", + " )\n", + " print(\"Preproc config of Outlier before after as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + "\n", + "\n", " proc_discretizing.fit(\n", " data=load.data,\n", " sequence=[\n", @@ -193,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -201,24 +220,21 @@ "output_type": "stream", "text": [ "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 1 0.0 4 \n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2 0.0 1 0.0 4 \n", "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 3 2 1 0.0 0.0 \n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", "\n", - " hours-per-week native-country income \n", - "0 0.0 25 0 \n", - "Synthesizer (SmartNoise): Fitting aim.\n", - "15\n", - "Initial Sigma 11.056041228448832\n" + " hours-per-week native-country income \n", + "0 0.0 25 0 \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/mbi/__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\mbi\\__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", " warnings.warn('MixtureInference disabled, please install jax and jaxlib')\n" ] }, @@ -226,22 +242,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "Synthesizer (SmartNoise): Fitting aim spent 103.6998 sec.\n", - "Synthesizer (SmartNoise): Sampling aim # 558 rows (same as raw) in 0.0282 sec.\n", + "Synthesizer (SmartNoise): Fitting aim.\n", + "15\n", + "Initial Sigma 11.056041228448832\n", + "Synthesizer (SmartNoise): Fitting aim spent 270.8398 sec.\n", + "Synthesizer (SmartNoise): Sampling aim # 558 rows (same as raw) in 0.5135 sec.\n", "Sync data as ...\n", " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 7 0.0 2 \n", + "0 0.0 2 0.0 4 0.0 2 \n", "\n", " occupation relationship race gender capital-gain capital-loss \\\n", - "0 4 0 4 1 0.0 0.0 \n", + "0 6 0 4 1 0.0 0.0 \n", "\n", " hours-per-week native-country income \n", "0 0.0 25 1 \n", - " age workclass fnlwgt education educational-num \\\n", - "0 371.264583 Private 8.479563e+09 Assoc-acdm 16.57591 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 371.264583 Private 8.479563e+09 5th-6th 16.57591 \n", "\n", - " marital-status occupation relationship race gender \\\n", - "0 Married-civ-spouse Farming-fishing Husband White Male \n", + " marital-status occupation relationship race gender \\\n", + "0 Married-civ-spouse Machine-op-inspct Husband White Male \n", "\n", " capital-gain capital-loss hours-per-week native-country income \n", "0 9.268677e+07 96578.239577 172.18284 United-States >50K \n" @@ -261,6 +280,1140 @@ "source": [ "上述執行會出現 `RuntimeError: all elements of input should be between 0 and 1`,原因是 input 中含有 NA 值,來自於前處理過程中將離群值去除掉,導致 `capital-gain`, `capital-loss` 兩個欄位的值皆相同,在 `smartnoise` 中進行 `MinMaxTransformer` 時會讓運算結果為 NA (分母為 0)。因此針對 adult 資料集,將其中的 `outlier` 前處理拿掉,就可以正常運行了。" ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2 0.0 1 0.0 4 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25 0 \n", + "Synthesizer (SmartNoise): Fitting mst.\n", + "Synthesizer (SmartNoise): Fitting mst spent 113.5179 sec.\n", + "Synthesizer (SmartNoise): Sampling mst # 558 rows (same as raw) in 0.4945 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 0 0.0 9 0.0 2 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 11 0 4 1 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25 0 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 371.264583 Federal-gov 8.479563e+09 Bachelors 16.57591 \n", + "\n", + " marital-status occupation relationship race gender capital-gain \\\n", + "0 Married-civ-spouse Sales Husband White Male 9.268677e+07 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 96578.239577 172.18284 United-States <=50K \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 2 2 0 1 2 2 2 1 2 1 2 2 2 0 2 2 2 2 1 2 2 2 2 2 4 2 2 2 0 2 3 2 4 2 2 4\n", + " 2 2 2 2 3 2 2 2 2 2 5 2 2 2 2 2 2 2 2 5 2 2 2 2 2 3 4 2 2 2 2 2 2 2 2 5 5\n", + " 2 2 2 2 3 2 4 0 2 2 2 2 3 2 2 2 2 4 2 2 0 2 0 2 2 2 2 1 1 2 2 5 2 2 2 2 1\n", + " 2 1 2 2 2 2 2 2 4 3 2 2 5 5 2 2 2 2 1 2 2 2 4 2 5 2 2 2 2 2 2 2 2 2 2 5 2\n", + " 2 5 2 3 5 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 0 4 2 2 2 2 3 2 1\n", + " 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 4 2 5 2 1 2 2 2 1 2 2 2 2 2 1\n", + " 2 1 3 2 2 0 3 5 4 2 2 2 1 2 2 2 2 2 2 2 2 2 2 3 2 2 0 4 2 0 2 2 2 2 1 2 1\n", + " 2 2 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2 2 5 2 2 4 2 2 5 2 2 2 2 2 2 2 2 2 3 2 5\n", + " 2 2 2 2 2 4 1 2 1 2 3 2 2 5 2 1 2 2 2 2 2 2 2 0 1 2 2 5 2 2 2 5 2 5 2 0 2\n", + " 2 0 5 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 5 2 2 2 2 2 2 2 5 2\n", + " 2 4 2 1 2 4 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 1 2 2 5 2 2 2 2 2 2 2 2 2 3\n", + " 4 2 2 4 2 1 2 2 4 2 5 2 2 2 2 2 4 2 2 2 5 2 2 2 3 2 2 2 1 2 4 2 1 2 2 2 2\n", + " 2 1 2 2 2 2 2 2 2 2 2 4 4 3 4 0 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 1 2 2 2 1\n", + " 4 2 1 2 3 2 1 2 2 2 2 0 4 2 2 4 2 2 1 2 2 2 2 2 1 0 2 2 2 2 0 2 2 4 1 2 1\n", + " 2 2 2 3 2 2 2 2 2 4 1 2 2 2 2 2 2 1 0 2 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2\n", + " 2 0 2]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[ 9 12 5 12 9 3 3 4 3 5 5 5 3 2 4 12 3 5 2 3 12 9 2 9\n", + " 5 12 12 9 9 5 5 12 12 12 2 2 9 12 12]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[5 2 2 2 5 5 2 2 2 2 5 2 5 2 5 5]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[1 8 1 1 1 1 1 4 1 4 1 1 8 1 1 8]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 1 0 5 2 0 1 0 3 0 0 0 0 2 0 4 3 0 1 1 4 1 4 0 0 0 5 0 0 0 3\n", + " 1 0 4 1 1 3 0 1 4 1 0 3 1 3 1 0 0 0 1 3 0 2 4 0 1 3 0 0 0 1 1 0 0 0 4 1 1\n", + " 3 4 1 5 1 2 1 0 1 3 1 4 3 4 0 3 0 1 5 0 0 0 1 1 4 0 0 0 1 1 1 1 5 5 0 0 1\n", + " 3 4 0 2 0 0 1 2 4 5 1 0 3 0 1 1 0 0 0 1 0 5 0 0 1 5 0 1 5 1 1 3 0 0 4 0 0\n", + " 0 1 0 1 2 5 1 3 1 0 0 3 4 4 3 0 0 0 4 4 1 5 0 0 0 0 1 1 4 0 0 0 1 0 0 0 1\n", + " 0 4 0 3 1 1 4 3 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 3 2 0 1 0 0 0 0 1 0 0 1 0\n", + " 4 3 3 1 0 4 0 3 1 0 3 3 0 3 0 0 1 0 3 1 0 0 0 3 0 4 4 1 0 0 1 1 4 0 0 5 3\n", + " 0 1 3 3 4 1 0 3 1 1 5 0 0 2 4 0 0 1 0 0 0 4 3 5 3 0 3 1 3 0 0 3 3 1 0 0 0\n", + " 3 3 0 3 1 0 1 0 1 4 0 0 0 1 0 0 1 1 0 1 0 3 0 0 4 1 0 0 1 0 1 3 0 3 3 1 1\n", + " 2 1 3 1 0 0 4 4 0 0 1 1 0 1 0 0 0 0 4 0 3 1 0 2 5 0 0 1 0 3 2 1 1 0 0 0 5\n", + " 4 1 4 1 0 3 1 3 4 0 3 0 0 1 0 1 0 3 0 3 1 3 0 3 2 0 3 1 4 1 0 0 2 3 1 1 0\n", + " 0 0 1 0 1 0 0 0 1 0 4 1 1 0 1 3 0 4 1 0 5 1 1 4 0 1 0 0 0 1 1 4 1 0 1 1 3\n", + " 4 3 3 0 0 2 0 0 0 1 0 4 0 2 0 4 1 3 0 0 3 1 1 0 3 1 0 0 3 3 0 0 1 1 0 1 1\n", + " 4 0 3 1 0 0 1 5 0 0 3 3 3 4 4 4 3 1 1 0 1 4 4 1 1 0 1 0 3 5 1 0 0 0 4 0 0\n", + " 0 1 4 4 0 0 3 4 0 2 1 1 0 1 0 1 3 0 0 1 4 1 5 0 3 1 1 1 3 0 0 3 1 1 0 4 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[3 1 0 3 3 1 3 1 0 0 1 0 1 1 3 3 1 0 0 3 3 0 3 3]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1\n", + " 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1\n", + " 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1\n", + " 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1\n", + " 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0\n", + " 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1\n", + " 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1\n", + " 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1\n", + " 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0\n", + " 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0\n", + " 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1\n", + " 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0\n", + " 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0\n", + " 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1\n", + " 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1\n", + " 1 1 1]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[13 16 8 20 11 10 11 6 15 9 17 9 10 20 4 3 15 1 17 14 16 15 18 18\n", + " 7 3 20 18 7 16 11 4 0 20 15 14 12 20 14 14 18 12 1 12 9]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0\n", + " 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0\n", + " 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1\n", + " 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0\n", + " 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1\n", + " 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1\n", + " 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0\n", + " 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0\n", + " 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0\n", + " 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0\n", + " 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n", + " 0 1 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n" + ] + } + ], + "source": [ + "issue332(\n", + " load=load,\n", + " synthesizing_method='smartnoise-mst'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2 0.0 1 0.0 4 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25 0 \n", + "Synthesizer (SmartNoise): Fitting pacsynth.\n", + "Synthesizer (SmartNoise): Fitting pacsynth spent 0.2158 sec.\n", + "Synthesizer (SmartNoise): Sampling pacsynth # 558 rows (same as raw) in 1.6921 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2.0 0.0 11.0 0.0 2.0 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6.0 0.0 4.0 1.0 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25.0 0.0 \n" + ] + }, + { + "ename": "ValueError", + "evalue": "Input contains NaN.", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[10], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43missue332\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43mload\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msynthesizing_method\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msmartnoise-pacsynth\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\n\u001b[0;32m 4\u001b[0m \u001b[43m)\u001b[49m\n", + "Cell \u001b[1;32mIn[5], line 50\u001b[0m, in \u001b[0;36missue332\u001b[1;34m(load, synthesizing_method, scaler_inhibit)\u001b[0m\n\u001b[0;32m 48\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSync data as ...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 49\u001b[0m \u001b[38;5;28mprint\u001b[39m(syn\u001b[38;5;241m.\u001b[39mdata_syn\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m---> 50\u001b[0m postproc_discretizing_data \u001b[38;5;241m=\u001b[39m \u001b[43mproc_discretizing\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 51\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msyn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata_syn\u001b[49m\n\u001b[0;32m 52\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 53\u001b[0m \u001b[38;5;28mprint\u001b[39m(postproc_discretizing_data\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\base.py:483\u001b[0m, in \u001b[0;36mProcessor.inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 480\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m obj \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 481\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m--> 483\u001b[0m transformed[col] \u001b[38;5;241m=\u001b[39m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtransformed\u001b[49m\u001b[43m[\u001b[49m\u001b[43mcol\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 485\u001b[0m logging\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mprocessor\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m inverse transformation done.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 486\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 487\u001b[0m \u001b[38;5;66;03m# if the processor is not a string,\u001b[39;00m\n\u001b[0;32m 488\u001b[0m \u001b[38;5;66;03m# it should be a mediator, which transforms the data directly.\u001b[39;00m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\discretizing.py:81\u001b[0m, in \u001b[0;36mDiscretizingHandler.inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 78\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_fitted:\n\u001b[0;32m 79\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnfittedError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe object is not fitted. Use .fit() first.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 81\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\discretizing.py:152\u001b[0m, in \u001b[0;36mDiscretizingKBins._inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_inverse_transform\u001b[39m(\u001b[38;5;28mself\u001b[39m, data: pd\u001b[38;5;241m.\u001b[39mSeries) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m np\u001b[38;5;241m.\u001b[39mndarray:\n\u001b[0;32m 141\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 142\u001b[0m \u001b[38;5;124;03m Inverse the transformed data to the numerical data.\u001b[39;00m\n\u001b[0;32m 143\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;124;03m (np.ndarray): The inverse transformed data.\u001b[39;00m\n\u001b[0;32m 150\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreshape\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mravel()\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\preprocessing\\_discretization.py:430\u001b[0m, in \u001b[0;36mKBinsDiscretizer.inverse_transform\u001b[1;34m(self, Xt)\u001b[0m\n\u001b[0;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monehot\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mencode:\n\u001b[0;32m 428\u001b[0m Xt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_encoder\u001b[38;5;241m.\u001b[39minverse_transform(Xt)\n\u001b[1;32m--> 430\u001b[0m Xinv \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mXt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat64\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat32\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 431\u001b[0m n_features \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_bins_\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 432\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m Xinv\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m!=\u001b[39m n_features:\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:1049\u001b[0m, in \u001b[0;36mcheck_array\u001b[1;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[0;32m 1043\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 1044\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFound array with dim \u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m expected <= 2.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1045\u001b[0m \u001b[38;5;241m%\u001b[39m (array\u001b[38;5;241m.\u001b[39mndim, estimator_name)\n\u001b[0;32m 1046\u001b[0m )\n\u001b[0;32m 1048\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m force_all_finite:\n\u001b[1;32m-> 1049\u001b[0m \u001b[43m_assert_all_finite\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1050\u001b[0m \u001b[43m \u001b[49m\u001b[43marray\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1051\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1052\u001b[0m \u001b[43m \u001b[49m\u001b[43mestimator_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mestimator_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1053\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_all_finite\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mallow-nan\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1054\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1056\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m copy:\n\u001b[0;32m 1057\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _is_numpy_namespace(xp):\n\u001b[0;32m 1058\u001b[0m \u001b[38;5;66;03m# only make a copy if `array` and `array_orig` may share memory`\u001b[39;00m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:126\u001b[0m, in \u001b[0;36m_assert_all_finite\u001b[1;34m(X, allow_nan, msg_dtype, estimator_name, input_name)\u001b[0m\n\u001b[0;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m first_pass_isfinite:\n\u001b[0;32m 124\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m--> 126\u001b[0m \u001b[43m_assert_all_finite_element_wise\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 127\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 128\u001b[0m \u001b[43m \u001b[49m\u001b[43mxp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mxp\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 129\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_nan\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 130\u001b[0m \u001b[43m \u001b[49m\u001b[43mmsg_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmsg_dtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 131\u001b[0m \u001b[43m \u001b[49m\u001b[43mestimator_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mestimator_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 132\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 133\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:175\u001b[0m, in \u001b[0;36m_assert_all_finite_element_wise\u001b[1;34m(X, xp, allow_nan, msg_dtype, estimator_name, input_name)\u001b[0m\n\u001b[0;32m 158\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m estimator_name \u001b[38;5;129;01mand\u001b[39;00m input_name \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mX\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m has_nan_error:\n\u001b[0;32m 159\u001b[0m \u001b[38;5;66;03m# Improve the error message on how to handle missing values in\u001b[39;00m\n\u001b[0;32m 160\u001b[0m \u001b[38;5;66;03m# scikit-learn.\u001b[39;00m\n\u001b[0;32m 161\u001b[0m msg_err \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 162\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mestimator_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m does not accept missing values\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 163\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m encoded as NaN natively. For supervised learning, you might want\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 173\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m#estimators-that-handle-nan-values\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 174\u001b[0m )\n\u001b[1;32m--> 175\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg_err)\n", + "\u001b[1;31mValueError\u001b[0m: Input contains NaN." + ] + } + ], + "source": [ + "issue332(\n", + " load=load,\n", + " synthesizing_method='smartnoise-pacsynth'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc config of Outlier before update as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc config of Outlier before after as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 -0.953119 0.366136 0.409053 0.776959 -1.152735 0.810663 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.74892 0.757864 0.955584 0.48598 -0.159918 -0.219043 \n", + "\n", + " hours-per-week native-country income \n", + "0 -0.044504 0.216869 0.212391 \n", + "Synthesizer (SmartNoise): Fitting dpctgan.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\opacus\\privacy_engine.py:638: UserWarning: The sample rate will be defined from ``batch_size`` and ``sample_size``.The returned privacy budget will be incorrect.\n", + " warnings.warn(\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\opacus\\privacy_engine.py:229: UserWarning: Secure RNG turned off. This is perfectly fine for experimentation as it allows for much faster training performance, but remember to turn it on and retrain one last time before production with ``secure_rng`` turned on.\n", + " warnings.warn(\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\torch\\nn\\modules\\module.py:1352: UserWarning: Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior.\n", + " warnings.warn(\"Using a non-full backward hook when the forward contains multiple autograd Nodes \"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1, Loss G: 0.7107, Loss D: 1.3900\n", + "epsilon is 0.08246410416899833, alpha is 63.0\n", + "Epoch 2, Loss G: 0.7097, Loss D: 1.3898\n", + "epsilon is 0.6154321240229542, alpha is 21.0\n", + "Epoch 3, Loss G: 0.7048, Loss D: 1.3908\n", + "epsilon is 0.8717652885709554, alpha is 16.0\n", + "Epoch 4, Loss G: 0.7016, Loss D: 1.3897\n", + "epsilon is 1.0734433928301887, alpha is 14.0\n", + "Epoch 5, Loss G: 0.7059, Loss D: 1.3874\n", + "epsilon is 1.2474424384805656, alpha is 12.0\n", + "Epoch 6, Loss G: 0.7015, Loss D: 1.3895\n", + "epsilon is 1.403078289939324, alpha is 10.9\n", + "Epoch 7, Loss G: 0.6987, Loss D: 1.3876\n", + "epsilon is 1.5430774752709655, alpha is 10.6\n", + "Epoch 8, Loss G: 0.6922, Loss D: 1.3928\n", + "epsilon is 1.6748565545536702, alpha is 10.0\n", + "Epoch 9, Loss G: 0.6947, Loss D: 1.3898\n", + "epsilon is 1.7986930762464894, alpha is 9.4\n", + "Epoch 10, Loss G: 0.6898, Loss D: 1.3850\n", + "epsilon is 1.9160035051686128, alpha is 9.0\n", + "Epoch 11, Loss G: 0.6888, Loss D: 1.3885\n", + "epsilon is 2.027907968415127, alpha is 8.7\n", + "Epoch 12, Loss G: 0.6854, Loss D: 1.3891\n", + "epsilon is 2.135121781113915, alpha is 8.3\n", + "Epoch 13, Loss G: 0.6822, Loss D: 1.3884\n", + "epsilon is 2.2382637160168204, alpha is 8.1\n", + "Epoch 14, Loss G: 0.6828, Loss D: 1.3872\n", + "epsilon is 2.337827882631375, alpha is 7.8\n", + "Epoch 15, Loss G: 0.6835, Loss D: 1.3950\n", + "epsilon is 2.434237194672732, alpha is 7.6\n", + "Epoch 16, Loss G: 0.6794, Loss D: 1.3912\n", + "epsilon is 2.5278163462034815, alpha is 7.4\n", + "Epoch 17, Loss G: 0.6722, Loss D: 1.3944\n", + "epsilon is 2.6188388524326234, alpha is 7.2\n", + "Epoch 18, Loss G: 0.6723, Loss D: 1.3989\n", + "epsilon is 2.7076108306108346, alpha is 7.0\n", + "Epoch 19, Loss G: 0.6683, Loss D: 1.3920\n", + "epsilon is 2.7940664707675626, alpha is 6.9\n", + "Epoch 20, Loss G: 0.6670, Loss D: 1.3951\n", + "epsilon is 2.878763468386405, alpha is 6.8\n", + "Epoch 21, Loss G: 0.6687, Loss D: 1.3902\n", + "epsilon is 2.961464297854409, alpha is 6.6\n", + "Epoch 22, Loss G: 0.6657, Loss D: 1.3872\n", + "epsilon is 3.0425452652856495, alpha is 6.5\n", + "Epoch 23, Loss G: 0.6616, Loss D: 1.3926\n", + "epsilon is 3.122103446988952, alpha is 6.4\n", + "Epoch 24, Loss G: 0.6631, Loss D: 1.3951\n", + "epsilon is 3.200208539731727, alpha is 6.3\n", + "Epoch 25, Loss G: 0.6614, Loss D: 1.3910\n", + "epsilon is 3.2769350559807005, alpha is 6.2\n", + "Epoch 26, Loss G: 0.6637, Loss D: 1.3855\n", + "epsilon is 3.3523628060835255, alpha is 6.1\n", + "Epoch 27, Loss G: 0.6664, Loss D: 1.3881\n", + "epsilon is 3.4265774389666657, alpha is 6.0\n", + "Epoch 28, Loss G: 0.6632, Loss D: 1.3884\n", + "epsilon is 3.4996710497868895, alpha is 5.9\n", + "Epoch 29, Loss G: 0.6609, Loss D: 1.3892\n", + "epsilon is 3.5717428643995515, alpha is 5.8\n", + "Epoch 30, Loss G: 0.6594, Loss D: 1.3910\n", + "epsilon is 3.6428935706241528, alpha is 5.8\n", + "Epoch 31, Loss G: 0.6567, Loss D: 1.3863\n", + "epsilon is 3.712751905883079, alpha is 5.7\n", + "Epoch 32, Loss G: 0.6577, Loss D: 1.3827\n", + "epsilon is 3.7818141415719784, alpha is 5.6\n", + "Epoch 33, Loss G: 0.6609, Loss D: 1.3858\n", + "epsilon is 3.850205948937656, alpha is 5.5\n", + "Epoch 34, Loss G: 0.6532, Loss D: 1.3819\n", + "epsilon is 3.917468189518828, alpha is 5.5\n", + "Epoch 35, Loss G: 0.6551, Loss D: 1.3896\n", + "epsilon is 3.9840352850839897, alpha is 5.4\n", + "Epoch 36, Loss G: 0.6527, Loss D: 1.3815\n", + "epsilon is 4.050006670613625, alpha is 5.4\n", + "Epoch 37, Loss G: 0.6516, Loss D: 1.3873\n", + "epsilon is 4.114903091238218, alpha is 5.3\n", + "Epoch 38, Loss G: 0.6477, Loss D: 1.3901\n", + "epsilon is 4.179582102216282, alpha is 5.2\n", + "Epoch 39, Loss G: 0.6504, Loss D: 1.3830\n", + "epsilon is 4.242979684763249, alpha is 5.2\n", + "Epoch 40, Loss G: 0.6503, Loss D: 1.3904\n", + "epsilon is 4.306336090935168, alpha is 5.1\n", + "Epoch 41, Loss G: 0.6467, Loss D: 1.3944\n", + "epsilon is 4.368450711228463, alpha is 5.1\n", + "Epoch 42, Loss G: 0.6481, Loss D: 1.3939\n", + "epsilon is 4.430565331521756, alpha is 5.1\n", + "Epoch 43, Loss G: 0.6474, Loss D: 1.3883\n", + "epsilon is 4.491519093988257, alpha is 5.0\n", + "Epoch 44, Loss G: 0.6422, Loss D: 1.3922\n", + "epsilon is 4.552353368662634, alpha is 5.0\n", + "Epoch 45, Loss G: 0.6401, Loss D: 1.3860\n", + "epsilon is 4.612407286797646, alpha is 4.9\n", + "Epoch 46, Loss G: 0.6392, Loss D: 1.3932\n", + "epsilon is 4.671963825364106, alpha is 4.9\n", + "Epoch 47, Loss G: 0.6358, Loss D: 1.3937\n", + "epsilon is 4.731359885691218, alpha is 4.8\n", + "Epoch 48, Loss G: 0.6367, Loss D: 1.3966\n", + "epsilon is 4.789641290552096, alpha is 4.8\n", + "Epoch 49, Loss G: 0.6344, Loss D: 1.4051\n", + "epsilon is 4.847922695412973, alpha is 4.8\n", + "Epoch 50, Loss G: 0.6350, Loss D: 1.4007\n", + "epsilon is 4.905655535140821, alpha is 4.7\n", + "Epoch 51, Loss G: 0.6294, Loss D: 1.4034\n", + "epsilon is 4.9626644016048695, alpha is 4.7\n", + "Epoch 52, Loss G: 0.6293, Loss D: 1.3913\n", + "epsilon is 5.0196732680689164, alpha is 4.7\n", + "Epoch 53, Loss G: 0.6228, Loss D: 1.4126\n", + "epsilon is 5.0760439796888255, alpha is 4.6\n", + "Epoch 54, Loss G: 0.6300, Loss D: 1.4028\n", + "epsilon is 5.131782895986607, alpha is 4.6\n", + "Epoch 55, Loss G: 0.6118, Loss D: 1.4130\n", + "epsilon is 5.1875218122843885, alpha is 4.6\n", + "Epoch 56, Loss G: 0.6162, Loss D: 1.4176\n", + "epsilon is 5.242864373609633, alpha is 4.5\n", + "Epoch 57, Loss G: 0.6124, Loss D: 1.4177\n", + "epsilon is 5.297335920908565, alpha is 4.5\n", + "Epoch 58, Loss G: 0.6036, Loss D: 1.4231\n", + "epsilon is 5.351807468207497, alpha is 4.5\n", + "Epoch 59, Loss G: 0.6017, Loss D: 1.4224\n", + "epsilon is 5.406279015506429, alpha is 4.5\n", + "Epoch 60, Loss G: 0.6025, Loss D: 1.4320\n", + "epsilon is 5.4597004033036685, alpha is 4.4\n", + "Epoch 61, Loss G: 0.5997, Loss D: 1.4292\n", + "epsilon is 5.512907155723584, alpha is 4.4\n", + "Epoch 62, Loss G: 0.5974, Loss D: 1.4378\n", + "epsilon is 5.566113908143499, alpha is 4.4\n", + "Epoch 63, Loss G: 0.5980, Loss D: 1.4396\n", + "epsilon is 5.619296859313559, alpha is 4.3\n", + "Epoch 64, Loss G: 0.5923, Loss D: 1.4463\n", + "epsilon is 5.671241383942272, alpha is 4.3\n", + "Epoch 65, Loss G: 0.5817, Loss D: 1.4429\n", + "epsilon is 5.723185908570986, alpha is 4.3\n", + "Epoch 66, Loss G: 0.5879, Loss D: 1.4591\n", + "epsilon is 5.775130433199701, alpha is 4.3\n", + "Epoch 67, Loss G: 0.5835, Loss D: 1.4501\n", + "epsilon is 5.827074957828414, alpha is 4.3\n", + "Epoch 68, Loss G: 0.5829, Loss D: 1.4513\n", + "epsilon is 5.877966017103227, alpha is 4.2\n", + "Epoch 69, Loss G: 0.5753, Loss D: 1.4468\n", + "epsilon is 5.928650874011896, alpha is 4.2\n", + "Epoch 70, Loss G: 0.5799, Loss D: 1.4541\n", + "epsilon is 5.979335730920565, alpha is 4.2\n", + "Epoch 71, Loss G: 0.5725, Loss D: 1.4617\n", + "epsilon is 6.030020587829234, alpha is 4.2\n", + "Epoch 72, Loss G: 0.5712, Loss D: 1.4637\n", + "epsilon is 6.080411733176044, alpha is 4.1\n", + "Epoch 73, Loss G: 0.5642, Loss D: 1.4602\n", + "epsilon is 6.129839475434501, alpha is 4.1\n", + "Epoch 74, Loss G: 0.5707, Loss D: 1.4774\n", + "epsilon is 6.17926721769296, alpha is 4.1\n", + "Epoch 75, Loss G: 0.5642, Loss D: 1.4687\n", + "epsilon is 6.228694959951418, alpha is 4.1\n", + "Epoch 76, Loss G: 0.5691, Loss D: 1.4757\n", + "epsilon is 6.278122702209876, alpha is 4.1\n", + "Epoch 77, Loss G: 0.5707, Loss D: 1.4758\n", + "epsilon is 6.327357790594008, alpha is 4.0\n", + "Epoch 78, Loss G: 0.5639, Loss D: 1.4835\n", + "epsilon is 6.375530964286589, alpha is 4.0\n", + "Epoch 79, Loss G: 0.5652, Loss D: 1.4719\n", + "epsilon is 6.42370413797917, alpha is 4.0\n", + "Epoch 80, Loss G: 0.5628, Loss D: 1.4748\n", + "epsilon is 6.471877311671752, alpha is 4.0\n", + "Epoch 81, Loss G: 0.5608, Loss D: 1.4772\n", + "epsilon is 6.520050485364332, alpha is 4.0\n", + "Epoch 82, Loss G: 0.5557, Loss D: 1.4777\n", + "epsilon is 6.568223659056913, alpha is 4.0\n", + "Epoch 83, Loss G: 0.5670, Loss D: 1.4892\n", + "epsilon is 6.615734837571576, alpha is 3.9\n", + "Epoch 84, Loss G: 0.5594, Loss D: 1.4800\n", + "epsilon is 6.662655981812787, alpha is 3.9\n", + "Epoch 85, Loss G: 0.5555, Loss D: 1.4830\n", + "epsilon is 6.709577126053995, alpha is 3.9\n", + "Epoch 86, Loss G: 0.5576, Loss D: 1.4863\n", + "epsilon is 6.7564982702952046, alpha is 3.9\n", + "Epoch 87, Loss G: 0.5547, Loss D: 1.4850\n", + "epsilon is 6.803419414536414, alpha is 3.9\n", + "Epoch 88, Loss G: 0.5603, Loss D: 1.4947\n", + "epsilon is 6.850340558777624, alpha is 3.9\n", + "Epoch 89, Loss G: 0.5570, Loss D: 1.4874\n", + "epsilon is 6.896912311217361, alpha is 3.8\n", + "Epoch 90, Loss G: 0.5555, Loss D: 1.4854\n", + "epsilon is 6.942583958167586, alpha is 3.8\n", + "Epoch 91, Loss G: 0.5516, Loss D: 1.4906\n", + "epsilon is 6.98825560511781, alpha is 3.8\n", + "Epoch 92, Loss G: 0.5562, Loss D: 1.4936\n", + "epsilon is 7.033927252068035, alpha is 3.8\n", + "Epoch 93, Loss G: 0.5531, Loss D: 1.4931\n", + "epsilon is 7.079598899018261, alpha is 3.8\n", + "Epoch 94, Loss G: 0.5540, Loss D: 1.4899\n", + "epsilon is 7.125270545968486, alpha is 3.8\n", + "Epoch 95, Loss G: 0.5474, Loss D: 1.4922\n", + "epsilon is 7.170942192918711, alpha is 3.8\n", + "Epoch 96, Loss G: 0.5483, Loss D: 1.4962\n", + "epsilon is 7.216225114747892, alpha is 3.7\n", + "Epoch 97, Loss G: 0.5495, Loss D: 1.4945\n", + "epsilon is 7.260649789629172, alpha is 3.7\n", + "Epoch 98, Loss G: 0.5478, Loss D: 1.4869\n", + "epsilon is 7.305074464510453, alpha is 3.7\n", + "Epoch 99, Loss G: 0.5472, Loss D: 1.4911\n", + "epsilon is 7.349499139391733, alpha is 3.7\n", + "Epoch 100, Loss G: 0.5532, Loss D: 1.4938\n", + "epsilon is 7.3939238142730135, alpha is 3.7\n", + "Epoch 101, Loss G: 0.5451, Loss D: 1.4891\n", + "epsilon is 7.4383484891542935, alpha is 3.7\n", + "Epoch 102, Loss G: 0.5529, Loss D: 1.4897\n", + "epsilon is 7.482773164035574, alpha is 3.7\n", + "Epoch 103, Loss G: 0.5484, Loss D: 1.4863\n", + "epsilon is 7.527197838916854, alpha is 3.7\n", + "Epoch 104, Loss G: 0.5478, Loss D: 1.4795\n", + "epsilon is 7.570985182837946, alpha is 3.6\n", + "Epoch 105, Loss G: 0.5577, Loss D: 1.4863\n", + "epsilon is 7.614165403949305, alpha is 3.6\n", + "Epoch 106, Loss G: 0.5572, Loss D: 1.4800\n", + "epsilon is 7.657345625060665, alpha is 3.6\n", + "Epoch 107, Loss G: 0.5546, Loss D: 1.4823\n", + "epsilon is 7.700525846172025, alpha is 3.6\n", + "Epoch 108, Loss G: 0.5574, Loss D: 1.4715\n", + "epsilon is 7.743706067283383, alpha is 3.6\n", + "Epoch 109, Loss G: 0.5554, Loss D: 1.4778\n", + "epsilon is 7.786886288394741, alpha is 3.6\n", + "Epoch 110, Loss G: 0.5621, Loss D: 1.4794\n", + "epsilon is 7.830066509506101, alpha is 3.6\n", + "Epoch 111, Loss G: 0.5558, Loss D: 1.4784\n", + "epsilon is 7.873246730617461, alpha is 3.6\n", + "Epoch 112, Loss G: 0.5632, Loss D: 1.4766\n", + "epsilon is 7.916426951728819, alpha is 3.6\n", + "Epoch 113, Loss G: 0.5602, Loss D: 1.4731\n", + "epsilon is 7.95868193355541, alpha is 3.5\n", + "Epoch 114, Loss G: 0.5532, Loss D: 1.4708\n", + "epsilon is 8.000620212289654, alpha is 3.5\n", + "Epoch 115, Loss G: 0.5629, Loss D: 1.4671\n", + "epsilon is 8.042558491023897, alpha is 3.5\n", + "Epoch 116, Loss G: 0.5605, Loss D: 1.4703\n", + "epsilon is 8.084496769758141, alpha is 3.5\n", + "Epoch 117, Loss G: 0.5661, Loss D: 1.4603\n", + "epsilon is 8.126435048492386, alpha is 3.5\n", + "Epoch 118, Loss G: 0.5667, Loss D: 1.4750\n", + "epsilon is 8.168373327226629, alpha is 3.5\n", + "Epoch 119, Loss G: 0.5659, Loss D: 1.4663\n", + "epsilon is 8.210311605960872, alpha is 3.5\n", + "Epoch 120, Loss G: 0.5597, Loss D: 1.4697\n", + "epsilon is 8.252249884695114, alpha is 3.5\n", + "Epoch 121, Loss G: 0.5606, Loss D: 1.4597\n", + "epsilon is 8.294188163429357, alpha is 3.5\n", + "Epoch 122, Loss G: 0.5615, Loss D: 1.4584\n", + "epsilon is 8.336126442163602, alpha is 3.5\n", + "Epoch 123, Loss G: 0.5618, Loss D: 1.4627\n", + "epsilon is 8.377016439122203, alpha is 3.4\n", + "Epoch 124, Loss G: 0.5616, Loss D: 1.4609\n", + "epsilon is 8.417715279980845, alpha is 3.4\n", + "Epoch 125, Loss G: 0.5624, Loss D: 1.4777\n", + "epsilon is 8.458414120839487, alpha is 3.4\n", + "Epoch 126, Loss G: 0.5613, Loss D: 1.4678\n", + "epsilon is 8.49911296169813, alpha is 3.4\n", + "Epoch 127, Loss G: 0.5576, Loss D: 1.4605\n", + "epsilon is 8.539811802556772, alpha is 3.4\n", + "Epoch 128, Loss G: 0.5654, Loss D: 1.4663\n", + "epsilon is 8.580510643415414, alpha is 3.4\n", + "Epoch 129, Loss G: 0.5651, Loss D: 1.4615\n", + "epsilon is 8.621209484274056, alpha is 3.4\n", + "Epoch 130, Loss G: 0.5654, Loss D: 1.4641\n", + "epsilon is 8.661908325132698, alpha is 3.4\n", + "Epoch 131, Loss G: 0.5639, Loss D: 1.4569\n", + "epsilon is 8.702607165991338, alpha is 3.4\n", + "Epoch 132, Loss G: 0.5672, Loss D: 1.4536\n", + "epsilon is 8.74330600684998, alpha is 3.4\n", + "Epoch 133, Loss G: 0.5713, Loss D: 1.4582\n", + "epsilon is 8.784004847708623, alpha is 3.4\n", + "Epoch 134, Loss G: 0.5650, Loss D: 1.4524\n", + "epsilon is 8.823944600709858, alpha is 3.3\n", + "Epoch 135, Loss G: 0.5589, Loss D: 1.4599\n", + "epsilon is 8.863406501319506, alpha is 3.3\n", + "Epoch 136, Loss G: 0.5631, Loss D: 1.4620\n", + "epsilon is 8.902868401929158, alpha is 3.3\n", + "Epoch 137, Loss G: 0.5668, Loss D: 1.4641\n", + "epsilon is 8.94233030253881, alpha is 3.3\n", + "Epoch 138, Loss G: 0.5698, Loss D: 1.4604\n", + "epsilon is 8.98179220314846, alpha is 3.3\n", + "Epoch 139, Loss G: 0.5650, Loss D: 1.4606\n", + "epsilon is 9.02125410375811, alpha is 3.3\n", + "Epoch 140, Loss G: 0.5700, Loss D: 1.4558\n", + "epsilon is 9.060716004367762, alpha is 3.3\n", + "Epoch 141, Loss G: 0.5640, Loss D: 1.4623\n", + "epsilon is 9.100177904977413, alpha is 3.3\n", + "Epoch 142, Loss G: 0.5664, Loss D: 1.4496\n", + "epsilon is 9.139639805587063, alpha is 3.3\n", + "Epoch 143, Loss G: 0.5707, Loss D: 1.4586\n", + "epsilon is 9.179101706196715, alpha is 3.3\n", + "Epoch 144, Loss G: 0.5654, Loss D: 1.4485\n", + "epsilon is 9.218563606806365, alpha is 3.3\n", + "Epoch 145, Loss G: 0.5691, Loss D: 1.4478\n", + "epsilon is 9.258025507416015, alpha is 3.3\n", + "Epoch 146, Loss G: 0.5750, Loss D: 1.4537\n", + "epsilon is 9.297487408025667, alpha is 3.3\n", + "Epoch 147, Loss G: 0.5737, Loss D: 1.4539\n", + "epsilon is 9.33595966014038, alpha is 3.2\n", + "Epoch 148, Loss G: 0.5714, Loss D: 1.4532\n", + "epsilon is 9.374187111269075, alpha is 3.2\n", + "Epoch 149, Loss G: 0.5723, Loss D: 1.4538\n", + "epsilon is 9.41241456239777, alpha is 3.2\n", + "Epoch 150, Loss G: 0.5719, Loss D: 1.4523\n", + "epsilon is 9.450642013526464, alpha is 3.2\n", + "Epoch 151, Loss G: 0.5674, Loss D: 1.4542\n", + "epsilon is 9.48886946465516, alpha is 3.2\n", + "Epoch 152, Loss G: 0.5661, Loss D: 1.4573\n", + "epsilon is 9.527096915783854, alpha is 3.2\n", + "Epoch 153, Loss G: 0.5722, Loss D: 1.4540\n", + "epsilon is 9.56532436691255, alpha is 3.2\n", + "Epoch 154, Loss G: 0.5742, Loss D: 1.4563\n", + "epsilon is 9.603551818041245, alpha is 3.2\n", + "Epoch 155, Loss G: 0.5725, Loss D: 1.4476\n", + "epsilon is 9.64177926916994, alpha is 3.2\n", + "Epoch 156, Loss G: 0.5703, Loss D: 1.4535\n", + "epsilon is 9.680006720298634, alpha is 3.2\n", + "Epoch 157, Loss G: 0.5690, Loss D: 1.4478\n", + "epsilon is 9.71823417142733, alpha is 3.2\n", + "Epoch 158, Loss G: 0.5698, Loss D: 1.4475\n", + "epsilon is 9.756461622556024, alpha is 3.2\n", + "Epoch 159, Loss G: 0.5766, Loss D: 1.4464\n", + "epsilon is 9.79468907368472, alpha is 3.2\n", + "Epoch 160, Loss G: 0.5784, Loss D: 1.4552\n", + "epsilon is 9.832916524813415, alpha is 3.2\n", + "Epoch 161, Loss G: 0.5751, Loss D: 1.4438\n", + "epsilon is 9.871016847131145, alpha is 3.1\n", + "Epoch 162, Loss G: 0.5799, Loss D: 1.4512\n", + "epsilon is 9.908012332703517, alpha is 3.1\n", + "Epoch 163, Loss G: 0.5725, Loss D: 1.4488\n", + "epsilon is 9.94500781827589, alpha is 3.1\n", + "Epoch 164, Loss G: 0.5762, Loss D: 1.4466\n", + "epsilon is 9.982003303848263, alpha is 3.1\n", + "Synthesizer (SmartNoise): Fitting dpctgan spent 115.4473 sec.\n", + "Synthesizer (SmartNoise): Sampling dpctgan # 927 rows (same as raw) in 0.4688 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 3.663019 0.997224 4.606915 0.747578 2.269901 0.984679 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.990903 0.95497 0.806221 0.997782 -0.159918 -0.219043 \n", + "\n", + " hours-per-week native-country income \n", + "0 2.634771 0.88122 0.993726 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 88.295354 Federal-gov 647932.096102 Masters 15.972689 \n", + "\n", + " marital-status occupation relationship race gender capital-gain \\\n", + "0 Widowed Protective-serv Wife White Female 0.0 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 0.0 72.657481 United-States >50K \n" + ] + } + ], + "source": [ + "issue332_gan(\n", + " load = load,\n", + " synthesizing_method = 'smartnoise-dpctgan',\n", + " outlier_inhibit = True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc config of Outlier before update as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc config of Outlier before after as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 -0.953119 0.006814 0.409053 0.780317 -1.152735 0.507641 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.750354 0.787001 0.864054 0.199314 -0.159918 -0.219043 \n", + "\n", + " hours-per-week native-country income \n", + "0 -0.044504 0.099702 0.61332 \n", + "Synthesizer (SmartNoise): Fitting patectgan.\n", + "using loss cross_entropy and regularization None\n", + "eps: 0.102479 \t G: 0.713781 \t D: 0.716145\n", + "eps: 0.457732 \t G: 0.713048 \t D: 0.712165\n", + "eps: 0.650248 \t G: 0.689282 \t D: 0.698435\n", + "eps: 0.799151 \t G: 0.698342 \t D: 0.710174\n", + "eps: 0.925562 \t G: 0.716226 \t D: 0.704634\n", + "eps: 1.037397 \t G: 0.750504 \t D: 0.704282\n", + "eps: 1.139329 \t G: 0.733702 \t D: 0.708267\n", + "eps: 1.232819 \t G: 0.742357 \t D: 0.711618\n", + "eps: 1.320496 \t G: 0.698668 \t D: 0.703252\n", + "eps: 1.403195 \t G: 0.737517 \t D: 0.699576\n", + "eps: 1.481995 \t G: 0.681477 \t D: 0.705583\n", + "eps: 1.556995 \t G: 0.672663 \t D: 0.702600\n", + "eps: 1.628302 \t G: 0.745140 \t D: 0.694179\n", + "eps: 1.698302 \t G: 0.690847 \t D: 0.712576\n", + "eps: 1.763994 \t G: 0.727325 \t D: 0.703433\n", + "eps: 1.828994 \t G: 0.709237 \t D: 0.703511\n", + "eps: 1.891630 \t G: 0.708808 \t D: 0.702042\n", + "eps: 1.951630 \t G: 0.691537 \t D: 0.697599\n", + "eps: 2.011630 \t G: 0.701870 \t D: 0.706488\n", + "eps: 2.069793 \t G: 0.688349 \t D: 0.699278\n", + "eps: 2.124793 \t G: 0.709717 \t D: 0.701455\n", + "eps: 2.179793 \t G: 0.694322 \t D: 0.691404\n", + "eps: 2.234793 \t G: 0.686912 \t D: 0.701100\n", + "eps: 2.288659 \t G: 0.705043 \t D: 0.700311\n", + "eps: 2.338659 \t G: 0.707292 \t D: 0.703666\n", + "eps: 2.388659 \t G: 0.694569 \t D: 0.690330\n", + "eps: 2.438659 \t G: 0.684587 \t D: 0.698427\n", + "eps: 2.488659 \t G: 0.697387 \t D: 0.699607\n", + "eps: 2.538659 \t G: 0.687134 \t D: 0.700899\n", + "eps: 2.585991 \t G: 0.693586 \t D: 0.695336\n", + "eps: 2.630991 \t G: 0.739123 \t D: 0.693745\n", + "eps: 2.675991 \t G: 0.700363 \t D: 0.697010\n", + "eps: 2.720991 \t G: 0.689431 \t D: 0.697749\n", + "eps: 2.765991 \t G: 0.693986 \t D: 0.690283\n", + "eps: 2.810991 \t G: 0.673590 \t D: 0.695922\n", + "eps: 2.855991 \t G: 0.671324 \t D: 0.701141\n", + "eps: 2.900991 \t G: 0.677591 \t D: 0.695007\n", + "eps: 2.943990 \t G: 0.656642 \t D: 0.694972\n", + "eps: 2.983990 \t G: 0.723366 \t D: 0.697270\n", + "eps: 3.023990 \t G: 0.700119 \t D: 0.699537\n", + "eps: 3.063990 \t G: 0.674124 \t D: 0.694819\n", + "eps: 3.103990 \t G: 0.686734 \t D: 0.694975\n", + "eps: 3.143990 \t G: 0.687309 \t D: 0.695707\n", + "eps: 3.183990 \t G: 0.692782 \t D: 0.692781\n", + "eps: 3.223990 \t G: 0.714057 \t D: 0.697382\n", + "eps: 3.263990 \t G: 0.664547 \t D: 0.689004\n", + "eps: 3.303990 \t G: 0.700300 \t D: 0.702808\n", + "eps: 3.343990 \t G: 0.707063 \t D: 0.694165\n", + "eps: 3.383990 \t G: 0.705744 \t D: 0.693704\n", + "eps: 3.422988 \t G: 0.704281 \t D: 0.697706\n", + "eps: 3.457988 \t G: 0.691522 \t D: 0.698151\n", + "eps: 3.492988 \t G: 0.698668 \t D: 0.692005\n", + "eps: 3.527988 \t G: 0.686467 \t D: 0.699543\n", + "eps: 3.562988 \t G: 0.684231 \t D: 0.689239\n", + "eps: 3.597988 \t G: 0.698439 \t D: 0.695944\n", + "eps: 3.632988 \t G: 0.679470 \t D: 0.694834\n", + "eps: 3.667988 \t G: 0.685383 \t D: 0.690702\n", + "eps: 3.702988 \t G: 0.681760 \t D: 0.700023\n", + "eps: 3.737988 \t G: 0.678823 \t D: 0.693228\n", + "eps: 3.772988 \t G: 0.688883 \t D: 0.694677\n", + "eps: 3.807988 \t G: 0.707548 \t D: 0.695333\n", + "eps: 3.842988 \t G: 0.696041 \t D: 0.689088\n", + "eps: 3.877988 \t G: 0.679329 \t D: 0.698854\n", + "eps: 3.912988 \t G: 0.711865 \t D: 0.694357\n", + "eps: 3.947988 \t G: 0.690228 \t D: 0.692709\n", + "eps: 3.982988 \t G: 0.698592 \t D: 0.694288\n", + "eps: 4.017988 \t G: 0.689543 \t D: 0.688812\n", + "eps: 4.052988 \t G: 0.705020 \t D: 0.691620\n", + "eps: 4.087988 \t G: 0.688093 \t D: 0.697707\n", + "eps: 4.119586 \t G: 0.690063 \t D: 0.694527\n", + "eps: 4.149586 \t G: 0.695651 \t D: 0.690567\n", + "eps: 4.179586 \t G: 0.705636 \t D: 0.696383\n", + "eps: 4.209586 \t G: 0.700525 \t D: 0.691312\n", + "eps: 4.239586 \t G: 0.676271 \t D: 0.694654\n", + "eps: 4.269586 \t G: 0.688563 \t D: 0.698388\n", + "eps: 4.299586 \t G: 0.681526 \t D: 0.698504\n", + "eps: 4.329586 \t G: 0.693433 \t D: 0.692396\n", + "eps: 4.359586 \t G: 0.678946 \t D: 0.693821\n", + "eps: 4.389586 \t G: 0.704079 \t D: 0.695138\n", + "eps: 4.419586 \t G: 0.711130 \t D: 0.693717\n", + "eps: 4.449586 \t G: 0.692445 \t D: 0.697196\n", + "eps: 4.479586 \t G: 0.684903 \t D: 0.697392\n", + "eps: 4.509586 \t G: 0.697194 \t D: 0.697828\n", + "eps: 4.539586 \t G: 0.687639 \t D: 0.695808\n", + "eps: 4.569586 \t G: 0.702698 \t D: 0.688421\n", + "eps: 4.599586 \t G: 0.677394 \t D: 0.691671\n", + "eps: 4.629586 \t G: 0.676998 \t D: 0.694079\n", + "eps: 4.659586 \t G: 0.692468 \t D: 0.697231\n", + "eps: 4.689586 \t G: 0.705954 \t D: 0.693673\n", + "eps: 4.719586 \t G: 0.714168 \t D: 0.694783\n", + "eps: 4.749586 \t G: 0.692832 \t D: 0.694862\n", + "eps: 4.779586 \t G: 0.684127 \t D: 0.696356\n", + "eps: 4.809586 \t G: 0.697125 \t D: 0.699097\n", + "eps: 4.839586 \t G: 0.690293 \t D: 0.694361\n", + "eps: 4.869586 \t G: 0.696844 \t D: 0.697206\n", + "eps: 4.899586 \t G: 0.696491 \t D: 0.692738\n", + "eps: 4.929586 \t G: 0.705306 \t D: 0.693927\n", + "eps: 4.959586 \t G: 0.701349 \t D: 0.694641\n", + "eps: 4.989586 \t G: 0.716760 \t D: 0.692627\n", + "eps: 5.019586 \t G: 0.706580 \t D: 0.697327\n", + "eps: 5.049586 \t G: 0.694923 \t D: 0.694328\n", + "eps: 5.079586 \t G: 0.683924 \t D: 0.692442\n", + "eps: 5.109586 \t G: 0.687853 \t D: 0.697842\n", + "eps: 5.136983 \t G: 0.678175 \t D: 0.694115\n", + "eps: 5.161983 \t G: 0.687122 \t D: 0.695188\n", + "eps: 5.186983 \t G: 0.710870 \t D: 0.692395\n", + "eps: 5.211983 \t G: 0.706316 \t D: 0.697591\n", + "eps: 5.236983 \t G: 0.694138 \t D: 0.693994\n", + "eps: 5.261983 \t G: 0.682083 \t D: 0.691040\n", + "eps: 5.286983 \t G: 0.687905 \t D: 0.694451\n", + "eps: 5.311983 \t G: 0.673862 \t D: 0.696650\n", + "eps: 5.336983 \t G: 0.692831 \t D: 0.694289\n", + "eps: 5.361983 \t G: 0.704120 \t D: 0.693669\n", + "eps: 5.386983 \t G: 0.704646 \t D: 0.701262\n", + "eps: 5.411983 \t G: 0.691776 \t D: 0.698044\n", + "eps: 5.436983 \t G: 0.704596 \t D: 0.698575\n", + "eps: 5.461983 \t G: 0.692580 \t D: 0.692944\n", + "eps: 5.486983 \t G: 0.682725 \t D: 0.692538\n", + "eps: 5.511983 \t G: 0.697214 \t D: 0.694453\n", + "eps: 5.536983 \t G: 0.710158 \t D: 0.695539\n", + "eps: 5.561983 \t G: 0.701455 \t D: 0.692305\n", + "eps: 5.586983 \t G: 0.691797 \t D: 0.697904\n", + "eps: 5.611983 \t G: 0.690916 \t D: 0.692865\n", + "eps: 5.636983 \t G: 0.690258 \t D: 0.694387\n", + "eps: 5.661983 \t G: 0.688663 \t D: 0.691113\n", + "eps: 5.686983 \t G: 0.662851 \t D: 0.692329\n", + "eps: 5.711983 \t G: 0.688278 \t D: 0.694166\n", + "eps: 5.736983 \t G: 0.686217 \t D: 0.695744\n", + "eps: 5.761983 \t G: 0.691149 \t D: 0.697361\n", + "eps: 5.786983 \t G: 0.688824 \t D: 0.698891\n", + "eps: 5.811983 \t G: 0.693033 \t D: 0.696105\n", + "eps: 5.836983 \t G: 0.696277 \t D: 0.693473\n", + "eps: 5.861983 \t G: 0.693802 \t D: 0.693498\n", + "eps: 5.886983 \t G: 0.714150 \t D: 0.696003\n", + "eps: 5.911983 \t G: 0.721983 \t D: 0.694278\n", + "eps: 5.936983 \t G: 0.725168 \t D: 0.690415\n", + "eps: 5.961983 \t G: 0.726327 \t D: 0.691595\n", + "eps: 5.986983 \t G: 0.721982 \t D: 0.697985\n", + "eps: 6.011982 \t G: 0.689813 \t D: 0.698034\n", + "eps: 6.036982 \t G: 0.670720 \t D: 0.697906\n", + "eps: 6.061982 \t G: 0.676116 \t D: 0.692406\n", + "eps: 6.086982 \t G: 0.668123 \t D: 0.695680\n", + "eps: 6.111982 \t G: 0.690715 \t D: 0.698138\n", + "eps: 6.136982 \t G: 0.698641 \t D: 0.700861\n", + "eps: 6.161982 \t G: 0.694157 \t D: 0.697574\n", + "eps: 6.186982 \t G: 0.711598 \t D: 0.694706\n", + "eps: 6.211982 \t G: 0.706662 \t D: 0.698498\n", + "eps: 6.236982 \t G: 0.695758 \t D: 0.695270\n", + "eps: 6.261982 \t G: 0.712754 \t D: 0.695887\n", + "eps: 6.286982 \t G: 0.710169 \t D: 0.694539\n", + "eps: 6.311982 \t G: 0.707389 \t D: 0.691145\n", + "eps: 6.336982 \t G: 0.697499 \t D: 0.699215\n", + "eps: 6.361982 \t G: 0.688263 \t D: 0.693412\n", + "eps: 6.386982 \t G: 0.692656 \t D: 0.692965\n", + "eps: 6.411982 \t G: 0.677513 \t D: 0.692228\n", + "eps: 6.436982 \t G: 0.690053 \t D: 0.696777\n", + "eps: 6.461982 \t G: 0.684045 \t D: 0.694823\n", + "eps: 6.486982 \t G: 0.693844 \t D: 0.696127\n", + "eps: 6.511982 \t G: 0.717999 \t D: 0.698269\n", + "eps: 6.536982 \t G: 0.701669 \t D: 0.697028\n", + "eps: 6.561982 \t G: 0.706614 \t D: 0.693551\n", + "eps: 6.586982 \t G: 0.690939 \t D: 0.692773\n", + "eps: 6.611982 \t G: 0.678489 \t D: 0.697274\n", + "eps: 6.636982 \t G: 0.696240 \t D: 0.693872\n", + "eps: 6.661982 \t G: 0.691522 \t D: 0.693280\n", + "eps: 6.686982 \t G: 0.700351 \t D: 0.691683\n", + "eps: 6.711982 \t G: 0.702936 \t D: 0.694047\n", + "eps: 6.736982 \t G: 0.701172 \t D: 0.696587\n", + "eps: 6.761982 \t G: 0.709572 \t D: 0.694403\n", + "eps: 6.786982 \t G: 0.693866 \t D: 0.697633\n", + "eps: 6.811982 \t G: 0.689262 \t D: 0.695713\n", + "eps: 6.835977 \t G: 0.706019 \t D: 0.693791\n", + "eps: 6.855977 \t G: 0.713628 \t D: 0.694795\n", + "eps: 6.875977 \t G: 0.686985 \t D: 0.694983\n", + "eps: 6.895977 \t G: 0.678707 \t D: 0.696975\n", + "eps: 6.915977 \t G: 0.688420 \t D: 0.691135\n", + "eps: 6.935977 \t G: 0.691864 \t D: 0.696182\n", + "eps: 6.955977 \t G: 0.713413 \t D: 0.698038\n", + "eps: 6.975977 \t G: 0.708330 \t D: 0.694529\n", + "eps: 6.995977 \t G: 0.701740 \t D: 0.700547\n", + "eps: 7.015977 \t G: 0.696532 \t D: 0.694873\n", + "eps: 7.035977 \t G: 0.721527 \t D: 0.693872\n", + "eps: 7.055977 \t G: 0.711696 \t D: 0.694538\n", + "eps: 7.075977 \t G: 0.701369 \t D: 0.694573\n", + "eps: 7.095977 \t G: 0.710693 \t D: 0.690452\n", + "eps: 7.115977 \t G: 0.714807 \t D: 0.695867\n", + "eps: 7.135977 \t G: 0.703928 \t D: 0.697142\n", + "eps: 7.155977 \t G: 0.697978 \t D: 0.697099\n", + "eps: 7.175977 \t G: 0.711146 \t D: 0.691293\n", + "eps: 7.195977 \t G: 0.689744 \t D: 0.693730\n", + "eps: 7.215977 \t G: 0.679122 \t D: 0.697585\n", + "eps: 7.235977 \t G: 0.665163 \t D: 0.687304\n", + "eps: 7.255977 \t G: 0.688261 \t D: 0.694644\n", + "eps: 7.275977 \t G: 0.700061 \t D: 0.698768\n", + "eps: 7.295977 \t G: 0.722397 \t D: 0.694110\n", + "eps: 7.315977 \t G: 0.706579 \t D: 0.697697\n", + "eps: 7.335977 \t G: 0.698369 \t D: 0.693160\n", + "eps: 7.355977 \t G: 0.707676 \t D: 0.699921\n", + "eps: 7.375977 \t G: 0.699110 \t D: 0.693009\n", + "eps: 7.395977 \t G: 0.693671 \t D: 0.700002\n", + "eps: 7.415977 \t G: 0.702207 \t D: 0.699121\n", + "eps: 7.435977 \t G: 0.690763 \t D: 0.697587\n", + "eps: 7.455977 \t G: 0.693543 \t D: 0.693346\n", + "eps: 7.475977 \t G: 0.690964 \t D: 0.698946\n", + "eps: 7.495977 \t G: 0.691772 \t D: 0.694487\n", + "eps: 7.515977 \t G: 0.696903 \t D: 0.696523\n", + "eps: 7.535977 \t G: 0.714085 \t D: 0.693842\n", + "eps: 7.555977 \t G: 0.705241 \t D: 0.693571\n", + "eps: 7.575977 \t G: 0.710959 \t D: 0.693134\n", + "eps: 7.595977 \t G: 0.695932 \t D: 0.693888\n", + "eps: 7.615977 \t G: 0.688465 \t D: 0.691797\n", + "eps: 7.635977 \t G: 0.687585 \t D: 0.696887\n", + "eps: 7.655977 \t G: 0.692846 \t D: 0.695367\n", + "eps: 7.675977 \t G: 0.689350 \t D: 0.694941\n", + "eps: 7.695977 \t G: 0.695852 \t D: 0.697276\n", + "eps: 7.715977 \t G: 0.702350 \t D: 0.693447\n", + "eps: 7.735977 \t G: 0.695321 \t D: 0.690365\n", + "eps: 7.755977 \t G: 0.680467 \t D: 0.698033\n", + "eps: 7.775977 \t G: 0.687057 \t D: 0.692665\n", + "eps: 7.795977 \t G: 0.700203 \t D: 0.695803\n", + "eps: 7.815977 \t G: 0.715794 \t D: 0.696600\n", + "eps: 7.835977 \t G: 0.703528 \t D: 0.698830\n", + "eps: 7.855977 \t G: 0.725885 \t D: 0.697341\n", + "eps: 7.875977 \t G: 0.682234 \t D: 0.698131\n", + "eps: 7.895977 \t G: 0.677728 \t D: 0.693323\n", + "eps: 7.915977 \t G: 0.681669 \t D: 0.698836\n", + "eps: 7.935977 \t G: 0.692163 \t D: 0.699217\n", + "eps: 7.955977 \t G: 0.683420 \t D: 0.693969\n", + "eps: 7.975977 \t G: 0.692033 \t D: 0.694492\n", + "eps: 7.995977 \t G: 0.728577 \t D: 0.700214\n", + "eps: 8.015977 \t G: 0.728052 \t D: 0.693331\n", + "eps: 8.035977 \t G: 0.730739 \t D: 0.694320\n", + "eps: 8.055977 \t G: 0.719204 \t D: 0.696886\n", + "eps: 8.075977 \t G: 0.708894 \t D: 0.694114\n", + "eps: 8.095977 \t G: 0.697646 \t D: 0.696363\n", + "eps: 8.115977 \t G: 0.692623 \t D: 0.691135\n", + "eps: 8.135977 \t G: 0.677301 \t D: 0.695693\n", + "eps: 8.155977 \t G: 0.690436 \t D: 0.695203\n", + "eps: 8.175977 \t G: 0.716764 \t D: 0.693985\n", + "eps: 8.195977 \t G: 0.708261 \t D: 0.691021\n", + "eps: 8.215977 \t G: 0.697452 \t D: 0.693978\n", + "eps: 8.235977 \t G: 0.693953 \t D: 0.697357\n", + "eps: 8.255977 \t G: 0.701943 \t D: 0.694999\n", + "eps: 8.275977 \t G: 0.701976 \t D: 0.696045\n", + "eps: 8.295977 \t G: 0.679231 \t D: 0.692849\n", + "eps: 8.315977 \t G: 0.687471 \t D: 0.695532\n", + "eps: 8.335977 \t G: 0.688215 \t D: 0.695305\n", + "eps: 8.355977 \t G: 0.684386 \t D: 0.697067\n", + "eps: 8.375977 \t G: 0.682844 \t D: 0.694733\n", + "eps: 8.395977 \t G: 0.706065 \t D: 0.696155\n", + "eps: 8.415977 \t G: 0.699171 \t D: 0.698522\n", + "eps: 8.435977 \t G: 0.694558 \t D: 0.695058\n", + "eps: 8.455977 \t G: 0.698595 \t D: 0.695299\n", + "eps: 8.475977 \t G: 0.702856 \t D: 0.694437\n", + "eps: 8.495977 \t G: 0.693910 \t D: 0.699749\n", + "eps: 8.515977 \t G: 0.688224 \t D: 0.694186\n", + "eps: 8.535977 \t G: 0.688795 \t D: 0.695863\n", + "eps: 8.555977 \t G: 0.705883 \t D: 0.694558\n", + "eps: 8.575977 \t G: 0.724274 \t D: 0.696720\n", + "eps: 8.595977 \t G: 0.718322 \t D: 0.692502\n", + "eps: 8.615977 \t G: 0.709645 \t D: 0.694721\n", + "eps: 8.635977 \t G: 0.708987 \t D: 0.696772\n", + "eps: 8.655977 \t G: 0.701214 \t D: 0.692546\n", + "eps: 8.675977 \t G: 0.711924 \t D: 0.696422\n", + "eps: 8.695977 \t G: 0.707368 \t D: 0.692554\n", + "eps: 8.715977 \t G: 0.709598 \t D: 0.695780\n", + "eps: 8.735977 \t G: 0.680445 \t D: 0.699557\n", + "eps: 8.755977 \t G: 0.675816 \t D: 0.692951\n", + "eps: 8.775977 \t G: 0.682221 \t D: 0.692445\n", + "eps: 8.795977 \t G: 0.707273 \t D: 0.695885\n", + "eps: 8.815977 \t G: 0.693460 \t D: 0.694252\n", + "eps: 8.835977 \t G: 0.680995 \t D: 0.695839\n", + "eps: 8.855977 \t G: 0.670298 \t D: 0.693365\n", + "eps: 8.875977 \t G: 0.681427 \t D: 0.694136\n", + "eps: 8.895977 \t G: 0.698069 \t D: 0.697778\n", + "eps: 8.915977 \t G: 0.701808 \t D: 0.696195\n", + "eps: 8.935977 \t G: 0.709960 \t D: 0.697699\n", + "eps: 8.955977 \t G: 0.713283 \t D: 0.696481\n", + "eps: 8.975977 \t G: 0.702262 \t D: 0.691180\n", + "eps: 8.995977 \t G: 0.699221 \t D: 0.693380\n", + "eps: 9.015977 \t G: 0.714084 \t D: 0.695818\n", + "eps: 9.035977 \t G: 0.699903 \t D: 0.696171\n", + "eps: 9.055977 \t G: 0.697011 \t D: 0.696874\n", + "eps: 9.075977 \t G: 0.708921 \t D: 0.691218\n", + "eps: 9.095977 \t G: 0.714847 \t D: 0.692894\n", + "eps: 9.115977 \t G: 0.700553 \t D: 0.697870\n", + "eps: 9.135977 \t G: 0.704466 \t D: 0.692195\n", + "eps: 9.155977 \t G: 0.716214 \t D: 0.693401\n", + "eps: 9.175977 \t G: 0.706705 \t D: 0.694446\n", + "eps: 9.195977 \t G: 0.690804 \t D: 0.692994\n", + "eps: 9.215977 \t G: 0.701547 \t D: 0.694552\n", + "eps: 9.235977 \t G: 0.715766 \t D: 0.697340\n", + "eps: 9.255977 \t G: 0.694500 \t D: 0.699202\n", + "eps: 9.275977 \t G: 0.686139 \t D: 0.694071\n", + "eps: 9.295977 \t G: 0.715559 \t D: 0.691591\n", + "eps: 9.315977 \t G: 0.721473 \t D: 0.694705\n", + "eps: 9.335977 \t G: 0.699836 \t D: 0.700774\n", + "eps: 9.355977 \t G: 0.689537 \t D: 0.690166\n", + "eps: 9.375977 \t G: 0.693082 \t D: 0.695173\n", + "eps: 9.395977 \t G: 0.694534 \t D: 0.695173\n", + "eps: 9.415977 \t G: 0.700059 \t D: 0.698420\n", + "eps: 9.435977 \t G: 0.698749 \t D: 0.692723\n", + "eps: 9.455977 \t G: 0.691733 \t D: 0.695272\n", + "eps: 9.475977 \t G: 0.711630 \t D: 0.693643\n", + "eps: 9.495977 \t G: 0.706853 \t D: 0.691853\n", + "eps: 9.515977 \t G: 0.696636 \t D: 0.691733\n", + "eps: 9.535977 \t G: 0.696215 \t D: 0.696250\n", + "eps: 9.555977 \t G: 0.702907 \t D: 0.691832\n", + "eps: 9.575977 \t G: 0.714041 \t D: 0.695757\n", + "eps: 9.595977 \t G: 0.697746 \t D: 0.694564\n", + "eps: 9.615977 \t G: 0.702878 \t D: 0.693213\n", + "eps: 9.635977 \t G: 0.731086 \t D: 0.699579\n", + "eps: 9.655977 \t G: 0.707542 \t D: 0.695599\n", + "eps: 9.675977 \t G: 0.690351 \t D: 0.696782\n", + "eps: 9.695977 \t G: 0.712726 \t D: 0.693319\n", + "eps: 9.715977 \t G: 0.713519 \t D: 0.690887\n", + "eps: 9.735977 \t G: 0.709094 \t D: 0.701579\n", + "eps: 9.755977 \t G: 0.694409 \t D: 0.693226\n", + "eps: 9.775977 \t G: 0.703121 \t D: 0.693624\n", + "eps: 9.795977 \t G: 0.684308 \t D: 0.692475\n", + "eps: 9.815977 \t G: 0.684525 \t D: 0.695275\n", + "eps: 9.835977 \t G: 0.681902 \t D: 0.697289\n", + "eps: 9.855977 \t G: 0.686178 \t D: 0.692194\n", + "eps: 9.875977 \t G: 0.687372 \t D: 0.696504\n", + "eps: 9.895977 \t G: 0.690510 \t D: 0.691553\n", + "eps: 9.915977 \t G: 0.699482 \t D: 0.692439\n", + "eps: 9.935977 \t G: 0.695582 \t D: 0.696715\n", + "eps: 9.955977 \t G: 0.701558 \t D: 0.694982\n", + "eps: 9.975977 \t G: 0.731646 \t D: 0.697401\n", + "eps: 9.995977 \t G: 0.709171 \t D: 0.694371\n", + "Synthesizer (SmartNoise): Fitting patectgan spent 93.3619 sec.\n", + "Synthesizer (SmartNoise): Sampling patectgan # 927 rows (same as raw) in 0.1432 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.24186 0.103012 1.088126 0.554129 0.519998 0.581233 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.236864 0.475109 0.705326 0.676615 0.890221 -0.115185 \n", + "\n", + " hours-per-week native-country income \n", + "0 1.13638 0.654151 0.748044 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 41.385254 Private 294926.71711 Bachelors 11.385191 \n", + "\n", + " marital-status occupation relationship race gender capital-gain \\\n", + "0 Never-married Prof-specialty Not-in-family White Male 9733.339667 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 41.004116 54.393705 United-States <=50K \n" + ] + } + ], + "source": [ + "issue332_gan(\n", + " load = load,\n", + " synthesizing_method = 'smartnoise-patectgan',\n", + " outlier_inhibit = True\n", + ")" + ] } ], "metadata": { @@ -279,7 +1432,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.11" } }, "nbformat": 4, diff --git a/poetry.lock b/poetry.lock index ea021467..21e53784 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. [[package]] name = "anonymeter" @@ -2233,11 +2233,11 @@ colorama = {version = "*", markers = "sys_platform == \"win32\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} iniconfig = "*" packaging = "*" -pluggy = ">=1.4,<2.0" -tomli = {version = ">=1", markers = "python_version < \"3.11\""} +pluggy = ">=1.3.0,<2.0" +tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} [package.extras] -testing = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] +testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] [[package]] name = "python-dateutil" diff --git a/pyproject.toml b/pyproject.toml index 8f6eec6f..ff8301a6 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -106,24 +106,6 @@ authors = [ ] readme = "README.md" -[tool.poetry.dependencies] -python = ">=3.8,<3.11" -wheel = "^0.42.0" -pyyaml = "^5.4.1" -sdv = "^1.9.0" -smartnoise-synth = "^0.3.3" -anonymeter = "^1.0.0" -sdmetrics = "^0.13.0" -requests = "^2.31.0" -boto3 = "^1.34.37" -toml = "^0.10.2" -tqdm = "^4.66.1" -urllib3 = "<2" # https://github.com/python-poetry/poetry-plugin-export/issues/239 - -[tool.poetry.group.dev.dependencies] -ipykernel = "^6.29.2" -pytest = "^8.0.0" - [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" diff --git a/requirements-dev.txt b/requirements-dev.txt deleted file mode 100644 index 5d71c8a1..00000000 --- a/requirements-dev.txt +++ /dev/null @@ -1,1444 +0,0 @@ -anonymeter==1.0.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:b4144ddf5d4ca51fd464479d963eb3959f6bbf990affdde7a778ffb89096641e \ - --hash=sha256:bba90478b266733a9dd41aa085b38de5d4666d5dc9373404923c27a3012a504c -antlr4-python3-runtime==4.9.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:f224469b4168294902bb1efa80a8bf7855f24c99aef99cbefc1bcd3cce77881b -appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.11" and (platform_system == "Darwin" or sys_platform == "darwin") \ - --hash=sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee \ - --hash=sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c -asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24 \ - --hash=sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0 -backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e \ - --hash=sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255 -boto3==1.34.54 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:8b3f5cc7fbedcbb22271c328039df8a6ab343001e746e0cdb24774c426cadcf8 \ - --hash=sha256:f201b6a416f809283d554c652211eecec9fe3a52ed4063dab3f3e7aea7571d9c -botocore==1.34.54 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4061ff4be3efcf53547ebadf2c94d419dfc8be7beec24e9fa1819599ffd936fa \ - --hash=sha256:bf215d93e9d5544c593962780d194e74c6ee40b883d0b885e62ef35fc0ec01e5 -certifi==2024.2.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f \ - --hash=sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1 -cffi==1.16.0 ; python_version >= "3.8" and python_version < "3.11" and implementation_name == "pypy" \ - --hash=sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc \ - --hash=sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a \ - --hash=sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417 \ - --hash=sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab \ - --hash=sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520 \ - --hash=sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36 \ - --hash=sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743 \ - --hash=sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8 \ - --hash=sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed \ - --hash=sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684 \ - --hash=sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56 \ - --hash=sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324 \ - --hash=sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d \ - --hash=sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235 \ - --hash=sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e \ - --hash=sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088 \ - --hash=sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000 \ - --hash=sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7 \ - --hash=sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e \ - --hash=sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673 \ - --hash=sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c \ - --hash=sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe \ - --hash=sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2 \ - --hash=sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098 \ - --hash=sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8 \ - --hash=sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a \ - --hash=sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0 \ - --hash=sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b \ - --hash=sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896 \ - --hash=sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e \ - --hash=sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9 \ - --hash=sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2 \ - --hash=sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b \ - --hash=sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6 \ - --hash=sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404 \ - --hash=sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f \ - --hash=sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0 \ - --hash=sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4 \ - --hash=sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc \ - --hash=sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936 \ - --hash=sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba \ - --hash=sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872 \ - --hash=sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb \ - --hash=sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614 \ - --hash=sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1 \ - --hash=sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d \ - --hash=sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969 \ - --hash=sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b \ - --hash=sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4 \ - --hash=sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627 \ - --hash=sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956 \ - --hash=sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357 -charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027 \ - --hash=sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087 \ - --hash=sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786 \ - --hash=sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8 \ - --hash=sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09 \ - --hash=sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185 \ - --hash=sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574 \ - --hash=sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e \ - --hash=sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519 \ - --hash=sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898 \ - --hash=sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269 \ - --hash=sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3 \ - --hash=sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f \ - --hash=sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6 \ - --hash=sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8 \ - --hash=sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a \ - --hash=sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73 \ - --hash=sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc \ - --hash=sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714 \ - --hash=sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2 \ - --hash=sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc \ - --hash=sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce \ - --hash=sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d \ - --hash=sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e \ - --hash=sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6 \ - --hash=sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269 \ - --hash=sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96 \ - --hash=sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d \ - --hash=sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a \ - --hash=sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4 \ - --hash=sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77 \ - --hash=sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d \ - --hash=sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0 \ - --hash=sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed \ - --hash=sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068 \ - --hash=sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac \ - --hash=sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25 \ - --hash=sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8 \ - --hash=sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab \ - --hash=sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26 \ - --hash=sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2 \ - --hash=sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db \ - --hash=sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f \ - --hash=sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5 \ - --hash=sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99 \ - --hash=sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c \ - --hash=sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d \ - --hash=sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811 \ - --hash=sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa \ - --hash=sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a \ - --hash=sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03 \ - --hash=sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b \ - --hash=sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04 \ - --hash=sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c \ - --hash=sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001 \ - --hash=sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458 \ - --hash=sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389 \ - --hash=sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99 \ - --hash=sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985 \ - --hash=sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537 \ - --hash=sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238 \ - --hash=sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f \ - --hash=sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d \ - --hash=sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796 \ - --hash=sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a \ - --hash=sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143 \ - --hash=sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8 \ - --hash=sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c \ - --hash=sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5 \ - --hash=sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5 \ - --hash=sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711 \ - --hash=sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4 \ - --hash=sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6 \ - --hash=sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c \ - --hash=sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7 \ - --hash=sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4 \ - --hash=sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b \ - --hash=sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae \ - --hash=sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12 \ - --hash=sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c \ - --hash=sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae \ - --hash=sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8 \ - --hash=sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887 \ - --hash=sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b \ - --hash=sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4 \ - --hash=sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f \ - --hash=sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5 \ - --hash=sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33 \ - --hash=sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519 \ - --hash=sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561 -cloudpickle==2.2.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:61f594d1f4c295fa5cd9014ceb3a1fc4a70b0de1164b94fbc2d854ccba056f9f \ - --hash=sha256:d89684b8de9e34a2a43b3460fbca07d09d6e25ce858df4d5a44240403b6178f5 -colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.11" and (platform_system == "Windows" or sys_platform == "win32") \ - --hash=sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44 \ - --hash=sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6 -comm==0.2.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0bc91edae1344d39d3661dcbc36937181fdaddb304790458f8b044dbc064b89a \ - --hash=sha256:87928485c0dfc0e7976fd89fc1e187023cf587e7c353e4a9b417555b44adf021 -contourpy==1.1.1 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:059c3d2a94b930f4dafe8105bcdc1b21de99b30b51b5bce74c753686de858cb6 \ - --hash=sha256:0683e1ae20dc038075d92e0e0148f09ffcefab120e57f6b4c9c0f477ec171f33 \ - --hash=sha256:07d6f11dfaf80a84c97f1a5ba50d129d9303c5b4206f776e94037332e298dda8 \ - --hash=sha256:081f3c0880712e40effc5f4c3b08feca6d064cb8cfbb372ca548105b86fd6c3d \ - --hash=sha256:0e48694d6a9c5a26ee85b10130c77a011a4fedf50a7279fa0bdaf44bafb4299d \ - --hash=sha256:11b836b7dbfb74e049c302bbf74b4b8f6cb9d0b6ca1bf86cfa8ba144aedadd9c \ - --hash=sha256:19557fa407e70f20bfaba7d55b4d97b14f9480856c4fb65812e8a05fe1c6f9bf \ - --hash=sha256:229a25f68046c5cf8067d6d6351c8b99e40da11b04d8416bf8d2b1d75922521e \ - --hash=sha256:24216552104ae8f3b34120ef84825400b16eb6133af2e27a190fdc13529f023e \ - --hash=sha256:3b53d5769aa1f2d4ea407c65f2d1d08002952fac1d9e9d307aa2e1023554a163 \ - --hash=sha256:3de23ca4f381c3770dee6d10ead6fff524d540c0f662e763ad1530bde5112532 \ - --hash=sha256:407d864db716a067cc696d61fa1ef6637fedf03606e8417fe2aeed20a061e6b2 \ - --hash=sha256:41339b24471c58dc1499e56783fedc1afa4bb018bcd035cfb0ee2ad2a7501ef8 \ - --hash=sha256:462c59914dc6d81e0b11f37e560b8a7c2dbab6aca4f38be31519d442d6cde1a1 \ - --hash=sha256:46e24f5412c948d81736509377e255f6040e94216bf1a9b5ea1eaa9d29f6ec1b \ - --hash=sha256:498e53573e8b94b1caeb9e62d7c2d053c263ebb6aa259c81050766beb50ff8d9 \ - --hash=sha256:4ebf42695f75ee1a952f98ce9775c873e4971732a87334b099dde90b6af6a916 \ - --hash=sha256:4f9147051cb8fdb29a51dc2482d792b3b23e50f8f57e3720ca2e3d438b7adf23 \ - --hash=sha256:549174b0713d49871c6dee90a4b499d3f12f5e5f69641cd23c50a4542e2ca1eb \ - --hash=sha256:560f1d68a33e89c62da5da4077ba98137a5e4d3a271b29f2f195d0fba2adcb6a \ - --hash=sha256:566f0e41df06dfef2431defcfaa155f0acfa1ca4acbf8fd80895b1e7e2ada40e \ - --hash=sha256:56de98a2fb23025882a18b60c7f0ea2d2d70bbbcfcf878f9067234b1c4818442 \ - --hash=sha256:66544f853bfa85c0d07a68f6c648b2ec81dafd30f272565c37ab47a33b220684 \ - --hash=sha256:6c06e4c6e234fcc65435223c7b2a90f286b7f1b2733058bdf1345d218cc59e34 \ - --hash=sha256:6d0a8efc258659edc5299f9ef32d8d81de8b53b45d67bf4bfa3067f31366764d \ - --hash=sha256:70e5a10f8093d228bb2b552beeb318b8928b8a94763ef03b858ef3612b29395d \ - --hash=sha256:8394e652925a18ef0091115e3cc191fef350ab6dc3cc417f06da66bf98071ae9 \ - --hash=sha256:8636cd2fc5da0fb102a2504fa2c4bea3cbc149533b345d72cdf0e7a924decc45 \ - --hash=sha256:93df44ab351119d14cd1e6b52a5063d3336f0754b72736cc63db59307dabb718 \ - --hash=sha256:96ba37c2e24b7212a77da85004c38e7c4d155d3e72a45eeaf22c1f03f607e8ab \ - --hash=sha256:a10dab5ea1bd4401c9483450b5b0ba5416be799bbd50fc7a6cc5e2a15e03e8a3 \ - --hash=sha256:a66045af6cf00e19d02191ab578a50cb93b2028c3eefed999793698e9ea768ae \ - --hash=sha256:a75cc163a5f4531a256f2c523bd80db509a49fc23721b36dd1ef2f60ff41c3cb \ - --hash=sha256:b04c2f0adaf255bf756cf08ebef1be132d3c7a06fe6f9877d55640c5e60c72c5 \ - --hash=sha256:ba42e3810999a0ddd0439e6e5dbf6d034055cdc72b7c5c839f37a7c274cb4eba \ - --hash=sha256:bfc8a5e9238232a45ebc5cb3bfee71f1167064c8d382cadd6076f0d51cff1da0 \ - --hash=sha256:c5bd5680f844c3ff0008523a71949a3ff5e4953eb7701b28760805bc9bcff217 \ - --hash=sha256:c84fdf3da00c2827d634de4fcf17e3e067490c4aea82833625c4c8e6cdea0887 \ - --hash=sha256:ca6fab080484e419528e98624fb5c4282148b847e3602dc8dbe0cb0669469887 \ - --hash=sha256:d0c188ae66b772d9d61d43c6030500344c13e3f73a00d1dc241da896f379bb62 \ - --hash=sha256:d6ab42f223e58b7dac1bb0af32194a7b9311065583cc75ff59dcf301afd8a431 \ - --hash=sha256:dfe80c017973e6a4c367e037cb31601044dd55e6bfacd57370674867d15a899b \ - --hash=sha256:e0c02b75acfea5cab07585d25069207e478d12309557f90a61b5a3b4f77f46ce \ - --hash=sha256:e30aaf2b8a2bac57eb7e1650df1b3a4130e8d0c66fc2f861039d507a11760e1b \ - --hash=sha256:eafbef886566dc1047d7b3d4b14db0d5b7deb99638d8e1be4e23a7c7ac59ff0f \ - --hash=sha256:efe0fab26d598e1ec07d72cf03eaeeba8e42b4ecf6b9ccb5a356fde60ff08b85 \ - --hash=sha256:f08e469821a5e4751c97fcd34bcb586bc243c39c2e39321822060ba902eac49e \ - --hash=sha256:f1eaac5257a8f8a047248d60e8f9315c6cff58f7803971170d952555ef6344a7 \ - --hash=sha256:f29fb0b3f1217dfe9362ec55440d0743fe868497359f2cf93293f4b2701b8251 \ - --hash=sha256:f44d78b61740e4e8c71db1cf1fd56d9050a4747681c59ec1094750a658ceb970 \ - --hash=sha256:f6aec19457617ef468ff091669cca01fa7ea557b12b59a7908b9474bb9674cf0 \ - --hash=sha256:f9dc7f933975367251c1b34da882c4f0e0b2e24bb35dc906d2f598a40b72bfc7 -contourpy==1.2.0 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8 \ - --hash=sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956 \ - --hash=sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5 \ - --hash=sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063 \ - --hash=sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286 \ - --hash=sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a \ - --hash=sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686 \ - --hash=sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9 \ - --hash=sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f \ - --hash=sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4 \ - --hash=sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e \ - --hash=sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0 \ - --hash=sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e \ - --hash=sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488 \ - --hash=sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399 \ - --hash=sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431 \ - --hash=sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779 \ - --hash=sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9 \ - --hash=sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab \ - --hash=sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0 \ - --hash=sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd \ - --hash=sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e \ - --hash=sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc \ - --hash=sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6 \ - --hash=sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316 \ - --hash=sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808 \ - --hash=sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0 \ - --hash=sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f \ - --hash=sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843 \ - --hash=sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9 \ - --hash=sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95 \ - --hash=sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9 \ - --hash=sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de \ - --hash=sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4 \ - --hash=sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4 \ - --hash=sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa \ - --hash=sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8 \ - --hash=sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776 \ - --hash=sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41 \ - --hash=sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108 \ - --hash=sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e \ - --hash=sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8 \ - --hash=sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727 \ - --hash=sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a -copulas==0.9.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5aab94fdc5f933227e6a0775422e1c593234f3d021006be91c33ed180097aac1 \ - --hash=sha256:c9ac99bbe3b0f30990748042b2d786e88f59abac26a33c06e8aff1d00cb5b2c2 -ctgan==0.9.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:efb4587591a7ee0ae81de3829104a6574aee26213b3a54965a06b0a89ccf1e53 \ - --hash=sha256:f879830ed112a9b3173646eb625afda53ef812938116e96655dda2945a952f33 -cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 \ - --hash=sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c -debugpy==1.8.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb \ - --hash=sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146 \ - --hash=sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8 \ - --hash=sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242 \ - --hash=sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0 \ - --hash=sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741 \ - --hash=sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539 \ - --hash=sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23 \ - --hash=sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3 \ - --hash=sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39 \ - --hash=sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd \ - --hash=sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9 \ - --hash=sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace \ - --hash=sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42 \ - --hash=sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0 \ - --hash=sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7 \ - --hash=sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e \ - --hash=sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234 \ - --hash=sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98 \ - --hash=sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703 \ - --hash=sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42 \ - --hash=sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099 -decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330 \ - --hash=sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186 -deepecho==0.5.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:054de22c58d67e8db9b4b0159398afcc84563a38a7abe399031e4149c6daa940 \ - --hash=sha256:49afaf8305cd695f8f6dbc7969ada55c81a3048e2928712422bed98f6fbd4282 -exceptiongroup==1.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14 \ - --hash=sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68 -executing==2.0.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147 \ - --hash=sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc -faker==19.13.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:14ccb0aec342d33aa3889a864a56e5b3c2d56bce1b89f9189f4fbc128b9afc1e \ - --hash=sha256:da880a76322db7a879c848a0771e129338e0a680a9f695fd9a3e7a6ac82b45e1 -filelock==3.13.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e \ - --hash=sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c -fonttools==4.49.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0404faea044577a01bb82d47a8fa4bc7a54067fa7e324785dd65d200d6dd1133 \ - --hash=sha256:07bc5ea02bb7bc3aa40a1eb0481ce20e8d9b9642a9536cde0218290dd6085828 \ - --hash=sha256:08877e355d3dde1c11973bb58d4acad1981e6d1140711230a4bfb40b2b937ccc \ - --hash=sha256:0af65c720520710cc01c293f9c70bd69684365c6015cc3671db2b7d807fe51f2 \ - --hash=sha256:0ba0e00620ca28d4ca11fc700806fd69144b463aa3275e1b36e56c7c09915559 \ - --hash=sha256:1f255ce8ed7556658f6d23f6afd22a6d9bbc3edb9b96c96682124dc487e1bf42 \ - --hash=sha256:1fac1b7eebfce75ea663e860e7c5b4a8831b858c17acd68263bc156125201abf \ - --hash=sha256:263832fae27481d48dfafcc43174644b6706639661e242902ceb30553557e16c \ - --hash=sha256:29e89d0e1a7f18bc30f197cfadcbef5a13d99806447c7e245f5667579a808036 \ - --hash=sha256:33037d9e56e2562c710c8954d0f20d25b8386b397250d65581e544edc9d6b942 \ - --hash=sha256:33c584c0ef7dc54f5dd4f84082eabd8d09d1871a3d8ca2986b0c0c98165f8e86 \ - --hash=sha256:36c8865bdb5cfeec88f5028e7e592370a0657b676c6f1d84a2108e0564f90e22 \ - --hash=sha256:4145f91531fd43c50f9eb893faa08399816bb0b13c425667c48475c9f3a2b9b5 \ - --hash=sha256:4d418b1fee41a1d14931f7ab4b92dc0bc323b490e41d7a333eec82c9f1780c75 \ - --hash=sha256:768947008b4dc552d02772e5ebd49e71430a466e2373008ce905f953afea755a \ - --hash=sha256:7c7125068e04a70739dad11857a4d47626f2b0bd54de39e8622e89701836eabd \ - --hash=sha256:83a0d9336de2cba86d886507dd6e0153df333ac787377325a39a2797ec529814 \ - --hash=sha256:86eef6aab7fd7c6c8545f3ebd00fd1d6729ca1f63b0cb4d621bccb7d1d1c852b \ - --hash=sha256:8fb022d799b96df3eaa27263e9eea306bd3d437cc9aa981820850281a02b6c9a \ - --hash=sha256:9d95fa0d22bf4f12d2fb7b07a46070cdfc19ef5a7b1c98bc172bfab5bf0d6844 \ - --hash=sha256:a974c49a981e187381b9cc2c07c6b902d0079b88ff01aed34695ec5360767034 \ - --hash=sha256:ac9a745b7609f489faa65e1dc842168c18530874a5f5b742ac3dd79e26bca8bc \ - --hash=sha256:af20acbe198a8a790618ee42db192eb128afcdcc4e96d99993aca0b60d1faeb4 \ - --hash=sha256:af281525e5dd7fa0b39fb1667b8d5ca0e2a9079967e14c4bfe90fd1cd13e0f18 \ - --hash=sha256:b050d362df50fc6e38ae3954d8c29bf2da52be384649ee8245fdb5186b620836 \ - --hash=sha256:b44a52b8e6244b6548851b03b2b377a9702b88ddc21dcaf56a15a0393d425cb9 \ - --hash=sha256:b607ea1e96768d13be26d2b400d10d3ebd1456343eb5eaddd2f47d1c4bd00880 \ - --hash=sha256:b85ec0bdd7bdaa5c1946398cbb541e90a6dfc51df76dfa88e0aaa41b335940cb \ - --hash=sha256:bebd91041dda0d511b0d303180ed36e31f4f54b106b1259b69fade68413aa7ff \ - --hash=sha256:c076a9e548521ecc13d944b1d261ff3d7825048c338722a4bd126d22316087b7 \ - --hash=sha256:cbe61b158deb09cffdd8540dc4a948d6e8f4d5b4f3bf5cd7db09bd6a61fee64e \ - --hash=sha256:cdee3ab220283057e7840d5fb768ad4c2ebe65bdba6f75d5d7bf47f4e0ed7d29 \ - --hash=sha256:ce7033cb61f2bb65d8849658d3786188afd80f53dad8366a7232654804529532 \ - --hash=sha256:d00af0884c0e65f60dfaf9340e26658836b935052fdd0439952ae42e44fdd2be \ - --hash=sha256:d647a0e697e5daa98c87993726da8281c7233d9d4ffe410812a4896c7c57c075 \ - --hash=sha256:d970ecca0aac90d399e458f0b7a8a597e08f95de021f17785fb68e2dc0b99717 \ - --hash=sha256:ea329dafb9670ffbdf4dbc3b0e5c264104abcd8441d56de77f06967f032943cb \ - --hash=sha256:ebf46e7f01b7af7861310417d7c49591a85d99146fc23a5ba82fdb28af156321 \ - --hash=sha256:edc0cce355984bb3c1d1e89d6a661934d39586bb32191ebff98c600f8957c63e \ - --hash=sha256:f3bbe672df03563d1f3a691ae531f2e31f84061724c319652039e5a70927167e \ - --hash=sha256:fc11e5114f3f978d0cea7e9853627935b30d451742eeb4239a81a677bdee6bf6 \ - --hash=sha256:fdb54b076f25d6b0f0298dc706acee5052de20c83530fa165b60d1f2e9cbe3cb -fsspec==2024.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:817f969556fa5916bc682e02ca2045f96ff7f586d45110fcb76022063ad2c7d8 \ - --hash=sha256:b6ad1a679f760dda52b1168c859d01b7b80648ea6f7f7c7f5a8a91dc3f3ecb84 -graphviz==0.17 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5dadec94046d82adaae6019311a30e0487536d9d5a60d85451f0ba32f9fc6559 \ - --hash=sha256:ef6e2c5deb9cdcc0c7eece1d89625fd07b0f2208ea2bcb483520907ddf8b4e12 -greenlet==3.0.3 ; python_version >= "3.8" and (platform_machine == "aarch64" or platform_machine == "ppc64le" or platform_machine == "x86_64" or platform_machine == "amd64" or platform_machine == "AMD64" or platform_machine == "win32" or platform_machine == "WIN32") and python_version < "3.11" \ - --hash=sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67 \ - --hash=sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6 \ - --hash=sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257 \ - --hash=sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4 \ - --hash=sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676 \ - --hash=sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61 \ - --hash=sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc \ - --hash=sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca \ - --hash=sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7 \ - --hash=sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728 \ - --hash=sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305 \ - --hash=sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6 \ - --hash=sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379 \ - --hash=sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414 \ - --hash=sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04 \ - --hash=sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a \ - --hash=sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf \ - --hash=sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491 \ - --hash=sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559 \ - --hash=sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e \ - --hash=sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274 \ - --hash=sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb \ - --hash=sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b \ - --hash=sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9 \ - --hash=sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b \ - --hash=sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be \ - --hash=sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506 \ - --hash=sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405 \ - --hash=sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113 \ - --hash=sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f \ - --hash=sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5 \ - --hash=sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230 \ - --hash=sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d \ - --hash=sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f \ - --hash=sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a \ - --hash=sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e \ - --hash=sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61 \ - --hash=sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6 \ - --hash=sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d \ - --hash=sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71 \ - --hash=sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22 \ - --hash=sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2 \ - --hash=sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3 \ - --hash=sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067 \ - --hash=sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc \ - --hash=sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881 \ - --hash=sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3 \ - --hash=sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e \ - --hash=sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac \ - --hash=sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53 \ - --hash=sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0 \ - --hash=sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b \ - --hash=sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83 \ - --hash=sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41 \ - --hash=sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c \ - --hash=sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf \ - --hash=sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da \ - --hash=sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33 -idna==3.6 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca \ - --hash=sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f -importlib-metadata==7.0.1 ; python_version >= "3.8" and python_version < "3.10" \ - --hash=sha256:4805911c3a4ec7c3966410053e9ec6a1fecd629117df5adee56dfc9432a1081e \ - --hash=sha256:f238736bb06590ae52ac1fab06a3a9ef1d8dce2b7a35b5ab329371d6c8f5d2cc -importlib-resources==6.1.2 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:308abf8474e2dba5f867d279237cd4076482c3de7104a40b41426370e891549b \ - --hash=sha256:9a0a862501dc38b68adebc82970140c9e4209fc99601782925178f8386339938 -iniconfig==2.0.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3 \ - --hash=sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 -ipykernel==6.29.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5aa086a4175b0229d4eca211e181fb473ea78ffd9869af36ba7694c947302a21 \ - --hash=sha256:e14c250d1f9ea3989490225cc1a542781b095a18a19447fcf2b5eaf7d0ac5bd2 -ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363 \ - --hash=sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c -jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd \ - --hash=sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0 -jinja2==3.1.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa \ - --hash=sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90 -jmespath==1.0.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980 \ - --hash=sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe -joblib==1.3.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1 \ - --hash=sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9 -jupyter-client==8.6.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7 \ - --hash=sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99 -jupyter-core==5.7.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:c65c82126453a723a2804aa52409930434598fd9d35091d63dfb919d2b765bb7 \ - --hash=sha256:de61a9d7fc71240f688b2fb5ab659fbb56979458dc66a71decd098e03c79e218 -kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf \ - --hash=sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e \ - --hash=sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af \ - --hash=sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f \ - --hash=sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046 \ - --hash=sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3 \ - --hash=sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5 \ - --hash=sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71 \ - --hash=sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee \ - --hash=sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3 \ - --hash=sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9 \ - --hash=sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b \ - --hash=sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985 \ - --hash=sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea \ - --hash=sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16 \ - --hash=sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89 \ - --hash=sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c \ - --hash=sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9 \ - --hash=sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712 \ - --hash=sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342 \ - --hash=sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a \ - --hash=sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958 \ - --hash=sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d \ - --hash=sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a \ - --hash=sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130 \ - --hash=sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff \ - --hash=sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898 \ - --hash=sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b \ - --hash=sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f \ - --hash=sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265 \ - --hash=sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93 \ - --hash=sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929 \ - --hash=sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635 \ - --hash=sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709 \ - --hash=sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b \ - --hash=sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb \ - --hash=sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a \ - --hash=sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920 \ - --hash=sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e \ - --hash=sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544 \ - --hash=sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45 \ - --hash=sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390 \ - --hash=sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77 \ - --hash=sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355 \ - --hash=sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff \ - --hash=sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4 \ - --hash=sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7 \ - --hash=sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20 \ - --hash=sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c \ - --hash=sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162 \ - --hash=sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228 \ - --hash=sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437 \ - --hash=sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc \ - --hash=sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a \ - --hash=sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901 \ - --hash=sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4 \ - --hash=sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770 \ - --hash=sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525 \ - --hash=sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad \ - --hash=sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a \ - --hash=sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29 \ - --hash=sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90 \ - --hash=sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250 \ - --hash=sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d \ - --hash=sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3 \ - --hash=sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54 \ - --hash=sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f \ - --hash=sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1 \ - --hash=sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da \ - --hash=sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238 \ - --hash=sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa \ - --hash=sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523 \ - --hash=sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0 \ - --hash=sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205 \ - --hash=sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3 \ - --hash=sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4 \ - --hash=sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac \ - --hash=sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9 \ - --hash=sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb \ - --hash=sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced \ - --hash=sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd \ - --hash=sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0 \ - --hash=sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da \ - --hash=sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18 \ - --hash=sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9 \ - --hash=sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276 \ - --hash=sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333 \ - --hash=sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b \ - --hash=sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db \ - --hash=sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126 \ - --hash=sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9 \ - --hash=sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09 \ - --hash=sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0 \ - --hash=sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec \ - --hash=sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7 \ - --hash=sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff \ - --hash=sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9 \ - --hash=sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192 \ - --hash=sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8 \ - --hash=sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d \ - --hash=sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6 \ - --hash=sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797 \ - --hash=sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892 \ - --hash=sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f -llvmlite==0.41.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:04725975e5b2af416d685ea0769f4ecc33f97be541e301054c9f741003085802 \ - --hash=sha256:0dd0338da625346538f1173a17cabf21d1e315cf387ca21b294ff209d176e244 \ - --hash=sha256:150d0bc275a8ac664a705135e639178883293cf08c1a38de3bbaa2f693a0a867 \ - --hash=sha256:1eee5cf17ec2b4198b509272cf300ee6577229d237c98cc6e63861b08463ddc6 \ - --hash=sha256:210e458723436b2469d61b54b453474e09e12a94453c97ea3fbb0742ba5a83d8 \ - --hash=sha256:2181bb63ef3c607e6403813421b46982c3ac6bfc1f11fa16a13eaafb46f578e6 \ - --hash=sha256:24091a6b31242bcdd56ae2dbea40007f462260bc9bdf947953acc39dffd54f8f \ - --hash=sha256:2b76acee82ea0e9304be6be9d4b3840208d050ea0dcad75b1635fa06e949a0ae \ - --hash=sha256:2d92c51e6e9394d503033ffe3292f5bef1566ab73029ec853861f60ad5c925d0 \ - --hash=sha256:5940bc901fb0325970415dbede82c0b7f3e35c2d5fd1d5e0047134c2c46b3281 \ - --hash=sha256:8454c1133ef701e8c050a59edd85d238ee18bb9a0eb95faf2fca8b909ee3c89a \ - --hash=sha256:855f280e781d49e0640aef4c4af586831ade8f1a6c4df483fb901cbe1a48d127 \ - --hash=sha256:880cb57ca49e862e1cd077104375b9d1dfdc0622596dfa22105f470d7bacb309 \ - --hash=sha256:8b0a9a47c28f67a269bb62f6256e63cef28d3c5f13cbae4fab587c3ad506778b \ - --hash=sha256:92c32356f669e036eb01016e883b22add883c60739bc1ebee3a1cc0249a50828 \ - --hash=sha256:92f093986ab92e71c9ffe334c002f96defc7986efda18397d0f08534f3ebdc4d \ - --hash=sha256:9564c19b31a0434f01d2025b06b44c7ed422f51e719ab5d24ff03b7560066c9a \ - --hash=sha256:b67340c62c93a11fae482910dc29163a50dff3dfa88bc874872d28ee604a83be \ - --hash=sha256:bf14aa0eb22b58c231243dccf7e7f42f7beec48970f2549b3a6acc737d1a4ba4 \ - --hash=sha256:c1e1029d47ee66d3a0c4d6088641882f75b93db82bd0e6178f7bd744ebce42b9 \ - --hash=sha256:df75594e5a4702b032684d5481db3af990b69c249ccb1d32687b8501f0689432 \ - --hash=sha256:f19f767a018e6ec89608e1f6b13348fa2fcde657151137cb64e56d48598a92db \ - --hash=sha256:f8afdfa6da33f0b4226af8e64cfc2b28986e005528fbf944d0a24a72acfc9432 \ - --hash=sha256:fa1469901a2e100c17eb8fe2678e34bd4255a3576d1a543421356e9c14d6e2ae -markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf \ - --hash=sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff \ - --hash=sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f \ - --hash=sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3 \ - --hash=sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532 \ - --hash=sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f \ - --hash=sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617 \ - --hash=sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df \ - --hash=sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4 \ - --hash=sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906 \ - --hash=sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f \ - --hash=sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4 \ - --hash=sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8 \ - --hash=sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371 \ - --hash=sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2 \ - --hash=sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465 \ - --hash=sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52 \ - --hash=sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6 \ - --hash=sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169 \ - --hash=sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad \ - --hash=sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2 \ - --hash=sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0 \ - --hash=sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029 \ - --hash=sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f \ - --hash=sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a \ - --hash=sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced \ - --hash=sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5 \ - --hash=sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c \ - --hash=sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf \ - --hash=sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9 \ - --hash=sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb \ - --hash=sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad \ - --hash=sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3 \ - --hash=sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1 \ - --hash=sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46 \ - --hash=sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc \ - --hash=sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a \ - --hash=sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee \ - --hash=sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900 \ - --hash=sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5 \ - --hash=sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea \ - --hash=sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f \ - --hash=sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5 \ - --hash=sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e \ - --hash=sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a \ - --hash=sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f \ - --hash=sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50 \ - --hash=sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a \ - --hash=sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b \ - --hash=sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4 \ - --hash=sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff \ - --hash=sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2 \ - --hash=sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46 \ - --hash=sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b \ - --hash=sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf \ - --hash=sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5 \ - --hash=sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5 \ - --hash=sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab \ - --hash=sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd \ - --hash=sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68 -matplotlib-inline==0.1.6 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311 \ - --hash=sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304 -matplotlib==3.7.5 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:039ad54683a814002ff37bf7981aa1faa40b91f4ff84149beb53d1eb64617980 \ - --hash=sha256:068ebcc59c072781d9dcdb82f0d3f1458271c2de7ca9c78f5bd672141091e9e1 \ - --hash=sha256:084f1f0f2f1010868c6f1f50b4e1c6f2fb201c58475494f1e5b66fed66093647 \ - --hash=sha256:090964d0afaff9c90e4d8de7836757e72ecfb252fb02884016d809239f715651 \ - --hash=sha256:0ccb830fc29442360d91be48527809f23a5dcaee8da5f4d9b2d5b867c1b087b8 \ - --hash=sha256:1210b7919b4ed94b5573870f316bca26de3e3b07ffdb563e79327dc0e6bba515 \ - --hash=sha256:167200ccfefd1674b60e957186dfd9baf58b324562ad1a28e5d0a6b3bea77905 \ - --hash=sha256:1dbcca4508bca7847fe2d64a05b237a3dcaec1f959aedb756d5b1c67b770c5ee \ - --hash=sha256:1e4e9a868e8163abaaa8259842d85f949a919e1ead17644fb77a60427c90473c \ - --hash=sha256:1e5c971558ebc811aa07f54c7b7c677d78aa518ef4c390e14673a09e0860184a \ - --hash=sha256:20da7924a08306a861b3f2d1da0d1aa9a6678e480cf8eacffe18b565af2813e7 \ - --hash=sha256:29b058738c104d0ca8806395f1c9089dfe4d4f0f78ea765c6c704469f3fffc81 \ - --hash=sha256:2a9a3f4d6a7f88a62a6a18c7e6a84aedcaf4faf0708b4ca46d87b19f1b526f88 \ - --hash=sha256:2b6aa62adb6c268fc87d80f963aca39c64615c31830b02697743c95590ce3fbb \ - --hash=sha256:34bceb9d8ddb142055ff27cd7135f539f2f01be2ce0bafbace4117abe58f8fe4 \ - --hash=sha256:3785bfd83b05fc0e0c2ae4c4a90034fe693ef96c679634756c50fe6efcc09856 \ - --hash=sha256:3b15c4c2d374f249f324f46e883340d494c01768dd5287f8bc00b65b625ab56c \ - --hash=sha256:3d028555421912307845e59e3de328260b26d055c5dac9b182cc9783854e98fb \ - --hash=sha256:4a87b69cb1cb20943010f63feb0b2901c17a3b435f75349fd9865713bfa63925 \ - --hash=sha256:4cdf4ef46c2a1609a50411b66940b31778db1e4b73d4ecc2eaa40bd588979b13 \ - --hash=sha256:4d742ccd1b09e863b4ca58291728db645b51dab343eebb08d5d4b31b308296ce \ - --hash=sha256:4ddf7fc0e0dc553891a117aa083039088d8a07686d4c93fb8a810adca68810af \ - --hash=sha256:53e64522934df6e1818b25fd48cf3b645b11740d78e6ef765fbb5fa5ce080d02 \ - --hash=sha256:5e7cc3078b019bb863752b8b60e8b269423000f1603cb2299608231996bd9d54 \ - --hash=sha256:6738c89a635ced486c8a20e20111d33f6398a9cbebce1ced59c211e12cd61455 \ - --hash=sha256:6b641b48c6819726ed47c55835cdd330e53747d4efff574109fd79b2d8a13748 \ - --hash=sha256:743b1c488ca6a2bc7f56079d282e44d236bf375968bfd1b7ba701fd4d0fa32d6 \ - --hash=sha256:9fc6fcfbc55cd719bc0bfa60bde248eb68cf43876d4c22864603bdd23962ba25 \ - --hash=sha256:a99866267da1e561c7776fe12bf4442174b79aac1a47bd7e627c7e4d077ebd83 \ - --hash=sha256:b45c9798ea6bb920cb77eb7306409756a7fab9db9b463e462618e0559aecb30e \ - --hash=sha256:b9b3fd853d4a7f008a938df909b96db0b454225f935d3917520305b90680579c \ - --hash=sha256:c5a2134162273eb8cdfd320ae907bf84d171de948e62180fa372a3ca7cf0f433 \ - --hash=sha256:cfff9b838531698ee40e40ea1a8a9dc2c01edb400b27d38de6ba44c1f9a8e3d2 \ - --hash=sha256:d3ce45010fefb028359accebb852ca0c21bd77ec0f281952831d235228f15810 \ - --hash=sha256:d3e3bc79b2d7d615067bd010caff9243ead1fc95cf735c16e4b2583173f717eb \ - --hash=sha256:e530ab6a0afd082d2e9c17eb1eb064a63c5b09bb607b2b74fa41adbe3e162286 \ - --hash=sha256:ec0e1adc0ad70ba8227e957551e25a9d2995e319c29f94a97575bb90fa1d4469 \ - --hash=sha256:efc6bb28178e844d1f408dd4d6341ee8a2e906fc9e0fa3dae497da4e0cab775d \ - --hash=sha256:f098ffbaab9df1e3ef04e5a5586a1e6b1791380698e84938d8640961c79b1fc0 \ - --hash=sha256:f0ad550da9f160737d7890217c5eeed4337d07e83ca1b2ca6535078f354e7675 \ - --hash=sha256:f0b60993ed3488b4532ec6b697059897891927cbfc2b8d458a891b60ec03d9d7 \ - --hash=sha256:f65342c147572673f02a4abec2d5a23ad9c3898167df9b47c149f32ce61ca078 \ - --hash=sha256:fa7ebc995a7d747dacf0a717d0eb3aa0f0c6a0e9ea88b0194d3a3cd241a1500f \ - --hash=sha256:fbea1e762b28400393d71be1a02144aa16692a3c4c676ba0178ce83fc2928fdd \ - --hash=sha256:fbf730fca3e1f23713bc1fae0a57db386e39dc81ea57dc305c67f628c1d7a342 \ - --hash=sha256:fd4028d570fa4b31b7b165d4a685942ae9cdc669f33741e388c01857d9723eab \ - --hash=sha256:fe184b4625b4052fa88ef350b815559dd90cc6cc8e97b62f966e1ca84074aafa -matplotlib==3.8.3 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:04b36ad07eac9740fc76c2aa16edf94e50b297d6eb4c081e3add863de4bb19a7 \ - --hash=sha256:09074f8057917d17ab52c242fdf4916f30e99959c1908958b1fc6032e2d0f6d4 \ - --hash=sha256:1c5c8290074ba31a41db1dc332dc2b62def469ff33766cbe325d32a3ee291aea \ - --hash=sha256:242489efdb75b690c9c2e70bb5c6550727058c8a614e4c7716f363c27e10bba1 \ - --hash=sha256:40321634e3a05ed02abf7c7b47a50be50b53ef3eaa3a573847431a545585b407 \ - --hash=sha256:4c6e00a65d017d26009bac6808f637b75ceade3e1ff91a138576f6b3065eeeba \ - --hash=sha256:5184e07c7e1d6d1481862ee361905b7059f7fe065fc837f7c3dc11eeb3f2f900 \ - --hash=sha256:5745f6d0fb5acfabbb2790318db03809a253096e98c91b9a31969df28ee604aa \ - --hash=sha256:5e431a09e6fab4012b01fc155db0ce6dccacdbabe8198197f523a4ef4805eb26 \ - --hash=sha256:5f557156f7116be3340cdeef7f128fa99b0d5d287d5f41a16e169819dcf22357 \ - --hash=sha256:6728dde0a3997396b053602dbd907a9bd64ec7d5cf99e728b404083698d3ca01 \ - --hash=sha256:7b416239e9ae38be54b028abbf9048aff5054a9aba5416bef0bd17f9162ce161 \ - --hash=sha256:7c42dae72a62f14982f1474f7e5c9959fc4bc70c9de11cc5244c6e766200ba65 \ - --hash=sha256:813925d08fb86aba139f2d31864928d67511f64e5945ca909ad5bc09a96189bb \ - --hash=sha256:83c0653c64b73926730bd9ea14aa0f50f202ba187c307a881673bad4985967b7 \ - --hash=sha256:83e0f72e2c116ca7e571c57aa29b0fe697d4c6425c4e87c6e994159e0c008635 \ - --hash=sha256:b3c5f96f57b0369c288bf6f9b5274ba45787f7e0589a34d24bdbaf6d3344632f \ - --hash=sha256:b97653d869a71721b639714b42d87cda4cfee0ee74b47c569e4874c7590c55c5 \ - --hash=sha256:bf5932eee0d428192c40b7eac1399d608f5d995f975cdb9d1e6b48539a5ad8d0 \ - --hash=sha256:c4af3f7317f8a1009bbb2d0bf23dfaba859eb7dd4ccbd604eba146dccaaaf0a4 \ - --hash=sha256:cd3a0c2be76f4e7be03d34a14d49ded6acf22ef61f88da600a18a5cd8b3c5f3c \ - --hash=sha256:cf60138ccc8004f117ab2a2bad513cc4d122e55864b4fe7adf4db20ca68a078f \ - --hash=sha256:d7e7e0993d0758933b1a241a432b42c2db22dfa37d4108342ab4afb9557cbe3e \ - --hash=sha256:e7b49ab49a3bea17802df6872f8d44f664ba8f9be0632a60c99b20b6db2165b7 \ - --hash=sha256:e9764df0e8778f06414b9d281a75235c1e85071f64bb5d71564b97c1306a2afc \ - --hash=sha256:ef6c1025a570354297d6c15f7d0f296d95f88bd3850066b7f1e7b4f2f4c13a39 \ - --hash=sha256:f386cf162b059809ecfac3bcc491a9ea17da69fa35c8ded8ad154cd4b933d5ec \ - --hash=sha256:fa93695d5c08544f4a0dfd0965f378e7afc410d8672816aff1e81be1f45dbf2e -mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f \ - --hash=sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c -nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe \ - --hash=sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c -networkx==3.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36 \ - --hash=sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61 -numba==0.58.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:07f2fa7e7144aa6f275f27260e73ce0d808d3c62b30cff8906ad1dec12d87bbe \ - --hash=sha256:240e7a1ae80eb6b14061dc91263b99dc8d6af9ea45d310751b780888097c1aaa \ - --hash=sha256:45698b995914003f890ad839cfc909eeb9c74921849c712a05405d1a79c50f68 \ - --hash=sha256:487ded0633efccd9ca3a46364b40006dbdaca0f95e99b8b83e778d1195ebcbaa \ - --hash=sha256:4e79b6cc0d2bf064a955934a2e02bf676bc7995ab2db929dbbc62e4c16551be6 \ - --hash=sha256:55a01e1881120e86d54efdff1be08381886fe9f04fc3006af309c602a72bc44d \ - --hash=sha256:5c765aef472a9406a97ea9782116335ad4f9ef5c9f93fc05fd44aab0db486954 \ - --hash=sha256:6fe7a9d8e3bd996fbe5eac0683227ccef26cba98dae6e5cee2c1894d4b9f16c1 \ - --hash=sha256:7bf1ddd4f7b9c2306de0384bf3854cac3edd7b4d8dffae2ec1b925e4c436233f \ - --hash=sha256:811305d5dc40ae43c3ace5b192c670c358a89a4d2ae4f86d1665003798ea7a1a \ - --hash=sha256:81fe5b51532478149b5081311b0fd4206959174e660c372b94ed5364cfb37c82 \ - --hash=sha256:898af055b03f09d33a587e9425500e5be84fc90cd2f80b3fb71c6a4a17a7e354 \ - --hash=sha256:9e9356e943617f5e35a74bf56ff6e7cc83e6b1865d5e13cee535d79bf2cae954 \ - --hash=sha256:a1eaa744f518bbd60e1f7ccddfb8002b3d06bd865b94a5d7eac25028efe0e0ff \ - --hash=sha256:bc2d904d0319d7a5857bd65062340bed627f5bfe9ae4a495aef342f072880d50 \ - --hash=sha256:bcecd3fb9df36554b342140a4d77d938a549be635d64caf8bd9ef6c47a47f8aa \ - --hash=sha256:bd3dda77955be03ff366eebbfdb39919ce7c2620d86c906203bed92124989032 \ - --hash=sha256:bf68df9c307fb0aa81cacd33faccd6e419496fdc621e83f1efce35cdc5e79cac \ - --hash=sha256:d3e2fe81fe9a59fcd99cc572002101119059d64d31eb6324995ee8b0f144a306 \ - --hash=sha256:e63d6aacaae1ba4ef3695f1c2122b30fa3d8ba039c8f517784668075856d79e2 \ - --hash=sha256:ea5bfcf7d641d351c6a80e8e1826eb4a145d619870016eeaf20bbd71ef5caa22 -numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f \ - --hash=sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61 \ - --hash=sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7 \ - --hash=sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400 \ - --hash=sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef \ - --hash=sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2 \ - --hash=sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d \ - --hash=sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc \ - --hash=sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835 \ - --hash=sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706 \ - --hash=sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5 \ - --hash=sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4 \ - --hash=sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6 \ - --hash=sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463 \ - --hash=sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a \ - --hash=sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f \ - --hash=sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e \ - --hash=sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e \ - --hash=sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694 \ - --hash=sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8 \ - --hash=sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64 \ - --hash=sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d \ - --hash=sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc \ - --hash=sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254 \ - --hash=sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2 \ - --hash=sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1 \ - --hash=sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810 \ - --hash=sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9 -numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b \ - --hash=sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818 \ - --hash=sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20 \ - --hash=sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0 \ - --hash=sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010 \ - --hash=sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a \ - --hash=sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea \ - --hash=sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c \ - --hash=sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71 \ - --hash=sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110 \ - --hash=sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be \ - --hash=sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a \ - --hash=sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a \ - --hash=sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5 \ - --hash=sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed \ - --hash=sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd \ - --hash=sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c \ - --hash=sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e \ - --hash=sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0 \ - --hash=sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c \ - --hash=sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a \ - --hash=sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b \ - --hash=sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0 \ - --hash=sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6 \ - --hash=sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2 \ - --hash=sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a \ - --hash=sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30 \ - --hash=sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218 \ - --hash=sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5 \ - --hash=sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07 \ - --hash=sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2 \ - --hash=sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4 \ - --hash=sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764 \ - --hash=sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef \ - --hash=sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3 \ - --hash=sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f -nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906 \ - --hash=sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728 -nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4 \ - --hash=sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e -nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed \ - --hash=sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2 -nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40 \ - --hash=sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344 -nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9 -nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56 \ - --hash=sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253 -nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a \ - --hash=sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0 -nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5 \ - --hash=sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd -nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a \ - --hash=sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c -nvidia-nccl-cu12==2.19.3 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:a9734707a2c96443331c1e48c717024aa6678a0e2a4cb66b2c364d18cee6b48d -nvidia-nvjitlink-cu12==12.3.101 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1 \ - --hash=sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c -nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82 \ - --hash=sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5 -opacus==0.14.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4beb4519c86b4b8aec740cbe5ad97a12f0fb325044a8b2caeb74ce573a353276 \ - --hash=sha256:851f4bb01b285dba1a38c06f7f146031e1b8fbe0bfa1129624beba8f1f6e77d3 -opendp==0.6.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:d15e66ef0c0d86b35548bcc176a593bc645f8208ba594ce7c24afa38ba5045aa -pac-synth==0.0.6 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:119183b8d81140d68591a9321d668508990d7090fe8c362b2ed7e340b73b8b36 \ - --hash=sha256:2d25cbdf5d0f3a446a2ccb666eac551688bfcbb03a602222d132bd089d16f7d8 \ - --hash=sha256:3a847e2acd966c30d923827e2769c68eba86dd4f98de1238be79454038a7fbc3 \ - --hash=sha256:fd40fb750bc2651d813ac6e6af4f262d470c3e811664b36b11ca7cd1b6113fce -packaging==23.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5 \ - --hash=sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7 -pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682 \ - --hash=sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc \ - --hash=sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b \ - --hash=sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089 \ - --hash=sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5 \ - --hash=sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26 \ - --hash=sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210 \ - --hash=sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b \ - --hash=sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641 \ - --hash=sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd \ - --hash=sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78 \ - --hash=sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b \ - --hash=sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e \ - --hash=sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061 \ - --hash=sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0 \ - --hash=sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e \ - --hash=sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8 \ - --hash=sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d \ - --hash=sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0 \ - --hash=sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c \ - --hash=sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183 \ - --hash=sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df \ - --hash=sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8 \ - --hash=sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f \ - --hash=sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02 -pandas==2.2.1 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:04f6ec3baec203c13e3f8b139fb0f9f86cd8c0b94603ae3ae8ce9a422e9f5bee \ - --hash=sha256:06cf591dbaefb6da9de8472535b185cba556d0ce2e6ed28e21d919704fef1a9e \ - --hash=sha256:0ab90f87093c13f3e8fa45b48ba9f39181046e8f3317d3aadb2fffbb1b978572 \ - --hash=sha256:0f573ab277252ed9aaf38240f3b54cfc90fff8e5cab70411ee1d03f5d51f3944 \ - --hash=sha256:101d0eb9c5361aa0146f500773395a03839a5e6ecde4d4b6ced88b7e5a1a6403 \ - --hash=sha256:11940e9e3056576ac3244baef2fedade891977bcc1cb7e5cc8f8cc7d603edc89 \ - --hash=sha256:1ba21b1d5c0e43416218db63037dbe1a01fc101dc6e6024bcad08123e48004ab \ - --hash=sha256:4aa1d8707812a658debf03824016bf5ea0d516afdea29b7dc14cf687bc4d4ec6 \ - --hash=sha256:4acf681325ee1c7f950d058b05a820441075b0dd9a2adf5c4835b9bc056bf4fb \ - --hash=sha256:53680dc9b2519cbf609c62db3ed7c0b499077c7fefda564e330286e619ff0dd9 \ - --hash=sha256:739cc70eaf17d57608639e74d63387b0d8594ce02f69e7a0b046f117974b3019 \ - --hash=sha256:76f27a809cda87e07f192f001d11adc2b930e93a2b0c4a236fde5429527423be \ - --hash=sha256:7d2ed41c319c9fb4fd454fe25372028dfa417aacb9790f68171b2e3f06eae8cd \ - --hash=sha256:88ecb5c01bb9ca927ebc4098136038519aa5d66b44671861ffab754cae75102c \ - --hash=sha256:8df8612be9cd1c7797c93e1c5df861b2ddda0b48b08f2c3eaa0702cf88fb5f88 \ - --hash=sha256:94e714a1cca63e4f5939cdce5f29ba8d415d85166be3441165edd427dc9f6bc0 \ - --hash=sha256:9bd8a40f47080825af4317d0340c656744f2bfdb6819f818e6ba3cd24c0e1397 \ - --hash=sha256:9d1265545f579edf3f8f0cb6f89f234f5e44ba725a34d86535b1a1d38decbccc \ - --hash=sha256:a935a90a76c44fe170d01e90a3594beef9e9a6220021acfb26053d01426f7dc2 \ - --hash=sha256:af5d3c00557d657c8773ef9ee702c61dd13b9d7426794c9dfeb1dc4a0bf0ebc7 \ - --hash=sha256:c2ce852e1cf2509a69e98358e8458775f89599566ac3775e70419b98615f4b06 \ - --hash=sha256:c38ce92cb22a4bea4e3929429aa1067a454dcc9c335799af93ba9be21b6beb51 \ - --hash=sha256:c391f594aae2fd9f679d419e9a4d5ba4bce5bb13f6a989195656e7dc4b95c8f0 \ - --hash=sha256:c70e00c2d894cb230e5c15e4b1e1e6b2b478e09cf27cc593a11ef955b9ecc81a \ - --hash=sha256:df0c37ebd19e11d089ceba66eba59a168242fc6b7155cba4ffffa6eccdfb8f16 \ - --hash=sha256:e97fbb5387c69209f134893abc788a6486dbf2f9e511070ca05eed4b930b1b02 \ - --hash=sha256:f02a3a6c83df4026e55b63c1f06476c9aa3ed6af3d89b4f04ea656ccdaaaa359 \ - --hash=sha256:f821213d48f4ab353d20ebc24e4faf94ba40d76680642fb7ce2ea31a3ad94f9b \ - --hash=sha256:f9d3558d263073ed95e46f4650becff0c5e1ffe0fc3a015de3c79283dfbdb3df -pandasql==0.7.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1eb248869086435a7d85281ebd9fe525d69d9d954a0dceb854f71a8d0fd8de69 -parso==0.8.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0 \ - --hash=sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75 -pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.11" and sys_platform != "win32" \ - --hash=sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523 \ - --hash=sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f -pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca \ - --hash=sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56 -pillow==10.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0304004f8067386b477d20a518b50f3fa658a28d44e4116970abfcd94fac34a8 \ - --hash=sha256:0689b5a8c5288bc0504d9fcee48f61a6a586b9b98514d7d29b840143d6734f39 \ - --hash=sha256:0eae2073305f451d8ecacb5474997c08569fb4eb4ac231ffa4ad7d342fdc25ac \ - --hash=sha256:0fb3e7fc88a14eacd303e90481ad983fd5b69c761e9e6ef94c983f91025da869 \ - --hash=sha256:11fa2e5984b949b0dd6d7a94d967743d87c577ff0b83392f17cb3990d0d2fd6e \ - --hash=sha256:127cee571038f252a552760076407f9cff79761c3d436a12af6000cd182a9d04 \ - --hash=sha256:154e939c5f0053a383de4fd3d3da48d9427a7e985f58af8e94d0b3c9fcfcf4f9 \ - --hash=sha256:15587643b9e5eb26c48e49a7b33659790d28f190fc514a322d55da2fb5c2950e \ - --hash=sha256:170aeb00224ab3dc54230c797f8404507240dd868cf52066f66a41b33169bdbe \ - --hash=sha256:1b5e1b74d1bd1b78bc3477528919414874748dd363e6272efd5abf7654e68bef \ - --hash=sha256:1da3b2703afd040cf65ec97efea81cfba59cdbed9c11d8efc5ab09df9509fc56 \ - --hash=sha256:1e23412b5c41e58cec602f1135c57dfcf15482013ce6e5f093a86db69646a5aa \ - --hash=sha256:2247178effb34a77c11c0e8ac355c7a741ceca0a732b27bf11e747bbc950722f \ - --hash=sha256:257d8788df5ca62c980314053197f4d46eefedf4e6175bc9412f14412ec4ea2f \ - --hash=sha256:3031709084b6e7852d00479fd1d310b07d0ba82765f973b543c8af5061cf990e \ - --hash=sha256:322209c642aabdd6207517e9739c704dc9f9db943015535783239022002f054a \ - --hash=sha256:322bdf3c9b556e9ffb18f93462e5f749d3444ce081290352c6070d014c93feb2 \ - --hash=sha256:33870dc4653c5017bf4c8873e5488d8f8d5f8935e2f1fb9a2208c47cdd66efd2 \ - --hash=sha256:35bb52c37f256f662abdfa49d2dfa6ce5d93281d323a9af377a120e89a9eafb5 \ - --hash=sha256:3c31822339516fb3c82d03f30e22b1d038da87ef27b6a78c9549888f8ceda39a \ - --hash=sha256:3eedd52442c0a5ff4f887fab0c1c0bb164d8635b32c894bc1faf4c618dd89df2 \ - --hash=sha256:3ff074fc97dd4e80543a3e91f69d58889baf2002b6be64347ea8cf5533188213 \ - --hash=sha256:47c0995fc4e7f79b5cfcab1fc437ff2890b770440f7696a3ba065ee0fd496563 \ - --hash=sha256:49d9ba1ed0ef3e061088cd1e7538a0759aab559e2e0a80a36f9fd9d8c0c21591 \ - --hash=sha256:51f1a1bffc50e2e9492e87d8e09a17c5eea8409cda8d3f277eb6edc82813c17c \ - --hash=sha256:52a50aa3fb3acb9cf7213573ef55d31d6eca37f5709c69e6858fe3bc04a5c2a2 \ - --hash=sha256:54f1852cd531aa981bc0965b7d609f5f6cc8ce8c41b1139f6ed6b3c54ab82bfb \ - --hash=sha256:609448742444d9290fd687940ac0b57fb35e6fd92bdb65386e08e99af60bf757 \ - --hash=sha256:69ffdd6120a4737710a9eee73e1d2e37db89b620f702754b8f6e62594471dee0 \ - --hash=sha256:6fad5ff2f13d69b7e74ce5b4ecd12cc0ec530fcee76356cac6742785ff71c452 \ - --hash=sha256:7049e301399273a0136ff39b84c3678e314f2158f50f517bc50285fb5ec847ad \ - --hash=sha256:70c61d4c475835a19b3a5aa42492409878bbca7438554a1f89d20d58a7c75c01 \ - --hash=sha256:716d30ed977be8b37d3ef185fecb9e5a1d62d110dfbdcd1e2a122ab46fddb03f \ - --hash=sha256:753cd8f2086b2b80180d9b3010dd4ed147efc167c90d3bf593fe2af21265e5a5 \ - --hash=sha256:773efe0603db30c281521a7c0214cad7836c03b8ccff897beae9b47c0b657d61 \ - --hash=sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e \ - --hash=sha256:7c8f97e8e7a9009bcacbe3766a36175056c12f9a44e6e6f2d5caad06dcfbf03b \ - --hash=sha256:823ef7a27cf86df6597fa0671066c1b596f69eba53efa3d1e1cb8b30f3533068 \ - --hash=sha256:8373c6c251f7ef8bda6675dd6d2b3a0fcc31edf1201266b5cf608b62a37407f9 \ - --hash=sha256:83b2021f2ade7d1ed556bc50a399127d7fb245e725aa0113ebd05cfe88aaf588 \ - --hash=sha256:870ea1ada0899fd0b79643990809323b389d4d1d46c192f97342eeb6ee0b8483 \ - --hash=sha256:8d12251f02d69d8310b046e82572ed486685c38f02176bd08baf216746eb947f \ - --hash=sha256:9c23f307202661071d94b5e384e1e1dc7dfb972a28a2310e4ee16103e66ddb67 \ - --hash=sha256:9d189550615b4948f45252d7f005e53c2040cea1af5b60d6f79491a6e147eef7 \ - --hash=sha256:a086c2af425c5f62a65e12fbf385f7c9fcb8f107d0849dba5839461a129cf311 \ - --hash=sha256:a2b56ba36e05f973d450582fb015594aaa78834fefe8dfb8fcd79b93e64ba4c6 \ - --hash=sha256:aebb6044806f2e16ecc07b2a2637ee1ef67a11840a66752751714a0d924adf72 \ - --hash=sha256:b1b3020d90c2d8e1dae29cf3ce54f8094f7938460fb5ce8bc5c01450b01fbaf6 \ - --hash=sha256:b4b6b1e20608493548b1f32bce8cca185bf0480983890403d3b8753e44077129 \ - --hash=sha256:b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13 \ - --hash=sha256:b792a349405fbc0163190fde0dc7b3fef3c9268292586cf5645598b48e63dc67 \ - --hash=sha256:b7c2286c23cd350b80d2fc9d424fc797575fb16f854b831d16fd47ceec078f2c \ - --hash=sha256:babf5acfede515f176833ed6028754cbcd0d206f7f614ea3447d67c33be12516 \ - --hash=sha256:c365fd1703040de1ec284b176d6af5abe21b427cb3a5ff68e0759e1e313a5e7e \ - --hash=sha256:c4225f5220f46b2fde568c74fca27ae9771536c2e29d7c04f4fb62c83275ac4e \ - --hash=sha256:c570f24be1e468e3f0ce7ef56a89a60f0e05b30a3669a459e419c6eac2c35364 \ - --hash=sha256:c6dafac9e0f2b3c78df97e79af707cdc5ef8e88208d686a4847bab8266870023 \ - --hash=sha256:c8de2789052ed501dd829e9cae8d3dcce7acb4777ea4a479c14521c942d395b1 \ - --hash=sha256:cb28c753fd5eb3dd859b4ee95de66cc62af91bcff5db5f2571d32a520baf1f04 \ - --hash=sha256:cb4c38abeef13c61d6916f264d4845fab99d7b711be96c326b84df9e3e0ff62d \ - --hash=sha256:d1b35bcd6c5543b9cb547dee3150c93008f8dd0f1fef78fc0cd2b141c5baf58a \ - --hash=sha256:d8e6aeb9201e655354b3ad049cb77d19813ad4ece0df1249d3c793de3774f8c7 \ - --hash=sha256:d8ecd059fdaf60c1963c58ceb8997b32e9dc1b911f5da5307aab614f1ce5c2fb \ - --hash=sha256:da2b52b37dad6d9ec64e653637a096905b258d2fc2b984c41ae7d08b938a67e4 \ - --hash=sha256:e87f0b2c78157e12d7686b27d63c070fd65d994e8ddae6f328e0dcf4a0cd007e \ - --hash=sha256:edca80cbfb2b68d7b56930b84a0e45ae1694aeba0541f798e908a49d66b837f1 \ - --hash=sha256:f379abd2f1e3dddb2b61bc67977a6b5a0a3f7485538bcc6f39ec76163891ee48 \ - --hash=sha256:fe4c15f6c9285dc54ce6553a3ce908ed37c8f3825b5a51a15c91442bb955b868 -platformdirs==4.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068 \ - --hash=sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768 -plotly==5.19.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5ea91a56571292ade3e3bc9bf712eba0b95a1fb0a941375d978cc79432e055f4 \ - --hash=sha256:906abcc5f15945765328c5d47edaa884bc99f5985fbc61e8cd4dc361f4ff8f5a -pluggy==1.4.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981 \ - --hash=sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be -prompt-toolkit==3.0.43 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d \ - --hash=sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6 -psutil==5.9.8 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:02615ed8c5ea222323408ceba16c60e99c3f91639b07da6373fb7e6539abc56d \ - --hash=sha256:05806de88103b25903dff19bb6692bd2e714ccf9e668d050d144012055cbca73 \ - --hash=sha256:26bd09967ae00920df88e0352a91cff1a78f8d69b3ecabbfe733610c0af486c8 \ - --hash=sha256:27cc40c3493bb10de1be4b3f07cae4c010ce715290a5be22b98493509c6299e2 \ - --hash=sha256:36f435891adb138ed3c9e58c6af3e2e6ca9ac2f365efe1f9cfef2794e6c93b4e \ - --hash=sha256:50187900d73c1381ba1454cf40308c2bf6f34268518b3f36a9b663ca87e65e36 \ - --hash=sha256:611052c4bc70432ec770d5d54f64206aa7203a101ec273a0cd82418c86503bb7 \ - --hash=sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c \ - --hash=sha256:7d79560ad97af658a0f6adfef8b834b53f64746d45b403f225b85c5c2c140eee \ - --hash=sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421 \ - --hash=sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf \ - --hash=sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81 \ - --hash=sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0 \ - --hash=sha256:bd1184ceb3f87651a67b2708d4c3338e9b10c5df903f2e3776b62303b26cb631 \ - --hash=sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4 \ - --hash=sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8 -ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.11" and sys_platform != "win32" \ - --hash=sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35 \ - --hash=sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220 -pure-eval==0.2.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350 \ - --hash=sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3 -pycparser==2.21 ; python_version >= "3.8" and python_version < "3.11" and implementation_name == "pypy" \ - --hash=sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9 \ - --hash=sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206 -pygments==2.17.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c \ - --hash=sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367 -pyparsing==3.1.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb \ - --hash=sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db -pytest==8.1.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:ee32db7af8de4629a455806befa90559f307424c07b8413ccfc30bf5b221dd7e \ - --hash=sha256:f8fa04ab8f98d185113ae60ea6d79c22f8143b14bc1caeced44a0ab844928323 -python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3 \ - --hash=sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 -pytz==2024.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812 \ - --hash=sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319 -pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d \ - --hash=sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65 \ - --hash=sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e \ - --hash=sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b \ - --hash=sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4 \ - --hash=sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040 \ - --hash=sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a \ - --hash=sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36 \ - --hash=sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8 \ - --hash=sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e \ - --hash=sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802 \ - --hash=sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a \ - --hash=sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407 \ - --hash=sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0 -pyyaml==5.4.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:08682f6b72c722394747bddaf0aa62277e02557c0fd1c42cb853016a38f8dedf \ - --hash=sha256:0f5f5786c0e09baddcd8b4b45f20a7b5d61a7e7e99846e3c799b05c7c53fa696 \ - --hash=sha256:129def1b7c1bf22faffd67b8f3724645203b79d8f4cc81f674654d9902cb4393 \ - --hash=sha256:294db365efa064d00b8d1ef65d8ea2c3426ac366c0c4368d930bf1c5fb497f77 \ - --hash=sha256:3b2b1824fe7112845700f815ff6a489360226a5609b96ec2190a45e62a9fc922 \ - --hash=sha256:3bd0e463264cf257d1ffd2e40223b197271046d09dadf73a0fe82b9c1fc385a5 \ - --hash=sha256:4465124ef1b18d9ace298060f4eccc64b0850899ac4ac53294547536533800c8 \ - --hash=sha256:49d4cdd9065b9b6e206d0595fee27a96b5dd22618e7520c33204a4a3239d5b10 \ - --hash=sha256:4e0583d24c881e14342eaf4ec5fbc97f934b999a6828693a99157fde912540cc \ - --hash=sha256:5accb17103e43963b80e6f837831f38d314a0495500067cb25afab2e8d7a4018 \ - --hash=sha256:607774cbba28732bfa802b54baa7484215f530991055bb562efbed5b2f20a45e \ - --hash=sha256:6c78645d400265a062508ae399b60b8c167bf003db364ecb26dcab2bda048253 \ - --hash=sha256:72a01f726a9c7851ca9bfad6fd09ca4e090a023c00945ea05ba1638c09dc3347 \ - --hash=sha256:74c1485f7707cf707a7aef42ef6322b8f97921bd89be2ab6317fd782c2d53183 \ - --hash=sha256:895f61ef02e8fed38159bb70f7e100e00f471eae2bc838cd0f4ebb21e28f8541 \ - --hash=sha256:8c1be557ee92a20f184922c7b6424e8ab6691788e6d86137c5d93c1a6ec1b8fb \ - --hash=sha256:bb4191dfc9306777bc594117aee052446b3fa88737cd13b7188d0e7aa8162185 \ - --hash=sha256:bfb51918d4ff3d77c1c856a9699f8492c612cde32fd3bcd344af9be34999bfdc \ - --hash=sha256:c20cfa2d49991c8b4147af39859b167664f2ad4561704ee74c1de03318e898db \ - --hash=sha256:cb333c16912324fd5f769fff6bc5de372e9e7a202247b48870bc251ed40239aa \ - --hash=sha256:d2d9808ea7b4af864f35ea216be506ecec180628aced0704e34aca0b040ffe46 \ - --hash=sha256:d483ad4e639292c90170eb6f7783ad19490e7a8defb3e46f97dfe4bacae89122 \ - --hash=sha256:dd5de0646207f053eb0d6c74ae45ba98c3395a571a2891858e87df7c9b9bd51b \ - --hash=sha256:e1d4970ea66be07ae37a3c2e48b5ec63f7ba6804bdddfdbd3cfd954d25a82e63 \ - --hash=sha256:e4fac90784481d221a8e4b1162afa7c47ed953be40d31ab4629ae917510051df \ - --hash=sha256:fa5ae20527d8e831e8230cbffd9f8fe952815b2b7dae6ffec25318803a7528fc \ - --hash=sha256:fd7f6999a8070df521b6384004ef42833b9bd62cfee11a09bda1079b4b704247 \ - --hash=sha256:fdc842473cd33f45ff6bce46aea678a54e3d21f1b61a7750ce3c498eedfe25d6 \ - --hash=sha256:fe69978f3f768926cfa37b867e3843918e012cf83f680806599ddce33c2c68b0 -pyzmq==25.1.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565 \ - --hash=sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b \ - --hash=sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979 \ - --hash=sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1 \ - --hash=sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f \ - --hash=sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d \ - --hash=sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee \ - --hash=sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07 \ - --hash=sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98 \ - --hash=sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886 \ - --hash=sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7 \ - --hash=sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75 \ - --hash=sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220 \ - --hash=sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7 \ - --hash=sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a \ - --hash=sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314 \ - --hash=sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a \ - --hash=sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27 \ - --hash=sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611 \ - --hash=sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6 \ - --hash=sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6 \ - --hash=sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9 \ - --hash=sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561 \ - --hash=sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b \ - --hash=sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755 \ - --hash=sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e \ - --hash=sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc \ - --hash=sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc \ - --hash=sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289 \ - --hash=sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d \ - --hash=sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62 \ - --hash=sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642 \ - --hash=sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3 \ - --hash=sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8 \ - --hash=sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0 \ - --hash=sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4 \ - --hash=sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097 \ - --hash=sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b \ - --hash=sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181 \ - --hash=sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82 \ - --hash=sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68 \ - --hash=sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08 \ - --hash=sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7 \ - --hash=sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003 \ - --hash=sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0 \ - --hash=sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd \ - --hash=sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8 \ - --hash=sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840 \ - --hash=sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8 \ - --hash=sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe \ - --hash=sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438 \ - --hash=sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e \ - --hash=sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d \ - --hash=sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c \ - --hash=sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b \ - --hash=sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49 \ - --hash=sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d \ - --hash=sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae \ - --hash=sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e \ - --hash=sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226 \ - --hash=sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6 \ - --hash=sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b \ - --hash=sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3 \ - --hash=sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882 \ - --hash=sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15 \ - --hash=sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70 \ - --hash=sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d \ - --hash=sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16 \ - --hash=sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05 \ - --hash=sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b \ - --hash=sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737 \ - --hash=sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92 \ - --hash=sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348 \ - --hash=sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41 \ - --hash=sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add \ - --hash=sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b \ - --hash=sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7 \ - --hash=sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d \ - --hash=sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96 \ - --hash=sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e \ - --hash=sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2 \ - --hash=sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde \ - --hash=sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8 \ - --hash=sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4 \ - --hash=sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec \ - --hash=sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df \ - --hash=sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73 \ - --hash=sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088 \ - --hash=sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244 \ - --hash=sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537 \ - --hash=sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6 \ - --hash=sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872 \ - --hash=sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30 -rdt==1.9.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7d06eb704a066a245dcf0544e42d2842447bd675ebefd54378a56aef492eddf5 \ - --hash=sha256:b53418cba74f7ff879a49ffd0729313b085c846c3d52e9cc65736fa68be29273 -requests==2.31.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f \ - --hash=sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1 -s3transfer==0.10.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3cdb40f5cfa6966e812209d0994f2a4709b561c88e90cf00c2696d2df4e56b2e \ - --hash=sha256:d0c8bbf672d5eebbe4e57945e23b972d963f07d82f661cabf678a5c88831595b -scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107 \ - --hash=sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161 \ - --hash=sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c \ - --hash=sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d \ - --hash=sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157 \ - --hash=sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a \ - --hash=sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb \ - --hash=sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c \ - --hash=sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a \ - --hash=sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c \ - --hash=sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5 \ - --hash=sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0 \ - --hash=sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b \ - --hash=sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03 \ - --hash=sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66 \ - --hash=sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9 \ - --hash=sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf \ - --hash=sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028 \ - --hash=sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93 \ - --hash=sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05 \ - --hash=sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073 \ - --hash=sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525 \ - --hash=sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e \ - --hash=sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1 \ - --hash=sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0 \ - --hash=sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433 -scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415 \ - --hash=sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f \ - --hash=sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd \ - --hash=sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f \ - --hash=sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d \ - --hash=sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601 \ - --hash=sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5 \ - --hash=sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88 \ - --hash=sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f \ - --hash=sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e \ - --hash=sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2 \ - --hash=sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353 \ - --hash=sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35 \ - --hash=sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6 \ - --hash=sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea \ - --hash=sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35 \ - --hash=sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1 \ - --hash=sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9 \ - --hash=sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5 \ - --hash=sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019 \ - --hash=sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1 -scipy==1.12.0 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc \ - --hash=sha256:408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08 \ - --hash=sha256:4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3 \ - --hash=sha256:4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd \ - --hash=sha256:5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c \ - --hash=sha256:5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c \ - --hash=sha256:6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490 \ - --hash=sha256:730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371 \ - --hash=sha256:75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2 \ - --hash=sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b \ - --hash=sha256:8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a \ - --hash=sha256:8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba \ - --hash=sha256:913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35 \ - --hash=sha256:95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338 \ - --hash=sha256:9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc \ - --hash=sha256:a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70 \ - --hash=sha256:a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c \ - --hash=sha256:b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e \ - --hash=sha256:bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067 \ - --hash=sha256:c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467 \ - --hash=sha256:e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563 \ - --hash=sha256:e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c \ - --hash=sha256:e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372 \ - --hash=sha256:f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1 \ - --hash=sha256:f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3 -sdmetrics==0.13.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2d277094b1081c637d90d818f23370feba745db8120d2813ede3ec024bc78a07 \ - --hash=sha256:83a483696b034f42e5f1f3d25c4cdbbc48b4d83fa98e0ec7c2c846582b0b94c8 -sdv==1.10.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:54ab6a664efe2ed2e4c05b642a8fc1f549fa5f1c52beba06c6760e350b1ac393 \ - --hash=sha256:9e84a859a7a2adfaeec54dcbd79debc8a78f5f9b2ebfb6da19989d1a99d73e1d -six==1.16.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926 \ - --hash=sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 -smartnoise-sql==0.2.12 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:17e89bbbb8e5c83da42270a2b6a3013b6bc8d279226fc903b89284115c1e6220 \ - --hash=sha256:80cc3f51185528715dba9165fd7d30449bc506313dd4ab8e0f2833f3e59bddc3 -smartnoise-synth==0.3.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:03b46cfca53dc52702a6340089a913c7695172053938dc6e97564a0bd6933054 \ - --hash=sha256:2c662a2a2e660bef1416a144c9535bd1f0b088b7e2c9ae865db9a682bff5dd8f -sqlalchemy==1.4.51 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0525c4905b4b52d8ccc3c203c9d7ab2a80329ffa077d4bacf31aefda7604dc65 \ - --hash=sha256:0535d5b57d014d06ceeaeffd816bb3a6e2dddeb670222570b8c4953e2d2ea678 \ - --hash=sha256:0892e7ac8bc76da499ad3ee8de8da4d7905a3110b952e2a35a940dab1ffa550e \ - --hash=sha256:0d661cff58c91726c601cc0ee626bf167b20cc4d7941c93c5f3ac28dc34ddbea \ - --hash=sha256:1980e6eb6c9be49ea8f89889989127daafc43f0b1b6843d71efab1514973cca0 \ - --hash=sha256:1a09d5bd1a40d76ad90e5570530e082ddc000e1d92de495746f6257dc08f166b \ - --hash=sha256:245c67c88e63f1523e9216cad6ba3107dea2d3ee19adc359597a628afcabfbcb \ - --hash=sha256:2ad16880ccd971ac8e570550fbdef1385e094b022d6fc85ef3ce7df400dddad3 \ - --hash=sha256:2be4e6294c53f2ec8ea36486b56390e3bcaa052bf3a9a47005687ccf376745d1 \ - --hash=sha256:2c55040d8ea65414de7c47f1a23823cd9f3fad0dc93e6b6b728fee81230f817b \ - --hash=sha256:352df882088a55293f621328ec33b6ffca936ad7f23013b22520542e1ab6ad1b \ - --hash=sha256:3823dda635988e6744d4417e13f2e2b5fe76c4bf29dd67e95f98717e1b094cad \ - --hash=sha256:38ef80328e3fee2be0a1abe3fe9445d3a2e52a1282ba342d0dab6edf1fef4707 \ - --hash=sha256:39b02b645632c5fe46b8dd30755682f629ffbb62ff317ecc14c998c21b2896ff \ - --hash=sha256:3b0cd89a7bd03f57ae58263d0f828a072d1b440c8c2949f38f3b446148321171 \ - --hash=sha256:3ec7a0ed9b32afdf337172678a4a0e6419775ba4e649b66f49415615fa47efbd \ - --hash=sha256:3f0ef620ecbab46e81035cf3dedfb412a7da35340500ba470f9ce43a1e6c423b \ - --hash=sha256:50e074aea505f4427151c286955ea025f51752fa42f9939749336672e0674c81 \ - --hash=sha256:55e699466106d09f028ab78d3c2e1f621b5ef2c8694598242259e4515715da7c \ - --hash=sha256:5e180fff133d21a800c4f050733d59340f40d42364fcb9d14f6a67764bdc48d2 \ - --hash=sha256:6cacc0b2dd7d22a918a9642fc89840a5d3cee18a0e1fe41080b1141b23b10916 \ - --hash=sha256:7af40425ac535cbda129d9915edcaa002afe35d84609fd3b9d6a8c46732e02ee \ - --hash=sha256:7d8139ca0b9f93890ab899da678816518af74312bb8cd71fb721436a93a93298 \ - --hash=sha256:7deeae5071930abb3669b5185abb6c33ddfd2398f87660fafdb9e6a5fb0f3f2f \ - --hash=sha256:86a22143a4001f53bf58027b044da1fb10d67b62a785fc1390b5c7f089d9838c \ - --hash=sha256:8ca484ca11c65e05639ffe80f20d45e6be81fbec7683d6c9a15cd421e6e8b340 \ - --hash=sha256:8d1d7d63e5d2f4e92a39ae1e897a5d551720179bb8d1254883e7113d3826d43c \ - --hash=sha256:8e702e7489f39375601c7ea5a0bef207256828a2bc5986c65cb15cd0cf097a87 \ - --hash=sha256:a055ba17f4675aadcda3005df2e28a86feb731fdcc865e1f6b4f209ed1225cba \ - --hash=sha256:a33cb3f095e7d776ec76e79d92d83117438b6153510770fcd57b9c96f9ef623d \ - --hash=sha256:a61184c7289146c8cff06b6b41807c6994c6d437278e72cf00ff7fe1c7a263d1 \ - --hash=sha256:af55cc207865d641a57f7044e98b08b09220da3d1b13a46f26487cc2f898a072 \ - --hash=sha256:b00cf0471888823b7a9f722c6c41eb6985cf34f077edcf62695ac4bed6ec01ee \ - --hash=sha256:b03850c290c765b87102959ea53299dc9addf76ca08a06ea98383348ae205c99 \ - --hash=sha256:b97fd5bb6b7c1a64b7ac0632f7ce389b8ab362e7bd5f60654c2a418496be5d7f \ - --hash=sha256:c37bc677690fd33932182b85d37433845de612962ed080c3e4d92f758d1bd894 \ - --hash=sha256:cecb66492440ae8592797dd705a0cbaa6abe0555f4fa6c5f40b078bd2740fc6b \ - --hash=sha256:d0a83afab5e062abffcdcbcc74f9d3ba37b2385294dd0927ad65fc6ebe04e054 \ - --hash=sha256:d3cf56cc36d42908495760b223ca9c2c0f9f0002b4eddc994b24db5fcb86a9e4 \ - --hash=sha256:e646b19f47d655261b22df9976e572f588185279970efba3d45c377127d35349 \ - --hash=sha256:e7908c2025eb18394e32d65dd02d2e37e17d733cdbe7d78231c2b6d7eb20cdb9 \ - --hash=sha256:e8f2df79a46e130235bc5e1bbef4de0583fb19d481eaa0bffa76e8347ea45ec6 \ - --hash=sha256:eaeeb2464019765bc4340214fca1143081d49972864773f3f1e95dba5c7edc7d \ - --hash=sha256:eb18549b770351b54e1ab5da37d22bc530b8bfe2ee31e22b9ebe650640d2ef12 \ - --hash=sha256:f2e5b6f5cf7c18df66d082604a1d9c7a2d18f7d1dbe9514a2afaccbb51cc4fc3 \ - --hash=sha256:f8cafa6f885a0ff5e39efa9325195217bb47d5929ab0051636610d24aef45ade -stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9 \ - --hash=sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695 -sympy==1.12 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5 \ - --hash=sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8 -tenacity==8.2.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a \ - --hash=sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c -threadpoolctl==3.3.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5dac632b4fa2d43f42130267929af3ba01399ef4bd1882918e92dbc30365d30c \ - --hash=sha256:6155be1f4a39f31a18ea70f94a77e0ccd57dced08122ea61109e7da89883781e -toml==0.10.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b \ - --hash=sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f -tomli==2.0.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc \ - --hash=sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f -torch==2.2.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0952549bcb43448c8d860d5e3e947dd18cbab491b14638e21750cb3090d5ad3e \ - --hash=sha256:0e8bdd4c77ac2584f33ee14c6cd3b12767b4da508ec4eed109520be7212d1069 \ - --hash=sha256:26bd2272ec46fc62dcf7d24b2fb284d44fcb7be9d529ebf336b9860350d674ed \ - --hash=sha256:2d9e7e5ecbb002257cf98fae13003abbd620196c35f85c9e34c2adfb961321ec \ - --hash=sha256:46085e328d9b738c261f470231e987930f4cc9472d9ffb7087c7a1343826ac51 \ - --hash=sha256:5297f13370fdaca05959134b26a06a7f232ae254bf2e11a50eddec62525c9006 \ - --hash=sha256:5c0c83aa7d94569997f1f474595e808072d80b04d34912ce6f1a0e1c24b0c12a \ - --hash=sha256:5f5dee8433798888ca1415055f5e3faf28a3bad660e4c29e1014acd3275ab11a \ - --hash=sha256:6a21bcd7076677c97ca7db7506d683e4e9db137e8420eb4a68fb67c3668232a7 \ - --hash=sha256:6ab3ea2e29d1aac962e905142bbe50943758f55292f1b4fdfb6f4792aae3323e \ - --hash=sha256:77e990af75fb1675490deb374d36e726f84732cd5677d16f19124934b2409ce9 \ - --hash=sha256:79848f46196750367dcdf1d2132b722180b9d889571e14d579ae82d2f50596c5 \ - --hash=sha256:7ee804847be6be0032fbd2d1e6742fea2814c92bebccb177f0d3b8e92b2d2b18 \ - --hash=sha256:84b2fb322ab091039fdfe74e17442ff046b258eb5e513a28093152c5b07325a7 \ - --hash=sha256:8d3bad336dd2c93c6bcb3268e8e9876185bda50ebde325ef211fb565c7d15273 \ - --hash=sha256:8f93ddf3001ecec16568390b507652644a3a103baa72de3ad3b9c530e3277098 \ - --hash=sha256:91a1b598055ba06b2c386415d2e7f6ac818545e94c5def597a74754940188513 \ - --hash=sha256:ada53aebede1c89570e56861b08d12ba4518a1f8b82d467c32665ec4d1f4b3c8 \ - --hash=sha256:b6d78338acabf1fb2e88bf4559d837d30230cf9c3e4337261f4d83200df1fcbe \ - --hash=sha256:be21d4c41ecebed9e99430dac87de1439a8c7882faf23bba7fea3fea7b906ac1 \ - --hash=sha256:c47bc25744c743f3835831a20efdcfd60aeb7c3f9804a213f61e45803d16c2a5 \ - --hash=sha256:d6227060f268894f92c61af0a44c0d8212e19cb98d05c20141c73312d923bc0a \ - --hash=sha256:d86664ec85902967d902e78272e97d1aff1d331f7619d398d3ffab1c9b8e9157 \ - --hash=sha256:ed9e29eb94cd493b36bca9cb0b1fd7f06a0688215ad1e4b3ab4931726e0ec092 \ - --hash=sha256:f1b90ac61f862634039265cd0f746cc9879feee03ff962c803486301b778714b -tornado==6.4 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0 \ - --hash=sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63 \ - --hash=sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263 \ - --hash=sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052 \ - --hash=sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f \ - --hash=sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee \ - --hash=sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78 \ - --hash=sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579 \ - --hash=sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212 \ - --hash=sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e \ - --hash=sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2 -tqdm==4.66.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1ee4f8a893eb9bef51c6e35730cebf234d5d0b6bd112b0271e10ed7c24a02bd9 \ - --hash=sha256:6cd52cdf0fef0e0f543299cfc96fec90d7b8a7e88745f411ec33eb44d5ed3531 -traitlets==5.14.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2e5a030e6eff91737c643231bfcf04a65b0132078dad75e4936700b213652e74 \ - --hash=sha256:8585105b371a04b8316a43d5ce29c098575c2e477850b62b848b964f1444527e -triton==2.2.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version < "3.11" and python_version >= "3.8" \ - --hash=sha256:0af58716e721460a61886668b205963dc4d1e4ac20508cc3f623aef0d70283d5 \ - --hash=sha256:227cc6f357c5efcb357f3867ac2a8e7ecea2298cd4606a8ba1e931d1d5a947df \ - --hash=sha256:a2294514340cfe4e8f4f9e5c66c702744c4a117d25e618bd08469d0bfed1e2e5 \ - --hash=sha256:b8ce26093e539d727e7cf6f6f0d932b1ab0574dc02567e684377630d86723ace \ - --hash=sha256:da58a152bddb62cafa9a857dd2bc1f886dbf9f9c90a2b5da82157cd2b34392b0 \ - --hash=sha256:e8fe46d3ab94a8103e291bd44c741cc294b91d1d81c1a2888254cbf7ff846dab -typing-extensions==4.10.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475 \ - --hash=sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb -tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd \ - --hash=sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252 -urllib3==1.26.18 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:34b97092d7e0a3a8cf7cd10e386f401b3737364026c45e622aa02903dffe0f07 \ - --hash=sha256:f8ecc1bba5667413457c529ab955bf8c67b45db799d159066261719e328580a0 -wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859 \ - --hash=sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5 -wheel==0.42.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:177f9c9b0d45c47873b619f5b650346d632cdc35fb5e4d25058e09c9e581433d \ - --hash=sha256:c45be39f7882c9d34243236f2d63cbd58039e360f85d0913425fbd7ceea617a8 -zipp==3.17.0 ; python_version >= "3.8" and python_version < "3.10" \ - --hash=sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31 \ - --hash=sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0 diff --git a/requirements.txt b/requirements.txt index 5b1001da7b91b609509e7f2a35b419684de27593..e4ff6b2d8963f37b4ae5374150765a814a83e832 100644 GIT binary patch literal 3354 zcmZveOK;m&6ol`(K>tJbg&gbUM}Yvzri-EhT4dE#ptosBv_sNK>>uBDzB9bKRB8xJ zYn}I;IYa&X&mz_7LCX{}-xAO1gzgPY`wNYUrJAUKvS;~sX^i+Ks)_J-)v#;dSC`<0~+-nv6 zcd1HSJ@`yC#UwIOZxXpy>V2Ust-L$+4+4#PUueQAy+jUTr!hf^I>_%Stu=p@R+{C| z_uKXB*_lidAcs` zWUEj4vE|rjbxz;jGLd7&<@#$`mdd?5t9^53_XZZxrL)Y#KFqOE{6>}FNS+@rcd-_J zZMv7OifKpvCbH+XJZCZMCVf{HvawUJ*{O5Td5pZUv><~wRiDBeUozUByZcSZz{1RO zx?<0+2Wvow{jp)ZnFrV49cffXMu?5e#)%R_Wg1Z><&_2wvkk4KEs=6;x z%^SIn>9KG0siUXv)D1qqtV(RGl_U3QepSl(+)r7@G}x~cH5pu`z49I7!Ja39mzi|0 zSayZYeZeF%^>=+=YljQ@=jv?3ecg-Qo0uP-+=WM06vwmurRJ*iFY%7e9KMeYqcUvj zvvz?eNEih=Wgg@BfA69Z>=!<{>RwsC>1kE{Ak+&Fe4q2c{SdZe)TDzv|17X^&5xSA z5ymj_lm36(`}vkGk~4Atojl+Z`kAMNQ_NtrUh^8sm%a0E=>U|x*x}g;6A;_$e)2AhCZLWeWsaqa`B`iFqxM%cZa%mGTVZ03oW#z2 zX%Fgu5w}`2Y#bWt39z$o)RuVo2V%B57TsXB%rJcH$DP_|uPVDhF{=Uno8Nd)A?qkJ zm$|X>jwlLNHpUwOmOKbKPe)y1bAPCF7h1uag)1T#z9_}Hr@3LAtffV<9~D=Lsbt&4 zyLYF2Z_;}`%+;k|bYG~^qw@cn-sOI`Uu%}Jx|-|1*w^|jHS;#Uzm;VX_A8;Xk@t;0-V7QJgJCFd zJFb!2JlD8ce;-U{O+N&JU<5)r8}CZ6*#u7Z$@}o8|J3Z@W(DycylJ!{v*9^7!=AW0 z^98nWb;Tzu<|vrMR))Qi)!VyJHZG?-aRNQF%9mdy)+Me4U8*&4*3--W(&_#0^dWsr zf5h~@-K=OtzG$*9VVh_d!+sm}XiS-bzB~tbeNo?5iGs&8W;KUf_0kDhIMar{`JD-} zf$x;q3WDRd`f?5Pal+xUq2hgdqQ74 z_?xxx0{z>oIts*JAVF<5oa^(u{700yA$Z4|AMCrn2Kq!D$HG(gyik6a$c?S!>p4NO zAju6j(J?)cgU6e)jaqAYVW&T)*fs{N?js{_*c> z?J%6@J)Xm{jqQC7(=g2IxlaAH_v^Uc)4t#9+HCiIp4Yt1^K#$&vNr294eeE5bl=uy zn3uhqrn&F8^*o1m+nQzE`{lg+tZACg@jTXk?uTYryZ-3rt#8_H8=K+yuzmji>Fe<4 z-yX96^Vh$9{{Hco>!+WFAJ-rIKk(`At{aAFwFuMFt;5=M``%vnwlv$a-}5q#cQ+jC zx?Psw*suF&_v7r3cb!8s^{1b4_g?w6&Ewpj>+wA9@#U*G@y9>0AKBjbuwT7pzQ=wX=4;>1 zyF1pw_VL)qvS0J=M!Vr!@2y>0`*XD~*M7RU@`?AmYe&C-t$Ebp7}tKCx_N2Nb{(wU zFZ%U%!96KmPPn*L1^=-H+WL_>P-#S{Em5_4DSb z-P>g!#_JwB|Jpfm%{`5GYZ=yVb1%;0HMzHS8?WJ-rn`LN^XQlUXy)A&oAvIe<@PTg z^Xhg_zc<6yc-z}xL0rE(Y?yBFhKI8~&a?e+{Jeerc76Zz=PzG>**<;zZ;3knkNqF} z%5z080}X-V4Iq0+^%C7-Q;<7=XCe?a;@_+)pxpg`!t+_&2;wnzP4?* zZ}&F$-Rbo&lZfa|pVvCs60X?`I&Qo@7s2{C>%;ABkN#{o&Yop*4Yw=Kw)cJ<`>`JL zH7#QNJ@nnt_@C`~*(&#Lx!rrSmUr5Aofx!D-QM=il`XT}oiKi%RxwXMY~EwjPtAHd zkM`#25RK!ptoP6^V|~%%+OFbuFoY|g_`SenM^7m%F!y=!g%y%mS-cVok?Ax`skEW$LCO0O~S=e#4)B5E)rL0LPZP(^*5>BtVcS7cN8r!v-mO7EO z_q@ssf^gs1Bx|=HR-*N|?X>mFHgwn0C%$-pyX59Z#jgEsrlGl9xV+P@?dEZs4*7Es zugC5dT8^cko3)i!k6mc$j=qr`x6?x}UDux$beuikves|E>$dyY*Si~S^`n{AX&*Pi zblBRXxowEdWumJQo%_3U#jTzFsq^gX$G?{LnD^Ba&FdkyU1#4+V)_aeEUPr;#o5b^vwPQPSi|Xg+ zc-S3c+9dYxP2XEzV5>dnb6#grX>?a|Vcz9AS>|OqZac7_=Q_>x=irofO~1`v>M`!q zA+OE7u%9#E^rF<=<$xSA-?6Q$L+gmn-878HT)(LP^88Z7A})2Oq$x{!HS000jqSAW z_G{m_P=n3hbZ6`Td!y|+_E+Z|mv7(B-aF9IqaX6QgE9zsXFDEk=Rjr)Cl?L9<-YfB zJTG~9YPxG0B#5>?`-9y$US7{VoZe7!HvrqtecQPDw#-d;&&{<;>27^*P8o37&s)rL z^6sv_(=7mYhY$C2hE(mJQ`kQwskITcyW946Pfo+xt=HIP*8*4l>?{H+FBkRqyqSBm zO&d4h1s#n@IUiuLd@UAk`!%)gel4BgH2|fPgTL*wC|*aY;q+3cMB&vxwsyGk|NWHR zy&S?q-<|;D05mun*8d!?(W@VU3=4FYcRD&Lwv!#WHeTs|^vC5C3|BKXejJQEjux+N zoV?pF4Km3t&Nvo8<4a*M+I99MJObp5vxITq{kpZH%sP4{$J#mUV{=ZuL(yHs0irpu z_jX9`cYRDf%33Nd-!Olb`oBC@wX0rC=_ttDX}|A_$2y0xeo@n)RJ-r3Z!N908d|TbfuU!qSf)zJ zHCkUUr|~$~;AP!b>$bBlD5-q=fTxfzM>eR0gi3&ypIPYl_LAy=WxlauYsuYo|Ld9NBuC^XW2iSn&LiZ`EhTovO7N@xaMU|7dw2}*5r~|Wa@fQ z(v5p><2gA=s#pi0QJl?Z((AVLZF~FS&WpfUujvL#c`ZUZMB0q4T1G~O%0*UKFJ*qR@T|L6%I_;@`n^cC=Br(m92XO059;s{&kZS0x+@Xe8PI1LM2MMMp_KO!A z@C9|&0cF0iC5ug@dY$%l*&UOyX}6~7yp`Nlo7d#O$40hY{eW@VTn!MkNOj^{WXnsM zKel*OyF=e((>TAOE;I7W4af&yPM zoSXV>K9NjNCg9@S_sWC4-crldsqs{J*8rXX3E+v5Kq znO!4UtaUnBW?RZ1w-F`deNOUU@DH*R;OjJWi<)&606Iu*>Q*>IKD0KcG&9sE3WQM| z$`(0DUis#!mu5MqMwGX;{4h23+}TvhG>PgOrR`&y#oGb6EBC42hhMx9dD-*K5cvQ> z*_r#YL3UT;s38ekICtvQ0nWai0D#TyzO-$9Q7>}301y{jydAYn8zgY6EhK^ExP(s? znX&}Zlu8cS-lKQkV%KbSj*^*C83SaZiaykZP-3^L>}6!hNb1b0*hx4LIY+U32-rZ% zg2MF9$~%R&1e@VL@qh!EzoXrDuf>5GEQ~yJ_^Bw;2@Kde(SDpS`5Ad>H#aqsUK^FO zz@zdKbkqsz_`UH%bF)OU1CHWQYuZ@NeG2>SSf8knrVe%ALWVG2qo8;C zRKV^~*)}!`Yz3f|c8EvsYFfv>QL=-xs{~X(KEiX8FsHs#)G8ZpTVCm-65nTx8zyE@ z`K~8Q;PP(d>AOWIdR^By{R_Q2? zPmMxgR&~{PdOsM#DyV6(GEmsnxUBV^PtZ=R_9Rd>p05F+=fjmS%!^Ihi-P4vx7L2? zR2*1jeNpa&TuhyW?hkx zcF&#V6hBqws#Zm?xHZdS)3W8IOFUxKTR_>?rF9%9A!Fa|8gEG|8EhBfB+#aHi;6Ym zNxunWr$n6!4%wjSd?9AGb;DXUDHmD`**T6<2d*kms#DxP9Kr@%?(GQ)cy=2hO#X>V z?rVUyi8^o%bR@L2iytp}ZcvGzlk=#2Sd~BGb0ERF0h_|awL|~S02b6Q%6h2>E>Q_j z4wBt)`R#e-X6){?BYfrgghm-_%|UMQfna>IjmnPlqJW{`AVqG9Qx6@?539iu7Usez z2_>_fGT(=lmzRZc#jj);RMgk;lm^ls$LVA*5-AQ(7#1zjc?;gb>ye97|H^y{GNA_B zFGG(qLL*Pqd0)`M{5IKrp+ZEQMfP59p&K*j0cZOmEC6U7XMDpJPR;6J zZ3b&7Goe*H%i#FS4>Y|tm4yPKd{M_aHxe^BLz1^2ReP}MDw2+b9fhmQ!aAwg(5AAW zihYq&Z0G)R49km(4+jO#o1!2@(LzUG`wm;n_T!CC2HxReM@`x~s5&=b-1u47Jg!Uq z_VGodgO}W)G+7S(Hat#|7#{L%qBEglZ@cUe2}V@cIpc1c`54EQ*izr=-cQ3tU%}gg zjKa$5b$KbYguK8_@}$SCGYqLd8L;Mt54GruA-q{=yXvu zAf4>0x>E1$i`S@-lFy@Hx^cA&>l-w+b+I{qh zRz2f#v(T(+i=c&%7hu$d6ulesiJi1FumdgN`m*_Nw7b$>{h}Ooo;$T}!sP)p&Zxu* z?#EoYVP_bHl<4E~J(@#4yN#%=2B1id4$)a)yeOXo$t~Qzib;VmESOk+EI3EcW1qKb-vgO;qPvI81 zt%h>Xl7xLjHy=(#9X=gE&3=1~8^`FJI?pKTC+R9_U-T%%lbkytvR1JJ(1TQER6*WJ z4G%e?e%6RJi{*4Y{o5|%t@f03Mlt^M(3+9P%-)JNXkVl}kk7@kpX{ z!iG9gi#$m=)_OZsm7AD_r4xrInRJHGL2U9&x>Z!6_`lB05CsP!VE z1nBl^>=R=tjfaSVmF+AgFHZ@4A$fL!J#|B#p&bzd<_JDi!1{FBIg@Hwnq;q$pYS=i zB8{9!FadMiKAr;NQ3FvcRXMVNtbnyxMA|=l}4+ z338EpB*ABOdx+sy>?IQdeDP)vwAQ>8K>f=L6?gc|891aRs;a2#7*y#nK6@u5+ z`l487IYF(l-^!TKa71jt?*;&!wL9WocuKoV9t8M!tiaWQZbIi?>&(pJ;|**WrVANt zGkPr>^M++SWnaA9D!mBN(kMc1u|~o&`l>yg{=Gi_UAH1D#ajjmM4`7O`Z*^Uy0DNS zGv&eK@KB)TQe5(C09@mW0g@=oErnW)2+;-6T?nS=<@S%_o{&c--Vr^*2Rj^<1c-?f z!4B>TNelpeeNk2uz=!~~33k!#vJxCy{++Fbj4vk2Rzz318-;*Af}C6~o|Sg0_bF$I zO3o`r$575@;WH&@be@TfK-N3munj*Uc_OSSPaQBM2UZ5;E+5~0or_E)g-ihq2btKC z5(?1<_#N6ic!gG(NYcm;2n*?f+++K~pub$ya`7mj+ZcKlt0fO%%VtO{UJjlarDr&u z1JUb6?i3K>Yxl6=mcG8z(3WCdvL;6jfmyW|S)Nw5s7j$}L^8!F3q+!UToMYodX({) zi6UI;NW_FzY+TMMd@;@Ax;|j18nJ;#QhLL_dqq z%H4NL0Kl2Z&%KEh@>3{w@L_#Xs0~-={Diir;UT0>Z2RI~xn>|MnFE@ZGbn1E3=?@p zZJ}IO3D)}*Qy2Z`F?Tm6wgEM0^kz>VCwgbRy0ez{6jw+s9alJ!~eoPqc z_yjsHtW{IBN~rooDMY|v1-C$ouO*Ox`H9U?I?Bx^66pn!0BtT7;UV?C#o`iD5ZCBo zVmQKvz)W~|2Y(Vho`203$QrRJz}6c-5E)<$$R&#nWwxgybS7dV;9n<-Wd zU_y$f9^1_57H}SHO-S1p1)jPPPPl{jy&->(F^2Q(qBkjMY=_>yBuyzYj)XpY1Z#@g zO-^S7DIXuFB;ItAz4{B^nyQ;On#%{he?=TlG-SS#XH=22HM;^)DR`qthPo*6(9$?x zZ-i1b7BgXjFYn42!!KFfKE}G^xy3JUk`Tc(DzsCz=eCZg=>3g6?9}D&v2aI%Q75NN zrEwj=`#9nONM!7-xGJ7P44B$bQdh;5kMAW#TM;I4OG85&L+cC_cXS&-m8`7%UWpmP z3jW*8qD-AO8jOq90mZ8GY>H!%{$npBld3pLIHWCQ8hb38@1kfTaR(18dr?t}giYP^ zQs&Dw-m@$Tl|5iw*&)FY3L=UN#p>qOHWu~>-I#d!u=DK9O0w@!KR)QeW=GGkTCk2# zoqJv`z7a6Kbp)I)sgn{P_B?Ij1hF}77!wW@ zGCmd>Dzd9(#pJ_q()h?a^kFV79vdG4U()b~_h_%;%Y|!h$+TOpECdwKPB$8(;f>ks`cGPU#v5@s* z&}cA2gdKR#SrM=ZWmq!7gCj;kiT6TCt9(Wb!a_&Igu&l07e(q3iXcf$p?Z0w-{Rt7 z0TME)pK>gs@Nh#uT+ItZhK<%t(6^oSa?!KFI@oW5#7r1ed|~xj3os?2@T^IT)x$x1 z6gW_xwUSC&@5_mp>d60Cz&Lc0iKSgGQLb8Y7j_Qg6cxW^2*GiPQZqNoNHWEY09hyM zwy$B2WQX5qIHCXt<~RH>T2eF+PMKumF0(a-7#J0fRY6*1ZVe&94X^d)w?gWMSt)v7 z>V3wkISig$m+`KY#vb{j7BPJ%ewO-RZ7*?o@*_B<&<3oH- zxbnwt8nqVKM)43>OuBdSjF7>lON*r4;vagO6>R;AZ5WyPWBnaTw6qJZ2 zmfSL)!oy+LVv-R-Y`qv`AY^hW8cF3d+rFbBHJumR%-RISN3UHS0`IfFsAFeWt9wFY z0Aa`$Dc<=OKLXRWwLn2|vM&idS@YK%6cp9x%Iy0p&nytYEGkfnf3)!3oMlY{4%VS0nVvpmGFCd30i}*vj zTddX=rHKxIkLT3BV?8`;fVc1Ny zgVTw@(<#gylp^*iI>Y*Ev_MU+J8LL5QL`M05|m0m>Pw9`M!BQ+fe#uzB9rnSDg5Ag z(Tn(~1f@fy=YV4gZo`||d{!tG%T@1Fs6#;@FUT7yNZ`|!L?#dDO#{v#KCdmg2D=h@ z$9ZF(F-79JxmM_TV~bEM>XsMEkZDsOgN{SO(f?N}qf~&wcT)&T?hUQYuH2_9yjAfd z%MeQHR=`ZcvZX{w zCnd{jKSO&gAVii#1b`)Gdax1iL3fPoW_1xt7_)3-Kk^0T&jBNrK>N`}vrxO!jksgd z-`qdE`JoITX(-B>Wf9xBgWYp0rQqKhOt4Paqw*1O0>rZv@&?LHascW_uhN9`BYegx z?H*B(Vbl4<*O2vhefF)k{3wcup6X#l6j?+bVEatq5~@%cN9HOk!m}{VW-k7`ab{=@q7cGRxX=-( zB2+F4#?lZFog^Jvf?Za6kRq{((lfAWONXYak7-Q$w)Dsj0yC1TXckyuJ{de#z!X9u zHm3wU?sYg1%@1E{+aStpb>2s+DhU8Ia)2ZxP)IyV4~R_5-HFT+{ZfR*cmr5#GGK@m z&){g1T76O3A`0VUos5^ndI3=}h=}u8Cx$Ku2LQL zXTAW%>@l*d>ahkGUnP%521Vqg;7iqn3{womD9<2q)yI@?a3iH*^}{-A1Y*s$ThVx^ z@-+UT2qc`mKhcKC9EL%9Im2{R=&KBUyEG5orcEbJo48U+l$a&0+V;9G6%A^6(Q2id zDF}Ea_&Y_&l-5ICID+wnb-2XAax?mrWh-rPEGt-M$sq0y%o~*FM+a!@nsRZVM>qOQ zl!A=#fHXl=h@)?lyQge0f*xCJ; zh^uJ~>JPgIiE<;w+;h8K4jed&rs`18L(o9=i^5jMMg{fDXv_nYH{3FvFiNNO=+KYR zW%A0?UQF1gb3*BSywQ%!7X>(n08!u(X(+>XK}vgdxEc_DV+SaF>^LQf+A)2<>C<#3 zEDe2HiTmr{K5gG(zF7azxdfV6Vj@W!y6kA?h8IB@g5^{7c?A(ToEl}x<1t3y^2K@E zGB=!FZy|`-2$5h~PExED#7nZq;XD;2d!f>isBM`gjbQ!78>8;pS@y)yeK@}V*X{Ff z5Bo=se&OQggC}aIRhsvYtKvit^UzYTZF5YhkgoR*N|4peMw|~uuZ)il+4mogzaO76a-#XM{bP+pGM^9_ zepoj%r8=H;pioA2tYi)9b{O#0y(ly|r{W>vj^HMO3;P;v#>CCOOu(1%9~Rc}3JvCY z(DV{#l22M4X+)@JkrrdZjD{TL(LFxEd%s@C&tLMu<2zaNJ0|<2!n>p>7#AmtcsAyS zR&Eoci_&~O=xEFk16Tm*7u&xe$h0AffnN3VV&CI#5#mHn60*=LD=JZB-t@0(N&q?# z6@)Z?73W5aBvWFjm9XI-?(MJ77^C&aw*NyPmzITBN61OPDZxCM;>LSUTMc(T*rz6d z^oV@K>ddEzM-oc#NL+a3ZVv0l1EXGw#g-yYWq<0Nxdj=82yiF^Cr~I^jgvM(gTo0( zDwL4+!~OBo_36v;*Njl{z`w^9)xJz_;xy6GN*9W*o2R`-zY001&RGx$Ou{Repjc>$VKiVvZtyN zU#M);*6Ap+0I<_A8pLsL$F(({f?CXuLJ4$3Uasz@}3FrF8}$ zkl3hb)%xPmBVIlgUJH+S?Q#DLeyV&55{jZ+Q&i(ZTgHN`86g;Kk@ufA|BMjh5#XJb zcU+$o zbsNx$Ue*-eKvSsN`SPJ`yo$O(JLf|6Az#M`Ycz$JuAf?#_5(2fct0?bll_I#bxfj& zr8yN9q+|qesOoAM6gdSDj1XI(XVtN0BKBK28S4@6Hc(pcQ<(`SL$72+U5q}QAR>9M zW>z^^P8E$n#P5!GP2-jVT`hu0`i(a#*EDm*w1&7z9-fLD%vxO2B z3j-&>IxMq!Zz#?9iY;|ICv@|xM4)cfm%dM2`N{+v-1IVwMMXp2gQI8D7UUlAX+;0( z!e@76ykb%oV+eq@k`;n4GoMNUlvz87lk!Dj0Ej6#-$aZM9 zSXfx|9cjP3Q}si7@$odz zgc#Ib1`-hd<$ZZQEeeek9ONut+={@3v*S0}vX4xtAP?!RQveai;aHMpo%pN{9gONFy74IV zLF_n9KjGR!g)R0Ah9Rxh+0-s)5e+#Smoy?sqO-V!3qD|VvldwD1%Fk)WJr>yMrt{K@roeiYPP@@ z&1}R7narr_H)JfJ2QH{m)HXCNvLLPxx2GxrVD+&uyZDi8%`Z3?kR#{B(?|uofB*}jue9n?T51_%?~=! z$m5|Z!fLAKW8_e5b65JK7(JxIo4YO!Xi7mEyvSsEImmitO`7qH6wM$P2o2#G+g=(t z!lJ6HHuaQRu%>xHEtou@f5osXIAyfpKs#|lbdy`jO+bpjkBr^#n6A_R55z@%t6!8& zZ6or4c_2Sp=;ab{gXkBVEXUNorJke5On2i!6`{!bh79m83$o>llGuPl)rYoqGb*Eh zsF}iVHczOd%d!vlEXfPX*0uaZEgTWDIJpz_;8qj{35=8pfjTfQKpB6 zsmmoleE6?lw_kt$$B+N*;kxGE(J=MO3@%8aTYne^jfepz_54OE1)ssm9VPuKN zy{^xnuJ55jn*Ze#=YRL>|LBYRWjlWU`1yJo4z_0e<=UJufK9oe7fHM zz&|h3U;ecVY`=(&?|=P2|6l+6zxLbz^zn1wz5nh1@_+o_e*1s>xBISO2v|64@6mR85FvxYS`+b|741I=-_n_xGJt!wZ1NP<&E1}UTKS1^R@lhg@2Q7z}DU)bX7Rm{w z6Up8$!D~*2#t>7SMOJPy)jrs+&O{|qRLeCrE5X1X&!Y0AqPk7X*K89F1)O*6chkCdsQV#Y~zeD_|Tr_(Y_a zN>a+sj0zjMnj`~8fEHq{JR;4fSO@SaB7t@e9fnt69K0l@~Y}P zO^MIQrI}O$NQaGVhA>&MASs6=ZgoX&5L#gtc3hP|V!uP<(dyby%}M{~%Zjl9=80^_ ze&+RPWC$N<(2L{9X6uxBGqN#|oR$m#1L0cUDVmU(K)ad;=Z?$lb}$^Dis*-ou0*9u<(G5My7588su}rX)>2#(}~sB7YDy97Qov znB?Pi)y0qbDAZJN36f9jV~9uvW>dz-MSXy?{Yd^DNR?gcnQd>*DXS)9_*$QRu@s!p z9BZRk$HWj=kMq+{f;&k4LEB0WRw`P*;FQVg%6g3vL89fF+Mv%!ADsYkFYqxS4{^sC z?}&^RmiaK_`5{zEAtWQOE`~ykctCA^Q582|m?IyPgiVkkV_uVLlA2((B`5?Yvj|Y2 z_DQQC-OU;HOxV}*q6&KaIa5?z>oGQ{C*VaYdANWKSkL=-Mp`>laW{DE39~@=!K>7z zFN>v!M#P3u9Cw~BxggeXUH=zY zPSHK=P`y_?KSapvJDnx067`)*j*^gqhI?L6GaJr92LPkR0^{0Yl&j*Qh-e2PYx5-r zLtB(=cJoU?seE%|#3o8N69y*Do|RniQKm_$!u6SO%Gw+XIV@vZfi&u?yxH3Dn&sm& z#`&=*IDh{)bDW+paajPAw)qw?tE{q!Pb(ivf$9d-+rjn$DYw38hFVg50axcdB7q)s zPp0;R-nnlTRO(WMh{2431$+m7068t;u&q^ZZHHzy>Y4#1;HfZg1WGLW{Q z@&U>+!rqpTi9)l!-WqYRyi?R6tQ}9dSu1L0s_TooDvIPOK!qSiNY#P*0Ar*$!Rr|YPsI(<7V(S07XhI*w&Nb9s=g>tYHBCP zyGk+xJ)=@^ainKZ4^>9b`$1TyNd71iK#QqSJ%})fK387UUZZ#6d0qN(n~Qi^PtE;c@5cXCsYG4@1za z+Zb=su_IUyeu_yO<()uG+258B=T%1C4t@9gj9M=IOYW59?;L%&WR1Af||85WonqE zw>ZwfB8McSSm7;p65@d)_B`L7;nyZuJ;MM&KXF_Lc8st3q9kboOoSOXi+g0{?KG%E zSFz2}AEav~M)(HMU$cp&w50&f^hn)xlyXrS+TREhr-n-VeArlGF(nng*Wt^sYQIY< zA(Dg?Hb#lt51_1=6Kz15_{w#8zy;Dv{r2^&=#LAd z4yW0Bw0}UrzAImpA8*H`@m6t<)|Vua9b`=OP-aU zBGCAuzA}|Tc;({@woe?rFqIujkn`4IG$w5vIr#fh@}T{=Oewu)95Ba+ zenGIRq%(@+mI2aj=HoURtT6wepongL0=iuIth1?o?|{VhPs(DGL7#X`IoK-OOzzrm zkWKhmqXtk!xY&}=Y4w)fv$dIOOp<0>yBA)AB2~fVI|)dTX*Av9iZU8ivCL2foD1bTv`C{6pbaERabeqF z38IP~C>T1uKYaY<*DqhcfBLxp+1CNl0N*|Lj9mRaHnW%MThu8@md|xdFQyLReDyCM zX!0h_x~H)*+pvtLRaXc}KLIro9#nroEp>cTWhyR&AZ!hu0sALcs=U-h0-wF4`j8n# zsC*^NxC%BWb|%0yyzlD-$Hi|pnLGA-KF{{@;*Io%&7hmQs@L6CzBLv_Dh>hkYFqE-s&}xBFNZI;< z$++E26!8zyN0SactzSO;!^hA6uyv1}@PEmn|BG)#{;S`C%={~08`hMYbnGhqGS?I{ z$0Na<2K`Dgf|6E2a+VS^%^gooFND5)eJ|red65J`d0#k5Z>KsigaS5|td`ycd;sUM zpNQg83)(sQ-uan?;Sc}t%k}No?fcKaefRSBZ0k3TL|;3N)TD!FYFviGXAm1%j%I-u zG@Q#?q|*(8i>1&zNc5$?$!^SB<$>n!AXQ`LEoSNf&lf~$FbJNW<%JhXZV^5}Ot?}( zpS_~>2S>;bcYXMWFT2zHd|mN(ZRNM8T{F@^qNB=3c?~&}Pw^;pAz?lH-X}PSqF1@J2fOo=-mI}E2RJs4Ci zuzmRJ$A9|x?aL?MFwGPDfaV{lfk6&%24+YMX0IUlvb5w@AH2q{D#=JEOhuFf;;GxC zXX%fksq2fEAc>(abfq1tR;7MPg z3LA<-EIObE_K7uf0~8mEQFN$*60y2yMZjRx7mbMpGHsMQDWB=X>M2(81*|lzAw+F4 z1hvmRD)U}YIZ-5@RTs`DZE+DA9!;aU&$@~}** z__!=;h7+w!R~DBzgz3ciF1bRyWNOMsJ47V?8ghq6RSeN0jB%h9S_S7q9ald-zD|p` zr+oU;(*QN%MfvXHL=Ni@N^`iYC(tqYE=8Yg|7aU&9V{;@5188|OJ#Ib%!jU`O(#S3 zXGM34kJ@+R18?FjJx73L!}_RF-a1mS{DtIA%T*v zPz!NptXdQ!FA^76-zmEpcx5ArXF@!zN-53c8$&(0h+^;M^?J++_NCazxu4b-yhR)< z^+iD(u|&Q^l;+!xvKXyFi-m2@b>|}-iJ=F^KE$qD20IzKy==|Q8FU)R5vO}5OCaSk0I$ANJUd!ncaSqxGtK4_(1&aixc05JA$F|?eJ_2X+u5+m3NGIqiCiphb zL_~ZwaO@6XaAd4VuG$C7UmhR7t2zO*Q$2vuhyhY#MuWO>!pCFgQmAQ6#)HLyj-ACd zb83qRHLjC;3~3Rj5!n&-L}T69Mx~-6!alR*`Y+gy(Kifq`hOh^vD?TE)5_|{r`~3! zs4g)G7z8AWfklxIY%S!UMC3bp%zR1naq7rls3oMYFA=WZ@}~0H-^WAalb@rk{d zfT<4BUVOT2(yt|b%9%`kl2Gz9-as6cRwN@IoFuygJmv{z3K`;7%(mOg$Jdx)UqT4x zC8&aE%?dVs0&u>WLEt=%SM?t7Lp{dJ=A*LgWi&>@;)_?5HCKGdx0Ev22pt4{vIoeh zULZk+AJ=juFGS}`Qv)v6WQ@P}SyRUr7A|RIFA#H;x`7A}f zrf4EJl0mF$W~8$S7!NEMfyQ(JKuU^}n`|{H3Kgcf%IEImU3~F0kNR8`XX#eQSvda) zOt$iTR}6dM|6(O!w_(4@_zy3L`shz1QT4yRh&y&RXe1Wvj>1>_%U&}@#PbC&3j|21 zIPOgoL5_GN`;*f1u=mE*)sG*0h2j~ERfVdsxbi%kW@@Jw+mH|0V!54PO(SupdP%7$8Z|o6-+@)%Oq;y8PR44K#KJGPGKjC zaK0jj7X~Z2tc~|T$fhHPKo`n_gAxZ2AG?%*fy~0F9bw{npQhXFF>HkkVOjC~I9aAD zt@P3yYTr2`kznBsoRG;C60r$MzZnQ!uW7!sSH@u=_Gn(8a80r z3<#5XxlQxsUY2d8Dq{q$2~P*IWXiE=jPYheg#>~0DwS^^%!SEF7_pP-Ik94zsx$!c z9@rQlDq%Bj9=SEXdk)~RMEdTSk2tJfE^1HfPM|Kc)`&w|+Z3ga0p8z_V@6?W;&3pV zNTAJ}1f_sX6@~%`sxRuzXz9qv!F*UeJ{Zcq(n}gP74$K&LF%H4ch5~7ywvANWE7CR zn!zG!c2yws^`L_GxarDV~5gPx&%0{$A$GkK`IsF_I2309UCM}CKqG9pg2R|AWMWOvi+ z4eBNL(lON>-n<_VtT7cz1NB9z|B1qU5hn5QEdoIn)#3#O8(gLA;k8qTAX2y~bEbSE z;~CDzwNOVXzCdkTpc7!94tIT=J|2q4P)-VdDaQevG>*yC)`mW9C+i$h|0d(qcdCw1 zE$b}Fp9`0+!U@~xvy-hX1)ZcH#CDYdF-_@8gsJ;!%V(WHpBJlyV6{yMgvj2yZ{_q zN?9NM*z!Q{xS;fBYOqkEj`fLpD9KD726^P5Oq+Ed2o3$~6mrpB4+d5exOQTLBH|~d zT>!Hdqt2$>8~E zpD*8t$V3x=(}srqq&fUlvZbhM0Exnxumjz2CouCO%QF_iHqm$><7Aj*xu)0`W*EhT zi)UcIYBEV0*afQLNh1mZ{WAX{-^bA}Cu1w;R1s={7vo{Do!-oR5S~qQmm-NW9tJ%!qFS_Evg^9%h8hVSon6PzlvkH*Nv-)LXwTz=77lxrgCQ zK_!`6KY|J6IG=U_)#B_R!AF$Ngj1tvH3y&;`O3>Rb+V)LsP=3SC{LN_O{7Xf{IZHN z`51lYc&UoL$&3fGT6D_{Mia*Bi*hrfL#g}f2Rl^%o$zDbSYt6CX;OIjtN3P%S(1s@cxj*jmF zBF-3pgc*}6p^8ZEivF$6`(Qj;hH1qO!)jzG`8ph(L#{e8CPhPnripyI*6lk@W|GrJ zNESl%OJ5L5$3Q6O1nnsD%J$R*r8Kz^Q68WnsAl%8Ily4R zQcTRB;oHmR@DJF6E|>46$&lhjlr%M3xurxX;LWNkKhcH`s)Up#?X*SPt{91Qb$EZ| zMCLaeo+(i?K9xn)QOg``N~DN5=}i{%)K=Awgw|lcr)yt?74pyvp}mwSNG6F3DPoYN zw^80HT35l1HqTvV9*I)qf%|!WwXS!e5kC%A^cIAv#0M%kMeaNfv)!qr*a$N8kUcye><~h( zNlC?$z0~{E*G$DX7}a+~6#7POI8F>wnSL0xOiC4667^A5`gvGB0bmVjjP!4GM|gXL z0re6c9xJRMp|e(N1DZ>8_HUUBr6CK2VNw9!3jPFnAq+bb^^1~4o^P8f4by5Jy^+5X z5{os^ovXvx{5(One0-Ei2KW`yiSd_ft?~%GOhOV;8Xk}u4omcHwW=7ek2@1d73yZP zg1Y{III7Rma6Y**qjbs_h1SX^{2Y1yUEq&fMX7_NCp%_N0J9AqhDe7Nf;xSH0LcUU zILpHO%g2$x5PYp;Vs;9sh%JHk73S(Rpv>m9{WWvrq8QdP){ij@;!FdJ4xyJXEz0vY zv!+c)%Hsd#KU(?>8R-vCLL8ZFs4`G-D=%u-H60QQW}fKA)}f!=#o_YTg?lSKet9{q!>f!ouBe z?pSWH*n;WqP@UEQpht%m$z2gC0uW_lo$zS3!^=gfXi8)GScPMLD5eG9iiL1&7<3s3 zxaq~`jN8{=O?g*{30vyMjD)T)3JM02;i3I_>bq$)F(u|}kTD84kWu;xer7oHIgos8 z3Dp`8nmu2axa^hBXa)o!!T~vmjguNd1<4+$#6={l=3s(6Q4ygktf4wLF2>q^X+=f{>aEQMl*rdIZ!b*jr48xIGF1rj(05DvQe zib@CoVBL96l*y4G`0bQfm=ncC21Y|rburG^C}#jycyqcEQ?{ZhS{H0*BN>GRnwSj< zS7b~S`X{55)Ntx+WkwBiwWn*xqBw-7{eQfxM6ab-Vwzu1;=`6_=|P@dEM zO(!552`)~sT_J?Oq&hwdZ$I;CHp?Vf}Q2_-O^~h59BXKQKw< zNDL>qC_JHw$8`mtq`6#61EIX!Qel7`Rh5q2$AtmClQiIC$yeyAZ3dkkS0{%j15#JC&4vcVeeX3dJNauXyNoSdVg0mwZx=^1<*Ft1@ zr;KpgUl|ht4xO*wH8Ae_>M8jp<_g`0%=yj+49a*5kZ2Iua_VurS`}G_1K)#~h{=s%wBt?9C z98Pvq8f#%ke(V_BZ6|`Eq(Wrmb5e-loq%3@KqZ<}RA&(W7KcX1hfhz%n-)I{izN5T zQ$L%YMG4NluM8R0{pU?_5X2L$*OGarT*ij*g{~*1dqp8$H2V!0$|4QF|x_R z$O&Ff<+*>RN>O0Hw0#n7`AX6xYbN{CP5>aVRcRa5Q08A?2g-(bo@zcGH)DQ@usD5D z`^{vUa)Tfusi`w^)+KSdNqW;woW6e^CK{7WZN>3#dZ6@^>9EO1cVG6qlEasP@*RLQ zfkAKi0sw6zGvoxjOv;Lk8DbcZ!zqy-JB2;^2qx_6HT58%eL8zke-C$M%g5{*g)2aZ zO9GQ(nQ@%bw~lKHJswx?^8@O%6h%fgldn^8Pf~FKBbh7)B`xTPDHXF5K;NJUIy&kG zW|w?!6hzm!R=$0onHFNB+GP(wW~h3wRP{o?qAGjq!R0Z|&`wOO=7kavpCQivR2}VX zC`M#>6CJ1{Tl{=JsiE!ymT09RWK1za9w6q8>@~teKv0@lB?-F5WKZQC2Ev{;Y(@}s zTZ&6f)VDr3uf`}iH8OS8eusTB5YL|hi5YobWCz(%1soqes~*#|lNj10##jf(){3Vu zzE+~kL;NR;%i6MlmcSRuky<1Cs?&Y;7ZHYN^2g)&VB3jk zLs4nfs_@{J`*I;pAEzC&(xSqqZr2= zx>p$kf;c|d^h9_t%Aw8J(6Ngrfp|AcKti&L z*2|Wf1Y;>4(Pr<1QZbHcj8H8rvD`r|jygt(qre;D4{Flt3KytCLJUU<@xhRI8}qYq zWL#5nvfO~qu?xrgPBC{taO|53ZzWGu2u^>IBNlTciZhm88JUVf%pVdB=~aJw|dcgeXSy_2=1sgd`iy=r3gwIzrF|?{$+0a|#f?eNkVOlHp$B*I|N& zck>Zqyt~c^P|?0u*qM!E$UZEwN^^r4cbWAC$=2Vak|E?5$Xtj0fbg zc|KhMO7YnM(t4EbX%f7xO2vGcZ;ct%XsN0P_S9_|AETtBj!Hok6R6)as?#BaXV zYFSbGWL_ob3-^|baT-AJL<>hC^LbF$Ob9gGP}>oD!glb6YN4_#$li9FF>|2Si{Q*Z znt`BTJ_44oY(uBtQ6E%D(VSV@tv+{OsZ|1zHWhwglkDUDswc}A<)zz=3{;ulDe4HW zBz>M^)On;u2rqLF@mGj;YfQhyobWSq@Fif^7o|#T_W|Y@ft&(O35L@u81s#wjHLn^ zVk>57&;b)239yc#TYmCL_1llah`>NC#y7nZ%D-hU=hy1?l&yu?E=ogqM|q-$ySF@ z$Q8aJn-x&>a>ISOBq-MDvNEUweFnq|g@!uR$J7^@@wPUgs-1o(VW*~XAdMyEx6<+J ztM-}ooH1z-Rws*>1{gFE3Rg9oRh7Up3Cz#)^j^E59U+E6r+iV^ zCF>qwNtffASmS|g{OUZ|HQD3n{O6%9T{c!(=P23h`47gJ62y1nXi_CJ# z3=IyGz7D6Fz=B2p!W=3~*EHIQGv zTo%`^==`+2r;$6+mBME&6#yBCPE#zm)D!k;c0@G%jVz6%N2}BQLnNFjWcepy1vmqTQe-g-gaf!XtW$M44DR(D`%)?*Z{# z-zgTKN0%(j4h;S3OiE-@fD&6d29TNgRu{uLccc*m@nvLcAi77B;Y&P~knxzT*z8D* zMfnh#q^`9@jpwRFT-#K?4>Sz+uGp zEGsvx8N{JEfHISEA!b+7=1;1|@RE!zAw^Ww%>iMG0jC0_*xJfF^|-ziOaT+C$;A2} zB+87$OCv`jD+V6|>R>XpKEm(81(_SHtGvY*j2J*#U%J7JKm*mhK z>5tY6i!YU_==joYzJf`Ytc$Z85lG7tig)M&?dO_3kk^^QV}sd@DzcdDyvlGeDH7Ch zB8&s_LLyLmWN4e*6jLsGb|NKudY;VXfz%M0d?uI)a0rB>_Mjt_2$n(J!H!oxJ|c__ zB7<_#8pMc9p-S7M6-DjjzcS9zhJq^nQ#If_PtlJuu7UtxUo_v=@PE#{6;((nqWHn` zMLqGJ^OeJdxd-%xPMH=QDK8zCdL|Q2^^3}62HLQPibRIQkJ(-Y=&u5dPFrTxXt|RG zgH>rWG-UrHU6|l>z4_Td6nP=l{Z+U=%!#dwHCIX4rXkc3-a3#7PD)CH@Gz%2elR^u zT|T}uV`2?XI3Lf_FM|5fqD0x^uF0St*8`gL1NjMdEBIp3p=<>f#rt@>sFSaFQl6^4 z01};jkBb^xML=j8Nm$Y- zuQ&*Zbta$M8)>nK`vm%sb8Ni&@fBvV<)}0i;+Zle!h@ADK4o+a4k;j=Z8@_?06C3s zAieqzv{D)248Q;S=}Sg{WF*A=yEwy_`4GBv$rcr`mc z<~PIL%-@vZ^=MFbglX0br7n~v*3qN@V5y(qCfzjXYWZt?xzjL^b_hWrlS26xVipD@ ztObTN!{(`N`m%KbK%g3#*dXZktWfztLQTb_`3mKzCN%}wnMQ6=Y{k9|I#*I)U2Rdt zQbx2>CXsdwVnUts24&P|$jmD?7&1ewXc8V;PJ>ehguypS^SC$_J)$sE(A7-hU=&Ii z2kv{ZKw?`M{djumAL6$UD&R&@2lnF@;9;_1CXv;Y_KYqPteP(!zk zr6V8DkSRK}Fvf36o(h>AS?CW_sKAi8U5p=C7V%D%k2Q9-M`*rMUAC)oI90BR3Qu<( z{R=-V%OhfFd-{ERTyJP6K3nu?fu1Vy1qrUwr5skxW$vd4RxOF=go zwBd*I;PWMVX*h1cL*M|;&{60&f~58Y7=xswyjNP(sSZ7WSyo=AJuV+$SIv2~Vkxy6 zsp0hV8?pm4sKBNIb|#r3s<~E!49mw?TI&xnbj#98<|28%sX@h6Yba5nM6?Tz*CZ%a zkbSBa^{bRf4Ry;{XL>vc6ezeUW!SyE0IDK}Gl^fB|Fmq`p&kSRN{JCnmd_*@&6a-u z`cBi%WmFF}2``2cl7*FTm$^ig@0bFde~V&>Cb*00%Rogjj8#+Oe=)$OxjRx_tT|Xm zX+HBDWHhKM18l%$Vmttl?Dg!0E&gc&VY@gg_i|-{;m8 zi~!Hm02B6&DIp0aOeDpF+E+e)V1_4R`F8ds+iXTTgwX_ul!-Ec)m#Mz4@8;}Dx-2Y zICj)#@2{>#p&Ko^dF|Y@90~~IY?VTx6EGBebU4|QP#PWqiQO9C;c-_tB=8zgOoN%yRgNq;7i z`<*)Ri4V3YI>^%FSJ9i)2B^=*&)_}zl^&y^7+oicVVBi6gbh&=M=kM`kN-@Vm)hN3 zq6ngwjv--az`~P&H|fEZU-R}umx9Bwgi8GMLal4%MN_nD;0cc@vzVi;Hh@6b^7vDo zUHMg|p4wkM7Bxl)Lw3gJL4JK1KB&0ONG)+az?ontvjrQ+b;2r^*v&FQGDM&nALz$R zSYmwiAk&x%8+N7n9D5y*y*WU>nMfH zNB?lGY2}F~C=`$~SYuGQ8L=iaQ$`36nFJ#x&UKB@*w@AEWz!X};FDT%hEs_M6go-z+ z6FE{!#_h56L@}}vIGddQmy5z*fb+bVL6+*?Kob=ogPXzz-zf@esm-U8 zVM(vFyr>hyNo?E(D}z(bVa`h64@2NKfYTe&J*FN@O#hXx$%Jw5bzc8a*=FAif%hF(1&w^VwzAl~)@Uh!SIt7&PUCX6&J{ zf>fP+Li)9CR)?mHLK7;Vk*>~H{8k)%M$a)7V&*UuK)?U}3<^d@P5cd<9hnqdzbIX? zV1sUHXC){Bqz!Q+ucKQaz*=&O_x3L;{N;Vn$f5+|n>}(YeAF@l3fh19UQ53EM8HWlc$CG6>s(*?-~hUHLXc=6 zNNXbI-fTRAllZ_arWAxSUpx%ySp?abUE}JOCY6%fc`{(ivC;7yWXTxl)sRm_Ic8FN z1K0-)>eDY@xSL{}Q{XB!okxxruv6T_*7_Dg2#SoAPyeJ&IVn3gFRqG-5y!T=bRsi8 z+K9z^?C83=pXpBIHp`hM1qFE%eNoxw#6UqYF@%X+*&_9E&p<{4CG1A$BVPg%+4+dI zHiBcyV@Qp&G=~Ad1u@x`NUe-{PT<<>$5+1!vd^>_?dqX3<1Xdr@nUH4q7xX*!>R<* zGUOrD=dmTEXaxxB5DL6ehP_D~FtY`6S%YN0D+xP@#{?&NE7lRV1mcNzNrj>m{&ySX z%blVc1q{=rTrnL%q7TU%5l#Cem1lqgJ|BTk9fB|Qv}ax|?$s**gv+K-YRXqn0p+vz``(q;jGkOhpcUF)>i zdyjx#-YHHzE*~T?fh>kd1(@jpsQB=~PZQwNckCymred%n=L%QhO;Y&R7u72)71GH%EG2oEE)s32kuQoY3_VzL8gLwV8I+(A~rl~O}+_d-G5*uY|X z1}6~{zIVT2JSjjLFq06mNl70<5WDbkqCZAI3CC9Nr&Al;0GNQDIo1U=PA zN8RS#LV6OaHyq;&RZFhojD*z$0Y=EwHon{7%tI7x6eM$DC>g7+$2>6xGyfNA6*!8o zf>^=03vm-J>?{5#%aVzJ8F#15z#I8tz{|_#hc!^!>;-I4(Q5Jc-m!f^ERO$;BpyZB zNzEXU1WCUSLx#1~epIiicYuOaCS=@pkLz5Xb~lngT-s8xyd{*TF=a1@X?wl5Sdshb_p=H+@^I%WRh~U5-9-KnM?$yIxEJdGcI`IYYS45jud%Rg{vai(I( zSL!Ni681fxq_Kk#ZfaH)KF$V%3@Qtl#sfGExI-GLxzbAT7Yi7_Ar~u;Mw(hPL&ct< z1>}>r4{c1;%VDFGHBn0la8wesBV@?M(8te|5ESu&k37o5zH- z5gL4|YfCxF`4pt`b{R#KZe#=M8w4aC07&_Y6X{2y#bEm0MHpf39sn*4!u6ffvWN*L z5hBvUdPFUd9P({niB~R{#$0Q?0;UTaCGL*qFamHUFh8YHwLUHrNS*1h>*x~(4bQDsL z7hIT;8u?fXOF1u>S0m#pVMSt*HFFMG^*Cygg84v{4Qgq}s3Sgs=0KNsYAvyZq8FHf z--#bMu9)BsCJ+9jkRJLIBD07D6h~kF;&lqSnf?88(ey76Fyk!F%sWm80FG1KzV(Y@vQVi=KI*bKtQC?j zjj`nFQ@wKcxPKk%DiI&OaI|93C9%Z>s$8mZA)z2v$uM#7%jMQHK9DXGHzV^q|E zkclEVQ6RxtV6J9R4U(+iJ|tlf1Fbo}IxowmwHd@Frm$9yy1((rN)2@s;hw0X+6K9iX)#aO%OVz5)Fw`*Z~)8AZ@I*FF*BoLQ|kuNWcnWD zDuskd)zN@%%QsV^uH}of!KFlXzRY^_qs!2c5F13u-JG2*vG7Af262OvcktKjT+Fl< zn=TDgz=w%kDyJ^V^Vh%UV-DT$@cr6?V1f>Sq1kaRK@Vpi6W5M@cQ``aNoyO+s?%0e~ z7p%k?M=L*YF`LX8h>jL=!>k3wUOgyImv55U^=T-PUdxMWOyMaAEvYvr)u(jq%nJ?C zrZ5NmK2ntZD#~-wGtMH_&3uugS#|3*C5Bm3z>Z3!W(D6elpquCh=%?**NF6t`36Kn znyQdlW;6?+;cTUPSCRvqTa+|cYWfq?P6amj9H*G>?LQweB`l=nk_Lu)N+&G(f=-o2 zl=AV@0{~scXlaQMaZaDJ=m3Zkpo~M$dBJ?D!7G*po;E-k7GS~8tfKOwAxCH@>W?^G zaH}jHc`VfCmx5vM!}gzubM zj0oZxMBjjl93Oy127G5a<4gF!Bg7AdX_t9H1G_swQDk&@a5w76kncbl?8R)XQx`Jri40RmPcKsz7B(e=RKIxq1b(1F z3l9kf@&oLc(J7E@SK45i`y5%2lEZ4M1xfK&(<1w9oKk^;QPHAFv-Mj*uT8m~X0CV? z1gyx1`OXzch9!J4^3nq$vT;=#Ns^iMUIEU-M3-n%*`%UEj+3T4tBF%#+4DkUv7n~b z$5g^~@b&3MzEp;jn$`K98VfE;`967CnCWGT`E(FOyrCEAVP;j-}#!82$STK@;y2^c{6+v(S*%{K2Z!Z_6!N6My!$e$pi}~N=A6y|jJnwqG zFprN2(KWA9&oH2A`1GLsd`Dea)#{?IU=8mv{K&Wi*G;xqh#7qDT?SZ>M%WVIH9<$ zBFby540(nlisokUl~#V$j&>Z3-M0QuaBO;qW4}i?bYtAP#3>Y;-m0O!DtPZpY*Ze z1|s>#Tu`4%J?AyqYXNG<6*S44of=Urc?y68AWY;FO!@5m z5XTh06?AXynmwB`!m*ib<1G$mfa}&sbmdH`^XCsH{mRwtc|WBk|Z}ZWLn>Q6us% zbpCW^lNd7kA>OMOcF<34O!qpGB*q-TwhesaU;qBUUPDj<|YESdLvRJ z5bte>DMBR&snZ*BSs1{z<|Jypdby~>VLM_Mot}tDT0nKDh=@5j2CSqfi}xVSFcw@S z0IU@hoQk4VeNo+KYCu^wvmN9EC6s-r6t$kj_q1Nf^f3*xgz_XQvM_t1luV$!sy9EA zGp>bLt|rL$vp8>Akknpsrn-ylY5c#5S*O`mXDjE(z8LdPl3 z=4BhHL+mvB&b)n3G)Avj+0unRB-_9OfyklGO02@w}r z=a9bMlb=>Tej4E5cfuYbl;4z+i(5kzp|$PUxQtOf(JD+by$kroO7hUa0X{%t&@#6O*8lE6^#FGCXeMW=s^;nQabH z7Kr1eL&FmyD+5u8IOUomKX|tA)AoHTgG9Qg3qp25CcuPV*@|C{*_f=nt#&Z+vMnGC4fOnoa>hseu^PlJ4HO@%_Ne2R3# z38XGz!FM*}YvGI~Z1MD$YZ_cHZ^rLu<9JM8Rf$I$gND}<4>I3%=VM{}pljF`(XFV} z1};0vH4#CWF?}=SEGmxi$~%=RWQ~9<{!lUs}=$_PycnkpY`GMKYlzv zZht=hwtw2b`A6%6(``nQ^}k7?pSJJ!m#@G4<=fxCeZPMB;isQ|_|yOS@$=vQ`M*05 z|Hp6tvK>Ev{CqvX|If?xmudKao4dE&I*;sX!{_TNj6Sy@l9EU#ajqmlKv7hSu|&z_ zvfJ|2=Xr~kH^3|(5DcQf^CPia`qsCpnwv4k95qT5|I=STdv-DYcYk|kb?~1qQ@=wZ zVDt!Pp)#fXZSaf01|aA$tt&Z1;h+lDkC11HO#saeG8Xwl7oz1v(h>-uEx?slFr-;# z5JnNmOmieV)}_uRFbYLH6bzRm>BS!}?@e#;)A8odFVF@K7XR{w{-0kU_{Gu)St27> z@5;I)-cSi=GieJ9&8ZXtL1N@OH_6Z=PKNdPwF*vtmj_S#L%&VJ+9j z!NU}Kfi#U`h;ZrW;Wl18Nz?iDUtZwt&v(bGulEH48neI0nI))@lt86=7*$zRiM>iQ zWd%ZSY)G|xQf1?pR5qSnxF2JJql!qFp&aYrAr2S`&3kQ~vB=3zxn?+A;hkH2>A>$+ zh=|X)(km>?m+fl>-u-lYy!mkb^}a$rB<{VjH?lcJso4?{6LTvq*`@X|=-*hlSKWB4 zeyhnrc4g+pTc6`AY*Jmw1&}GA#W?>VU)1=c%8^KjF#hVGee~KIJ<3Lf7y-?f9QVbG zKfS`++uz>Z#k238ojxNb{d)GVnhEsLIZgx$(suF^>_S~=_$6vuMq*;JXqTYe z8YI~OD!M^|=moL$Fi9;hlu12;PlIvk2Tg?vbdoPlPv4iyOh2IS@JkvEO{e1QkJoqq z@%_)&cVAxM$+H*FUV4G&U(*Y07)h%c%<;;*TeL<*ezyBwBAhcek%=?<7nGq5AY6g6 zHywld8DkVPlTP;{p3o|2Of5Jv3Z<7r&M zx#}@ZlbBAv_i!pN(4g}!mRm=9AU|V@H!JF{qAAH z<}0btwB)fIuvDnO?hTPZor~vEN2upvB3gUglwu5*4d%uu2!%$dmSFq$MRNP||J-m1 zx&7hGHao4BH*fIuL@6|a(L&e(`WVDa0;Ms-eN!ng<>`LY0Db0k?3dFGHVON#0+qSAZJWR47{=~iJyV7zps&>kH7r! z>YVNHRn_rOa%LfbEuw%%2Rl7kf5)wa>I#@(XEn%6K+ik|PT>WpDM_1~+s1W{uMUnW zu9=iav1k>cg}|toVYx#fuc=pss@~DPA{cQrev+&LGt)Hw%frV{msdaCC#5}k@uV_o zsI5j-o3hRifse@eR11+q3Pra9&WC-mxd`{@eq=s98kM=sv^ktGpEeU%Y)DG?fvK5 z1nbY$cB?XZqI)A=W7lD96_7;s)Sx7+59)`83}M2`ZDm20-(wP>;=NYhy_#* zkEHWLOU|qW?~RH`@)g4QEKJ30ss=EvAwXjQwn`utXdPd`93V6lwy2{~P~(%vJ5{uc z=>k&cyXjt+R~6VmlIu8+=2kPwAP_<#DX6lt09F(HC4Rh^CvW(<(p<17!v#}bQF#ik zS$9AvtzWYfBvN>Kn40dZ!-Tb7c#jZOT;p8xn$A`Fk*jk{06D_c>~cXXdA5d*c8@3u zy3C#-z>*kNcb7)R7$3xG7IQ&Mg=|({z6yE@c|fnv{~}qP))2H0N8kp4({;u!eqN`d zuoS*w)Znf0okEa(7SdYfmrlmmykwVnfY>&vsIzEHF3^RUBf^5FbBXbTtMYE}8}mgK z{KTL14QNPj(lvo()*zfWJ228+{(cJml*L+H;{fF$xS0->25Y>i7T81w4k}?TYD;$o zGDk;|u`#kC%BK1T0APNhmFWc0E&hTJN_e+9SuzHS)=rh|`HX7Ff07K>cnBVx#&i^^ z0_z8kve0HKKkg+R+*`PlgJv;?K<*S)ZwD!pQLxqM7ACtkUWW#nocCgdtLexwV3Qcn&P{9p9QfN&9$fQ?umvPNoB)mN*Z89RVw1;r z3gpa`i=5jWYsG zkPE&FDjI88o@^! zmsb%&Y5w}eQP^8=otTz{k`hS%ppT$b<9J6o){s4t1shR@MlvA}rDUf9(m$QfSSiwm zxtnP{ON%IoFHd6;;AK6Lfe>?-E&|hQI0dz13|%}(^xFKSigx_^b&5IAXc~MND}b0$ zc)>r5-Qu0v%YUVpY!=TZ76*9C=1NK_Z57TJE!7Z05*QX$*uW?_iEju%&80P}0XH$y ztosp}1xeklU&+-Cxwx?aA_J_I72Hu1kYe)~_N1}*3jU%pZeGF2PKme;@sCKe(yTa< z%cRH5N#%7Q@&J<&mzuEtk%qyY0%Eym((vK=6<#Oei8ODP3;~!o808j{Y1GbUyH+w?kOsU(Ht$HN-*5@U+ z5lJQdW*w5m8Fn)dFMivov>28%_3ZQ0Kh+~T|6M)u7=auF5`f09msjgLC|=713v=|i z6z36rHd-8-j1*D+N6^HRLXX;O8<%WtE^$RCR?vj{lBONvl{Ly{hg8gJJH`v->RMXt zygtq6LSD&=G4S(N=OLu#fOksd(W2opG(|WbCOCjX+QdBSjA|B;1bJcspH5~>WPU!E zPFQ@Q7M<(v6qRy=Tw+!+#0HLPGQl-iMrQDn3!E5c;z%jbmOwI%D+pSV5e=1u&7=Cz zmZ3;W>D&%mISr?KbW(vv+)}&f6bM#CTgt1MDwQ;oYcGZ!^9vECz3Bz#X5V3Ly+M*o za^5aQqwv;VYcrXHlgQ>f@qkSq*{RGd0Oi09tD4OwKoQ#wO`Mw%h| zpvqN!(UZ_qvf0*BvNSg_lopU}hkVBif$oYhr&BXHmu>6=eILZTA~{23!ZVscNz7Q5 z1ZUCH$N6Y}OqB*%fb1(%Wodz29Q0e`ol>cFkZ7fml13?q0_yN*DlkFcJ?7CP0Z|Y6 z*LZZxwz+=AB>MMcbJ50dp+ll5%R`edOroI&K8;C`jAfjPXml^g$v}ew&D(|8s!`bv zLZIe5O%Gxbva{)w(i$ACWyAdAE}xM&a_{7Xl~6hc{!=z)H<>#R9_- z%lQ~)3#P+i=Zvgnfj9ws8IF=g5;rh}VJr~G-?=t)4l;^8M%?2>Fyyrq3wu|(8K~SG zA`36jwW}^89+Tc^T);>K{*qrOQ7{q2fA}>GtvSl#tUZ{OoEq(Fey7k6x)0@m`9)tH zN{eAJ`~Z3a@#{=-agjXrpJuc;2)`o6^G6gt>dLD*o+`Ob4Rj)%$ipo{v!&@#`t>=; z7Ugu{rZvfsRK-pnmpKx-oe*K6Y~(!ZHKI-5n>?8Xi+zK$*FCWi^#eX|nw*a7TwI&q zBFP~TR=EJmHtGo#m`sL~rX}*YdKt1Jy^Zy$E>0PvQ{uCvDlr3~s*od@SLAAIJ3BOY0xZ`3pTW?L>lkZI9Fz%!d!>ebdVlS?E#KZ$aac0?JP&8rsEpl%6Ccx zDtJlL8|%;v<5aY!NQ^y&7ke_00Wp_yxf3pVXJsCM3=Hjveezb_DA$12@_46O#F#~9 z5_%6vr8d6xS7o0H)^5t-v_VwPI)Jlk6|JQkp~hv+FkjRJ0r3vH5g*{D47>>KkZiJN z>P5U}wpRw^Fm#UaAU!c&((wnNZ$r>;e=G8Sd>{OI{wUaK=jmYXl!KUtN;Wc=qKLJj zGN`vm4Sk8oQCi?}$=O0MK+kNdgMpe6Q8*ty-MoMQ@n6JMQSMLaBw}E|pkX#_n%-b? z5VaNP#SGLbM>K7s`3y=mYnUddt0Yr0yM zsP!XS(z4BWiU82M10BsQ>n-(fXM!-36Dy4XMA!iPLNk)O+SY=me@jpAo7EtX7p0X1 zh~+F^V^Ue9y`V~gC_}((6nGvikLp-+9C2kD)f9;Yz%0P@_|MtNznL!{TvL5#Pxi zUI(9ghK7`VOaHME=R36t-IYwkWCpmeF&lpX|fc#->e8ZK+g%GVX>3 z<;UovriKL!uwj2#kCV2>ntj1v1= z;O12u^(Q(DokjVWk@KxW-IX?KC~wd>j7!A`8o2?9m}IgF#yhnuEdbH8BO;q10n1Yu z!scLKN_Z8XlF@$1h^*cbdaD)!ur*k=nL}lMB1z`mMy6?x3NGXTlBf-#hN;eM4k%Z1 zBg1B0h*gYFSCP^4Z`3X>3beLG%v6|V^=ePd6oBgl1X3d@3QiUN)gWSeMp$!|pTLrD z`drr4xkwCBnW1igpO#9*lH+`IFdl@eBFwmpS4oD-U;!Bmj`mQ3)<#aRO3iSSVI#oK zb}>{|%R#Q=e`$)r)t!kB99e1zkxX>iHETB?6Qs6(>7$-Gf z{VwboK$8|1kYPnA{?6xYT2?ZIOH0tOkemdWwQ;l{B0T<20SmU&MYZiDRP2=#+GE}t zslJ>)lv)UCMNBP(;N~cUyyG0}U@Jhd=4P!P>m8C3aOO6V-x35H5WU`9EBdS8VvUg9 zh>nnq0FHVh>SiRRGTLU+!~?4ZQSTWyAp7Y%7&c%xw;!~ocDJ%!xh$0tZVDfnaaaQAZtl;J*J`U! zU6dxDBw0JQ1^@->FSOYZBkfE@e4E0V5jskuUSA?>rup&3QDIY*tba3S4u(qn?=oTmVnKw0 zTzBw`(b13zu#9jJ4B$8C(6?G`+tU=WOVQN=y`jlC0>QmuyabKZ4D4q-dX5HJSp;OM+3ZLo`eUI*J(2Bpi0kWFqPLqIz8gNkdsE zdMI6!efc5BHX!CLBS~4)EJ@o1>NBJ`lPD8XL5cH@a-*n7!-(%> z7CBN?JU%`h3Ve+nIM~*Swg&lulva3Fye9GxKbkd!o~FUhpemyoaplOMPBYrvX^^9) z!5Ef#aOH@%kCRrisKtCkChNY7Z{uYs`BUrR%*9kfp-8g%PHpj?ot3AoWKLqCm6!{7 zy2hP84VsFDaZrN}lnYBsCVT=em?w!hf8#{9qA0_UlNfyyq-{%(_ z3}+3jEuvQy4Cl}XB7*`|a0yL#=0skqv<`+?gQqZJgo77^wJ^Q}!jf@xf@r>T1>t;A z?=qKh%FRaReO0^9!dwn>SZ~#GSV+a6v3hKWu!AU()^Ju1wVHPnjMnG2(z)yQ8Gx>U zY*($y3p!Gk5NrUQ$w32K%vozyJ$|Uf1|E-1GtLK=w_UuhCVn|NIa3SBpGG@VKE7rxA+~K!2F0y{NBOg~*vf>kZP%bk;oZLyw~a5bvor5Ca@dHejAa?9?A! zPXG<6S(6$ab}Pi&M2reRp%OjhpprOomP*hcqXocjZTNb_x28VG6CmVLUo1riIG(*J za;*=%QJO+eLy47TQ8#)xosY33MeX>ZbfAoTfw=U>?gK$V*wMIrR*hCC_*89PVah9o z0IG>ij24)tv5L(QWehZksiQuG`aDERS!;TZ6Ma5<;0T2{pPOaJpe*qj%p)k{RPFPU z%KBGrWC%+5)JW+MPNBod54tFDb5qJ8U}}8|2u6Kbzfo}+H`CB;99^2MQNV;1A<nsSn@6@m}!kZIdxeD3m#NF0 z1_2gBd zicBq~qb`8uB<%ss6OWJIxp@xv)4XUu8_R-i!syKkOUI-eFfGal%_BXvB%m{)+V*Od zKpns^Cq7CQ-VvTpj6m3R=`UbJAX)%DoVA%4uT(%TQ;7q)WeDg6 z6%gz}@h1zFv0%p9bTE>lS{%h0z9g~!{K*K;((xLr*h@(sG2{&WsF@HGh+()k7&Im2 z2jEC;YB^B|X`_D>rt*ptT2*}d2ac_p+|8bm()?Y-i>8D5LynB}Fj=-FL7-4D%dg<~ zf7C7tsT$dJdKyik`sTFeJLBjt5qV^ zEWtD+0LVKPJSsi+E0z@A0ktTc&r{)ad3Le>7#DX#0Z36GiOLJA1-|WoTQ4DjOW9$~ z;ZuF76_LV_6pKzehLSc5-NXOtiAgt}^h>KN6|OCCo*HEl9!P+|+Cn{{4^zX8;ssff z{lLIFp^pDIaa#*wt~SH^2xu({3j#2J08j)rJ)ukzwQLutsDfSdAQ8#u@DhNgoT-gF zK~a7FeEGo#erYamE0KD{y4D0J&rzY)H)K&?)6sVl1EdK*E?FaEaNS~U4p@2u34y>R zg&0$y836!mfT0wEijzEkUGML)I`Y|U9=EfU9 z$xNy@OhuQVC05I5x+s#zI~7KxCtfx=XGa4d;ox3KV-W`W@5E+W8-5`2FMk&8yG~XW zlCvNk?~JO@sgO&uEr#xSIBwt$de^*IsFW3YGQ?jkx9Zf;N4`B6K}j8`AV6KsSxc%k z@0$%rA|<2bunpA)P)T`c{K@x!;{}k1bZlXVM?oklF0H-}8lHhVqn{ekq$C{S^|dwl zdRO?IWZ+XE0aR@&;$<0WCvw%GE*6KffZC`;Y&v4tNIwEGRgi{76(PxMPUKafs+xek zb|x=kx(Y_sOeLgfK%sA(WRkZ-5&2hXP;ypOY$%QNx6nDqAzKHwko(KtTMnN*PI9Lp9sMTF(|A!ZM5dtD zB1#5ZoTVE)R8s~)rWrvA$vi1ue0Rz=g=z&$b8Noa=D==`j@uKZY2-lEO~cdi`C2CX zu@qrr%-9Ht(wnF&QBTGMI4T0dfdBKI3bML8!&lzDM$jO$HXx5-=|}>yy@0$i*iMOd zgQ{#)wK-IYrDk(3*}OHQ2kJ^n8Aq#1=%Cb`9dTAlO82HMNMdY~m{*PHWc!n_+Olg1 zZG5M+&W5pYh9U(%I&fDBL}>>YV=r-~X)TT~2nO%PyRiQdA)%GtT*4USk51dP#$}mz zn7|^9PwZlRuSu&7?UfYBL#tsra)yYUQ8WO=A{652=~c2O)L!SJju`6XL}v}y4rGk{ zkT!YWLCL8|NGGIEF;oVE)vNI6Q|#NEmLZttS5~){Jw{tzMb&{vTH^6Ti4L%Bp*_10 zymulsz+98~!U`;?cLzq1UdTn|RJN}smem`TiJK^8QwYVKJKwPa3X@i-&#d%rlA8oU zt^uCu;uaQEhzYd?dNoe2IB6`n2|VC`MV8b*II#ED?1I5OecOQ_&e&YHurU)Am& z-+O>Lf^od>@lomEOeN&j3n$fmX?~Ue5{JV8)VI|QUNGzgvkU^F4rNJ+_@?Wy+s@Ap zch^7ubbWtZLx^X*PM+|AK^eXs84%3Gwo!l(sX=BevTQr`7Eolw0Ko)Q20`xSd}nsX z*YVFAQVU8&N`iZ9G?mImvN5d*F^*&aZjvGxQjzdFw!~vIvZJZ(K%EW{x;{DFpB)*L z+`qlPTcg-UfS>S@Eo0*^G$CHG_S39u;tOdUj7qC#3`?nn<@1+}P3K*6crq_+Y_+UeQ{*M`!ro#RLBeC6Kj!~NCG4>!ke-(O$e z-L|fudbCz4B-x|lDxs;jL~(T&rK3}o^bWzi4v_Y6G11Mh+N7mhVr!LvJqIqAs9^GziSZA8Xvtb8Y_?isF2^dLqOY@DR&dW3 z1@ocqfcCY@A`H0#!c}hq@9~g6putd*JsSpT8ITu_t^?&Mr|}ps>J51gNH2}GKkpYF z7=T_XbUWTdqX}Fm?SN&AW7%8kWz9q2w&qNWS2z2Eu_md!fGxXiTc{DAIDyPxI*~;G zfg}OCBVFwg(NEad9$m~I3TR9Jf@$N!-H@8f+E9RZ;t*toKnbUVhEM|?NW@mjrlo3H zGk8?R^W)2+SPSYTyss&G^fdLYsXNQGc}XT{O<*dOa7Ln&?XfEI4x_9RpYJsBs2m_! zfol6MCk2wLkY!lXHKyf z6Y7HWy$e04qb_*2ZpMO1DRsCiT#Y?7yXqRR#F#|?s`bp7GGR8#1~3l9h47;5Gf8W` z5ns)B>d$LXv0GSAs1L;?e7N_9&-3OKcR8yFCazK)2)zY>i85Ly9msf5Vw7xHR5)-G z24c8HQAC{cQ!r9B79#+y0!Y6I0BIKg2swC$D$%ZHno+c|`lUb!JHv4CoJp1CNdp1U zCpADAWQLA4bz;2qPsj(qF|&l+p^+T#RG;7rn;L=pLcTL0*Ha=>tS@YeHWTipv#vQZ zNftgVi)iVjX4;M!U?6@8X_R7&d90bjg+4Br0r!ckF=hyafhq!TG*2i9A)BW!34tDN zyi*|_zTWJaDYIrx{5=o`i3YJ|nhlZ#zNH8e6ZW8nl_j7-VhrI1ADaIcD@*SiB5*` zns}i!PsA$~I)g7u1w8_h7V=Ha&P@Xn$mM3dsE#xYFy)8|vBnPIG#m;vfTl(eBRT?9 zkhly@Wtnn~=d=bB&N|>}bF#O_#44d9(1%D*+*1GDe42KBtD984(B1B`fSnv7EI4)GE}PUde7m;pU| z-PGpIrfbxdG>ulNix~P6(dQ(S*bZ(5rgKfW8w5%e;psPiYxqf1gxYf2r*#$qcu)Vp zi`72Wx*@#0R)I@uWe$+jwXP1XlV$bB{~&2FxKM)O>EX!}b;y;lQW6E-1#DCE$mpU; zMq$<_t-#5M%$nGg^6hR)Z!(RX`tDU4AO!Ni6WYJVWs1jOP)3(nY-=~Ur_v5W~;g-h}%YQw>nKT8m(#K@k?6;k$BnJR>{LTjRB}4=eb~f-y!%A>!rKX~e{b%!^5DHW2 zFpfmdYO0_C<)eg%jtIIMA0OeZyETMwWDPRk7>hiq`!ma7%G$)PdctPRLJxjHVHIAf znxuIJvCT^g*R8|%*VJPC%gugCUL?)HcS;YLo+uG=M@k^OtRn`zNy(Gzh{>Lfp294m zX1~cfb+L*|ZH{zQ@HQkZK~<-#JZb8*t4GJIB%d5dg<9SF_ehJB6R~4N%5RYxxGP+MdR*^ z$s7V|Fj%JK>r zzrL_kK}J%gjkcMAWL!7^P+(LLtT-SZ>8YAq$6(WOBv}ED3e)1)T;hu5$ipx`sHv?= z)hm4^rZHd#(+3G^to41N3aKcK z0}*2j$i?1=7>EQ+MdWkYUz8t0pwC1@qz(0FGhGuFHsjklND5FQlA!81T6GDq2V1D1 zk+jsmgc%N;qnFm5$f+ht2yirHR3U1YKjqH9nZA33{R3eOx*VGfXx1U(1oexSsNIK{ zacrj|kGNSLwKQ9Zc^*=|ijMZ!1~zx1wH>L+?wCu*_tHt@^OQpHkz_a>f~8(S--GIn z;lLosx+Of#PX+_y2I>^r+>rwoG##BN)#1;Hg#>lk)L)c+@XbYMBh6aIv?humbmHY4 zKdfm2M?b3Q)V*03#}G=pZk z#f8vzN*9O*eva1$@K1xl)rY!MeMC`&Vl_|XN9M*;3jv9gE1O@5QTHNgUd1B<#loKC zfq!_*O3_}F++}6hfe*&WOIbbMDfU-K<=thf=Fxm`u#n28k=pcrW~xD2+8ztuxlnW+ zHT@a{DH{4eUi4hWPwj$Tk+(b*uvd8rCLLIw#calj@qguI|{vNXI= zQEI$XMq>tIRQ&R=#fiGAinq1hK3$(#NRdrs@-5Ls`gypv7#F!M~Mz?=h) zr5{4)R5wc?7@bZO`;Eqw>+`+rATvT}27ThJ2I6eq`+Y_hb83WEof6&)jK^`Y6{ee> z%W)yKn4f@Q^)Q*J|8rQS2&HnfDA)_58*DZzQpV`E`iGr?^3gRAWbQdydyj3JGF^~IY~lO z*=P-!hv_z*Cptm>0m;iLuUV>kuO`r-eu@H9)3CDLd6m|W0X8Ka^c{fPS%;zpscZJe zz`;(!BwI2z&g(>W)`E~OH6@v4*NkK8HS%zza{{_46*4>lISEG$OYL#D4S(+(o~3ND z6@-S4CBaH%2r|A?8(68-@Kv?~@lXkbje*jiTD)pi9lr7ht7Z~U)&xJaU|^bR#~rzc zfuxkR<+Zc$u+;6wZzN>ZuKpW2Q(@*&ai(Btm~1gjWVNLTyyiRAp=06fE%0A1zOrg&0ImiZyWlF*VpZB+P#LJ7#Qx!W(CZ4vH2Iuzx8-xI%D(s17@{i&*-dTa@zO<7yJ?>d-P)G_Z71o5PWi)h$SYXEc zaR27R_3`fJ>cKVl>`AE_Ed*(VWh}ip*&B?h)Zmo@AOrzH*o0FzV;}fh!kt{@fac{- zq*~n27Qz=g8>geDBP(wjw(>)J6=Kb!2EA{>#b(uvfCHsP?3~^Yyl?+rc;cU9Xn+?_ zNlP^)==>J20M-;-qWVx~HWCcq?(ARFa$cKDhr%~B+#Y` zM<_uX9Ie#JxXwV7DwJD?`wy3Q$J>uLeCh8WtT#BUJteyw+Cz%N?oMhX(26QzCZOsU zco4ygg$n+BHr19*=+QD0#K=gH_07qi_Bm`vo2SRsK5`R*{a}ZbQo;KGK9NPC4Yz3y zwJ8QV0OPyS2((FmdF(Hi%V$sOIpRss+cl%vCFE_2-5^S6fLj4b^%9~$0-~Q7S;d9qu{Xj2CkQQFwuLeY6X}YKsjiXb%Nsgeli?;{g z`11YLyXy}$-|Ga2$3T%gn-vhfc#@L89BcyGM_RsmHkS4YV2wV3DyZ4m-XI_(HPtE) zCgmCh!1&1Ckp2~o*pxn{f?*(ksk22oZWAAs{S`3R3q}f(3u!XF4gVSj3?P{=YLOA| zXuEs}OAGi-`*8iY_Ck(FmWpOf|ugLV-;lR89*fFzTZzF4Gv1$!J-?a~TNf zIRRTTt=m)|ktoOdjE|oR#yb`BJQcKEhDqn?rya=lVi^Bo6)t^FiV`HR028 z1RF1^su!M<5GZ&gWo#}5meQ|rzs3ahFui0RXdYSP&qp!_)fN$luQnG|IRePMHxmM4 zz98Z@jYVr4F}V2eGNn&Xlt}W{RGMTB-Zn}siO+qnWJ1l`QG1U@G0Q0G zfo#y|vN-HWV>3TK^br#lHlb?fxJ(#?fFlQQdJVJ#K+@gkmAYc74IrY(?hx5jC7X-7 zA1}wex`l*IGlCx|m$cks@8~>b9KeB`8mkA91^!b=^fZ3htpVO$g&9Jy zuzxULk148;Y&cvjf~s((u$v&3YuKsYWxlAKC{cigOjmTIp8*^2C^ELF?RYm4kT$xI^7(XZ~q3L*NIwoauZNar-coH$5~(M^chOAuR$)TDl)3h z$wHHdzCw-Ud6q35K?57sUE<_gs2V8{6+wgVN1Za>X$)6-LsXVA8x56UAqq)HDR>)C zq~X)GAqceGjTrC^BJlyBtFkZV$B%HKN@$=tg*h3n!o<*ED#TE=4*jEn@hc`iGFQvq zoeDt*VuEaEXOS^HX{g3nTOxZXgaFTZP{9p7wr#FMvvt8X3OHV_0zT^_sK4TVMm@4< zK-GwGuqeuahIG`MOSA)j$iGjBvJTvLe#PWCCVDI=8hWVuT!oQUXhd?klB^V(jX+~? zfJQ{tFn>!z(F&2sG9#>p<}309$fye2*vJx21=A}D6m*RPD`e7|SX6Rf`kN>$SfY$4 z?l)IM^-lCFYRR*6;uD3XPwx;0 z^Nw<)4`{@~6LuBtSvDwQ0TCigLtc;?$xq<|N>kR0u?S!CS5)n*5lQzm;srRB_KmO-;j7Rpiuo1jP(HKerugduL#>rZ>Fv56HN~8v(LKRRP zu>eJ&0J4xXdUpstFA8Bviw|Z5B52Qq-8rC8xxwPRylPnClc>U|09-22+y7`6WDtKF zP3C-rMsrKi+`<8FUildMXaW2@?EnR$97y%ypkj=;Xvqr@o?dVjV$3vQXH{(tT^X#- zIEPepuKG08MqoOi!OJ91BVWS$E7Y2XF$baA!Ep;ak!QfZRy=UdY=%@VUCnoDU`2se znb14|Y87-U2?ksU1!w>}Hxvj1=~yLb2N7rE39(_yf$^f6&jwC)9%i*5^U|4Yj2+UH z!X9O59cm}$5Xq~!^o|w=A&0%tG{)SK(ALXmSwQ z`CmE|`YIit_|0K+yi=zQ04x-;HomZ-dqJ0@wvaExWeNzTw71@DmTZHnGUn@I*iTT_ zu6GjI;e}cftI^l;va%;80z$hm<-q!OAi8>k1&z<9tb{kIh5$)|>TdoRke2a&vPlJ6 zZoC0WtQQoj1Vci#`!v2rXH1!q-G$Epr_`s)-1FDBC2>eNfwYU6YG6MaWOf?vGBTp( zfm9^vZ5vz35;!0O_^QDWu*Y|5F2SVrC4-NUr zs!JpyFsYnXCP2byZlqW}UI%A4IiIgttTzF-oA7q%Ovj6gn}DSR&~_B$kDH24N8<@L zqyg5NK-kR8d8eVvdTiqlX0#MX9mp~_5(en~F?fpnDXPWHXuoW%#x@hJ(0n9`GWgw4 zgd;N)NQ(l4P=Xx~_n$xfCJK5=$VGRRMOg;evJAn8u`hWOdyT|p{|0XJqR5jlJQAiA zEaSx>dI!nD#uo@I)3d>90B<>_iJ6pbN(Z~SQPl<&as181$OGvtq++r#l`iV&^~K?M zeS3Lza|AqGFj0NXsX{y40fwUci2kbeRD{SoY6DoJW$eC8MkzYXyHKYzxMPHei8-VZ zm@a?LjdzL^6gK1Y|QLQ!|3pn5GpS`Wim+Y3b2A-cBN+j__<3~>V zP3eIFS8YLO2y$>$M6&=z=VDY4kQG`f#s~Dd5E7y{0KZ1kSjfrs;rOu`df2-whqXCu_)&_!-Exi@DgHH;Z1~ESBTY78 z0Znu&7=` zAkB_z(A0l{!_F*l)cgVRYmAK?B!tJnAe2uWNkex+yOTU}Pp(&cF>gbes4rIS(?J0}HN8Tk(B zf9H#KOca57#Ivf>jI{wO8%8Fkol-se?y7U}zXXs5#FhcmHY~4X(F~67RK195)a1m- z7(i5w0%O_kD^$pJQ;lG6ym_pLt?j!5Qv^L?FmvLY#V>f#Q|g!Xv2a+Mi=`7OpO+|- zM2OI4W^w5`@|=<|khp!xJUFlCg36oBXiX+@MNw5`1ZP1i1m&axz7n$mS`~>zmk(O;R*LCLxu5k@r&Py-Ixfu&MMogh8KxMITuA#_gUG=9UsabHgQZng?sxQWNE~xVA)h_9DZDdosbRp@=c%iE<^?33U-G?70 z#&BJ~uRmRi(Z!k0kI!i&14Oltj#_I<&Z`~;JZYdnMldbqCRY}4Fi<&I8cAo3G{BF# zp6?VzOnsyBr13KF1(nXrOZ{IJ1>*#65eAa^_~csnJfigJGK$TdAKUn$D&jSVICnjd z*F`d<(rwm7e;%_1<`oTV&FthA!~7RgQ#h)mG+(p>hVoPLM%^yMtvrL)*KnnGOjjl3eyODs^LyO!hY+It?e2k|; z6eU1pH{Pkpjwb^Pg&5OD9w8DM`ur3uTB3kqYmt4DZ&d4@2*-C)T#9FVhlxEE+a2f1b{hCN*IY`E) zECG0>l*6`ej$BG)5cN9lx05@^#~089DUVD&(*%u;YA`jg0tAfgBu^>YjWJZz0#h;h zq!#23CeryCzCIj(eDmS^?_WH7^|S}uWni{S8T9SmPJqi3jzWE1-sFQzu<0RDW5y8_$k2IslqQnZ0wGTwXRv-m( zVILPP1YAq5{!x=}ivZRTnjRQv4%i--hJ9hwfQE+01YL^0O{-;Y++~ajp*~~=kgvrE z4Kfdc0R`1}gck%sJ{*5#D0caOVXdXip=%=c@<62ERFTVvQJ{dq%SIR)YZ9PF zrLLKcY(v{x{zxsUXZ+C87@l95X6#4DM6WK}CrPtVQ403I%y;G z7XRttr@Qy>Z(g6Jm^gj)Op*2P+lVkki{B&36fM-4ph5V%_F8QNJkRz8?$Al8LOaE! zP8X&IqqYr|aAKz+A(J+J=ho8at(EuO3>} z2xvn{!qkR;@M7@HkbFCom25MU8Ud6*9*_WXdD5e)Dj?m;U;n-9TmH?3n8>*}{Ce}r zaqy!3`J(`u-C&-g9DCHOg&t^)dy)>2KnS3caUc(xsF+pMf$tu>P0!?OhrNtT*~}7= oP<*Y0qC5degr*C+(bdM6LAcy~gWR+jSy!g%4e?h|s-zD83&xgD4*&oF From 8b793392aee70a4a8607834b19bd22e1df31d1a5 Mon Sep 17 00:00:00 2001 From: matheme-justyn Date: Fri, 8 Mar 2024 13:54:37 +0800 Subject: [PATCH 15/17] 20240308, reset requirements.txt and related work --- demo/dev/executable_smartnoise.ipynb | 1213 +++++++++- poetry.lock | 3127 -------------------------- pyproject.toml | 18 - requirements-dev.txt | 1444 ------------ requirements.txt | Bin 96931 -> 3354 bytes 5 files changed, 1183 insertions(+), 4619 deletions(-) delete mode 100644 poetry.lock delete mode 100644 requirements-dev.txt diff --git a/demo/dev/executable_smartnoise.ipynb b/demo/dev/executable_smartnoise.ipynb index 16a6b941..aad74b2d 100644 --- a/demo/dev/executable_smartnoise.ipynb +++ b/demo/dev/executable_smartnoise.ipynb @@ -19,25 +19,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "/Users/alex/PETsARD\n" + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\n" ] } ], "source": [ - "%cd /Users/alex/PETsARD" + "# %cd /Users/alex/PETsARD\n", + "\n", + "import os\n", + "import sys\n", + "\n", + "path_petsard = os.path.dirname(os.path.dirname(os.getcwd()))\n", + "print(path_petsard)\n", + "sys.path.append(path_petsard)" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Loader - Benchmarker: file benchmark/adult.csv already exist and match SHA-256.\n", - " PETsARD will ignore download and use local data directly.\n" + "Loader - Benchmarker : Success download the benchmark dataset from https://petsard-benchmark.s3.amazonaws.com/adult-income.csv.\n" ] } ], @@ -50,7 +56,7 @@ "\n", "\n", "load = Loader(\n", - " filepath='benchmark://adult',\n", + " filepath='benchmark://adult-income',\n", " na_values={k: '?' for k in [\n", " 'workclass',\n", " 'occupation',\n", @@ -62,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +77,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -142,7 +148,8 @@ "def issue332_gan(\n", " load: Loader,\n", " synthesizing_method: str,\n", - " scaler_inhibit: bool = False\n", + " scaler_inhibit: bool = False,\n", + " outlier_inhibit: bool = False\n", "):\n", " pp = pprint.PrettyPrinter(depth=2)\n", "\n", @@ -161,6 +168,18 @@ " print(\"Preproc config of Scaler before after as ...\")\n", " pp.pprint(proc_discretizing.get_config()['scaler'])\n", "\n", + " if outlier_inhibit:\n", + " print(\"Preproc config of Outlier before update as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + " proc_discretizing.update_config(\n", + " {'outlier': {\n", + " col: None for col in load.data.columns\n", + " }}\n", + " )\n", + " print(\"Preproc config of Outlier before after as ...\")\n", + " pp.pprint(proc_discretizing.get_config()['scaler'])\n", + "\n", + "\n", " proc_discretizing.fit(\n", " data=load.data,\n", " sequence=[\n", @@ -193,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -201,24 +220,21 @@ "output_type": "stream", "text": [ "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 1 0.0 4 \n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2 0.0 1 0.0 4 \n", "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 3 2 1 0.0 0.0 \n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", "\n", - " hours-per-week native-country income \n", - "0 0.0 25 0 \n", - "Synthesizer (SmartNoise): Fitting aim.\n", - "15\n", - "Initial Sigma 11.056041228448832\n" + " hours-per-week native-country income \n", + "0 0.0 25 0 \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/alex/miniforge3/envs/dev310/lib/python3.10/site-packages/mbi/__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\mbi\\__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", " warnings.warn('MixtureInference disabled, please install jax and jaxlib')\n" ] }, @@ -226,22 +242,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "Synthesizer (SmartNoise): Fitting aim spent 103.6998 sec.\n", - "Synthesizer (SmartNoise): Sampling aim # 558 rows (same as raw) in 0.0282 sec.\n", + "Synthesizer (SmartNoise): Fitting aim.\n", + "15\n", + "Initial Sigma 11.056041228448832\n", + "Synthesizer (SmartNoise): Fitting aim spent 270.8398 sec.\n", + "Synthesizer (SmartNoise): Sampling aim # 558 rows (same as raw) in 0.5135 sec.\n", "Sync data as ...\n", " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 7 0.0 2 \n", + "0 0.0 2 0.0 4 0.0 2 \n", "\n", " occupation relationship race gender capital-gain capital-loss \\\n", - "0 4 0 4 1 0.0 0.0 \n", + "0 6 0 4 1 0.0 0.0 \n", "\n", " hours-per-week native-country income \n", "0 0.0 25 1 \n", - " age workclass fnlwgt education educational-num \\\n", - "0 371.264583 Private 8.479563e+09 Assoc-acdm 16.57591 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 371.264583 Private 8.479563e+09 5th-6th 16.57591 \n", "\n", - " marital-status occupation relationship race gender \\\n", - "0 Married-civ-spouse Farming-fishing Husband White Male \n", + " marital-status occupation relationship race gender \\\n", + "0 Married-civ-spouse Machine-op-inspct Husband White Male \n", "\n", " capital-gain capital-loss hours-per-week native-country income \n", "0 9.268677e+07 96578.239577 172.18284 United-States >50K \n" @@ -261,6 +280,1140 @@ "source": [ "上述執行會出現 `RuntimeError: all elements of input should be between 0 and 1`,原因是 input 中含有 NA 值,來自於前處理過程中將離群值去除掉,導致 `capital-gain`, `capital-loss` 兩個欄位的值皆相同,在 `smartnoise` 中進行 `MinMaxTransformer` 時會讓運算結果為 NA (分母為 0)。因此針對 adult 資料集,將其中的 `outlier` 前處理拿掉,就可以正常運行了。" ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2 0.0 1 0.0 4 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25 0 \n", + "Synthesizer (SmartNoise): Fitting mst.\n", + "Synthesizer (SmartNoise): Fitting mst spent 113.5179 sec.\n", + "Synthesizer (SmartNoise): Sampling mst # 558 rows (same as raw) in 0.4945 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 0 0.0 9 0.0 2 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 11 0 4 1 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25 0 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 371.264583 Federal-gov 8.479563e+09 Bachelors 16.57591 \n", + "\n", + " marital-status occupation relationship race gender capital-gain \\\n", + "0 Married-civ-spouse Sales Husband White Male 9.268677e+07 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 96578.239577 172.18284 United-States <=50K \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 2 2 0 1 2 2 2 1 2 1 2 2 2 0 2 2 2 2 1 2 2 2 2 2 4 2 2 2 0 2 3 2 4 2 2 4\n", + " 2 2 2 2 3 2 2 2 2 2 5 2 2 2 2 2 2 2 2 5 2 2 2 2 2 3 4 2 2 2 2 2 2 2 2 5 5\n", + " 2 2 2 2 3 2 4 0 2 2 2 2 3 2 2 2 2 4 2 2 0 2 0 2 2 2 2 1 1 2 2 5 2 2 2 2 1\n", + " 2 1 2 2 2 2 2 2 4 3 2 2 5 5 2 2 2 2 1 2 2 2 4 2 5 2 2 2 2 2 2 2 2 2 2 5 2\n", + " 2 5 2 3 5 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 0 4 2 2 2 2 3 2 1\n", + " 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 4 2 5 2 1 2 2 2 1 2 2 2 2 2 1\n", + " 2 1 3 2 2 0 3 5 4 2 2 2 1 2 2 2 2 2 2 2 2 2 2 3 2 2 0 4 2 0 2 2 2 2 1 2 1\n", + " 2 2 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2 2 5 2 2 4 2 2 5 2 2 2 2 2 2 2 2 2 3 2 5\n", + " 2 2 2 2 2 4 1 2 1 2 3 2 2 5 2 1 2 2 2 2 2 2 2 0 1 2 2 5 2 2 2 5 2 5 2 0 2\n", + " 2 0 5 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 5 2 2 2 2 2 2 2 5 2\n", + " 2 4 2 1 2 4 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 1 2 2 5 2 2 2 2 2 2 2 2 2 3\n", + " 4 2 2 4 2 1 2 2 4 2 5 2 2 2 2 2 4 2 2 2 5 2 2 2 3 2 2 2 1 2 4 2 1 2 2 2 2\n", + " 2 1 2 2 2 2 2 2 2 2 2 4 4 3 4 0 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 1 2 2 2 1\n", + " 4 2 1 2 3 2 1 2 2 2 2 0 4 2 2 4 2 2 1 2 2 2 2 2 1 0 2 2 2 2 0 2 2 4 1 2 1\n", + " 2 2 2 3 2 2 2 2 2 4 1 2 2 2 2 2 2 1 0 2 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2\n", + " 2 0 2]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[ 9 12 5 12 9 3 3 4 3 5 5 5 3 2 4 12 3 5 2 3 12 9 2 9\n", + " 5 12 12 9 9 5 5 12 12 12 2 2 9 12 12]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[5 2 2 2 5 5 2 2 2 2 5 2 5 2 5 5]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[1 8 1 1 1 1 1 4 1 4 1 1 8 1 1 8]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 1 0 5 2 0 1 0 3 0 0 0 0 2 0 4 3 0 1 1 4 1 4 0 0 0 5 0 0 0 3\n", + " 1 0 4 1 1 3 0 1 4 1 0 3 1 3 1 0 0 0 1 3 0 2 4 0 1 3 0 0 0 1 1 0 0 0 4 1 1\n", + " 3 4 1 5 1 2 1 0 1 3 1 4 3 4 0 3 0 1 5 0 0 0 1 1 4 0 0 0 1 1 1 1 5 5 0 0 1\n", + " 3 4 0 2 0 0 1 2 4 5 1 0 3 0 1 1 0 0 0 1 0 5 0 0 1 5 0 1 5 1 1 3 0 0 4 0 0\n", + " 0 1 0 1 2 5 1 3 1 0 0 3 4 4 3 0 0 0 4 4 1 5 0 0 0 0 1 1 4 0 0 0 1 0 0 0 1\n", + " 0 4 0 3 1 1 4 3 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 3 2 0 1 0 0 0 0 1 0 0 1 0\n", + " 4 3 3 1 0 4 0 3 1 0 3 3 0 3 0 0 1 0 3 1 0 0 0 3 0 4 4 1 0 0 1 1 4 0 0 5 3\n", + " 0 1 3 3 4 1 0 3 1 1 5 0 0 2 4 0 0 1 0 0 0 4 3 5 3 0 3 1 3 0 0 3 3 1 0 0 0\n", + " 3 3 0 3 1 0 1 0 1 4 0 0 0 1 0 0 1 1 0 1 0 3 0 0 4 1 0 0 1 0 1 3 0 3 3 1 1\n", + " 2 1 3 1 0 0 4 4 0 0 1 1 0 1 0 0 0 0 4 0 3 1 0 2 5 0 0 1 0 3 2 1 1 0 0 0 5\n", + " 4 1 4 1 0 3 1 3 4 0 3 0 0 1 0 1 0 3 0 3 1 3 0 3 2 0 3 1 4 1 0 0 2 3 1 1 0\n", + " 0 0 1 0 1 0 0 0 1 0 4 1 1 0 1 3 0 4 1 0 5 1 1 4 0 1 0 0 0 1 1 4 1 0 1 1 3\n", + " 4 3 3 0 0 2 0 0 0 1 0 4 0 2 0 4 1 3 0 0 3 1 1 0 3 1 0 0 3 3 0 0 1 1 0 1 1\n", + " 4 0 3 1 0 0 1 5 0 0 3 3 3 4 4 4 3 1 1 0 1 4 4 1 1 0 1 0 3 5 1 0 0 0 4 0 0\n", + " 0 1 4 4 0 0 3 4 0 2 1 1 0 1 0 1 3 0 0 1 4 1 5 0 3 1 1 1 3 0 0 3 1 1 0 4 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[3 1 0 3 3 1 3 1 0 0 1 0 1 1 3 3 1 0 0 3 3 0 3 3]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1\n", + " 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1\n", + " 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1\n", + " 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1\n", + " 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0\n", + " 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1\n", + " 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1\n", + " 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1\n", + " 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0\n", + " 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0\n", + " 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1\n", + " 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0\n", + " 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0\n", + " 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1\n", + " 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1\n", + " 1 1 1]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[13 16 8 20 11 10 11 6 15 9 17 9 10 20 4 3 15 1 17 14 16 15 18 18\n", + " 7 3 20 18 7 16 11 4 0 20 15 14 12 20 14 14 18 12 1 12 9]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0\n", + " 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0\n", + " 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1\n", + " 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0\n", + " 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1\n", + " 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1\n", + " 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0\n", + " 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0\n", + " 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0\n", + " 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0\n", + " 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n", + " 0 1 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", + " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n" + ] + } + ], + "source": [ + "issue332(\n", + " load=load,\n", + " synthesizing_method='smartnoise-mst'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2 0.0 1 0.0 4 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6 3 2 1 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25 0 \n", + "Synthesizer (SmartNoise): Fitting pacsynth.\n", + "Synthesizer (SmartNoise): Fitting pacsynth spent 0.2158 sec.\n", + "Synthesizer (SmartNoise): Sampling pacsynth # 558 rows (same as raw) in 1.6921 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.0 2.0 0.0 11.0 0.0 2.0 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 6.0 0.0 4.0 1.0 0.0 0.0 \n", + "\n", + " hours-per-week native-country income \n", + "0 0.0 25.0 0.0 \n" + ] + }, + { + "ename": "ValueError", + "evalue": "Input contains NaN.", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[10], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43missue332\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43mload\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msynthesizing_method\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msmartnoise-pacsynth\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\n\u001b[0;32m 4\u001b[0m \u001b[43m)\u001b[49m\n", + "Cell \u001b[1;32mIn[5], line 50\u001b[0m, in \u001b[0;36missue332\u001b[1;34m(load, synthesizing_method, scaler_inhibit)\u001b[0m\n\u001b[0;32m 48\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSync data as ...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 49\u001b[0m \u001b[38;5;28mprint\u001b[39m(syn\u001b[38;5;241m.\u001b[39mdata_syn\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m---> 50\u001b[0m postproc_discretizing_data \u001b[38;5;241m=\u001b[39m \u001b[43mproc_discretizing\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 51\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msyn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata_syn\u001b[49m\n\u001b[0;32m 52\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 53\u001b[0m \u001b[38;5;28mprint\u001b[39m(postproc_discretizing_data\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\base.py:483\u001b[0m, in \u001b[0;36mProcessor.inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 480\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m obj \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 481\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m--> 483\u001b[0m transformed[col] \u001b[38;5;241m=\u001b[39m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtransformed\u001b[49m\u001b[43m[\u001b[49m\u001b[43mcol\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 485\u001b[0m logging\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mprocessor\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m inverse transformation done.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 486\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 487\u001b[0m \u001b[38;5;66;03m# if the processor is not a string,\u001b[39;00m\n\u001b[0;32m 488\u001b[0m \u001b[38;5;66;03m# it should be a mediator, which transforms the data directly.\u001b[39;00m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\discretizing.py:81\u001b[0m, in \u001b[0;36mDiscretizingHandler.inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 78\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_fitted:\n\u001b[0;32m 79\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnfittedError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe object is not fitted. Use .fit() first.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 81\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\discretizing.py:152\u001b[0m, in \u001b[0;36mDiscretizingKBins._inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_inverse_transform\u001b[39m(\u001b[38;5;28mself\u001b[39m, data: pd\u001b[38;5;241m.\u001b[39mSeries) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m np\u001b[38;5;241m.\u001b[39mndarray:\n\u001b[0;32m 141\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 142\u001b[0m \u001b[38;5;124;03m Inverse the transformed data to the numerical data.\u001b[39;00m\n\u001b[0;32m 143\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;124;03m (np.ndarray): The inverse transformed data.\u001b[39;00m\n\u001b[0;32m 150\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreshape\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mravel()\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\preprocessing\\_discretization.py:430\u001b[0m, in \u001b[0;36mKBinsDiscretizer.inverse_transform\u001b[1;34m(self, Xt)\u001b[0m\n\u001b[0;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monehot\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mencode:\n\u001b[0;32m 428\u001b[0m Xt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_encoder\u001b[38;5;241m.\u001b[39minverse_transform(Xt)\n\u001b[1;32m--> 430\u001b[0m Xinv \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mXt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat64\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat32\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 431\u001b[0m n_features \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_bins_\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 432\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m Xinv\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m!=\u001b[39m n_features:\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:1049\u001b[0m, in \u001b[0;36mcheck_array\u001b[1;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[0;32m 1043\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 1044\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFound array with dim \u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m expected <= 2.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1045\u001b[0m \u001b[38;5;241m%\u001b[39m (array\u001b[38;5;241m.\u001b[39mndim, estimator_name)\n\u001b[0;32m 1046\u001b[0m )\n\u001b[0;32m 1048\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m force_all_finite:\n\u001b[1;32m-> 1049\u001b[0m \u001b[43m_assert_all_finite\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1050\u001b[0m \u001b[43m \u001b[49m\u001b[43marray\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1051\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1052\u001b[0m \u001b[43m \u001b[49m\u001b[43mestimator_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mestimator_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1053\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_all_finite\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mallow-nan\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1054\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1056\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m copy:\n\u001b[0;32m 1057\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _is_numpy_namespace(xp):\n\u001b[0;32m 1058\u001b[0m \u001b[38;5;66;03m# only make a copy if `array` and `array_orig` may share memory`\u001b[39;00m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:126\u001b[0m, in \u001b[0;36m_assert_all_finite\u001b[1;34m(X, allow_nan, msg_dtype, estimator_name, input_name)\u001b[0m\n\u001b[0;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m first_pass_isfinite:\n\u001b[0;32m 124\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m--> 126\u001b[0m \u001b[43m_assert_all_finite_element_wise\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 127\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 128\u001b[0m \u001b[43m \u001b[49m\u001b[43mxp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mxp\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 129\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_nan\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 130\u001b[0m \u001b[43m \u001b[49m\u001b[43mmsg_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmsg_dtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 131\u001b[0m \u001b[43m \u001b[49m\u001b[43mestimator_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mestimator_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 132\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 133\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:175\u001b[0m, in \u001b[0;36m_assert_all_finite_element_wise\u001b[1;34m(X, xp, allow_nan, msg_dtype, estimator_name, input_name)\u001b[0m\n\u001b[0;32m 158\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m estimator_name \u001b[38;5;129;01mand\u001b[39;00m input_name \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mX\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m has_nan_error:\n\u001b[0;32m 159\u001b[0m \u001b[38;5;66;03m# Improve the error message on how to handle missing values in\u001b[39;00m\n\u001b[0;32m 160\u001b[0m \u001b[38;5;66;03m# scikit-learn.\u001b[39;00m\n\u001b[0;32m 161\u001b[0m msg_err \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 162\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mestimator_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m does not accept missing values\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 163\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m encoded as NaN natively. For supervised learning, you might want\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 173\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m#estimators-that-handle-nan-values\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 174\u001b[0m )\n\u001b[1;32m--> 175\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg_err)\n", + "\u001b[1;31mValueError\u001b[0m: Input contains NaN." + ] + } + ], + "source": [ + "issue332(\n", + " load=load,\n", + " synthesizing_method='smartnoise-pacsynth'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc config of Outlier before update as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc config of Outlier before after as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 -0.953119 0.366136 0.409053 0.776959 -1.152735 0.810663 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.74892 0.757864 0.955584 0.48598 -0.159918 -0.219043 \n", + "\n", + " hours-per-week native-country income \n", + "0 -0.044504 0.216869 0.212391 \n", + "Synthesizer (SmartNoise): Fitting dpctgan.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\opacus\\privacy_engine.py:638: UserWarning: The sample rate will be defined from ``batch_size`` and ``sample_size``.The returned privacy budget will be incorrect.\n", + " warnings.warn(\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\opacus\\privacy_engine.py:229: UserWarning: Secure RNG turned off. This is perfectly fine for experimentation as it allows for much faster training performance, but remember to turn it on and retrain one last time before production with ``secure_rng`` turned on.\n", + " warnings.warn(\n", + "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\torch\\nn\\modules\\module.py:1352: UserWarning: Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior.\n", + " warnings.warn(\"Using a non-full backward hook when the forward contains multiple autograd Nodes \"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1, Loss G: 0.7107, Loss D: 1.3900\n", + "epsilon is 0.08246410416899833, alpha is 63.0\n", + "Epoch 2, Loss G: 0.7097, Loss D: 1.3898\n", + "epsilon is 0.6154321240229542, alpha is 21.0\n", + "Epoch 3, Loss G: 0.7048, Loss D: 1.3908\n", + "epsilon is 0.8717652885709554, alpha is 16.0\n", + "Epoch 4, Loss G: 0.7016, Loss D: 1.3897\n", + "epsilon is 1.0734433928301887, alpha is 14.0\n", + "Epoch 5, Loss G: 0.7059, Loss D: 1.3874\n", + "epsilon is 1.2474424384805656, alpha is 12.0\n", + "Epoch 6, Loss G: 0.7015, Loss D: 1.3895\n", + "epsilon is 1.403078289939324, alpha is 10.9\n", + "Epoch 7, Loss G: 0.6987, Loss D: 1.3876\n", + "epsilon is 1.5430774752709655, alpha is 10.6\n", + "Epoch 8, Loss G: 0.6922, Loss D: 1.3928\n", + "epsilon is 1.6748565545536702, alpha is 10.0\n", + "Epoch 9, Loss G: 0.6947, Loss D: 1.3898\n", + "epsilon is 1.7986930762464894, alpha is 9.4\n", + "Epoch 10, Loss G: 0.6898, Loss D: 1.3850\n", + "epsilon is 1.9160035051686128, alpha is 9.0\n", + "Epoch 11, Loss G: 0.6888, Loss D: 1.3885\n", + "epsilon is 2.027907968415127, alpha is 8.7\n", + "Epoch 12, Loss G: 0.6854, Loss D: 1.3891\n", + "epsilon is 2.135121781113915, alpha is 8.3\n", + "Epoch 13, Loss G: 0.6822, Loss D: 1.3884\n", + "epsilon is 2.2382637160168204, alpha is 8.1\n", + "Epoch 14, Loss G: 0.6828, Loss D: 1.3872\n", + "epsilon is 2.337827882631375, alpha is 7.8\n", + "Epoch 15, Loss G: 0.6835, Loss D: 1.3950\n", + "epsilon is 2.434237194672732, alpha is 7.6\n", + "Epoch 16, Loss G: 0.6794, Loss D: 1.3912\n", + "epsilon is 2.5278163462034815, alpha is 7.4\n", + "Epoch 17, Loss G: 0.6722, Loss D: 1.3944\n", + "epsilon is 2.6188388524326234, alpha is 7.2\n", + "Epoch 18, Loss G: 0.6723, Loss D: 1.3989\n", + "epsilon is 2.7076108306108346, alpha is 7.0\n", + "Epoch 19, Loss G: 0.6683, Loss D: 1.3920\n", + "epsilon is 2.7940664707675626, alpha is 6.9\n", + "Epoch 20, Loss G: 0.6670, Loss D: 1.3951\n", + "epsilon is 2.878763468386405, alpha is 6.8\n", + "Epoch 21, Loss G: 0.6687, Loss D: 1.3902\n", + "epsilon is 2.961464297854409, alpha is 6.6\n", + "Epoch 22, Loss G: 0.6657, Loss D: 1.3872\n", + "epsilon is 3.0425452652856495, alpha is 6.5\n", + "Epoch 23, Loss G: 0.6616, Loss D: 1.3926\n", + "epsilon is 3.122103446988952, alpha is 6.4\n", + "Epoch 24, Loss G: 0.6631, Loss D: 1.3951\n", + "epsilon is 3.200208539731727, alpha is 6.3\n", + "Epoch 25, Loss G: 0.6614, Loss D: 1.3910\n", + "epsilon is 3.2769350559807005, alpha is 6.2\n", + "Epoch 26, Loss G: 0.6637, Loss D: 1.3855\n", + "epsilon is 3.3523628060835255, alpha is 6.1\n", + "Epoch 27, Loss G: 0.6664, Loss D: 1.3881\n", + "epsilon is 3.4265774389666657, alpha is 6.0\n", + "Epoch 28, Loss G: 0.6632, Loss D: 1.3884\n", + "epsilon is 3.4996710497868895, alpha is 5.9\n", + "Epoch 29, Loss G: 0.6609, Loss D: 1.3892\n", + "epsilon is 3.5717428643995515, alpha is 5.8\n", + "Epoch 30, Loss G: 0.6594, Loss D: 1.3910\n", + "epsilon is 3.6428935706241528, alpha is 5.8\n", + "Epoch 31, Loss G: 0.6567, Loss D: 1.3863\n", + "epsilon is 3.712751905883079, alpha is 5.7\n", + "Epoch 32, Loss G: 0.6577, Loss D: 1.3827\n", + "epsilon is 3.7818141415719784, alpha is 5.6\n", + "Epoch 33, Loss G: 0.6609, Loss D: 1.3858\n", + "epsilon is 3.850205948937656, alpha is 5.5\n", + "Epoch 34, Loss G: 0.6532, Loss D: 1.3819\n", + "epsilon is 3.917468189518828, alpha is 5.5\n", + "Epoch 35, Loss G: 0.6551, Loss D: 1.3896\n", + "epsilon is 3.9840352850839897, alpha is 5.4\n", + "Epoch 36, Loss G: 0.6527, Loss D: 1.3815\n", + "epsilon is 4.050006670613625, alpha is 5.4\n", + "Epoch 37, Loss G: 0.6516, Loss D: 1.3873\n", + "epsilon is 4.114903091238218, alpha is 5.3\n", + "Epoch 38, Loss G: 0.6477, Loss D: 1.3901\n", + "epsilon is 4.179582102216282, alpha is 5.2\n", + "Epoch 39, Loss G: 0.6504, Loss D: 1.3830\n", + "epsilon is 4.242979684763249, alpha is 5.2\n", + "Epoch 40, Loss G: 0.6503, Loss D: 1.3904\n", + "epsilon is 4.306336090935168, alpha is 5.1\n", + "Epoch 41, Loss G: 0.6467, Loss D: 1.3944\n", + "epsilon is 4.368450711228463, alpha is 5.1\n", + "Epoch 42, Loss G: 0.6481, Loss D: 1.3939\n", + "epsilon is 4.430565331521756, alpha is 5.1\n", + "Epoch 43, Loss G: 0.6474, Loss D: 1.3883\n", + "epsilon is 4.491519093988257, alpha is 5.0\n", + "Epoch 44, Loss G: 0.6422, Loss D: 1.3922\n", + "epsilon is 4.552353368662634, alpha is 5.0\n", + "Epoch 45, Loss G: 0.6401, Loss D: 1.3860\n", + "epsilon is 4.612407286797646, alpha is 4.9\n", + "Epoch 46, Loss G: 0.6392, Loss D: 1.3932\n", + "epsilon is 4.671963825364106, alpha is 4.9\n", + "Epoch 47, Loss G: 0.6358, Loss D: 1.3937\n", + "epsilon is 4.731359885691218, alpha is 4.8\n", + "Epoch 48, Loss G: 0.6367, Loss D: 1.3966\n", + "epsilon is 4.789641290552096, alpha is 4.8\n", + "Epoch 49, Loss G: 0.6344, Loss D: 1.4051\n", + "epsilon is 4.847922695412973, alpha is 4.8\n", + "Epoch 50, Loss G: 0.6350, Loss D: 1.4007\n", + "epsilon is 4.905655535140821, alpha is 4.7\n", + "Epoch 51, Loss G: 0.6294, Loss D: 1.4034\n", + "epsilon is 4.9626644016048695, alpha is 4.7\n", + "Epoch 52, Loss G: 0.6293, Loss D: 1.3913\n", + "epsilon is 5.0196732680689164, alpha is 4.7\n", + "Epoch 53, Loss G: 0.6228, Loss D: 1.4126\n", + "epsilon is 5.0760439796888255, alpha is 4.6\n", + "Epoch 54, Loss G: 0.6300, Loss D: 1.4028\n", + "epsilon is 5.131782895986607, alpha is 4.6\n", + "Epoch 55, Loss G: 0.6118, Loss D: 1.4130\n", + "epsilon is 5.1875218122843885, alpha is 4.6\n", + "Epoch 56, Loss G: 0.6162, Loss D: 1.4176\n", + "epsilon is 5.242864373609633, alpha is 4.5\n", + "Epoch 57, Loss G: 0.6124, Loss D: 1.4177\n", + "epsilon is 5.297335920908565, alpha is 4.5\n", + "Epoch 58, Loss G: 0.6036, Loss D: 1.4231\n", + "epsilon is 5.351807468207497, alpha is 4.5\n", + "Epoch 59, Loss G: 0.6017, Loss D: 1.4224\n", + "epsilon is 5.406279015506429, alpha is 4.5\n", + "Epoch 60, Loss G: 0.6025, Loss D: 1.4320\n", + "epsilon is 5.4597004033036685, alpha is 4.4\n", + "Epoch 61, Loss G: 0.5997, Loss D: 1.4292\n", + "epsilon is 5.512907155723584, alpha is 4.4\n", + "Epoch 62, Loss G: 0.5974, Loss D: 1.4378\n", + "epsilon is 5.566113908143499, alpha is 4.4\n", + "Epoch 63, Loss G: 0.5980, Loss D: 1.4396\n", + "epsilon is 5.619296859313559, alpha is 4.3\n", + "Epoch 64, Loss G: 0.5923, Loss D: 1.4463\n", + "epsilon is 5.671241383942272, alpha is 4.3\n", + "Epoch 65, Loss G: 0.5817, Loss D: 1.4429\n", + "epsilon is 5.723185908570986, alpha is 4.3\n", + "Epoch 66, Loss G: 0.5879, Loss D: 1.4591\n", + "epsilon is 5.775130433199701, alpha is 4.3\n", + "Epoch 67, Loss G: 0.5835, Loss D: 1.4501\n", + "epsilon is 5.827074957828414, alpha is 4.3\n", + "Epoch 68, Loss G: 0.5829, Loss D: 1.4513\n", + "epsilon is 5.877966017103227, alpha is 4.2\n", + "Epoch 69, Loss G: 0.5753, Loss D: 1.4468\n", + "epsilon is 5.928650874011896, alpha is 4.2\n", + "Epoch 70, Loss G: 0.5799, Loss D: 1.4541\n", + "epsilon is 5.979335730920565, alpha is 4.2\n", + "Epoch 71, Loss G: 0.5725, Loss D: 1.4617\n", + "epsilon is 6.030020587829234, alpha is 4.2\n", + "Epoch 72, Loss G: 0.5712, Loss D: 1.4637\n", + "epsilon is 6.080411733176044, alpha is 4.1\n", + "Epoch 73, Loss G: 0.5642, Loss D: 1.4602\n", + "epsilon is 6.129839475434501, alpha is 4.1\n", + "Epoch 74, Loss G: 0.5707, Loss D: 1.4774\n", + "epsilon is 6.17926721769296, alpha is 4.1\n", + "Epoch 75, Loss G: 0.5642, Loss D: 1.4687\n", + "epsilon is 6.228694959951418, alpha is 4.1\n", + "Epoch 76, Loss G: 0.5691, Loss D: 1.4757\n", + "epsilon is 6.278122702209876, alpha is 4.1\n", + "Epoch 77, Loss G: 0.5707, Loss D: 1.4758\n", + "epsilon is 6.327357790594008, alpha is 4.0\n", + "Epoch 78, Loss G: 0.5639, Loss D: 1.4835\n", + "epsilon is 6.375530964286589, alpha is 4.0\n", + "Epoch 79, Loss G: 0.5652, Loss D: 1.4719\n", + "epsilon is 6.42370413797917, alpha is 4.0\n", + "Epoch 80, Loss G: 0.5628, Loss D: 1.4748\n", + "epsilon is 6.471877311671752, alpha is 4.0\n", + "Epoch 81, Loss G: 0.5608, Loss D: 1.4772\n", + "epsilon is 6.520050485364332, alpha is 4.0\n", + "Epoch 82, Loss G: 0.5557, Loss D: 1.4777\n", + "epsilon is 6.568223659056913, alpha is 4.0\n", + "Epoch 83, Loss G: 0.5670, Loss D: 1.4892\n", + "epsilon is 6.615734837571576, alpha is 3.9\n", + "Epoch 84, Loss G: 0.5594, Loss D: 1.4800\n", + "epsilon is 6.662655981812787, alpha is 3.9\n", + "Epoch 85, Loss G: 0.5555, Loss D: 1.4830\n", + "epsilon is 6.709577126053995, alpha is 3.9\n", + "Epoch 86, Loss G: 0.5576, Loss D: 1.4863\n", + "epsilon is 6.7564982702952046, alpha is 3.9\n", + "Epoch 87, Loss G: 0.5547, Loss D: 1.4850\n", + "epsilon is 6.803419414536414, alpha is 3.9\n", + "Epoch 88, Loss G: 0.5603, Loss D: 1.4947\n", + "epsilon is 6.850340558777624, alpha is 3.9\n", + "Epoch 89, Loss G: 0.5570, Loss D: 1.4874\n", + "epsilon is 6.896912311217361, alpha is 3.8\n", + "Epoch 90, Loss G: 0.5555, Loss D: 1.4854\n", + "epsilon is 6.942583958167586, alpha is 3.8\n", + "Epoch 91, Loss G: 0.5516, Loss D: 1.4906\n", + "epsilon is 6.98825560511781, alpha is 3.8\n", + "Epoch 92, Loss G: 0.5562, Loss D: 1.4936\n", + "epsilon is 7.033927252068035, alpha is 3.8\n", + "Epoch 93, Loss G: 0.5531, Loss D: 1.4931\n", + "epsilon is 7.079598899018261, alpha is 3.8\n", + "Epoch 94, Loss G: 0.5540, Loss D: 1.4899\n", + "epsilon is 7.125270545968486, alpha is 3.8\n", + "Epoch 95, Loss G: 0.5474, Loss D: 1.4922\n", + "epsilon is 7.170942192918711, alpha is 3.8\n", + "Epoch 96, Loss G: 0.5483, Loss D: 1.4962\n", + "epsilon is 7.216225114747892, alpha is 3.7\n", + "Epoch 97, Loss G: 0.5495, Loss D: 1.4945\n", + "epsilon is 7.260649789629172, alpha is 3.7\n", + "Epoch 98, Loss G: 0.5478, Loss D: 1.4869\n", + "epsilon is 7.305074464510453, alpha is 3.7\n", + "Epoch 99, Loss G: 0.5472, Loss D: 1.4911\n", + "epsilon is 7.349499139391733, alpha is 3.7\n", + "Epoch 100, Loss G: 0.5532, Loss D: 1.4938\n", + "epsilon is 7.3939238142730135, alpha is 3.7\n", + "Epoch 101, Loss G: 0.5451, Loss D: 1.4891\n", + "epsilon is 7.4383484891542935, alpha is 3.7\n", + "Epoch 102, Loss G: 0.5529, Loss D: 1.4897\n", + "epsilon is 7.482773164035574, alpha is 3.7\n", + "Epoch 103, Loss G: 0.5484, Loss D: 1.4863\n", + "epsilon is 7.527197838916854, alpha is 3.7\n", + "Epoch 104, Loss G: 0.5478, Loss D: 1.4795\n", + "epsilon is 7.570985182837946, alpha is 3.6\n", + "Epoch 105, Loss G: 0.5577, Loss D: 1.4863\n", + "epsilon is 7.614165403949305, alpha is 3.6\n", + "Epoch 106, Loss G: 0.5572, Loss D: 1.4800\n", + "epsilon is 7.657345625060665, alpha is 3.6\n", + "Epoch 107, Loss G: 0.5546, Loss D: 1.4823\n", + "epsilon is 7.700525846172025, alpha is 3.6\n", + "Epoch 108, Loss G: 0.5574, Loss D: 1.4715\n", + "epsilon is 7.743706067283383, alpha is 3.6\n", + "Epoch 109, Loss G: 0.5554, Loss D: 1.4778\n", + "epsilon is 7.786886288394741, alpha is 3.6\n", + "Epoch 110, Loss G: 0.5621, Loss D: 1.4794\n", + "epsilon is 7.830066509506101, alpha is 3.6\n", + "Epoch 111, Loss G: 0.5558, Loss D: 1.4784\n", + "epsilon is 7.873246730617461, alpha is 3.6\n", + "Epoch 112, Loss G: 0.5632, Loss D: 1.4766\n", + "epsilon is 7.916426951728819, alpha is 3.6\n", + "Epoch 113, Loss G: 0.5602, Loss D: 1.4731\n", + "epsilon is 7.95868193355541, alpha is 3.5\n", + "Epoch 114, Loss G: 0.5532, Loss D: 1.4708\n", + "epsilon is 8.000620212289654, alpha is 3.5\n", + "Epoch 115, Loss G: 0.5629, Loss D: 1.4671\n", + "epsilon is 8.042558491023897, alpha is 3.5\n", + "Epoch 116, Loss G: 0.5605, Loss D: 1.4703\n", + "epsilon is 8.084496769758141, alpha is 3.5\n", + "Epoch 117, Loss G: 0.5661, Loss D: 1.4603\n", + "epsilon is 8.126435048492386, alpha is 3.5\n", + "Epoch 118, Loss G: 0.5667, Loss D: 1.4750\n", + "epsilon is 8.168373327226629, alpha is 3.5\n", + "Epoch 119, Loss G: 0.5659, Loss D: 1.4663\n", + "epsilon is 8.210311605960872, alpha is 3.5\n", + "Epoch 120, Loss G: 0.5597, Loss D: 1.4697\n", + "epsilon is 8.252249884695114, alpha is 3.5\n", + "Epoch 121, Loss G: 0.5606, Loss D: 1.4597\n", + "epsilon is 8.294188163429357, alpha is 3.5\n", + "Epoch 122, Loss G: 0.5615, Loss D: 1.4584\n", + "epsilon is 8.336126442163602, alpha is 3.5\n", + "Epoch 123, Loss G: 0.5618, Loss D: 1.4627\n", + "epsilon is 8.377016439122203, alpha is 3.4\n", + "Epoch 124, Loss G: 0.5616, Loss D: 1.4609\n", + "epsilon is 8.417715279980845, alpha is 3.4\n", + "Epoch 125, Loss G: 0.5624, Loss D: 1.4777\n", + "epsilon is 8.458414120839487, alpha is 3.4\n", + "Epoch 126, Loss G: 0.5613, Loss D: 1.4678\n", + "epsilon is 8.49911296169813, alpha is 3.4\n", + "Epoch 127, Loss G: 0.5576, Loss D: 1.4605\n", + "epsilon is 8.539811802556772, alpha is 3.4\n", + "Epoch 128, Loss G: 0.5654, Loss D: 1.4663\n", + "epsilon is 8.580510643415414, alpha is 3.4\n", + "Epoch 129, Loss G: 0.5651, Loss D: 1.4615\n", + "epsilon is 8.621209484274056, alpha is 3.4\n", + "Epoch 130, Loss G: 0.5654, Loss D: 1.4641\n", + "epsilon is 8.661908325132698, alpha is 3.4\n", + "Epoch 131, Loss G: 0.5639, Loss D: 1.4569\n", + "epsilon is 8.702607165991338, alpha is 3.4\n", + "Epoch 132, Loss G: 0.5672, Loss D: 1.4536\n", + "epsilon is 8.74330600684998, alpha is 3.4\n", + "Epoch 133, Loss G: 0.5713, Loss D: 1.4582\n", + "epsilon is 8.784004847708623, alpha is 3.4\n", + "Epoch 134, Loss G: 0.5650, Loss D: 1.4524\n", + "epsilon is 8.823944600709858, alpha is 3.3\n", + "Epoch 135, Loss G: 0.5589, Loss D: 1.4599\n", + "epsilon is 8.863406501319506, alpha is 3.3\n", + "Epoch 136, Loss G: 0.5631, Loss D: 1.4620\n", + "epsilon is 8.902868401929158, alpha is 3.3\n", + "Epoch 137, Loss G: 0.5668, Loss D: 1.4641\n", + "epsilon is 8.94233030253881, alpha is 3.3\n", + "Epoch 138, Loss G: 0.5698, Loss D: 1.4604\n", + "epsilon is 8.98179220314846, alpha is 3.3\n", + "Epoch 139, Loss G: 0.5650, Loss D: 1.4606\n", + "epsilon is 9.02125410375811, alpha is 3.3\n", + "Epoch 140, Loss G: 0.5700, Loss D: 1.4558\n", + "epsilon is 9.060716004367762, alpha is 3.3\n", + "Epoch 141, Loss G: 0.5640, Loss D: 1.4623\n", + "epsilon is 9.100177904977413, alpha is 3.3\n", + "Epoch 142, Loss G: 0.5664, Loss D: 1.4496\n", + "epsilon is 9.139639805587063, alpha is 3.3\n", + "Epoch 143, Loss G: 0.5707, Loss D: 1.4586\n", + "epsilon is 9.179101706196715, alpha is 3.3\n", + "Epoch 144, Loss G: 0.5654, Loss D: 1.4485\n", + "epsilon is 9.218563606806365, alpha is 3.3\n", + "Epoch 145, Loss G: 0.5691, Loss D: 1.4478\n", + "epsilon is 9.258025507416015, alpha is 3.3\n", + "Epoch 146, Loss G: 0.5750, Loss D: 1.4537\n", + "epsilon is 9.297487408025667, alpha is 3.3\n", + "Epoch 147, Loss G: 0.5737, Loss D: 1.4539\n", + "epsilon is 9.33595966014038, alpha is 3.2\n", + "Epoch 148, Loss G: 0.5714, Loss D: 1.4532\n", + "epsilon is 9.374187111269075, alpha is 3.2\n", + "Epoch 149, Loss G: 0.5723, Loss D: 1.4538\n", + "epsilon is 9.41241456239777, alpha is 3.2\n", + "Epoch 150, Loss G: 0.5719, Loss D: 1.4523\n", + "epsilon is 9.450642013526464, alpha is 3.2\n", + "Epoch 151, Loss G: 0.5674, Loss D: 1.4542\n", + "epsilon is 9.48886946465516, alpha is 3.2\n", + "Epoch 152, Loss G: 0.5661, Loss D: 1.4573\n", + "epsilon is 9.527096915783854, alpha is 3.2\n", + "Epoch 153, Loss G: 0.5722, Loss D: 1.4540\n", + "epsilon is 9.56532436691255, alpha is 3.2\n", + "Epoch 154, Loss G: 0.5742, Loss D: 1.4563\n", + "epsilon is 9.603551818041245, alpha is 3.2\n", + "Epoch 155, Loss G: 0.5725, Loss D: 1.4476\n", + "epsilon is 9.64177926916994, alpha is 3.2\n", + "Epoch 156, Loss G: 0.5703, Loss D: 1.4535\n", + "epsilon is 9.680006720298634, alpha is 3.2\n", + "Epoch 157, Loss G: 0.5690, Loss D: 1.4478\n", + "epsilon is 9.71823417142733, alpha is 3.2\n", + "Epoch 158, Loss G: 0.5698, Loss D: 1.4475\n", + "epsilon is 9.756461622556024, alpha is 3.2\n", + "Epoch 159, Loss G: 0.5766, Loss D: 1.4464\n", + "epsilon is 9.79468907368472, alpha is 3.2\n", + "Epoch 160, Loss G: 0.5784, Loss D: 1.4552\n", + "epsilon is 9.832916524813415, alpha is 3.2\n", + "Epoch 161, Loss G: 0.5751, Loss D: 1.4438\n", + "epsilon is 9.871016847131145, alpha is 3.1\n", + "Epoch 162, Loss G: 0.5799, Loss D: 1.4512\n", + "epsilon is 9.908012332703517, alpha is 3.1\n", + "Epoch 163, Loss G: 0.5725, Loss D: 1.4488\n", + "epsilon is 9.94500781827589, alpha is 3.1\n", + "Epoch 164, Loss G: 0.5762, Loss D: 1.4466\n", + "epsilon is 9.982003303848263, alpha is 3.1\n", + "Synthesizer (SmartNoise): Fitting dpctgan spent 115.4473 sec.\n", + "Synthesizer (SmartNoise): Sampling dpctgan # 927 rows (same as raw) in 0.4688 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 3.663019 0.997224 4.606915 0.747578 2.269901 0.984679 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.990903 0.95497 0.806221 0.997782 -0.159918 -0.219043 \n", + "\n", + " hours-per-week native-country income \n", + "0 2.634771 0.88122 0.993726 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 88.295354 Federal-gov 647932.096102 Masters 15.972689 \n", + "\n", + " marital-status occupation relationship race gender capital-gain \\\n", + "0 Widowed Protective-serv Wife White Female 0.0 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 0.0 72.657481 United-States >50K \n" + ] + } + ], + "source": [ + "issue332_gan(\n", + " load = load,\n", + " synthesizing_method = 'smartnoise-dpctgan',\n", + " outlier_inhibit = True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preproc config of Outlier before update as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc config of Outlier before after as ...\n", + "{'age': ,\n", + " 'capital-gain': ,\n", + " 'capital-loss': ,\n", + " 'education': None,\n", + " 'educational-num': ,\n", + " 'fnlwgt': ,\n", + " 'gender': None,\n", + " 'hours-per-week': ,\n", + " 'income': None,\n", + " 'marital-status': None,\n", + " 'native-country': None,\n", + " 'occupation': None,\n", + " 'race': None,\n", + " 'relationship': None,\n", + " 'workclass': None}\n", + "Preproc data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 -0.953119 0.006814 0.409053 0.780317 -1.152735 0.507641 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.750354 0.787001 0.864054 0.199314 -0.159918 -0.219043 \n", + "\n", + " hours-per-week native-country income \n", + "0 -0.044504 0.099702 0.61332 \n", + "Synthesizer (SmartNoise): Fitting patectgan.\n", + "using loss cross_entropy and regularization None\n", + "eps: 0.102479 \t G: 0.713781 \t D: 0.716145\n", + "eps: 0.457732 \t G: 0.713048 \t D: 0.712165\n", + "eps: 0.650248 \t G: 0.689282 \t D: 0.698435\n", + "eps: 0.799151 \t G: 0.698342 \t D: 0.710174\n", + "eps: 0.925562 \t G: 0.716226 \t D: 0.704634\n", + "eps: 1.037397 \t G: 0.750504 \t D: 0.704282\n", + "eps: 1.139329 \t G: 0.733702 \t D: 0.708267\n", + "eps: 1.232819 \t G: 0.742357 \t D: 0.711618\n", + "eps: 1.320496 \t G: 0.698668 \t D: 0.703252\n", + "eps: 1.403195 \t G: 0.737517 \t D: 0.699576\n", + "eps: 1.481995 \t G: 0.681477 \t D: 0.705583\n", + "eps: 1.556995 \t G: 0.672663 \t D: 0.702600\n", + "eps: 1.628302 \t G: 0.745140 \t D: 0.694179\n", + "eps: 1.698302 \t G: 0.690847 \t D: 0.712576\n", + "eps: 1.763994 \t G: 0.727325 \t D: 0.703433\n", + "eps: 1.828994 \t G: 0.709237 \t D: 0.703511\n", + "eps: 1.891630 \t G: 0.708808 \t D: 0.702042\n", + "eps: 1.951630 \t G: 0.691537 \t D: 0.697599\n", + "eps: 2.011630 \t G: 0.701870 \t D: 0.706488\n", + "eps: 2.069793 \t G: 0.688349 \t D: 0.699278\n", + "eps: 2.124793 \t G: 0.709717 \t D: 0.701455\n", + "eps: 2.179793 \t G: 0.694322 \t D: 0.691404\n", + "eps: 2.234793 \t G: 0.686912 \t D: 0.701100\n", + "eps: 2.288659 \t G: 0.705043 \t D: 0.700311\n", + "eps: 2.338659 \t G: 0.707292 \t D: 0.703666\n", + "eps: 2.388659 \t G: 0.694569 \t D: 0.690330\n", + "eps: 2.438659 \t G: 0.684587 \t D: 0.698427\n", + "eps: 2.488659 \t G: 0.697387 \t D: 0.699607\n", + "eps: 2.538659 \t G: 0.687134 \t D: 0.700899\n", + "eps: 2.585991 \t G: 0.693586 \t D: 0.695336\n", + "eps: 2.630991 \t G: 0.739123 \t D: 0.693745\n", + "eps: 2.675991 \t G: 0.700363 \t D: 0.697010\n", + "eps: 2.720991 \t G: 0.689431 \t D: 0.697749\n", + "eps: 2.765991 \t G: 0.693986 \t D: 0.690283\n", + "eps: 2.810991 \t G: 0.673590 \t D: 0.695922\n", + "eps: 2.855991 \t G: 0.671324 \t D: 0.701141\n", + "eps: 2.900991 \t G: 0.677591 \t D: 0.695007\n", + "eps: 2.943990 \t G: 0.656642 \t D: 0.694972\n", + "eps: 2.983990 \t G: 0.723366 \t D: 0.697270\n", + "eps: 3.023990 \t G: 0.700119 \t D: 0.699537\n", + "eps: 3.063990 \t G: 0.674124 \t D: 0.694819\n", + "eps: 3.103990 \t G: 0.686734 \t D: 0.694975\n", + "eps: 3.143990 \t G: 0.687309 \t D: 0.695707\n", + "eps: 3.183990 \t G: 0.692782 \t D: 0.692781\n", + "eps: 3.223990 \t G: 0.714057 \t D: 0.697382\n", + "eps: 3.263990 \t G: 0.664547 \t D: 0.689004\n", + "eps: 3.303990 \t G: 0.700300 \t D: 0.702808\n", + "eps: 3.343990 \t G: 0.707063 \t D: 0.694165\n", + "eps: 3.383990 \t G: 0.705744 \t D: 0.693704\n", + "eps: 3.422988 \t G: 0.704281 \t D: 0.697706\n", + "eps: 3.457988 \t G: 0.691522 \t D: 0.698151\n", + "eps: 3.492988 \t G: 0.698668 \t D: 0.692005\n", + "eps: 3.527988 \t G: 0.686467 \t D: 0.699543\n", + "eps: 3.562988 \t G: 0.684231 \t D: 0.689239\n", + "eps: 3.597988 \t G: 0.698439 \t D: 0.695944\n", + "eps: 3.632988 \t G: 0.679470 \t D: 0.694834\n", + "eps: 3.667988 \t G: 0.685383 \t D: 0.690702\n", + "eps: 3.702988 \t G: 0.681760 \t D: 0.700023\n", + "eps: 3.737988 \t G: 0.678823 \t D: 0.693228\n", + "eps: 3.772988 \t G: 0.688883 \t D: 0.694677\n", + "eps: 3.807988 \t G: 0.707548 \t D: 0.695333\n", + "eps: 3.842988 \t G: 0.696041 \t D: 0.689088\n", + "eps: 3.877988 \t G: 0.679329 \t D: 0.698854\n", + "eps: 3.912988 \t G: 0.711865 \t D: 0.694357\n", + "eps: 3.947988 \t G: 0.690228 \t D: 0.692709\n", + "eps: 3.982988 \t G: 0.698592 \t D: 0.694288\n", + "eps: 4.017988 \t G: 0.689543 \t D: 0.688812\n", + "eps: 4.052988 \t G: 0.705020 \t D: 0.691620\n", + "eps: 4.087988 \t G: 0.688093 \t D: 0.697707\n", + "eps: 4.119586 \t G: 0.690063 \t D: 0.694527\n", + "eps: 4.149586 \t G: 0.695651 \t D: 0.690567\n", + "eps: 4.179586 \t G: 0.705636 \t D: 0.696383\n", + "eps: 4.209586 \t G: 0.700525 \t D: 0.691312\n", + "eps: 4.239586 \t G: 0.676271 \t D: 0.694654\n", + "eps: 4.269586 \t G: 0.688563 \t D: 0.698388\n", + "eps: 4.299586 \t G: 0.681526 \t D: 0.698504\n", + "eps: 4.329586 \t G: 0.693433 \t D: 0.692396\n", + "eps: 4.359586 \t G: 0.678946 \t D: 0.693821\n", + "eps: 4.389586 \t G: 0.704079 \t D: 0.695138\n", + "eps: 4.419586 \t G: 0.711130 \t D: 0.693717\n", + "eps: 4.449586 \t G: 0.692445 \t D: 0.697196\n", + "eps: 4.479586 \t G: 0.684903 \t D: 0.697392\n", + "eps: 4.509586 \t G: 0.697194 \t D: 0.697828\n", + "eps: 4.539586 \t G: 0.687639 \t D: 0.695808\n", + "eps: 4.569586 \t G: 0.702698 \t D: 0.688421\n", + "eps: 4.599586 \t G: 0.677394 \t D: 0.691671\n", + "eps: 4.629586 \t G: 0.676998 \t D: 0.694079\n", + "eps: 4.659586 \t G: 0.692468 \t D: 0.697231\n", + "eps: 4.689586 \t G: 0.705954 \t D: 0.693673\n", + "eps: 4.719586 \t G: 0.714168 \t D: 0.694783\n", + "eps: 4.749586 \t G: 0.692832 \t D: 0.694862\n", + "eps: 4.779586 \t G: 0.684127 \t D: 0.696356\n", + "eps: 4.809586 \t G: 0.697125 \t D: 0.699097\n", + "eps: 4.839586 \t G: 0.690293 \t D: 0.694361\n", + "eps: 4.869586 \t G: 0.696844 \t D: 0.697206\n", + "eps: 4.899586 \t G: 0.696491 \t D: 0.692738\n", + "eps: 4.929586 \t G: 0.705306 \t D: 0.693927\n", + "eps: 4.959586 \t G: 0.701349 \t D: 0.694641\n", + "eps: 4.989586 \t G: 0.716760 \t D: 0.692627\n", + "eps: 5.019586 \t G: 0.706580 \t D: 0.697327\n", + "eps: 5.049586 \t G: 0.694923 \t D: 0.694328\n", + "eps: 5.079586 \t G: 0.683924 \t D: 0.692442\n", + "eps: 5.109586 \t G: 0.687853 \t D: 0.697842\n", + "eps: 5.136983 \t G: 0.678175 \t D: 0.694115\n", + "eps: 5.161983 \t G: 0.687122 \t D: 0.695188\n", + "eps: 5.186983 \t G: 0.710870 \t D: 0.692395\n", + "eps: 5.211983 \t G: 0.706316 \t D: 0.697591\n", + "eps: 5.236983 \t G: 0.694138 \t D: 0.693994\n", + "eps: 5.261983 \t G: 0.682083 \t D: 0.691040\n", + "eps: 5.286983 \t G: 0.687905 \t D: 0.694451\n", + "eps: 5.311983 \t G: 0.673862 \t D: 0.696650\n", + "eps: 5.336983 \t G: 0.692831 \t D: 0.694289\n", + "eps: 5.361983 \t G: 0.704120 \t D: 0.693669\n", + "eps: 5.386983 \t G: 0.704646 \t D: 0.701262\n", + "eps: 5.411983 \t G: 0.691776 \t D: 0.698044\n", + "eps: 5.436983 \t G: 0.704596 \t D: 0.698575\n", + "eps: 5.461983 \t G: 0.692580 \t D: 0.692944\n", + "eps: 5.486983 \t G: 0.682725 \t D: 0.692538\n", + "eps: 5.511983 \t G: 0.697214 \t D: 0.694453\n", + "eps: 5.536983 \t G: 0.710158 \t D: 0.695539\n", + "eps: 5.561983 \t G: 0.701455 \t D: 0.692305\n", + "eps: 5.586983 \t G: 0.691797 \t D: 0.697904\n", + "eps: 5.611983 \t G: 0.690916 \t D: 0.692865\n", + "eps: 5.636983 \t G: 0.690258 \t D: 0.694387\n", + "eps: 5.661983 \t G: 0.688663 \t D: 0.691113\n", + "eps: 5.686983 \t G: 0.662851 \t D: 0.692329\n", + "eps: 5.711983 \t G: 0.688278 \t D: 0.694166\n", + "eps: 5.736983 \t G: 0.686217 \t D: 0.695744\n", + "eps: 5.761983 \t G: 0.691149 \t D: 0.697361\n", + "eps: 5.786983 \t G: 0.688824 \t D: 0.698891\n", + "eps: 5.811983 \t G: 0.693033 \t D: 0.696105\n", + "eps: 5.836983 \t G: 0.696277 \t D: 0.693473\n", + "eps: 5.861983 \t G: 0.693802 \t D: 0.693498\n", + "eps: 5.886983 \t G: 0.714150 \t D: 0.696003\n", + "eps: 5.911983 \t G: 0.721983 \t D: 0.694278\n", + "eps: 5.936983 \t G: 0.725168 \t D: 0.690415\n", + "eps: 5.961983 \t G: 0.726327 \t D: 0.691595\n", + "eps: 5.986983 \t G: 0.721982 \t D: 0.697985\n", + "eps: 6.011982 \t G: 0.689813 \t D: 0.698034\n", + "eps: 6.036982 \t G: 0.670720 \t D: 0.697906\n", + "eps: 6.061982 \t G: 0.676116 \t D: 0.692406\n", + "eps: 6.086982 \t G: 0.668123 \t D: 0.695680\n", + "eps: 6.111982 \t G: 0.690715 \t D: 0.698138\n", + "eps: 6.136982 \t G: 0.698641 \t D: 0.700861\n", + "eps: 6.161982 \t G: 0.694157 \t D: 0.697574\n", + "eps: 6.186982 \t G: 0.711598 \t D: 0.694706\n", + "eps: 6.211982 \t G: 0.706662 \t D: 0.698498\n", + "eps: 6.236982 \t G: 0.695758 \t D: 0.695270\n", + "eps: 6.261982 \t G: 0.712754 \t D: 0.695887\n", + "eps: 6.286982 \t G: 0.710169 \t D: 0.694539\n", + "eps: 6.311982 \t G: 0.707389 \t D: 0.691145\n", + "eps: 6.336982 \t G: 0.697499 \t D: 0.699215\n", + "eps: 6.361982 \t G: 0.688263 \t D: 0.693412\n", + "eps: 6.386982 \t G: 0.692656 \t D: 0.692965\n", + "eps: 6.411982 \t G: 0.677513 \t D: 0.692228\n", + "eps: 6.436982 \t G: 0.690053 \t D: 0.696777\n", + "eps: 6.461982 \t G: 0.684045 \t D: 0.694823\n", + "eps: 6.486982 \t G: 0.693844 \t D: 0.696127\n", + "eps: 6.511982 \t G: 0.717999 \t D: 0.698269\n", + "eps: 6.536982 \t G: 0.701669 \t D: 0.697028\n", + "eps: 6.561982 \t G: 0.706614 \t D: 0.693551\n", + "eps: 6.586982 \t G: 0.690939 \t D: 0.692773\n", + "eps: 6.611982 \t G: 0.678489 \t D: 0.697274\n", + "eps: 6.636982 \t G: 0.696240 \t D: 0.693872\n", + "eps: 6.661982 \t G: 0.691522 \t D: 0.693280\n", + "eps: 6.686982 \t G: 0.700351 \t D: 0.691683\n", + "eps: 6.711982 \t G: 0.702936 \t D: 0.694047\n", + "eps: 6.736982 \t G: 0.701172 \t D: 0.696587\n", + "eps: 6.761982 \t G: 0.709572 \t D: 0.694403\n", + "eps: 6.786982 \t G: 0.693866 \t D: 0.697633\n", + "eps: 6.811982 \t G: 0.689262 \t D: 0.695713\n", + "eps: 6.835977 \t G: 0.706019 \t D: 0.693791\n", + "eps: 6.855977 \t G: 0.713628 \t D: 0.694795\n", + "eps: 6.875977 \t G: 0.686985 \t D: 0.694983\n", + "eps: 6.895977 \t G: 0.678707 \t D: 0.696975\n", + "eps: 6.915977 \t G: 0.688420 \t D: 0.691135\n", + "eps: 6.935977 \t G: 0.691864 \t D: 0.696182\n", + "eps: 6.955977 \t G: 0.713413 \t D: 0.698038\n", + "eps: 6.975977 \t G: 0.708330 \t D: 0.694529\n", + "eps: 6.995977 \t G: 0.701740 \t D: 0.700547\n", + "eps: 7.015977 \t G: 0.696532 \t D: 0.694873\n", + "eps: 7.035977 \t G: 0.721527 \t D: 0.693872\n", + "eps: 7.055977 \t G: 0.711696 \t D: 0.694538\n", + "eps: 7.075977 \t G: 0.701369 \t D: 0.694573\n", + "eps: 7.095977 \t G: 0.710693 \t D: 0.690452\n", + "eps: 7.115977 \t G: 0.714807 \t D: 0.695867\n", + "eps: 7.135977 \t G: 0.703928 \t D: 0.697142\n", + "eps: 7.155977 \t G: 0.697978 \t D: 0.697099\n", + "eps: 7.175977 \t G: 0.711146 \t D: 0.691293\n", + "eps: 7.195977 \t G: 0.689744 \t D: 0.693730\n", + "eps: 7.215977 \t G: 0.679122 \t D: 0.697585\n", + "eps: 7.235977 \t G: 0.665163 \t D: 0.687304\n", + "eps: 7.255977 \t G: 0.688261 \t D: 0.694644\n", + "eps: 7.275977 \t G: 0.700061 \t D: 0.698768\n", + "eps: 7.295977 \t G: 0.722397 \t D: 0.694110\n", + "eps: 7.315977 \t G: 0.706579 \t D: 0.697697\n", + "eps: 7.335977 \t G: 0.698369 \t D: 0.693160\n", + "eps: 7.355977 \t G: 0.707676 \t D: 0.699921\n", + "eps: 7.375977 \t G: 0.699110 \t D: 0.693009\n", + "eps: 7.395977 \t G: 0.693671 \t D: 0.700002\n", + "eps: 7.415977 \t G: 0.702207 \t D: 0.699121\n", + "eps: 7.435977 \t G: 0.690763 \t D: 0.697587\n", + "eps: 7.455977 \t G: 0.693543 \t D: 0.693346\n", + "eps: 7.475977 \t G: 0.690964 \t D: 0.698946\n", + "eps: 7.495977 \t G: 0.691772 \t D: 0.694487\n", + "eps: 7.515977 \t G: 0.696903 \t D: 0.696523\n", + "eps: 7.535977 \t G: 0.714085 \t D: 0.693842\n", + "eps: 7.555977 \t G: 0.705241 \t D: 0.693571\n", + "eps: 7.575977 \t G: 0.710959 \t D: 0.693134\n", + "eps: 7.595977 \t G: 0.695932 \t D: 0.693888\n", + "eps: 7.615977 \t G: 0.688465 \t D: 0.691797\n", + "eps: 7.635977 \t G: 0.687585 \t D: 0.696887\n", + "eps: 7.655977 \t G: 0.692846 \t D: 0.695367\n", + "eps: 7.675977 \t G: 0.689350 \t D: 0.694941\n", + "eps: 7.695977 \t G: 0.695852 \t D: 0.697276\n", + "eps: 7.715977 \t G: 0.702350 \t D: 0.693447\n", + "eps: 7.735977 \t G: 0.695321 \t D: 0.690365\n", + "eps: 7.755977 \t G: 0.680467 \t D: 0.698033\n", + "eps: 7.775977 \t G: 0.687057 \t D: 0.692665\n", + "eps: 7.795977 \t G: 0.700203 \t D: 0.695803\n", + "eps: 7.815977 \t G: 0.715794 \t D: 0.696600\n", + "eps: 7.835977 \t G: 0.703528 \t D: 0.698830\n", + "eps: 7.855977 \t G: 0.725885 \t D: 0.697341\n", + "eps: 7.875977 \t G: 0.682234 \t D: 0.698131\n", + "eps: 7.895977 \t G: 0.677728 \t D: 0.693323\n", + "eps: 7.915977 \t G: 0.681669 \t D: 0.698836\n", + "eps: 7.935977 \t G: 0.692163 \t D: 0.699217\n", + "eps: 7.955977 \t G: 0.683420 \t D: 0.693969\n", + "eps: 7.975977 \t G: 0.692033 \t D: 0.694492\n", + "eps: 7.995977 \t G: 0.728577 \t D: 0.700214\n", + "eps: 8.015977 \t G: 0.728052 \t D: 0.693331\n", + "eps: 8.035977 \t G: 0.730739 \t D: 0.694320\n", + "eps: 8.055977 \t G: 0.719204 \t D: 0.696886\n", + "eps: 8.075977 \t G: 0.708894 \t D: 0.694114\n", + "eps: 8.095977 \t G: 0.697646 \t D: 0.696363\n", + "eps: 8.115977 \t G: 0.692623 \t D: 0.691135\n", + "eps: 8.135977 \t G: 0.677301 \t D: 0.695693\n", + "eps: 8.155977 \t G: 0.690436 \t D: 0.695203\n", + "eps: 8.175977 \t G: 0.716764 \t D: 0.693985\n", + "eps: 8.195977 \t G: 0.708261 \t D: 0.691021\n", + "eps: 8.215977 \t G: 0.697452 \t D: 0.693978\n", + "eps: 8.235977 \t G: 0.693953 \t D: 0.697357\n", + "eps: 8.255977 \t G: 0.701943 \t D: 0.694999\n", + "eps: 8.275977 \t G: 0.701976 \t D: 0.696045\n", + "eps: 8.295977 \t G: 0.679231 \t D: 0.692849\n", + "eps: 8.315977 \t G: 0.687471 \t D: 0.695532\n", + "eps: 8.335977 \t G: 0.688215 \t D: 0.695305\n", + "eps: 8.355977 \t G: 0.684386 \t D: 0.697067\n", + "eps: 8.375977 \t G: 0.682844 \t D: 0.694733\n", + "eps: 8.395977 \t G: 0.706065 \t D: 0.696155\n", + "eps: 8.415977 \t G: 0.699171 \t D: 0.698522\n", + "eps: 8.435977 \t G: 0.694558 \t D: 0.695058\n", + "eps: 8.455977 \t G: 0.698595 \t D: 0.695299\n", + "eps: 8.475977 \t G: 0.702856 \t D: 0.694437\n", + "eps: 8.495977 \t G: 0.693910 \t D: 0.699749\n", + "eps: 8.515977 \t G: 0.688224 \t D: 0.694186\n", + "eps: 8.535977 \t G: 0.688795 \t D: 0.695863\n", + "eps: 8.555977 \t G: 0.705883 \t D: 0.694558\n", + "eps: 8.575977 \t G: 0.724274 \t D: 0.696720\n", + "eps: 8.595977 \t G: 0.718322 \t D: 0.692502\n", + "eps: 8.615977 \t G: 0.709645 \t D: 0.694721\n", + "eps: 8.635977 \t G: 0.708987 \t D: 0.696772\n", + "eps: 8.655977 \t G: 0.701214 \t D: 0.692546\n", + "eps: 8.675977 \t G: 0.711924 \t D: 0.696422\n", + "eps: 8.695977 \t G: 0.707368 \t D: 0.692554\n", + "eps: 8.715977 \t G: 0.709598 \t D: 0.695780\n", + "eps: 8.735977 \t G: 0.680445 \t D: 0.699557\n", + "eps: 8.755977 \t G: 0.675816 \t D: 0.692951\n", + "eps: 8.775977 \t G: 0.682221 \t D: 0.692445\n", + "eps: 8.795977 \t G: 0.707273 \t D: 0.695885\n", + "eps: 8.815977 \t G: 0.693460 \t D: 0.694252\n", + "eps: 8.835977 \t G: 0.680995 \t D: 0.695839\n", + "eps: 8.855977 \t G: 0.670298 \t D: 0.693365\n", + "eps: 8.875977 \t G: 0.681427 \t D: 0.694136\n", + "eps: 8.895977 \t G: 0.698069 \t D: 0.697778\n", + "eps: 8.915977 \t G: 0.701808 \t D: 0.696195\n", + "eps: 8.935977 \t G: 0.709960 \t D: 0.697699\n", + "eps: 8.955977 \t G: 0.713283 \t D: 0.696481\n", + "eps: 8.975977 \t G: 0.702262 \t D: 0.691180\n", + "eps: 8.995977 \t G: 0.699221 \t D: 0.693380\n", + "eps: 9.015977 \t G: 0.714084 \t D: 0.695818\n", + "eps: 9.035977 \t G: 0.699903 \t D: 0.696171\n", + "eps: 9.055977 \t G: 0.697011 \t D: 0.696874\n", + "eps: 9.075977 \t G: 0.708921 \t D: 0.691218\n", + "eps: 9.095977 \t G: 0.714847 \t D: 0.692894\n", + "eps: 9.115977 \t G: 0.700553 \t D: 0.697870\n", + "eps: 9.135977 \t G: 0.704466 \t D: 0.692195\n", + "eps: 9.155977 \t G: 0.716214 \t D: 0.693401\n", + "eps: 9.175977 \t G: 0.706705 \t D: 0.694446\n", + "eps: 9.195977 \t G: 0.690804 \t D: 0.692994\n", + "eps: 9.215977 \t G: 0.701547 \t D: 0.694552\n", + "eps: 9.235977 \t G: 0.715766 \t D: 0.697340\n", + "eps: 9.255977 \t G: 0.694500 \t D: 0.699202\n", + "eps: 9.275977 \t G: 0.686139 \t D: 0.694071\n", + "eps: 9.295977 \t G: 0.715559 \t D: 0.691591\n", + "eps: 9.315977 \t G: 0.721473 \t D: 0.694705\n", + "eps: 9.335977 \t G: 0.699836 \t D: 0.700774\n", + "eps: 9.355977 \t G: 0.689537 \t D: 0.690166\n", + "eps: 9.375977 \t G: 0.693082 \t D: 0.695173\n", + "eps: 9.395977 \t G: 0.694534 \t D: 0.695173\n", + "eps: 9.415977 \t G: 0.700059 \t D: 0.698420\n", + "eps: 9.435977 \t G: 0.698749 \t D: 0.692723\n", + "eps: 9.455977 \t G: 0.691733 \t D: 0.695272\n", + "eps: 9.475977 \t G: 0.711630 \t D: 0.693643\n", + "eps: 9.495977 \t G: 0.706853 \t D: 0.691853\n", + "eps: 9.515977 \t G: 0.696636 \t D: 0.691733\n", + "eps: 9.535977 \t G: 0.696215 \t D: 0.696250\n", + "eps: 9.555977 \t G: 0.702907 \t D: 0.691832\n", + "eps: 9.575977 \t G: 0.714041 \t D: 0.695757\n", + "eps: 9.595977 \t G: 0.697746 \t D: 0.694564\n", + "eps: 9.615977 \t G: 0.702878 \t D: 0.693213\n", + "eps: 9.635977 \t G: 0.731086 \t D: 0.699579\n", + "eps: 9.655977 \t G: 0.707542 \t D: 0.695599\n", + "eps: 9.675977 \t G: 0.690351 \t D: 0.696782\n", + "eps: 9.695977 \t G: 0.712726 \t D: 0.693319\n", + "eps: 9.715977 \t G: 0.713519 \t D: 0.690887\n", + "eps: 9.735977 \t G: 0.709094 \t D: 0.701579\n", + "eps: 9.755977 \t G: 0.694409 \t D: 0.693226\n", + "eps: 9.775977 \t G: 0.703121 \t D: 0.693624\n", + "eps: 9.795977 \t G: 0.684308 \t D: 0.692475\n", + "eps: 9.815977 \t G: 0.684525 \t D: 0.695275\n", + "eps: 9.835977 \t G: 0.681902 \t D: 0.697289\n", + "eps: 9.855977 \t G: 0.686178 \t D: 0.692194\n", + "eps: 9.875977 \t G: 0.687372 \t D: 0.696504\n", + "eps: 9.895977 \t G: 0.690510 \t D: 0.691553\n", + "eps: 9.915977 \t G: 0.699482 \t D: 0.692439\n", + "eps: 9.935977 \t G: 0.695582 \t D: 0.696715\n", + "eps: 9.955977 \t G: 0.701558 \t D: 0.694982\n", + "eps: 9.975977 \t G: 0.731646 \t D: 0.697401\n", + "eps: 9.995977 \t G: 0.709171 \t D: 0.694371\n", + "Synthesizer (SmartNoise): Fitting patectgan spent 93.3619 sec.\n", + "Synthesizer (SmartNoise): Sampling patectgan # 927 rows (same as raw) in 0.1432 sec.\n", + "Sync data as ...\n", + " age workclass fnlwgt education educational-num marital-status \\\n", + "0 0.24186 0.103012 1.088126 0.554129 0.519998 0.581233 \n", + "\n", + " occupation relationship race gender capital-gain capital-loss \\\n", + "0 0.236864 0.475109 0.705326 0.676615 0.890221 -0.115185 \n", + "\n", + " hours-per-week native-country income \n", + "0 1.13638 0.654151 0.748044 \n", + " age workclass fnlwgt education educational-num \\\n", + "0 41.385254 Private 294926.71711 Bachelors 11.385191 \n", + "\n", + " marital-status occupation relationship race gender capital-gain \\\n", + "0 Never-married Prof-specialty Not-in-family White Male 9733.339667 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 41.004116 54.393705 United-States <=50K \n" + ] + } + ], + "source": [ + "issue332_gan(\n", + " load = load,\n", + " synthesizing_method = 'smartnoise-patectgan',\n", + " outlier_inhibit = True\n", + ")" + ] } ], "metadata": { @@ -279,7 +1432,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.11" } }, "nbformat": 4, diff --git a/poetry.lock b/poetry.lock deleted file mode 100644 index ea021467..00000000 --- a/poetry.lock +++ /dev/null @@ -1,3127 +0,0 @@ -# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. - -[[package]] -name = "anonymeter" -version = "1.0.0" -description = "Measure singling out, linkability, and inference risk for synthetic data." -optional = false -python-versions = "<3.12,>3.7" -files = [ - {file = "anonymeter-1.0.0-py3-none-any.whl", hash = "sha256:b4144ddf5d4ca51fd464479d963eb3959f6bbf990affdde7a778ffb89096641e"}, - {file = "anonymeter-1.0.0.tar.gz", hash = "sha256:bba90478b266733a9dd41aa085b38de5d4666d5dc9373404923c27a3012a504c"}, -] - -[package.dependencies] -joblib = ">=1.2,<2.0" -numba = ">=0.58,<1.0" -numpy = ">=1.22,<1.27" -pandas = ">=1.4" -scikit-learn = ">=1.2,<2.0" - -[package.extras] -dev = ["build (>=0.10,<1.0)", "mypy (>=1.8.0,<1.9.0)", "pre-commit (>=3.5,<4.0)", "pytest (>=7.4,<8.0)", "ruff (>=0.1.14,<0.2.0)", "twine (>=4.0,<5.0)"] -notebooks = ["jupyterlab (>=3.4,<4.0)", "matplotlib (>=3.5,<4.0)", "seaborn (>=0.11,<1.0)"] - -[[package]] -name = "antlr4-python3-runtime" -version = "4.9.3" -description = "ANTLR 4.9.3 runtime for Python 3.7" -optional = false -python-versions = "*" -files = [ - {file = "antlr4-python3-runtime-4.9.3.tar.gz", hash = "sha256:f224469b4168294902bb1efa80a8bf7855f24c99aef99cbefc1bcd3cce77881b"}, -] - -[[package]] -name = "appnope" -version = "0.1.4" -description = "Disable App Nap on macOS >= 10.9" -optional = false -python-versions = ">=3.6" -files = [ - {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, - {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, -] - -[[package]] -name = "asttokens" -version = "2.4.1" -description = "Annotate AST trees with source code positions" -optional = false -python-versions = "*" -files = [ - {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, - {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, -] - -[package.dependencies] -six = ">=1.12.0" - -[package.extras] -astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] -test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] - -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - -[[package]] -name = "boto3" -version = "1.34.58" -description = "The AWS SDK for Python" -optional = false -python-versions = ">= 3.8" -files = [ - {file = "boto3-1.34.58-py3-none-any.whl", hash = "sha256:d213a6fea9db6d537b1e65924133d8279ada79a40bc840d4930e1b64be869d4c"}, - {file = "boto3-1.34.58.tar.gz", hash = "sha256:09e3d17c718bc938a76774f31bc557b20733c0f5f9135a3e7782b55f3459cbdd"}, -] - -[package.dependencies] -botocore = ">=1.34.58,<1.35.0" -jmespath = ">=0.7.1,<2.0.0" -s3transfer = ">=0.10.0,<0.11.0" - -[package.extras] -crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] - -[[package]] -name = "botocore" -version = "1.34.58" -description = "Low-level, data-driven core of boto 3." -optional = false -python-versions = ">= 3.8" -files = [ - {file = "botocore-1.34.58-py3-none-any.whl", hash = "sha256:8086a6ea27d0f658505ac81e6d7314e013561469c40db9b5a4692127eb5c97cf"}, - {file = "botocore-1.34.58.tar.gz", hash = "sha256:d75216952886dc513ea1b5e2979a6af08feed2f537e3fc102e4a0a2ead563a35"}, -] - -[package.dependencies] -jmespath = ">=0.7.1,<2.0.0" -python-dateutil = ">=2.1,<3.0.0" -urllib3 = [ - {version = ">=1.25.4,<1.27", markers = "python_version < \"3.10\""}, - {version = ">=1.25.4,<2.1", markers = "python_version >= \"3.10\""}, -] - -[package.extras] -crt = ["awscrt (==0.19.19)"] - -[[package]] -name = "certifi" -version = "2024.2.2" -description = "Python package for providing Mozilla's CA Bundle." -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"}, - {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"}, -] - -[[package]] -name = "cffi" -version = "1.16.0" -description = "Foreign Function Interface for Python calling C code." -optional = false -python-versions = ">=3.8" -files = [ - {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, - {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, - {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, - {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, - {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, - {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, - {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, - {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, - {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, - {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, - {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, - {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, - {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, - {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, - {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, -] - -[package.dependencies] -pycparser = "*" - -[[package]] -name = "charset-normalizer" -version = "3.3.2" -description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, -] - -[[package]] -name = "cloudpickle" -version = "2.2.1" -description = "Extended pickling support for Python objects" -optional = false -python-versions = ">=3.6" -files = [ - {file = "cloudpickle-2.2.1-py3-none-any.whl", hash = "sha256:61f594d1f4c295fa5cd9014ceb3a1fc4a70b0de1164b94fbc2d854ccba056f9f"}, - {file = "cloudpickle-2.2.1.tar.gz", hash = "sha256:d89684b8de9e34a2a43b3460fbca07d09d6e25ce858df4d5a44240403b6178f5"}, -] - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "comm" -version = "0.2.1" -description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." -optional = false -python-versions = ">=3.8" -files = [ - {file = "comm-0.2.1-py3-none-any.whl", hash = "sha256:87928485c0dfc0e7976fd89fc1e187023cf587e7c353e4a9b417555b44adf021"}, - {file = "comm-0.2.1.tar.gz", hash = "sha256:0bc91edae1344d39d3661dcbc36937181fdaddb304790458f8b044dbc064b89a"}, -] - -[package.dependencies] -traitlets = ">=4" - -[package.extras] -test = ["pytest"] - -[[package]] -name = "contourpy" -version = "1.1.1" -description = "Python library for calculating contours of 2D quadrilateral grids" -optional = false -python-versions = ">=3.8" -files = [ - {file = "contourpy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:46e24f5412c948d81736509377e255f6040e94216bf1a9b5ea1eaa9d29f6ec1b"}, - {file = "contourpy-1.1.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0e48694d6a9c5a26ee85b10130c77a011a4fedf50a7279fa0bdaf44bafb4299d"}, - {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a66045af6cf00e19d02191ab578a50cb93b2028c3eefed999793698e9ea768ae"}, - {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ebf42695f75ee1a952f98ce9775c873e4971732a87334b099dde90b6af6a916"}, - {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6aec19457617ef468ff091669cca01fa7ea557b12b59a7908b9474bb9674cf0"}, - {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:462c59914dc6d81e0b11f37e560b8a7c2dbab6aca4f38be31519d442d6cde1a1"}, - {file = "contourpy-1.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6d0a8efc258659edc5299f9ef32d8d81de8b53b45d67bf4bfa3067f31366764d"}, - {file = "contourpy-1.1.1-cp310-cp310-win32.whl", hash = "sha256:d6ab42f223e58b7dac1bb0af32194a7b9311065583cc75ff59dcf301afd8a431"}, - {file = "contourpy-1.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:549174b0713d49871c6dee90a4b499d3f12f5e5f69641cd23c50a4542e2ca1eb"}, - {file = "contourpy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:407d864db716a067cc696d61fa1ef6637fedf03606e8417fe2aeed20a061e6b2"}, - {file = "contourpy-1.1.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe80c017973e6a4c367e037cb31601044dd55e6bfacd57370674867d15a899b"}, - {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e30aaf2b8a2bac57eb7e1650df1b3a4130e8d0c66fc2f861039d507a11760e1b"}, - {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3de23ca4f381c3770dee6d10ead6fff524d540c0f662e763ad1530bde5112532"}, - {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:566f0e41df06dfef2431defcfaa155f0acfa1ca4acbf8fd80895b1e7e2ada40e"}, - {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b04c2f0adaf255bf756cf08ebef1be132d3c7a06fe6f9877d55640c5e60c72c5"}, - {file = "contourpy-1.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d0c188ae66b772d9d61d43c6030500344c13e3f73a00d1dc241da896f379bb62"}, - {file = "contourpy-1.1.1-cp311-cp311-win32.whl", hash = "sha256:0683e1ae20dc038075d92e0e0148f09ffcefab120e57f6b4c9c0f477ec171f33"}, - {file = "contourpy-1.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:8636cd2fc5da0fb102a2504fa2c4bea3cbc149533b345d72cdf0e7a924decc45"}, - {file = "contourpy-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:560f1d68a33e89c62da5da4077ba98137a5e4d3a271b29f2f195d0fba2adcb6a"}, - {file = "contourpy-1.1.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:24216552104ae8f3b34120ef84825400b16eb6133af2e27a190fdc13529f023e"}, - {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56de98a2fb23025882a18b60c7f0ea2d2d70bbbcfcf878f9067234b1c4818442"}, - {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:07d6f11dfaf80a84c97f1a5ba50d129d9303c5b4206f776e94037332e298dda8"}, - {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1eaac5257a8f8a047248d60e8f9315c6cff58f7803971170d952555ef6344a7"}, - {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19557fa407e70f20bfaba7d55b4d97b14f9480856c4fb65812e8a05fe1c6f9bf"}, - {file = "contourpy-1.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:081f3c0880712e40effc5f4c3b08feca6d064cb8cfbb372ca548105b86fd6c3d"}, - {file = "contourpy-1.1.1-cp312-cp312-win32.whl", hash = "sha256:059c3d2a94b930f4dafe8105bcdc1b21de99b30b51b5bce74c753686de858cb6"}, - {file = "contourpy-1.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:f44d78b61740e4e8c71db1cf1fd56d9050a4747681c59ec1094750a658ceb970"}, - {file = "contourpy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:70e5a10f8093d228bb2b552beeb318b8928b8a94763ef03b858ef3612b29395d"}, - {file = "contourpy-1.1.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8394e652925a18ef0091115e3cc191fef350ab6dc3cc417f06da66bf98071ae9"}, - {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5bd5680f844c3ff0008523a71949a3ff5e4953eb7701b28760805bc9bcff217"}, - {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:66544f853bfa85c0d07a68f6c648b2ec81dafd30f272565c37ab47a33b220684"}, - {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0c02b75acfea5cab07585d25069207e478d12309557f90a61b5a3b4f77f46ce"}, - {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41339b24471c58dc1499e56783fedc1afa4bb018bcd035cfb0ee2ad2a7501ef8"}, - {file = "contourpy-1.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f29fb0b3f1217dfe9362ec55440d0743fe868497359f2cf93293f4b2701b8251"}, - {file = "contourpy-1.1.1-cp38-cp38-win32.whl", hash = "sha256:f9dc7f933975367251c1b34da882c4f0e0b2e24bb35dc906d2f598a40b72bfc7"}, - {file = "contourpy-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:498e53573e8b94b1caeb9e62d7c2d053c263ebb6aa259c81050766beb50ff8d9"}, - {file = "contourpy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ba42e3810999a0ddd0439e6e5dbf6d034055cdc72b7c5c839f37a7c274cb4eba"}, - {file = "contourpy-1.1.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c06e4c6e234fcc65435223c7b2a90f286b7f1b2733058bdf1345d218cc59e34"}, - {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca6fab080484e419528e98624fb5c4282148b847e3602dc8dbe0cb0669469887"}, - {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:93df44ab351119d14cd1e6b52a5063d3336f0754b72736cc63db59307dabb718"}, - {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eafbef886566dc1047d7b3d4b14db0d5b7deb99638d8e1be4e23a7c7ac59ff0f"}, - {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efe0fab26d598e1ec07d72cf03eaeeba8e42b4ecf6b9ccb5a356fde60ff08b85"}, - {file = "contourpy-1.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f08e469821a5e4751c97fcd34bcb586bc243c39c2e39321822060ba902eac49e"}, - {file = "contourpy-1.1.1-cp39-cp39-win32.whl", hash = "sha256:bfc8a5e9238232a45ebc5cb3bfee71f1167064c8d382cadd6076f0d51cff1da0"}, - {file = "contourpy-1.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:c84fdf3da00c2827d634de4fcf17e3e067490c4aea82833625c4c8e6cdea0887"}, - {file = "contourpy-1.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:229a25f68046c5cf8067d6d6351c8b99e40da11b04d8416bf8d2b1d75922521e"}, - {file = "contourpy-1.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a10dab5ea1bd4401c9483450b5b0ba5416be799bbd50fc7a6cc5e2a15e03e8a3"}, - {file = "contourpy-1.1.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:4f9147051cb8fdb29a51dc2482d792b3b23e50f8f57e3720ca2e3d438b7adf23"}, - {file = "contourpy-1.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a75cc163a5f4531a256f2c523bd80db509a49fc23721b36dd1ef2f60ff41c3cb"}, - {file = "contourpy-1.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b53d5769aa1f2d4ea407c65f2d1d08002952fac1d9e9d307aa2e1023554a163"}, - {file = "contourpy-1.1.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11b836b7dbfb74e049c302bbf74b4b8f6cb9d0b6ca1bf86cfa8ba144aedadd9c"}, - {file = "contourpy-1.1.1.tar.gz", hash = "sha256:96ba37c2e24b7212a77da85004c38e7c4d155d3e72a45eeaf22c1f03f607e8ab"}, -] - -[package.dependencies] -numpy = {version = ">=1.16,<2.0", markers = "python_version <= \"3.11\""} - -[package.extras] -bokeh = ["bokeh", "selenium"] -docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] -mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.4.1)", "types-Pillow"] -test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] -test-no-images = ["pytest", "pytest-cov", "wurlitzer"] - -[[package]] -name = "contourpy" -version = "1.2.0" -description = "Python library for calculating contours of 2D quadrilateral grids" -optional = false -python-versions = ">=3.9" -files = [ - {file = "contourpy-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8"}, - {file = "contourpy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa"}, - {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9"}, - {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab"}, - {file = "contourpy-1.2.0-cp310-cp310-win32.whl", hash = "sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488"}, - {file = "contourpy-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41"}, - {file = "contourpy-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727"}, - {file = "contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686"}, - {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286"}, - {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95"}, - {file = "contourpy-1.2.0-cp311-cp311-win32.whl", hash = "sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6"}, - {file = "contourpy-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de"}, - {file = "contourpy-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0"}, - {file = "contourpy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0"}, - {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0"}, - {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431"}, - {file = "contourpy-1.2.0-cp312-cp312-win32.whl", hash = "sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f"}, - {file = "contourpy-1.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9"}, - {file = "contourpy-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc"}, - {file = "contourpy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5"}, - {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e"}, - {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808"}, - {file = "contourpy-1.2.0-cp39-cp39-win32.whl", hash = "sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4"}, - {file = "contourpy-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956"}, - {file = "contourpy-1.2.0.tar.gz", hash = "sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a"}, -] - -[package.dependencies] -numpy = ">=1.20,<2.0" - -[package.extras] -bokeh = ["bokeh", "selenium"] -docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] -mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.6.1)", "types-Pillow"] -test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] -test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] - -[[package]] -name = "copulas" -version = "0.9.2" -description = "Create tabular synthetic data using copulas-based modeling." -optional = false -python-versions = ">=3.8,<3.12" -files = [ - {file = "copulas-0.9.2-py2.py3-none-any.whl", hash = "sha256:c9ac99bbe3b0f30990748042b2d786e88f59abac26a33c06e8aff1d00cb5b2c2"}, - {file = "copulas-0.9.2.tar.gz", hash = "sha256:5aab94fdc5f933227e6a0775422e1c593234f3d021006be91c33ed180097aac1"}, -] - -[package.dependencies] -matplotlib = [ - {version = ">=3.4.0,<4", markers = "python_version < \"3.10\""}, - {version = ">=3.6.0,<4", markers = "python_version >= \"3.10\""}, -] -numpy = [ - {version = ">=1.20.0,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.23.3,<2", markers = "python_version >= \"3.10\""}, -] -pandas = [ - {version = ">=1.1.3", markers = "python_version < \"3.10\""}, - {version = ">=1.3.4", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -scipy = [ - {version = ">=1.5.4,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.9.2,<2", markers = "python_version >= \"3.10\""}, -] - -[package.extras] -dev = ["Jinja2 (>=2,<3)", "Sphinx (>=1.7.1,<3)", "autoflake (>=1.1,<2)", "autopep8 (>=1.4.3,<1.6)", "boto3 (>=1.7.47,<1.10)", "bumpversion (>=0.5.3,<0.6)", "coverage (>=4.5.1,<6)", "dlint (>=0.11.0,<0.12)", "doc8 (>=0.8.0,<0.9)", "docutils (>=0.10,<0.15)", "flake8 (>=3.7.7,<4)", "flake8-absolute-import (>=1.0,<2)", "flake8-builtins (>=1.5.3,<1.6)", "flake8-comprehensions (>=3.6.1,<3.7)", "flake8-debugger (>=4.0.0,<4.1)", "flake8-docstrings (>=1.5.0,<2)", "flake8-eradicate (>=1.1.0,<1.2)", "flake8-expression-complexity (>=0.0.9,<0.1)", "flake8-fixme (>=1.1.1,<1.2)", "flake8-mock (>=0.3,<0.4)", "flake8-multiline-containers (>=0.0.18,<0.1)", "flake8-mutable (>=1.2.0,<1.3)", "flake8-print (>=4.0.0,<4.1)", "flake8-pytest-style (>=1.5.0,<2)", "flake8-quotes (>=3.3.0,<4)", "flake8-sfs (>=0.0.3,<0.1)", "flake8-variables-names (>=0.0.4,<0.1)", "invoke", "isort (>=4.3.4,<5)", "jupyter (>=1.0.0,<2)", "m2r (>=0.2.0,<0.3)", "markupsafe (<=2.0.1)", "nbsphinx (>=0.5.0,<0.7)", "pandas-vet (>=0.2.2,<0.3)", "pep8-naming (>=0.12.1,<0.13)", "pip (>=9.0.1)", "pydocstyle (>=6.1.1,<6.2)", "pytest (>=6.2.5,<7)", "pytest-cov (>=2.6.0,<3)", "pytest-rerunfailures (>=9.0.0,<10)", "rundoc (>=0.4.3,<0.5)", "scikit-learn (>=0.24,<1.2)", "sphinx-rtd-theme (>=0.2.4,<0.5)", "tabulate (>=0.8.3,<0.9)", "tox (>=2.9.1,<4)", "twine (>=1.10.0,<4)", "urllib3 (>=1.20,<1.26)", "watchdog (>=0.8.3,<0.11)", "wheel (>=0.30.0)"] -test = ["jupyter (>=1.0.0,<2)", "markupsafe (<=2.0.1)", "pytest (>=6.2.5,<7)", "pytest-cov (>=2.6.0,<3)", "pytest-rerunfailures (>=9.0.0,<10)", "rundoc (>=0.4.3,<0.5)", "scikit-learn (>=0.24,<1.2)"] -tutorials = ["jupyter (>=1.0.0,<2)", "markupsafe (<=2.0.1)", "scikit-learn (>=0.24,<1.2)"] - -[[package]] -name = "ctgan" -version = "0.9.0" -description = "Create tabular synthetic data using a conditional GAN" -optional = false -python-versions = ">=3.8,<3.12" -files = [ - {file = "ctgan-0.9.0-py2.py3-none-any.whl", hash = "sha256:f879830ed112a9b3173646eb625afda53ef812938116e96655dda2945a952f33"}, - {file = "ctgan-0.9.0.tar.gz", hash = "sha256:efb4587591a7ee0ae81de3829104a6574aee26213b3a54965a06b0a89ccf1e53"}, -] - -[package.dependencies] -numpy = [ - {version = ">=1.20.0,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.23.3,<2", markers = "python_version >= \"3.10\""}, -] -pandas = [ - {version = ">=1.1.3", markers = "python_version < \"3.10\""}, - {version = ">=1.3.4", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -rdt = ">=1.6.1,<2.0" -scikit-learn = {version = ">=1.1.3,<2", markers = "python_version >= \"3.10\""} -torch = [ - {version = ">=1.8.0", markers = "python_version < \"3.10\""}, - {version = ">=1.11.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -tqdm = ">=4.15,<5" - -[package.extras] -dev = ["autoflake (>=1.1,<2)", "autopep8 (>=1.4.3,<1.6)", "bumpversion (>=0.5.3,<0.6)", "coverage (>=4.5.1,<6)", "dlint (>=0.11.0,<0.12)", "flake8 (>=3.7.7,<4)", "flake8-absolute-import (>=1.0,<2)", "flake8-builtins (>=1.5.3,<1.6)", "flake8-comprehensions (>=3.6.1,<3.7)", "flake8-debugger (>=4.0.0,<4.1)", "flake8-docstrings (>=1.5.0,<2)", "flake8-eradicate (>=1.1.0,<1.2)", "flake8-expression-complexity (>=0.0.9,<0.1)", "flake8-fixme (>=1.1.1,<1.2)", "flake8-mock (>=0.3,<0.4)", "flake8-multiline-containers (>=0.0.18,<0.1)", "flake8-mutable (>=1.2.0,<1.3)", "flake8-print (>=4.0.0,<4.1)", "flake8-pytest-style (>=1.5.0,<2)", "flake8-quotes (>=3.3.0,<4)", "flake8-sfs (>=0.0.3,<0.1)", "flake8-variables-names (>=0.0.4,<0.1)", "invoke", "isort (>=4.3.4,<5)", "pandas-vet (>=0.2.2,<0.3)", "pip (>=9.0.1)", "pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-rerunfailures (>=9.1.1,<10)", "rundoc (>=0.4.3,<0.5)", "tox (>=2.9.1,<4)", "twine (>=1.10.0,<4)", "watchdog (>=0.8.3,<0.11)", "wheel (>=0.30.0)"] -test = ["pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-rerunfailures (>=9.1.1,<10)", "rundoc (>=0.4.3,<0.5)"] - -[[package]] -name = "cycler" -version = "0.12.1" -description = "Composable style cycles" -optional = false -python-versions = ">=3.8" -files = [ - {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, - {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, -] - -[package.extras] -docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] -tests = ["pytest", "pytest-cov", "pytest-xdist"] - -[[package]] -name = "debugpy" -version = "1.8.1" -description = "An implementation of the Debug Adapter Protocol for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "debugpy-1.8.1-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741"}, - {file = "debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e"}, - {file = "debugpy-1.8.1-cp310-cp310-win32.whl", hash = "sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0"}, - {file = "debugpy-1.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd"}, - {file = "debugpy-1.8.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb"}, - {file = "debugpy-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099"}, - {file = "debugpy-1.8.1-cp311-cp311-win32.whl", hash = "sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146"}, - {file = "debugpy-1.8.1-cp311-cp311-win_amd64.whl", hash = "sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8"}, - {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"}, - {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"}, - {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"}, - {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"}, - {file = "debugpy-1.8.1-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39"}, - {file = "debugpy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7"}, - {file = "debugpy-1.8.1-cp38-cp38-win32.whl", hash = "sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9"}, - {file = "debugpy-1.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234"}, - {file = "debugpy-1.8.1-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42"}, - {file = "debugpy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703"}, - {file = "debugpy-1.8.1-cp39-cp39-win32.whl", hash = "sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23"}, - {file = "debugpy-1.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3"}, - {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"}, - {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"}, -] - -[[package]] -name = "decorator" -version = "5.1.1" -description = "Decorators for Humans" -optional = false -python-versions = ">=3.5" -files = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, -] - -[[package]] -name = "deepecho" -version = "0.5.0" -description = "Create sequential synthetic data of mixed types using a GAN." -optional = false -python-versions = ">=3.8,<3.12" -files = [ - {file = "deepecho-0.5.0-py2.py3-none-any.whl", hash = "sha256:054de22c58d67e8db9b4b0159398afcc84563a38a7abe399031e4149c6daa940"}, - {file = "deepecho-0.5.0.tar.gz", hash = "sha256:49afaf8305cd695f8f6dbc7969ada55c81a3048e2928712422bed98f6fbd4282"}, -] - -[package.dependencies] -numpy = [ - {version = ">=1.20.0,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.23.3,<2", markers = "python_version >= \"3.10\""}, -] -pandas = [ - {version = ">=1.1.3", markers = "python_version < \"3.10\""}, - {version = ">=1.3.4", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -torch = [ - {version = ">=1.8.0", markers = "python_version < \"3.10\""}, - {version = ">=1.11.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -tqdm = ">=4.15,<5" - -[package.extras] -dev = ["autoflake (>=1.1,<2)", "autopep8 (>=1.4.3,<1.6)", "bumpversion (>=0.5.3,<0.6)", "coverage (>=4.5.1,<6)", "dlint (>=0.11.0,<0.12)", "flake8 (>=3.7.7,<4)", "flake8-absolute-import (>=1.0,<2)", "flake8-builtins (>=1.5.3,<1.6)", "flake8-debugger (>=4.0.0,<4.1)", "flake8-docstrings (>=1.5.0,<2)", "flake8-eradicate (>=1.1.0,<1.2)", "flake8-expression-complexity (>=0.0.9,<0.1)", "flake8-fixme (>=1.1.1,<1.2)", "flake8-mock (>=0.3,<0.4)", "flake8-multiline-containers (>=0.0.18,<0.1)", "flake8-mutable (>=1.2.0,<1.3)", "flake8-print (>=4.0.0,<4.1)", "flake8-quotes (>=3.3.0,<4)", "flake8-sfs (>=0.0.3,<0.1)", "flake8-variables-names (>=0.0.4,<0.1)", "invoke", "isort (>=4.3.4,<5)", "jupyter (>=1.0.0,<2)", "pep8-naming (>=0.12.1,<0.13)", "pip (>=9.0.1)", "pylint (>=2.5.3,<3)", "pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-rerunfailures (>=9.0.0,<10)", "rundoc (>=0.4.3,<0.5)", "setuptools (<49.2)", "tox (>=2.9.1,<4)", "twine (>=1.10.0,<4)", "watchdog (>=0.8.3,<0.11)", "wheel (>=0.30.0)"] -test = ["jupyter (>=1.0.0,<2)", "pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-rerunfailures (>=9.0.0,<10)", "rundoc (>=0.4.3,<0.5)"] - -[[package]] -name = "exceptiongroup" -version = "1.2.0" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, - {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "executing" -version = "2.0.1" -description = "Get the currently executing AST node of a frame, and other information" -optional = false -python-versions = ">=3.5" -files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, -] - -[package.extras] -tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] - -[[package]] -name = "faker" -version = "19.13.0" -description = "Faker is a Python package that generates fake data for you." -optional = false -python-versions = ">=3.8" -files = [ - {file = "Faker-19.13.0-py3-none-any.whl", hash = "sha256:da880a76322db7a879c848a0771e129338e0a680a9f695fd9a3e7a6ac82b45e1"}, - {file = "Faker-19.13.0.tar.gz", hash = "sha256:14ccb0aec342d33aa3889a864a56e5b3c2d56bce1b89f9189f4fbc128b9afc1e"}, -] - -[package.dependencies] -python-dateutil = ">=2.4" -typing-extensions = {version = ">=3.10.0.1", markers = "python_version <= \"3.8\""} - -[[package]] -name = "filelock" -version = "3.13.1" -description = "A platform independent file lock." -optional = false -python-versions = ">=3.8" -files = [ - {file = "filelock-3.13.1-py3-none-any.whl", hash = "sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c"}, - {file = "filelock-3.13.1.tar.gz", hash = "sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e"}, -] - -[package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.24)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] -typing = ["typing-extensions (>=4.8)"] - -[[package]] -name = "fonttools" -version = "4.49.0" -description = "Tools to manipulate font files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fonttools-4.49.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d970ecca0aac90d399e458f0b7a8a597e08f95de021f17785fb68e2dc0b99717"}, - {file = "fonttools-4.49.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ac9a745b7609f489faa65e1dc842168c18530874a5f5b742ac3dd79e26bca8bc"}, - {file = "fonttools-4.49.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ba0e00620ca28d4ca11fc700806fd69144b463aa3275e1b36e56c7c09915559"}, - {file = "fonttools-4.49.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdee3ab220283057e7840d5fb768ad4c2ebe65bdba6f75d5d7bf47f4e0ed7d29"}, - {file = "fonttools-4.49.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ce7033cb61f2bb65d8849658d3786188afd80f53dad8366a7232654804529532"}, - {file = "fonttools-4.49.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:07bc5ea02bb7bc3aa40a1eb0481ce20e8d9b9642a9536cde0218290dd6085828"}, - {file = "fonttools-4.49.0-cp310-cp310-win32.whl", hash = "sha256:86eef6aab7fd7c6c8545f3ebd00fd1d6729ca1f63b0cb4d621bccb7d1d1c852b"}, - {file = "fonttools-4.49.0-cp310-cp310-win_amd64.whl", hash = "sha256:1fac1b7eebfce75ea663e860e7c5b4a8831b858c17acd68263bc156125201abf"}, - {file = "fonttools-4.49.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:edc0cce355984bb3c1d1e89d6a661934d39586bb32191ebff98c600f8957c63e"}, - {file = "fonttools-4.49.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:83a0d9336de2cba86d886507dd6e0153df333ac787377325a39a2797ec529814"}, - {file = "fonttools-4.49.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36c8865bdb5cfeec88f5028e7e592370a0657b676c6f1d84a2108e0564f90e22"}, - {file = "fonttools-4.49.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33037d9e56e2562c710c8954d0f20d25b8386b397250d65581e544edc9d6b942"}, - {file = "fonttools-4.49.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:8fb022d799b96df3eaa27263e9eea306bd3d437cc9aa981820850281a02b6c9a"}, - {file = "fonttools-4.49.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:33c584c0ef7dc54f5dd4f84082eabd8d09d1871a3d8ca2986b0c0c98165f8e86"}, - {file = "fonttools-4.49.0-cp311-cp311-win32.whl", hash = "sha256:cbe61b158deb09cffdd8540dc4a948d6e8f4d5b4f3bf5cd7db09bd6a61fee64e"}, - {file = "fonttools-4.49.0-cp311-cp311-win_amd64.whl", hash = "sha256:fc11e5114f3f978d0cea7e9853627935b30d451742eeb4239a81a677bdee6bf6"}, - {file = "fonttools-4.49.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d647a0e697e5daa98c87993726da8281c7233d9d4ffe410812a4896c7c57c075"}, - {file = "fonttools-4.49.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f3bbe672df03563d1f3a691ae531f2e31f84061724c319652039e5a70927167e"}, - {file = "fonttools-4.49.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bebd91041dda0d511b0d303180ed36e31f4f54b106b1259b69fade68413aa7ff"}, - {file = "fonttools-4.49.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4145f91531fd43c50f9eb893faa08399816bb0b13c425667c48475c9f3a2b9b5"}, - {file = "fonttools-4.49.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ea329dafb9670ffbdf4dbc3b0e5c264104abcd8441d56de77f06967f032943cb"}, - {file = "fonttools-4.49.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c076a9e548521ecc13d944b1d261ff3d7825048c338722a4bd126d22316087b7"}, - {file = "fonttools-4.49.0-cp312-cp312-win32.whl", hash = "sha256:b607ea1e96768d13be26d2b400d10d3ebd1456343eb5eaddd2f47d1c4bd00880"}, - {file = "fonttools-4.49.0-cp312-cp312-win_amd64.whl", hash = "sha256:a974c49a981e187381b9cc2c07c6b902d0079b88ff01aed34695ec5360767034"}, - {file = "fonttools-4.49.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b85ec0bdd7bdaa5c1946398cbb541e90a6dfc51df76dfa88e0aaa41b335940cb"}, - {file = "fonttools-4.49.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:af20acbe198a8a790618ee42db192eb128afcdcc4e96d99993aca0b60d1faeb4"}, - {file = "fonttools-4.49.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d418b1fee41a1d14931f7ab4b92dc0bc323b490e41d7a333eec82c9f1780c75"}, - {file = "fonttools-4.49.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b44a52b8e6244b6548851b03b2b377a9702b88ddc21dcaf56a15a0393d425cb9"}, - {file = "fonttools-4.49.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7c7125068e04a70739dad11857a4d47626f2b0bd54de39e8622e89701836eabd"}, - {file = "fonttools-4.49.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:29e89d0e1a7f18bc30f197cfadcbef5a13d99806447c7e245f5667579a808036"}, - {file = "fonttools-4.49.0-cp38-cp38-win32.whl", hash = "sha256:9d95fa0d22bf4f12d2fb7b07a46070cdfc19ef5a7b1c98bc172bfab5bf0d6844"}, - {file = "fonttools-4.49.0-cp38-cp38-win_amd64.whl", hash = "sha256:768947008b4dc552d02772e5ebd49e71430a466e2373008ce905f953afea755a"}, - {file = "fonttools-4.49.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:08877e355d3dde1c11973bb58d4acad1981e6d1140711230a4bfb40b2b937ccc"}, - {file = "fonttools-4.49.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fdb54b076f25d6b0f0298dc706acee5052de20c83530fa165b60d1f2e9cbe3cb"}, - {file = "fonttools-4.49.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0af65c720520710cc01c293f9c70bd69684365c6015cc3671db2b7d807fe51f2"}, - {file = "fonttools-4.49.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f255ce8ed7556658f6d23f6afd22a6d9bbc3edb9b96c96682124dc487e1bf42"}, - {file = "fonttools-4.49.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d00af0884c0e65f60dfaf9340e26658836b935052fdd0439952ae42e44fdd2be"}, - {file = "fonttools-4.49.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:263832fae27481d48dfafcc43174644b6706639661e242902ceb30553557e16c"}, - {file = "fonttools-4.49.0-cp39-cp39-win32.whl", hash = "sha256:0404faea044577a01bb82d47a8fa4bc7a54067fa7e324785dd65d200d6dd1133"}, - {file = "fonttools-4.49.0-cp39-cp39-win_amd64.whl", hash = "sha256:b050d362df50fc6e38ae3954d8c29bf2da52be384649ee8245fdb5186b620836"}, - {file = "fonttools-4.49.0-py3-none-any.whl", hash = "sha256:af281525e5dd7fa0b39fb1667b8d5ca0e2a9079967e14c4bfe90fd1cd13e0f18"}, - {file = "fonttools-4.49.0.tar.gz", hash = "sha256:ebf46e7f01b7af7861310417d7c49591a85d99146fc23a5ba82fdb28af156321"}, -] - -[package.extras] -all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] -graphite = ["lz4 (>=1.7.4.2)"] -interpolatable = ["munkres", "pycairo", "scipy"] -lxml = ["lxml (>=4.0)"] -pathops = ["skia-pathops (>=0.5.0)"] -plot = ["matplotlib"] -repacker = ["uharfbuzz (>=0.23.0)"] -symfont = ["sympy"] -type1 = ["xattr"] -ufo = ["fs (>=2.2.0,<3)"] -unicode = ["unicodedata2 (>=15.1.0)"] -woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] - -[[package]] -name = "fsspec" -version = "2024.2.0" -description = "File-system specification" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fsspec-2024.2.0-py3-none-any.whl", hash = "sha256:817f969556fa5916bc682e02ca2045f96ff7f586d45110fcb76022063ad2c7d8"}, - {file = "fsspec-2024.2.0.tar.gz", hash = "sha256:b6ad1a679f760dda52b1168c859d01b7b80648ea6f7f7c7f5a8a91dc3f3ecb84"}, -] - -[package.extras] -abfs = ["adlfs"] -adl = ["adlfs"] -arrow = ["pyarrow (>=1)"] -dask = ["dask", "distributed"] -devel = ["pytest", "pytest-cov"] -dropbox = ["dropbox", "dropboxdrivefs", "requests"] -full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] -fuse = ["fusepy"] -gcs = ["gcsfs"] -git = ["pygit2"] -github = ["requests"] -gs = ["gcsfs"] -gui = ["panel"] -hdfs = ["pyarrow (>=1)"] -http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] -libarchive = ["libarchive-c"] -oci = ["ocifs"] -s3 = ["s3fs"] -sftp = ["paramiko"] -smb = ["smbprotocol"] -ssh = ["paramiko"] -tqdm = ["tqdm"] - -[[package]] -name = "graphviz" -version = "0.17" -description = "Simple Python interface for Graphviz" -optional = false -python-versions = ">=3.6" -files = [ - {file = "graphviz-0.17-py3-none-any.whl", hash = "sha256:5dadec94046d82adaae6019311a30e0487536d9d5a60d85451f0ba32f9fc6559"}, - {file = "graphviz-0.17.zip", hash = "sha256:ef6e2c5deb9cdcc0c7eece1d89625fd07b0f2208ea2bcb483520907ddf8b4e12"}, -] - -[package.extras] -dev = ["flake8", "pep8-naming", "tox (>=3)", "twine", "wheel"] -docs = ["sphinx (>=1.8)", "sphinx-autodoc-typehints", "sphinx-rtd-theme"] -test = ["mock (>=3)", "pytest (>=5.2)", "pytest-cov", "pytest-mock (>=2)"] - -[[package]] -name = "greenlet" -version = "3.0.3" -description = "Lightweight in-process concurrent programming" -optional = false -python-versions = ">=3.7" -files = [ - {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, - {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, - {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, - {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, - {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, - {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, - {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, - {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, - {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, - {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, - {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, - {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, - {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, - {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, - {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, - {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, -] - -[package.extras] -docs = ["Sphinx", "furo"] -test = ["objgraph", "psutil"] - -[[package]] -name = "idna" -version = "3.6" -description = "Internationalized Domain Names in Applications (IDNA)" -optional = false -python-versions = ">=3.5" -files = [ - {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, - {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, -] - -[[package]] -name = "importlib-metadata" -version = "7.0.2" -description = "Read metadata from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_metadata-7.0.2-py3-none-any.whl", hash = "sha256:f4bc4c0c070c490abf4ce96d715f68e95923320370efb66143df00199bb6c100"}, - {file = "importlib_metadata-7.0.2.tar.gz", hash = "sha256:198f568f3230878cb1b44fbd7975f87906c22336dba2e4a7f05278c281fbd792"}, -] - -[package.dependencies] -zipp = ">=0.5" - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -perf = ["ipython"] -testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] - -[[package]] -name = "importlib-resources" -version = "6.1.3" -description = "Read resources from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_resources-6.1.3-py3-none-any.whl", hash = "sha256:4c0269e3580fe2634d364b39b38b961540a7738c02cb984e98add8b4221d793d"}, - {file = "importlib_resources-6.1.3.tar.gz", hash = "sha256:56fb4525197b78544a3354ea27793952ab93f935bb4bf746b846bb1015020f2b"}, -] - -[package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["jaraco.collections", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] - -[[package]] -name = "iniconfig" -version = "2.0.0" -description = "brain-dead simple config-ini parsing" -optional = false -python-versions = ">=3.7" -files = [ - {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, - {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, -] - -[[package]] -name = "ipykernel" -version = "6.29.3" -description = "IPython Kernel for Jupyter" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ipykernel-6.29.3-py3-none-any.whl", hash = "sha256:5aa086a4175b0229d4eca211e181fb473ea78ffd9869af36ba7694c947302a21"}, - {file = "ipykernel-6.29.3.tar.gz", hash = "sha256:e14c250d1f9ea3989490225cc1a542781b095a18a19447fcf2b5eaf7d0ac5bd2"}, -] - -[package.dependencies] -appnope = {version = "*", markers = "platform_system == \"Darwin\""} -comm = ">=0.1.1" -debugpy = ">=1.6.5" -ipython = ">=7.23.1" -jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -matplotlib-inline = ">=0.1" -nest-asyncio = "*" -packaging = "*" -psutil = "*" -pyzmq = ">=24" -tornado = ">=6.1" -traitlets = ">=5.4.0" - -[package.extras] -cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] -pyqt5 = ["pyqt5"] -pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "ipython" -version = "8.12.3" -description = "IPython: Productive Interactive Computing" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, -] - -[package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" -colorama = {version = "*", markers = "sys_platform == \"win32\""} -decorator = "*" -jedi = ">=0.16" -matplotlib-inline = "*" -pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" -pygments = ">=2.4.0" -stack-data = "*" -traitlets = ">=5" -typing-extensions = {version = "*", markers = "python_version < \"3.10\""} - -[package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] -black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] -kernel = ["ipykernel"] -nbconvert = ["nbconvert"] -nbformat = ["nbformat"] -notebook = ["ipywidgets", "notebook"] -parallel = ["ipyparallel"] -qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] - -[[package]] -name = "jedi" -version = "0.19.1" -description = "An autocompletion tool for Python that can be used for text editors." -optional = false -python-versions = ">=3.6" -files = [ - {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, - {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, -] - -[package.dependencies] -parso = ">=0.8.3,<0.9.0" - -[package.extras] -docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] -qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] - -[[package]] -name = "jinja2" -version = "3.1.3" -description = "A very fast and expressive template engine." -optional = false -python-versions = ">=3.7" -files = [ - {file = "Jinja2-3.1.3-py3-none-any.whl", hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa"}, - {file = "Jinja2-3.1.3.tar.gz", hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90"}, -] - -[package.dependencies] -MarkupSafe = ">=2.0" - -[package.extras] -i18n = ["Babel (>=2.7)"] - -[[package]] -name = "jmespath" -version = "1.0.1" -description = "JSON Matching Expressions" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"}, - {file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"}, -] - -[[package]] -name = "joblib" -version = "1.3.2" -description = "Lightweight pipelining with Python functions" -optional = false -python-versions = ">=3.7" -files = [ - {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, - {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, -] - -[[package]] -name = "jupyter-client" -version = "8.6.0" -description = "Jupyter protocol implementation and client libraries" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, - {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, -] - -[package.dependencies] -importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -python-dateutil = ">=2.8.2" -pyzmq = ">=23.0" -tornado = ">=6.2" -traitlets = ">=5.3" - -[package.extras] -docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] - -[[package]] -name = "jupyter-core" -version = "5.7.1" -description = "Jupyter core package. A base package on which Jupyter projects rely." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_core-5.7.1-py3-none-any.whl", hash = "sha256:c65c82126453a723a2804aa52409930434598fd9d35091d63dfb919d2b765bb7"}, - {file = "jupyter_core-5.7.1.tar.gz", hash = "sha256:de61a9d7fc71240f688b2fb5ab659fbb56979458dc66a71decd098e03c79e218"}, -] - -[package.dependencies] -platformdirs = ">=2.5" -pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} -traitlets = ">=5.3" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "kiwisolver" -version = "1.4.5" -description = "A fast implementation of the Cassowary constraint solver" -optional = false -python-versions = ">=3.7" -files = [ - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, - {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, -] - -[[package]] -name = "llvmlite" -version = "0.41.1" -description = "lightweight wrapper around basic LLVM functionality" -optional = false -python-versions = ">=3.8" -files = [ - {file = "llvmlite-0.41.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c1e1029d47ee66d3a0c4d6088641882f75b93db82bd0e6178f7bd744ebce42b9"}, - {file = "llvmlite-0.41.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:150d0bc275a8ac664a705135e639178883293cf08c1a38de3bbaa2f693a0a867"}, - {file = "llvmlite-0.41.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1eee5cf17ec2b4198b509272cf300ee6577229d237c98cc6e63861b08463ddc6"}, - {file = "llvmlite-0.41.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dd0338da625346538f1173a17cabf21d1e315cf387ca21b294ff209d176e244"}, - {file = "llvmlite-0.41.1-cp310-cp310-win32.whl", hash = "sha256:fa1469901a2e100c17eb8fe2678e34bd4255a3576d1a543421356e9c14d6e2ae"}, - {file = "llvmlite-0.41.1-cp310-cp310-win_amd64.whl", hash = "sha256:2b76acee82ea0e9304be6be9d4b3840208d050ea0dcad75b1635fa06e949a0ae"}, - {file = "llvmlite-0.41.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:210e458723436b2469d61b54b453474e09e12a94453c97ea3fbb0742ba5a83d8"}, - {file = "llvmlite-0.41.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:855f280e781d49e0640aef4c4af586831ade8f1a6c4df483fb901cbe1a48d127"}, - {file = "llvmlite-0.41.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b67340c62c93a11fae482910dc29163a50dff3dfa88bc874872d28ee604a83be"}, - {file = "llvmlite-0.41.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2181bb63ef3c607e6403813421b46982c3ac6bfc1f11fa16a13eaafb46f578e6"}, - {file = "llvmlite-0.41.1-cp311-cp311-win_amd64.whl", hash = "sha256:9564c19b31a0434f01d2025b06b44c7ed422f51e719ab5d24ff03b7560066c9a"}, - {file = "llvmlite-0.41.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5940bc901fb0325970415dbede82c0b7f3e35c2d5fd1d5e0047134c2c46b3281"}, - {file = "llvmlite-0.41.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8b0a9a47c28f67a269bb62f6256e63cef28d3c5f13cbae4fab587c3ad506778b"}, - {file = "llvmlite-0.41.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8afdfa6da33f0b4226af8e64cfc2b28986e005528fbf944d0a24a72acfc9432"}, - {file = "llvmlite-0.41.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8454c1133ef701e8c050a59edd85d238ee18bb9a0eb95faf2fca8b909ee3c89a"}, - {file = "llvmlite-0.41.1-cp38-cp38-win32.whl", hash = "sha256:2d92c51e6e9394d503033ffe3292f5bef1566ab73029ec853861f60ad5c925d0"}, - {file = "llvmlite-0.41.1-cp38-cp38-win_amd64.whl", hash = "sha256:df75594e5a4702b032684d5481db3af990b69c249ccb1d32687b8501f0689432"}, - {file = "llvmlite-0.41.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:04725975e5b2af416d685ea0769f4ecc33f97be541e301054c9f741003085802"}, - {file = "llvmlite-0.41.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bf14aa0eb22b58c231243dccf7e7f42f7beec48970f2549b3a6acc737d1a4ba4"}, - {file = "llvmlite-0.41.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92c32356f669e036eb01016e883b22add883c60739bc1ebee3a1cc0249a50828"}, - {file = "llvmlite-0.41.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24091a6b31242bcdd56ae2dbea40007f462260bc9bdf947953acc39dffd54f8f"}, - {file = "llvmlite-0.41.1-cp39-cp39-win32.whl", hash = "sha256:880cb57ca49e862e1cd077104375b9d1dfdc0622596dfa22105f470d7bacb309"}, - {file = "llvmlite-0.41.1-cp39-cp39-win_amd64.whl", hash = "sha256:92f093986ab92e71c9ffe334c002f96defc7986efda18397d0f08534f3ebdc4d"}, - {file = "llvmlite-0.41.1.tar.gz", hash = "sha256:f19f767a018e6ec89608e1f6b13348fa2fcde657151137cb64e56d48598a92db"}, -] - -[[package]] -name = "markupsafe" -version = "2.1.5" -description = "Safely add untrusted strings to HTML/XML markup." -optional = false -python-versions = ">=3.7" -files = [ - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, - {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, -] - -[[package]] -name = "matplotlib" -version = "3.7.5" -description = "Python plotting package" -optional = false -python-versions = ">=3.8" -files = [ - {file = "matplotlib-3.7.5-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:4a87b69cb1cb20943010f63feb0b2901c17a3b435f75349fd9865713bfa63925"}, - {file = "matplotlib-3.7.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d3ce45010fefb028359accebb852ca0c21bd77ec0f281952831d235228f15810"}, - {file = "matplotlib-3.7.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fbea1e762b28400393d71be1a02144aa16692a3c4c676ba0178ce83fc2928fdd"}, - {file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec0e1adc0ad70ba8227e957551e25a9d2995e319c29f94a97575bb90fa1d4469"}, - {file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6738c89a635ced486c8a20e20111d33f6398a9cbebce1ced59c211e12cd61455"}, - {file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1210b7919b4ed94b5573870f316bca26de3e3b07ffdb563e79327dc0e6bba515"}, - {file = "matplotlib-3.7.5-cp310-cp310-win32.whl", hash = "sha256:068ebcc59c072781d9dcdb82f0d3f1458271c2de7ca9c78f5bd672141091e9e1"}, - {file = "matplotlib-3.7.5-cp310-cp310-win_amd64.whl", hash = "sha256:f098ffbaab9df1e3ef04e5a5586a1e6b1791380698e84938d8640961c79b1fc0"}, - {file = "matplotlib-3.7.5-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:f65342c147572673f02a4abec2d5a23ad9c3898167df9b47c149f32ce61ca078"}, - {file = "matplotlib-3.7.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:4ddf7fc0e0dc553891a117aa083039088d8a07686d4c93fb8a810adca68810af"}, - {file = "matplotlib-3.7.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0ccb830fc29442360d91be48527809f23a5dcaee8da5f4d9b2d5b867c1b087b8"}, - {file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efc6bb28178e844d1f408dd4d6341ee8a2e906fc9e0fa3dae497da4e0cab775d"}, - {file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3b15c4c2d374f249f324f46e883340d494c01768dd5287f8bc00b65b625ab56c"}, - {file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d028555421912307845e59e3de328260b26d055c5dac9b182cc9783854e98fb"}, - {file = "matplotlib-3.7.5-cp311-cp311-win32.whl", hash = "sha256:fe184b4625b4052fa88ef350b815559dd90cc6cc8e97b62f966e1ca84074aafa"}, - {file = "matplotlib-3.7.5-cp311-cp311-win_amd64.whl", hash = "sha256:084f1f0f2f1010868c6f1f50b4e1c6f2fb201c58475494f1e5b66fed66093647"}, - {file = "matplotlib-3.7.5-cp312-cp312-macosx_10_12_universal2.whl", hash = "sha256:34bceb9d8ddb142055ff27cd7135f539f2f01be2ce0bafbace4117abe58f8fe4"}, - {file = "matplotlib-3.7.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:c5a2134162273eb8cdfd320ae907bf84d171de948e62180fa372a3ca7cf0f433"}, - {file = "matplotlib-3.7.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:039ad54683a814002ff37bf7981aa1faa40b91f4ff84149beb53d1eb64617980"}, - {file = "matplotlib-3.7.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d742ccd1b09e863b4ca58291728db645b51dab343eebb08d5d4b31b308296ce"}, - {file = "matplotlib-3.7.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:743b1c488ca6a2bc7f56079d282e44d236bf375968bfd1b7ba701fd4d0fa32d6"}, - {file = "matplotlib-3.7.5-cp312-cp312-win_amd64.whl", hash = "sha256:fbf730fca3e1f23713bc1fae0a57db386e39dc81ea57dc305c67f628c1d7a342"}, - {file = "matplotlib-3.7.5-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:cfff9b838531698ee40e40ea1a8a9dc2c01edb400b27d38de6ba44c1f9a8e3d2"}, - {file = "matplotlib-3.7.5-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:1dbcca4508bca7847fe2d64a05b237a3dcaec1f959aedb756d5b1c67b770c5ee"}, - {file = "matplotlib-3.7.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4cdf4ef46c2a1609a50411b66940b31778db1e4b73d4ecc2eaa40bd588979b13"}, - {file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:167200ccfefd1674b60e957186dfd9baf58b324562ad1a28e5d0a6b3bea77905"}, - {file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:53e64522934df6e1818b25fd48cf3b645b11740d78e6ef765fbb5fa5ce080d02"}, - {file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3e3bc79b2d7d615067bd010caff9243ead1fc95cf735c16e4b2583173f717eb"}, - {file = "matplotlib-3.7.5-cp38-cp38-win32.whl", hash = "sha256:6b641b48c6819726ed47c55835cdd330e53747d4efff574109fd79b2d8a13748"}, - {file = "matplotlib-3.7.5-cp38-cp38-win_amd64.whl", hash = "sha256:f0b60993ed3488b4532ec6b697059897891927cbfc2b8d458a891b60ec03d9d7"}, - {file = "matplotlib-3.7.5-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:090964d0afaff9c90e4d8de7836757e72ecfb252fb02884016d809239f715651"}, - {file = "matplotlib-3.7.5-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:9fc6fcfbc55cd719bc0bfa60bde248eb68cf43876d4c22864603bdd23962ba25"}, - {file = "matplotlib-3.7.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5e7cc3078b019bb863752b8b60e8b269423000f1603cb2299608231996bd9d54"}, - {file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e4e9a868e8163abaaa8259842d85f949a919e1ead17644fb77a60427c90473c"}, - {file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fa7ebc995a7d747dacf0a717d0eb3aa0f0c6a0e9ea88b0194d3a3cd241a1500f"}, - {file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3785bfd83b05fc0e0c2ae4c4a90034fe693ef96c679634756c50fe6efcc09856"}, - {file = "matplotlib-3.7.5-cp39-cp39-win32.whl", hash = "sha256:29b058738c104d0ca8806395f1c9089dfe4d4f0f78ea765c6c704469f3fffc81"}, - {file = "matplotlib-3.7.5-cp39-cp39-win_amd64.whl", hash = "sha256:fd4028d570fa4b31b7b165d4a685942ae9cdc669f33741e388c01857d9723eab"}, - {file = "matplotlib-3.7.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:2a9a3f4d6a7f88a62a6a18c7e6a84aedcaf4faf0708b4ca46d87b19f1b526f88"}, - {file = "matplotlib-3.7.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b9b3fd853d4a7f008a938df909b96db0b454225f935d3917520305b90680579c"}, - {file = "matplotlib-3.7.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0ad550da9f160737d7890217c5eeed4337d07e83ca1b2ca6535078f354e7675"}, - {file = "matplotlib-3.7.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:20da7924a08306a861b3f2d1da0d1aa9a6678e480cf8eacffe18b565af2813e7"}, - {file = "matplotlib-3.7.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b45c9798ea6bb920cb77eb7306409756a7fab9db9b463e462618e0559aecb30e"}, - {file = "matplotlib-3.7.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a99866267da1e561c7776fe12bf4442174b79aac1a47bd7e627c7e4d077ebd83"}, - {file = "matplotlib-3.7.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b6aa62adb6c268fc87d80f963aca39c64615c31830b02697743c95590ce3fbb"}, - {file = "matplotlib-3.7.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e530ab6a0afd082d2e9c17eb1eb064a63c5b09bb607b2b74fa41adbe3e162286"}, - {file = "matplotlib-3.7.5.tar.gz", hash = "sha256:1e5c971558ebc811aa07f54c7b7c677d78aa518ef4c390e14673a09e0860184a"}, -] - -[package.dependencies] -contourpy = ">=1.0.1" -cycler = ">=0.10" -fonttools = ">=4.22.0" -importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""} -kiwisolver = ">=1.0.1" -numpy = ">=1.20,<2" -packaging = ">=20.0" -pillow = ">=6.2.0" -pyparsing = ">=2.3.1" -python-dateutil = ">=2.7" - -[[package]] -name = "matplotlib" -version = "3.8.3" -description = "Python plotting package" -optional = false -python-versions = ">=3.9" -files = [ - {file = "matplotlib-3.8.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:cf60138ccc8004f117ab2a2bad513cc4d122e55864b4fe7adf4db20ca68a078f"}, - {file = "matplotlib-3.8.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5f557156f7116be3340cdeef7f128fa99b0d5d287d5f41a16e169819dcf22357"}, - {file = "matplotlib-3.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f386cf162b059809ecfac3bcc491a9ea17da69fa35c8ded8ad154cd4b933d5ec"}, - {file = "matplotlib-3.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3c5f96f57b0369c288bf6f9b5274ba45787f7e0589a34d24bdbaf6d3344632f"}, - {file = "matplotlib-3.8.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:83e0f72e2c116ca7e571c57aa29b0fe697d4c6425c4e87c6e994159e0c008635"}, - {file = "matplotlib-3.8.3-cp310-cp310-win_amd64.whl", hash = "sha256:1c5c8290074ba31a41db1dc332dc2b62def469ff33766cbe325d32a3ee291aea"}, - {file = "matplotlib-3.8.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5184e07c7e1d6d1481862ee361905b7059f7fe065fc837f7c3dc11eeb3f2f900"}, - {file = "matplotlib-3.8.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d7e7e0993d0758933b1a241a432b42c2db22dfa37d4108342ab4afb9557cbe3e"}, - {file = "matplotlib-3.8.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:04b36ad07eac9740fc76c2aa16edf94e50b297d6eb4c081e3add863de4bb19a7"}, - {file = "matplotlib-3.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c42dae72a62f14982f1474f7e5c9959fc4bc70c9de11cc5244c6e766200ba65"}, - {file = "matplotlib-3.8.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bf5932eee0d428192c40b7eac1399d608f5d995f975cdb9d1e6b48539a5ad8d0"}, - {file = "matplotlib-3.8.3-cp311-cp311-win_amd64.whl", hash = "sha256:40321634e3a05ed02abf7c7b47a50be50b53ef3eaa3a573847431a545585b407"}, - {file = "matplotlib-3.8.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:09074f8057917d17ab52c242fdf4916f30e99959c1908958b1fc6032e2d0f6d4"}, - {file = "matplotlib-3.8.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5745f6d0fb5acfabbb2790318db03809a253096e98c91b9a31969df28ee604aa"}, - {file = "matplotlib-3.8.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b97653d869a71721b639714b42d87cda4cfee0ee74b47c569e4874c7590c55c5"}, - {file = "matplotlib-3.8.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:242489efdb75b690c9c2e70bb5c6550727058c8a614e4c7716f363c27e10bba1"}, - {file = "matplotlib-3.8.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:83c0653c64b73926730bd9ea14aa0f50f202ba187c307a881673bad4985967b7"}, - {file = "matplotlib-3.8.3-cp312-cp312-win_amd64.whl", hash = "sha256:ef6c1025a570354297d6c15f7d0f296d95f88bd3850066b7f1e7b4f2f4c13a39"}, - {file = "matplotlib-3.8.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c4af3f7317f8a1009bbb2d0bf23dfaba859eb7dd4ccbd604eba146dccaaaf0a4"}, - {file = "matplotlib-3.8.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4c6e00a65d017d26009bac6808f637b75ceade3e1ff91a138576f6b3065eeeba"}, - {file = "matplotlib-3.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7b49ab49a3bea17802df6872f8d44f664ba8f9be0632a60c99b20b6db2165b7"}, - {file = "matplotlib-3.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6728dde0a3997396b053602dbd907a9bd64ec7d5cf99e728b404083698d3ca01"}, - {file = "matplotlib-3.8.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:813925d08fb86aba139f2d31864928d67511f64e5945ca909ad5bc09a96189bb"}, - {file = "matplotlib-3.8.3-cp39-cp39-win_amd64.whl", hash = "sha256:cd3a0c2be76f4e7be03d34a14d49ded6acf22ef61f88da600a18a5cd8b3c5f3c"}, - {file = "matplotlib-3.8.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fa93695d5c08544f4a0dfd0965f378e7afc410d8672816aff1e81be1f45dbf2e"}, - {file = "matplotlib-3.8.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9764df0e8778f06414b9d281a75235c1e85071f64bb5d71564b97c1306a2afc"}, - {file = "matplotlib-3.8.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:5e431a09e6fab4012b01fc155db0ce6dccacdbabe8198197f523a4ef4805eb26"}, - {file = "matplotlib-3.8.3.tar.gz", hash = "sha256:7b416239e9ae38be54b028abbf9048aff5054a9aba5416bef0bd17f9162ce161"}, -] - -[package.dependencies] -contourpy = ">=1.0.1" -cycler = ">=0.10" -fonttools = ">=4.22.0" -kiwisolver = ">=1.3.1" -numpy = ">=1.21,<2" -packaging = ">=20.0" -pillow = ">=8" -pyparsing = ">=2.3.1" -python-dateutil = ">=2.7" - -[[package]] -name = "matplotlib-inline" -version = "0.1.6" -description = "Inline Matplotlib backend for Jupyter" -optional = false -python-versions = ">=3.5" -files = [ - {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, - {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, -] - -[package.dependencies] -traitlets = "*" - -[[package]] -name = "mpmath" -version = "1.3.0" -description = "Python library for arbitrary-precision floating-point arithmetic" -optional = false -python-versions = "*" -files = [ - {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, - {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, -] - -[package.extras] -develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] -docs = ["sphinx"] -gmpy = ["gmpy2 (>=2.1.0a4)"] -tests = ["pytest (>=4.6)"] - -[[package]] -name = "nest-asyncio" -version = "1.6.0" -description = "Patch asyncio to allow nested event loops" -optional = false -python-versions = ">=3.5" -files = [ - {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, - {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, -] - -[[package]] -name = "networkx" -version = "3.1" -description = "Python package for creating and manipulating graphs and networks" -optional = false -python-versions = ">=3.8" -files = [ - {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, - {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, -] - -[package.extras] -default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] -developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] -doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] -test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] - -[[package]] -name = "numba" -version = "0.58.1" -description = "compiling Python code using LLVM" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numba-0.58.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:07f2fa7e7144aa6f275f27260e73ce0d808d3c62b30cff8906ad1dec12d87bbe"}, - {file = "numba-0.58.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7bf1ddd4f7b9c2306de0384bf3854cac3edd7b4d8dffae2ec1b925e4c436233f"}, - {file = "numba-0.58.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bc2d904d0319d7a5857bd65062340bed627f5bfe9ae4a495aef342f072880d50"}, - {file = "numba-0.58.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4e79b6cc0d2bf064a955934a2e02bf676bc7995ab2db929dbbc62e4c16551be6"}, - {file = "numba-0.58.1-cp310-cp310-win_amd64.whl", hash = "sha256:81fe5b51532478149b5081311b0fd4206959174e660c372b94ed5364cfb37c82"}, - {file = "numba-0.58.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bcecd3fb9df36554b342140a4d77d938a549be635d64caf8bd9ef6c47a47f8aa"}, - {file = "numba-0.58.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a1eaa744f518bbd60e1f7ccddfb8002b3d06bd865b94a5d7eac25028efe0e0ff"}, - {file = "numba-0.58.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bf68df9c307fb0aa81cacd33faccd6e419496fdc621e83f1efce35cdc5e79cac"}, - {file = "numba-0.58.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:55a01e1881120e86d54efdff1be08381886fe9f04fc3006af309c602a72bc44d"}, - {file = "numba-0.58.1-cp311-cp311-win_amd64.whl", hash = "sha256:811305d5dc40ae43c3ace5b192c670c358a89a4d2ae4f86d1665003798ea7a1a"}, - {file = "numba-0.58.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ea5bfcf7d641d351c6a80e8e1826eb4a145d619870016eeaf20bbd71ef5caa22"}, - {file = "numba-0.58.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e63d6aacaae1ba4ef3695f1c2122b30fa3d8ba039c8f517784668075856d79e2"}, - {file = "numba-0.58.1-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:6fe7a9d8e3bd996fbe5eac0683227ccef26cba98dae6e5cee2c1894d4b9f16c1"}, - {file = "numba-0.58.1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:898af055b03f09d33a587e9425500e5be84fc90cd2f80b3fb71c6a4a17a7e354"}, - {file = "numba-0.58.1-cp38-cp38-win_amd64.whl", hash = "sha256:d3e2fe81fe9a59fcd99cc572002101119059d64d31eb6324995ee8b0f144a306"}, - {file = "numba-0.58.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c765aef472a9406a97ea9782116335ad4f9ef5c9f93fc05fd44aab0db486954"}, - {file = "numba-0.58.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9e9356e943617f5e35a74bf56ff6e7cc83e6b1865d5e13cee535d79bf2cae954"}, - {file = "numba-0.58.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:240e7a1ae80eb6b14061dc91263b99dc8d6af9ea45d310751b780888097c1aaa"}, - {file = "numba-0.58.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:45698b995914003f890ad839cfc909eeb9c74921849c712a05405d1a79c50f68"}, - {file = "numba-0.58.1-cp39-cp39-win_amd64.whl", hash = "sha256:bd3dda77955be03ff366eebbfdb39919ce7c2620d86c906203bed92124989032"}, - {file = "numba-0.58.1.tar.gz", hash = "sha256:487ded0633efccd9ca3a46364b40006dbdaca0f95e99b8b83e778d1195ebcbaa"}, -] - -[package.dependencies] -importlib-metadata = {version = "*", markers = "python_version < \"3.9\""} -llvmlite = "==0.41.*" -numpy = ">=1.22,<1.27" - -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - -[[package]] -name = "numpy" -version = "1.26.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"}, - {file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"}, - {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"}, - {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"}, - {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"}, - {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"}, - {file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"}, - {file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"}, - {file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"}, - {file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"}, - {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"}, - {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"}, - {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"}, - {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"}, - {file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"}, - {file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"}, - {file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"}, - {file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"}, - {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"}, - {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"}, - {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"}, - {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"}, - {file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"}, - {file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"}, - {file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"}, - {file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"}, - {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"}, - {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"}, - {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"}, - {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"}, - {file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"}, - {file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"}, - {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, -] - -[[package]] -name = "nvidia-cublas-cu12" -version = "12.1.3.1" -description = "CUBLAS native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, -] - -[[package]] -name = "nvidia-cuda-cupti-cu12" -version = "12.1.105" -description = "CUDA profiling tools runtime libs." -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, -] - -[[package]] -name = "nvidia-cuda-nvrtc-cu12" -version = "12.1.105" -description = "NVRTC native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, -] - -[[package]] -name = "nvidia-cuda-runtime-cu12" -version = "12.1.105" -description = "CUDA Runtime native Libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, -] - -[[package]] -name = "nvidia-cudnn-cu12" -version = "8.9.2.26" -description = "cuDNN runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" - -[[package]] -name = "nvidia-cufft-cu12" -version = "11.0.2.54" -description = "CUFFT native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, -] - -[[package]] -name = "nvidia-curand-cu12" -version = "10.3.2.106" -description = "CURAND native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, -] - -[[package]] -name = "nvidia-cusolver-cu12" -version = "11.4.5.107" -description = "CUDA solver native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" -nvidia-cusparse-cu12 = "*" -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-cusparse-cu12" -version = "12.1.0.106" -description = "CUSPARSE native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, -] - -[package.dependencies] -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-nccl-cu12" -version = "2.19.3" -description = "NVIDIA Collective Communication Library (NCCL) Runtime" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl", hash = "sha256:a9734707a2c96443331c1e48c717024aa6678a0e2a4cb66b2c364d18cee6b48d"}, -] - -[[package]] -name = "nvidia-nvjitlink-cu12" -version = "12.4.99" -description = "Nvidia JIT LTO Library" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c6428836d20fe7e327191c175791d38570e10762edc588fb46749217cd444c74"}, - {file = "nvidia_nvjitlink_cu12-12.4.99-py3-none-win_amd64.whl", hash = "sha256:991905ffa2144cb603d8ca7962d75c35334ae82bf92820b6ba78157277da1ad2"}, -] - -[[package]] -name = "nvidia-nvtx-cu12" -version = "12.1.105" -description = "NVIDIA Tools Extension" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, -] - -[[package]] -name = "opacus" -version = "0.14.0" -description = "Train PyTorch models with Differential Privacy" -optional = false -python-versions = ">=3.6.8" -files = [ - {file = "opacus-0.14.0-py3-none-any.whl", hash = "sha256:4beb4519c86b4b8aec740cbe5ad97a12f0fb325044a8b2caeb74ce573a353276"}, - {file = "opacus-0.14.0.tar.gz", hash = "sha256:851f4bb01b285dba1a38c06f7f146031e1b8fbe0bfa1129624beba8f1f6e77d3"}, -] - -[package.dependencies] -numpy = ">=1.15" -scipy = ">=1.2" -torch = ">=1.3" - -[package.extras] -dev = ["black", "datasets", "flake8", "hypothesis", "isort", "mypy (>=0.760)", "pytest", "requests (>=2.25.1)", "scikit-learn", "sphinx", "sphinx-autodoc-typehints", "tensorboard", "torch (==1.8.1)", "torchcsprng", "torchvision (>=0.9.1)", "tqdm (>=4.40)", "transformers"] - -[[package]] -name = "opendp" -version = "0.6.2" -description = "Python bindings for the OpenDP Library" -optional = false -python-versions = ">=3.7" -files = [ - {file = "opendp-0.6.2-py3-none-any.whl", hash = "sha256:d15e66ef0c0d86b35548bcc176a593bc645f8208ba594ce7c24afa38ba5045aa"}, -] - -[[package]] -name = "pac-synth" -version = "0.0.6" -description = "Private Accurate Combination (PAC) Synthesizers" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pac_synth-0.0.6-cp37-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:fd40fb750bc2651d813ac6e6af4f262d470c3e811664b36b11ca7cd1b6113fce"}, - {file = "pac_synth-0.0.6-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a847e2acd966c30d923827e2769c68eba86dd4f98de1238be79454038a7fbc3"}, - {file = "pac_synth-0.0.6-cp37-abi3-win_amd64.whl", hash = "sha256:2d25cbdf5d0f3a446a2ccb666eac551688bfcbb03a602222d132bd089d16f7d8"}, - {file = "pac_synth-0.0.6.tar.gz", hash = "sha256:119183b8d81140d68591a9321d668508990d7090fe8c362b2ed7e340b73b8b36"}, -] - -[[package]] -name = "packaging" -version = "23.2" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.7" -files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, -] - -[[package]] -name = "pandas" -version = "2.0.3" -description = "Powerful data structures for data analysis, time series, and statistics" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, - {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, - {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, - {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, - {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, - {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, - {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, - {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, - {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, - {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, - {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, -] - -[package.dependencies] -numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} -python-dateutil = ">=2.8.2" -pytz = ">=2020.1" -tzdata = ">=2022.1" - -[package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] - -[[package]] -name = "pandas" -version = "2.2.1" -description = "Powerful data structures for data analysis, time series, and statistics" -optional = false -python-versions = ">=3.9" -files = [ - {file = "pandas-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8df8612be9cd1c7797c93e1c5df861b2ddda0b48b08f2c3eaa0702cf88fb5f88"}, - {file = "pandas-2.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0f573ab277252ed9aaf38240f3b54cfc90fff8e5cab70411ee1d03f5d51f3944"}, - {file = "pandas-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f02a3a6c83df4026e55b63c1f06476c9aa3ed6af3d89b4f04ea656ccdaaaa359"}, - {file = "pandas-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c38ce92cb22a4bea4e3929429aa1067a454dcc9c335799af93ba9be21b6beb51"}, - {file = "pandas-2.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c2ce852e1cf2509a69e98358e8458775f89599566ac3775e70419b98615f4b06"}, - {file = "pandas-2.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:53680dc9b2519cbf609c62db3ed7c0b499077c7fefda564e330286e619ff0dd9"}, - {file = "pandas-2.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:94e714a1cca63e4f5939cdce5f29ba8d415d85166be3441165edd427dc9f6bc0"}, - {file = "pandas-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f821213d48f4ab353d20ebc24e4faf94ba40d76680642fb7ce2ea31a3ad94f9b"}, - {file = "pandas-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c70e00c2d894cb230e5c15e4b1e1e6b2b478e09cf27cc593a11ef955b9ecc81a"}, - {file = "pandas-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e97fbb5387c69209f134893abc788a6486dbf2f9e511070ca05eed4b930b1b02"}, - {file = "pandas-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:101d0eb9c5361aa0146f500773395a03839a5e6ecde4d4b6ced88b7e5a1a6403"}, - {file = "pandas-2.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7d2ed41c319c9fb4fd454fe25372028dfa417aacb9790f68171b2e3f06eae8cd"}, - {file = "pandas-2.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:af5d3c00557d657c8773ef9ee702c61dd13b9d7426794c9dfeb1dc4a0bf0ebc7"}, - {file = "pandas-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:06cf591dbaefb6da9de8472535b185cba556d0ce2e6ed28e21d919704fef1a9e"}, - {file = "pandas-2.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:88ecb5c01bb9ca927ebc4098136038519aa5d66b44671861ffab754cae75102c"}, - {file = "pandas-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:04f6ec3baec203c13e3f8b139fb0f9f86cd8c0b94603ae3ae8ce9a422e9f5bee"}, - {file = "pandas-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a935a90a76c44fe170d01e90a3594beef9e9a6220021acfb26053d01426f7dc2"}, - {file = "pandas-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c391f594aae2fd9f679d419e9a4d5ba4bce5bb13f6a989195656e7dc4b95c8f0"}, - {file = "pandas-2.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9d1265545f579edf3f8f0cb6f89f234f5e44ba725a34d86535b1a1d38decbccc"}, - {file = "pandas-2.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:11940e9e3056576ac3244baef2fedade891977bcc1cb7e5cc8f8cc7d603edc89"}, - {file = "pandas-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:4acf681325ee1c7f950d058b05a820441075b0dd9a2adf5c4835b9bc056bf4fb"}, - {file = "pandas-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9bd8a40f47080825af4317d0340c656744f2bfdb6819f818e6ba3cd24c0e1397"}, - {file = "pandas-2.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:df0c37ebd19e11d089ceba66eba59a168242fc6b7155cba4ffffa6eccdfb8f16"}, - {file = "pandas-2.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:739cc70eaf17d57608639e74d63387b0d8594ce02f69e7a0b046f117974b3019"}, - {file = "pandas-2.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9d3558d263073ed95e46f4650becff0c5e1ffe0fc3a015de3c79283dfbdb3df"}, - {file = "pandas-2.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4aa1d8707812a658debf03824016bf5ea0d516afdea29b7dc14cf687bc4d4ec6"}, - {file = "pandas-2.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:76f27a809cda87e07f192f001d11adc2b930e93a2b0c4a236fde5429527423be"}, - {file = "pandas-2.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:1ba21b1d5c0e43416218db63037dbe1a01fc101dc6e6024bcad08123e48004ab"}, - {file = "pandas-2.2.1.tar.gz", hash = "sha256:0ab90f87093c13f3e8fa45b48ba9f39181046e8f3317d3aadb2fffbb1b978572"}, -] - -[package.dependencies] -numpy = {version = ">=1.22.4,<2", markers = "python_version < \"3.11\""} -python-dateutil = ">=2.8.2" -pytz = ">=2020.1" -tzdata = ">=2022.7" - -[package.extras] -all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] -aws = ["s3fs (>=2022.11.0)"] -clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] -compression = ["zstandard (>=0.19.0)"] -computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] -consortium-standard = ["dataframe-api-compat (>=0.1.7)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] -feather = ["pyarrow (>=10.0.1)"] -fss = ["fsspec (>=2022.11.0)"] -gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] -hdf5 = ["tables (>=3.8.0)"] -html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] -mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] -parquet = ["pyarrow (>=10.0.1)"] -performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] -plot = ["matplotlib (>=3.6.3)"] -postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] -pyarrow = ["pyarrow (>=10.0.1)"] -spss = ["pyreadstat (>=1.2.0)"] -sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] -test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.9.2)"] - -[[package]] -name = "pandasql" -version = "0.7.3" -description = "sqldf for pandas" -optional = false -python-versions = "*" -files = [ - {file = "pandasql-0.7.3.tar.gz", hash = "sha256:1eb248869086435a7d85281ebd9fe525d69d9d954a0dceb854f71a8d0fd8de69"}, -] - -[package.dependencies] -numpy = "*" -pandas = "*" -sqlalchemy = "*" - -[[package]] -name = "parso" -version = "0.8.3" -description = "A Python Parser" -optional = false -python-versions = ">=3.6" -files = [ - {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, - {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, -] - -[package.extras] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["docopt", "pytest (<6.0.0)"] - -[[package]] -name = "pexpect" -version = "4.9.0" -description = "Pexpect allows easy control of interactive console applications." -optional = false -python-versions = "*" -files = [ - {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, - {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, -] - -[package.dependencies] -ptyprocess = ">=0.5" - -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - -[[package]] -name = "pillow" -version = "10.2.0" -description = "Python Imaging Library (Fork)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pillow-10.2.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e"}, - {file = "pillow-10.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:83b2021f2ade7d1ed556bc50a399127d7fb245e725aa0113ebd05cfe88aaf588"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fad5ff2f13d69b7e74ce5b4ecd12cc0ec530fcee76356cac6742785ff71c452"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da2b52b37dad6d9ec64e653637a096905b258d2fc2b984c41ae7d08b938a67e4"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:47c0995fc4e7f79b5cfcab1fc437ff2890b770440f7696a3ba065ee0fd496563"}, - {file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:322bdf3c9b556e9ffb18f93462e5f749d3444ce081290352c6070d014c93feb2"}, - {file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51f1a1bffc50e2e9492e87d8e09a17c5eea8409cda8d3f277eb6edc82813c17c"}, - {file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:69ffdd6120a4737710a9eee73e1d2e37db89b620f702754b8f6e62594471dee0"}, - {file = "pillow-10.2.0-cp310-cp310-win32.whl", hash = "sha256:c6dafac9e0f2b3c78df97e79af707cdc5ef8e88208d686a4847bab8266870023"}, - {file = "pillow-10.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:aebb6044806f2e16ecc07b2a2637ee1ef67a11840a66752751714a0d924adf72"}, - {file = "pillow-10.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:7049e301399273a0136ff39b84c3678e314f2158f50f517bc50285fb5ec847ad"}, - {file = "pillow-10.2.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:35bb52c37f256f662abdfa49d2dfa6ce5d93281d323a9af377a120e89a9eafb5"}, - {file = "pillow-10.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9c23f307202661071d94b5e384e1e1dc7dfb972a28a2310e4ee16103e66ddb67"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:773efe0603db30c281521a7c0214cad7836c03b8ccff897beae9b47c0b657d61"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11fa2e5984b949b0dd6d7a94d967743d87c577ff0b83392f17cb3990d0d2fd6e"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:716d30ed977be8b37d3ef185fecb9e5a1d62d110dfbdcd1e2a122ab46fddb03f"}, - {file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a086c2af425c5f62a65e12fbf385f7c9fcb8f107d0849dba5839461a129cf311"}, - {file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c8de2789052ed501dd829e9cae8d3dcce7acb4777ea4a479c14521c942d395b1"}, - {file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:609448742444d9290fd687940ac0b57fb35e6fd92bdb65386e08e99af60bf757"}, - {file = "pillow-10.2.0-cp311-cp311-win32.whl", hash = "sha256:823ef7a27cf86df6597fa0671066c1b596f69eba53efa3d1e1cb8b30f3533068"}, - {file = "pillow-10.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:1da3b2703afd040cf65ec97efea81cfba59cdbed9c11d8efc5ab09df9509fc56"}, - {file = "pillow-10.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:edca80cbfb2b68d7b56930b84a0e45ae1694aeba0541f798e908a49d66b837f1"}, - {file = "pillow-10.2.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:1b5e1b74d1bd1b78bc3477528919414874748dd363e6272efd5abf7654e68bef"}, - {file = "pillow-10.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0eae2073305f451d8ecacb5474997c08569fb4eb4ac231ffa4ad7d342fdc25ac"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7c2286c23cd350b80d2fc9d424fc797575fb16f854b831d16fd47ceec078f2c"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e23412b5c41e58cec602f1135c57dfcf15482013ce6e5f093a86db69646a5aa"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:52a50aa3fb3acb9cf7213573ef55d31d6eca37f5709c69e6858fe3bc04a5c2a2"}, - {file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:127cee571038f252a552760076407f9cff79761c3d436a12af6000cd182a9d04"}, - {file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:8d12251f02d69d8310b046e82572ed486685c38f02176bd08baf216746eb947f"}, - {file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:54f1852cd531aa981bc0965b7d609f5f6cc8ce8c41b1139f6ed6b3c54ab82bfb"}, - {file = "pillow-10.2.0-cp312-cp312-win32.whl", hash = "sha256:257d8788df5ca62c980314053197f4d46eefedf4e6175bc9412f14412ec4ea2f"}, - {file = "pillow-10.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:154e939c5f0053a383de4fd3d3da48d9427a7e985f58af8e94d0b3c9fcfcf4f9"}, - {file = "pillow-10.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:f379abd2f1e3dddb2b61bc67977a6b5a0a3f7485538bcc6f39ec76163891ee48"}, - {file = "pillow-10.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8373c6c251f7ef8bda6675dd6d2b3a0fcc31edf1201266b5cf608b62a37407f9"}, - {file = "pillow-10.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:870ea1ada0899fd0b79643990809323b389d4d1d46c192f97342eeb6ee0b8483"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4b6b1e20608493548b1f32bce8cca185bf0480983890403d3b8753e44077129"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3031709084b6e7852d00479fd1d310b07d0ba82765f973b543c8af5061cf990e"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:3ff074fc97dd4e80543a3e91f69d58889baf2002b6be64347ea8cf5533188213"}, - {file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:cb4c38abeef13c61d6916f264d4845fab99d7b711be96c326b84df9e3e0ff62d"}, - {file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b1b3020d90c2d8e1dae29cf3ce54f8094f7938460fb5ce8bc5c01450b01fbaf6"}, - {file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:170aeb00224ab3dc54230c797f8404507240dd868cf52066f66a41b33169bdbe"}, - {file = "pillow-10.2.0-cp38-cp38-win32.whl", hash = "sha256:c4225f5220f46b2fde568c74fca27ae9771536c2e29d7c04f4fb62c83275ac4e"}, - {file = "pillow-10.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:0689b5a8c5288bc0504d9fcee48f61a6a586b9b98514d7d29b840143d6734f39"}, - {file = "pillow-10.2.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:b792a349405fbc0163190fde0dc7b3fef3c9268292586cf5645598b48e63dc67"}, - {file = "pillow-10.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c570f24be1e468e3f0ce7ef56a89a60f0e05b30a3669a459e419c6eac2c35364"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8ecd059fdaf60c1963c58ceb8997b32e9dc1b911f5da5307aab614f1ce5c2fb"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c365fd1703040de1ec284b176d6af5abe21b427cb3a5ff68e0759e1e313a5e7e"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:70c61d4c475835a19b3a5aa42492409878bbca7438554a1f89d20d58a7c75c01"}, - {file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13"}, - {file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d189550615b4948f45252d7f005e53c2040cea1af5b60d6f79491a6e147eef7"}, - {file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:49d9ba1ed0ef3e061088cd1e7538a0759aab559e2e0a80a36f9fd9d8c0c21591"}, - {file = "pillow-10.2.0-cp39-cp39-win32.whl", hash = "sha256:babf5acfede515f176833ed6028754cbcd0d206f7f614ea3447d67c33be12516"}, - {file = "pillow-10.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:0304004f8067386b477d20a518b50f3fa658a28d44e4116970abfcd94fac34a8"}, - {file = "pillow-10.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:0fb3e7fc88a14eacd303e90481ad983fd5b69c761e9e6ef94c983f91025da869"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:322209c642aabdd6207517e9739c704dc9f9db943015535783239022002f054a"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3eedd52442c0a5ff4f887fab0c1c0bb164d8635b32c894bc1faf4c618dd89df2"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb28c753fd5eb3dd859b4ee95de66cc62af91bcff5db5f2571d32a520baf1f04"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:33870dc4653c5017bf4c8873e5488d8f8d5f8935e2f1fb9a2208c47cdd66efd2"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3c31822339516fb3c82d03f30e22b1d038da87ef27b6a78c9549888f8ceda39a"}, - {file = "pillow-10.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a2b56ba36e05f973d450582fb015594aaa78834fefe8dfb8fcd79b93e64ba4c6"}, - {file = "pillow-10.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:d8e6aeb9201e655354b3ad049cb77d19813ad4ece0df1249d3c793de3774f8c7"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:2247178effb34a77c11c0e8ac355c7a741ceca0a732b27bf11e747bbc950722f"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15587643b9e5eb26c48e49a7b33659790d28f190fc514a322d55da2fb5c2950e"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753cd8f2086b2b80180d9b3010dd4ed147efc167c90d3bf593fe2af21265e5a5"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:7c8f97e8e7a9009bcacbe3766a36175056c12f9a44e6e6f2d5caad06dcfbf03b"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d1b35bcd6c5543b9cb547dee3150c93008f8dd0f1fef78fc0cd2b141c5baf58a"}, - {file = "pillow-10.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe4c15f6c9285dc54ce6553a3ce908ed37c8f3825b5a51a15c91442bb955b868"}, - {file = "pillow-10.2.0.tar.gz", hash = "sha256:e87f0b2c78157e12d7686b27d63c070fd65d994e8ddae6f328e0dcf4a0cd007e"}, -] - -[package.extras] -docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] -fpx = ["olefile"] -mic = ["olefile"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] -typing = ["typing-extensions"] -xmp = ["defusedxml"] - -[[package]] -name = "platformdirs" -version = "4.2.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." -optional = false -python-versions = ">=3.8" -files = [ - {file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"}, - {file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"}, -] - -[package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] - -[[package]] -name = "plotly" -version = "5.19.0" -description = "An open-source, interactive data visualization library for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "plotly-5.19.0-py3-none-any.whl", hash = "sha256:906abcc5f15945765328c5d47edaa884bc99f5985fbc61e8cd4dc361f4ff8f5a"}, - {file = "plotly-5.19.0.tar.gz", hash = "sha256:5ea91a56571292ade3e3bc9bf712eba0b95a1fb0a941375d978cc79432e055f4"}, -] - -[package.dependencies] -packaging = "*" -tenacity = ">=6.2.0" - -[[package]] -name = "pluggy" -version = "1.4.0" -description = "plugin and hook calling mechanisms for python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pluggy-1.4.0-py3-none-any.whl", hash = "sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981"}, - {file = "pluggy-1.4.0.tar.gz", hash = "sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be"}, -] - -[package.extras] -dev = ["pre-commit", "tox"] -testing = ["pytest", "pytest-benchmark"] - -[[package]] -name = "prompt-toolkit" -version = "3.0.43" -description = "Library for building powerful interactive command lines in Python" -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, - {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, -] - -[package.dependencies] -wcwidth = "*" - -[[package]] -name = "psutil" -version = "5.9.8" -description = "Cross-platform lib for process and system monitoring in Python." -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "psutil-5.9.8-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:26bd09967ae00920df88e0352a91cff1a78f8d69b3ecabbfe733610c0af486c8"}, - {file = "psutil-5.9.8-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:05806de88103b25903dff19bb6692bd2e714ccf9e668d050d144012055cbca73"}, - {file = "psutil-5.9.8-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:611052c4bc70432ec770d5d54f64206aa7203a101ec273a0cd82418c86503bb7"}, - {file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:50187900d73c1381ba1454cf40308c2bf6f34268518b3f36a9b663ca87e65e36"}, - {file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:02615ed8c5ea222323408ceba16c60e99c3f91639b07da6373fb7e6539abc56d"}, - {file = "psutil-5.9.8-cp27-none-win32.whl", hash = "sha256:36f435891adb138ed3c9e58c6af3e2e6ca9ac2f365efe1f9cfef2794e6c93b4e"}, - {file = "psutil-5.9.8-cp27-none-win_amd64.whl", hash = "sha256:bd1184ceb3f87651a67b2708d4c3338e9b10c5df903f2e3776b62303b26cb631"}, - {file = "psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81"}, - {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421"}, - {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4"}, - {file = "psutil-5.9.8-cp36-cp36m-win32.whl", hash = "sha256:7d79560ad97af658a0f6adfef8b834b53f64746d45b403f225b85c5c2c140eee"}, - {file = "psutil-5.9.8-cp36-cp36m-win_amd64.whl", hash = "sha256:27cc40c3493bb10de1be4b3f07cae4c010ce715290a5be22b98493509c6299e2"}, - {file = "psutil-5.9.8-cp37-abi3-win32.whl", hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0"}, - {file = "psutil-5.9.8-cp37-abi3-win_amd64.whl", hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf"}, - {file = "psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8"}, - {file = "psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c"}, -] - -[package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] - -[[package]] -name = "ptyprocess" -version = "0.7.0" -description = "Run a subprocess in a pseudo terminal" -optional = false -python-versions = "*" -files = [ - {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, - {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, -] - -[[package]] -name = "pure-eval" -version = "0.2.2" -description = "Safely evaluate AST nodes without side effects" -optional = false -python-versions = "*" -files = [ - {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, - {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, -] - -[package.extras] -tests = ["pytest"] - -[[package]] -name = "pycparser" -version = "2.21" -description = "C parser in Python" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, - {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, -] - -[[package]] -name = "pygments" -version = "2.17.2" -description = "Pygments is a syntax highlighting package written in Python." -optional = false -python-versions = ">=3.7" -files = [ - {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, - {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, -] - -[package.extras] -plugins = ["importlib-metadata"] -windows-terminal = ["colorama (>=0.4.6)"] - -[[package]] -name = "pyparsing" -version = "3.1.2" -description = "pyparsing module - Classes and methods to define and execute parsing grammars" -optional = false -python-versions = ">=3.6.8" -files = [ - {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, - {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, -] - -[package.extras] -diagrams = ["jinja2", "railroad-diagrams"] - -[[package]] -name = "pytest" -version = "8.0.2" -description = "pytest: simple powerful testing with Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pytest-8.0.2-py3-none-any.whl", hash = "sha256:edfaaef32ce5172d5466b5127b42e0d6d35ebbe4453f0e3505d96afd93f6b096"}, - {file = "pytest-8.0.2.tar.gz", hash = "sha256:d4051d623a2e0b7e51960ba963193b09ce6daeb9759a451844a21e4ddedfc1bd"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} -iniconfig = "*" -packaging = "*" -pluggy = ">=1.4,<2.0" -tomli = {version = ">=1", markers = "python_version < \"3.11\""} - -[package.extras] -testing = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] - -[[package]] -name = "python-dateutil" -version = "2.9.0.post0" -description = "Extensions to the standard Python datetime module" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" -files = [ - {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, - {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, -] - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "pytz" -version = "2024.1" -description = "World timezone definitions, modern and historical" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, -] - -[[package]] -name = "pywin32" -version = "306" -description = "Python for Window Extensions" -optional = false -python-versions = "*" -files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, -] - -[[package]] -name = "pyyaml" -version = "5.4.1" -description = "YAML parser and emitter for Python" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "PyYAML-5.4.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:3b2b1824fe7112845700f815ff6a489360226a5609b96ec2190a45e62a9fc922"}, - {file = "PyYAML-5.4.1-cp27-cp27m-win32.whl", hash = "sha256:129def1b7c1bf22faffd67b8f3724645203b79d8f4cc81f674654d9902cb4393"}, - {file = "PyYAML-5.4.1-cp27-cp27m-win_amd64.whl", hash = "sha256:4465124ef1b18d9ace298060f4eccc64b0850899ac4ac53294547536533800c8"}, - {file = "PyYAML-5.4.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:bb4191dfc9306777bc594117aee052446b3fa88737cd13b7188d0e7aa8162185"}, - {file = "PyYAML-5.4.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:6c78645d400265a062508ae399b60b8c167bf003db364ecb26dcab2bda048253"}, - {file = "PyYAML-5.4.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:4e0583d24c881e14342eaf4ec5fbc97f934b999a6828693a99157fde912540cc"}, - {file = "PyYAML-5.4.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:72a01f726a9c7851ca9bfad6fd09ca4e090a023c00945ea05ba1638c09dc3347"}, - {file = "PyYAML-5.4.1-cp36-cp36m-manylinux2014_s390x.whl", hash = "sha256:895f61ef02e8fed38159bb70f7e100e00f471eae2bc838cd0f4ebb21e28f8541"}, - {file = "PyYAML-5.4.1-cp36-cp36m-win32.whl", hash = "sha256:3bd0e463264cf257d1ffd2e40223b197271046d09dadf73a0fe82b9c1fc385a5"}, - {file = "PyYAML-5.4.1-cp36-cp36m-win_amd64.whl", hash = "sha256:e4fac90784481d221a8e4b1162afa7c47ed953be40d31ab4629ae917510051df"}, - {file = "PyYAML-5.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5accb17103e43963b80e6f837831f38d314a0495500067cb25afab2e8d7a4018"}, - {file = "PyYAML-5.4.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:e1d4970ea66be07ae37a3c2e48b5ec63f7ba6804bdddfdbd3cfd954d25a82e63"}, - {file = "PyYAML-5.4.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:cb333c16912324fd5f769fff6bc5de372e9e7a202247b48870bc251ed40239aa"}, - {file = "PyYAML-5.4.1-cp37-cp37m-manylinux2014_s390x.whl", hash = "sha256:fe69978f3f768926cfa37b867e3843918e012cf83f680806599ddce33c2c68b0"}, - {file = "PyYAML-5.4.1-cp37-cp37m-win32.whl", hash = "sha256:dd5de0646207f053eb0d6c74ae45ba98c3395a571a2891858e87df7c9b9bd51b"}, - {file = "PyYAML-5.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:08682f6b72c722394747bddaf0aa62277e02557c0fd1c42cb853016a38f8dedf"}, - {file = "PyYAML-5.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d2d9808ea7b4af864f35ea216be506ecec180628aced0704e34aca0b040ffe46"}, - {file = "PyYAML-5.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:8c1be557ee92a20f184922c7b6424e8ab6691788e6d86137c5d93c1a6ec1b8fb"}, - {file = "PyYAML-5.4.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:fd7f6999a8070df521b6384004ef42833b9bd62cfee11a09bda1079b4b704247"}, - {file = "PyYAML-5.4.1-cp38-cp38-manylinux2014_s390x.whl", hash = "sha256:bfb51918d4ff3d77c1c856a9699f8492c612cde32fd3bcd344af9be34999bfdc"}, - {file = "PyYAML-5.4.1-cp38-cp38-win32.whl", hash = "sha256:fa5ae20527d8e831e8230cbffd9f8fe952815b2b7dae6ffec25318803a7528fc"}, - {file = "PyYAML-5.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:0f5f5786c0e09baddcd8b4b45f20a7b5d61a7e7e99846e3c799b05c7c53fa696"}, - {file = "PyYAML-5.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:294db365efa064d00b8d1ef65d8ea2c3426ac366c0c4368d930bf1c5fb497f77"}, - {file = "PyYAML-5.4.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:74c1485f7707cf707a7aef42ef6322b8f97921bd89be2ab6317fd782c2d53183"}, - {file = "PyYAML-5.4.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d483ad4e639292c90170eb6f7783ad19490e7a8defb3e46f97dfe4bacae89122"}, - {file = "PyYAML-5.4.1-cp39-cp39-manylinux2014_s390x.whl", hash = "sha256:fdc842473cd33f45ff6bce46aea678a54e3d21f1b61a7750ce3c498eedfe25d6"}, - {file = "PyYAML-5.4.1-cp39-cp39-win32.whl", hash = "sha256:49d4cdd9065b9b6e206d0595fee27a96b5dd22618e7520c33204a4a3239d5b10"}, - {file = "PyYAML-5.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:c20cfa2d49991c8b4147af39859b167664f2ad4561704ee74c1de03318e898db"}, - {file = "PyYAML-5.4.1.tar.gz", hash = "sha256:607774cbba28732bfa802b54baa7484215f530991055bb562efbed5b2f20a45e"}, -] - -[[package]] -name = "pyzmq" -version = "25.1.2" -description = "Python bindings for 0MQ" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, - {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, - {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, - {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, - {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, - {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, - {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, - {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, - {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, - {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, - {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, - {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, - {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, -] - -[package.dependencies] -cffi = {version = "*", markers = "implementation_name == \"pypy\""} - -[[package]] -name = "rdt" -version = "1.9.2" -description = "Reversible Data Transforms" -optional = false -python-versions = ">=3.8,<3.12" -files = [ - {file = "rdt-1.9.2-py2.py3-none-any.whl", hash = "sha256:b53418cba74f7ff879a49ffd0729313b085c846c3d52e9cc65736fa68be29273"}, - {file = "rdt-1.9.2.tar.gz", hash = "sha256:7d06eb704a066a245dcf0544e42d2842447bd675ebefd54378a56aef492eddf5"}, -] - -[package.dependencies] -Faker = ">=17,<20" -numpy = [ - {version = ">=1.20.0,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.23.3,<2", markers = "python_version >= \"3.10\""}, -] -pandas = [ - {version = ">=1.1.3", markers = "python_version < \"3.10\""}, - {version = ">=1.3.4", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -scikit-learn = [ - {version = ">=0.24,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.1.3,<2", markers = "python_version >= \"3.10\""}, -] -scipy = [ - {version = ">=1.5.4,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.9.2,<2", markers = "python_version >= \"3.10\""}, -] - -[package.extras] -copulas = ["copulas (>=0.9.0,<0.10)"] -dev = ["autoflake (>=1.1,<2)", "autopep8 (>=1.4.3,<1.6)", "bumpversion (>=0.5.3,<0.6)", "copulas (>=0.9.0,<0.10)", "coverage (>=4.5.1,<6)", "dlint (>=0.11.0,<0.12)", "flake8 (>=3.7.7,<4)", "flake8-absolute-import (>=1.0,<2)", "flake8-builtins (>=1.5.3,<1.6)", "flake8-comprehensions (>=3.6.1,<3.7)", "flake8-debugger (>=4.0.0,<4.1)", "flake8-docstrings (>=1.5.0,<2)", "flake8-eradicate (>=1.1.0,<1.2)", "flake8-expression-complexity (>=0.0.9,<0.1)", "flake8-fixme (>=1.1.1,<1.2)", "flake8-mock (>=0.3,<0.4)", "flake8-multiline-containers (>=0.0.18,<0.1)", "flake8-mutable (>=1.2.0,<1.3)", "flake8-print (>=4.0.0,<4.1)", "flake8-pytest-style (>=1.5.0,<2)", "flake8-quotes (>=3.3.0,<4)", "flake8-sfs (>=0.0.3,<0.1)", "flake8-variables-names (>=0.0.4,<0.1)", "invoke", "isort (>=4.3.4,<5)", "jupyter (>=1.0.0,<2)", "pandas-vet (>=0.2.3,<0.3)", "pep8-naming (>=0.12.1,<0.13)", "pip (>=9.0.1)", "pycodestyle (>=2.7.0,<2.8.0)", "pydocstyle (>=6.1.1,<6.2)", "pyflakes (>=2.3.0,<2.4.0)", "pylint (>=2.5.3,<3)", "pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-subtests (>=0.5,<1.0)", "rundoc (>=0.4.3,<0.5)", "tabulate (>=0.8.9,<1)", "tox (>=2.9.1,<4)", "twine (>=1.10.0,<4)", "watchdog (>=0.8.3,<0.11)", "wheel (>=0.30.0)"] -test = ["copulas (>=0.9.0,<0.10)", "jupyter (>=1.0.0,<2)", "pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-subtests (>=0.5,<1.0)", "rundoc (>=0.4.3,<0.5)"] - -[[package]] -name = "requests" -version = "2.31.0" -description = "Python HTTP for Humans." -optional = false -python-versions = ">=3.7" -files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, -] - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<4" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<3" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "s3transfer" -version = "0.10.0" -description = "An Amazon S3 Transfer Manager" -optional = false -python-versions = ">= 3.8" -files = [ - {file = "s3transfer-0.10.0-py3-none-any.whl", hash = "sha256:3cdb40f5cfa6966e812209d0994f2a4709b561c88e90cf00c2696d2df4e56b2e"}, - {file = "s3transfer-0.10.0.tar.gz", hash = "sha256:d0c8bbf672d5eebbe4e57945e23b972d963f07d82f661cabf678a5c88831595b"}, -] - -[package.dependencies] -botocore = ">=1.33.2,<2.0a.0" - -[package.extras] -crt = ["botocore[crt] (>=1.33.2,<2.0a.0)"] - -[[package]] -name = "scikit-learn" -version = "1.3.2" -description = "A set of python modules for machine learning and data mining" -optional = false -python-versions = ">=3.8" -files = [ - {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, - {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, - {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, - {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, - {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, - {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, -] - -[package.dependencies] -joblib = ">=1.1.1" -numpy = ">=1.17.3,<2.0" -scipy = ">=1.5.0" -threadpoolctl = ">=2.0.0" - -[package.extras] -benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] - -[[package]] -name = "scipy" -version = "1.10.1" -description = "Fundamental algorithms for scientific computing in Python" -optional = false -python-versions = "<3.12,>=3.8" -files = [ - {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, - {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, - {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, - {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, - {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, - {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, - {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, -] - -[package.dependencies] -numpy = ">=1.19.5,<1.27.0" - -[package.extras] -dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] -doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "scipy" -version = "1.12.0" -description = "Fundamental algorithms for scientific computing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b"}, - {file = "scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1"}, - {file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563"}, - {file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c"}, - {file = "scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd"}, - {file = "scipy-1.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2"}, - {file = "scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08"}, - {file = "scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c"}, - {file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467"}, - {file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a"}, - {file = "scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba"}, - {file = "scipy-1.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70"}, - {file = "scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372"}, - {file = "scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3"}, - {file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc"}, - {file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c"}, - {file = "scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338"}, - {file = "scipy-1.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c"}, - {file = "scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35"}, - {file = "scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067"}, - {file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371"}, - {file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490"}, - {file = "scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc"}, - {file = "scipy-1.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e"}, - {file = "scipy-1.12.0.tar.gz", hash = "sha256:4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3"}, -] - -[package.dependencies] -numpy = ">=1.22.4,<1.29.0" - -[package.extras] -dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] -doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "sdmetrics" -version = "0.13.0" -description = "Metrics for Synthetic Data Generation Projects" -optional = false -python-versions = ">=3.8,<3.12" -files = [ - {file = "sdmetrics-0.13.0-py2.py3-none-any.whl", hash = "sha256:83a483696b034f42e5f1f3d25c4cdbbc48b4d83fa98e0ec7c2c846582b0b94c8"}, - {file = "sdmetrics-0.13.0.tar.gz", hash = "sha256:2d277094b1081c637d90d818f23370feba745db8120d2813ede3ec024bc78a07"}, -] - -[package.dependencies] -copulas = ">=0.9.0,<0.10" -numpy = [ - {version = ">=1.20.0,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.23.3,<2", markers = "python_version >= \"3.10\""}, -] -pandas = [ - {version = ">=1.1.3", markers = "python_version < \"3.10\""}, - {version = ">=1.3.4", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -plotly = ">=5.10.0,<6" -scikit-learn = {version = ">=0.24,<2", markers = "python_version <= \"3.10\""} -scipy = [ - {version = ">=1.5.4,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.9.2,<2", markers = "python_version >= \"3.10\""}, -] -tqdm = ">=4.15,<5" - -[package.extras] -dev = ["autoflake (>=1.1,<2)", "autopep8 (>=1.4.3,<1.6)", "bumpversion (>=0.5.3,<0.6)", "coverage (>=4.5.1,<6)", "dlint (>=0.11.0,<0.12)", "flake8 (>=3.7.7,<4)", "flake8-absolute-import (>=1.0,<2)", "flake8-builtins (>=1.5.3,<1.6)", "flake8-comprehensions (>=3.6.1,<3.7)", "flake8-debugger (>=4.0.0,<4.1)", "flake8-docstrings (>=1.5.0,<2)", "flake8-eradicate (>=1.1.0,<1.2)", "flake8-expression-complexity (>=0.0.9,<0.1)", "flake8-fixme (>=1.1.1,<1.2)", "flake8-mock (>=0.3,<0.4)", "flake8-multiline-containers (>=0.0.18,<0.1)", "flake8-mutable (>=1.2.0,<1.3)", "flake8-print (>=4.0.0,<4.1)", "flake8-pytest-style (>=1.5.0,<2)", "flake8-quotes (>=3.3.0,<4)", "flake8-sfs (>=0.0.3,<0.1)", "flake8-variables-names (>=0.0.4,<0.1)", "invoke", "isort (>=4.3.4,<5)", "jupyter (>=1.0.0,<2)", "packaging (>=20,<21)", "pandas-vet (>=0.2.2,<0.3)", "pep8-naming (>=0.12.1,<0.13)", "pip (>=9.0.1)", "pydocstyle (>=6.1.1,<6.2)", "pytest (>=6.2.5,<7)", "pytest-cov (>=2.6.0,<3)", "pytest-rerunfailures (>=10)", "rundoc (>=0.4.3,<0.5)", "torch (>=1.11.0)", "torch (>=1.8.0)", "torch (>=2.0.0)", "tox (>=2.9.1,<4)", "twine (>=1.10.0,<4)", "watchdog (>=0.8.3,<0.11)", "wheel (>=0.30.0)"] -pomegranate = ["pomegranate (>=0.14.1,<0.14.7)"] -test = ["invoke", "jupyter (>=1.0.0,<2)", "pytest (>=6.2.5,<7)", "pytest-cov (>=2.6.0,<3)", "pytest-rerunfailures (>=10)", "rundoc (>=0.4.3,<0.5)", "torch (>=1.11.0)", "torch (>=1.8.0)", "torch (>=2.0.0)"] -torch = ["torch (>=1.11.0)", "torch (>=1.8.0)", "torch (>=2.0.0)"] - -[[package]] -name = "sdv" -version = "1.10.0" -description = "Generate synthetic data for single table, multi table and sequential data" -optional = false -python-versions = ">=3.8,<3.12" -files = [ - {file = "sdv-1.10.0-py2.py3-none-any.whl", hash = "sha256:54ab6a664efe2ed2e4c05b642a8fc1f549fa5f1c52beba06c6760e350b1ac393"}, - {file = "sdv-1.10.0.tar.gz", hash = "sha256:9e84a859a7a2adfaeec54dcbd79debc8a78f5f9b2ebfb6da19989d1a99d73e1d"}, -] - -[package.dependencies] -boto3 = ">=1.15.0,<2" -botocore = ">=1.18,<2" -cloudpickle = ">=2.1.0,<3.0" -copulas = ">=0.9.0,<0.10" -ctgan = ">=0.9.0,<0.10" -deepecho = ">=0.5,<0.6" -graphviz = ">=0.13.2,<1" -numpy = [ - {version = ">=1.20.0,<2", markers = "python_version < \"3.10\""}, - {version = ">=1.23.3,<2", markers = "python_version >= \"3.10\""}, -] -pandas = [ - {version = ">=1.1.3", markers = "python_version < \"3.10\""}, - {version = ">=1.3.4", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -rdt = ">=1.9.0,<2" -sdmetrics = ">=0.13.0,<0.14" -tqdm = ">=4.15,<5" - -[package.extras] -dev = ["Jinja2 (>=2,<3)", "Sphinx (>=3,<3.3)", "autoflake (>=1.1,<2)", "autopep8 (>=1.4.3,<1.6)", "bumpversion (>=0.5.3,<0.6)", "coverage (>=4.5.1,<6)", "dlint (>=0.11.0,<0.12)", "docutils (>=0.12,<0.18)", "flake8 (>=3.7.7,<4)", "flake8-absolute-import (>=1.0,<2)", "flake8-builtins (>=1.5.3,<1.6)", "flake8-comprehensions (>=3.6.1,<3.7)", "flake8-debugger (>=4.0.0,<4.1)", "flake8-docstrings (>=1.5.0,<2)", "flake8-eradicate (>=1.1.0,<1.2)", "flake8-expression-complexity (>=0.0.9,<0.1)", "flake8-fixme (>=1.1.1,<1.2)", "flake8-mock (>=0.3,<0.4)", "flake8-multiline-containers (>=0.0.18,<0.1)", "flake8-mutable (>=1.2.0,<1.3)", "flake8-print (>=4.0.0,<4.1)", "flake8-pytest-style (>=1.5.0,<2)", "flake8-quotes (>=3.3.0,<4)", "flake8-sfs (>=0.0.3,<0.1)", "flake8-variables-names (>=0.0.4,<0.1)", "invoke", "isort (>=4.3.4,<5)", "jupyter (>=1.0.0,<2)", "m2r2 (>=0.2.5,<0.3)", "markupsafe (<2.1.0)", "nbsphinx (>=0.5.0,<0.7)", "pandas-vet (>=0.2.3,<0.3)", "pep8-naming (>=0.12.1,<0.13)", "pip (>=9.0.1)", "pydata-sphinx-theme (<0.5)", "pydocstyle (>=6.1.1,<6.2)", "pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-rerunfailures (>10)", "rundoc (>=0.4.3,<0.5)", "sphinx-toolbox (>=2.5,<3)", "tox (>=2.9.1,<4)", "twine (>=1.10.0,<4)", "watchdog (>=0.8.3,<0.9)", "wheel (>=0.30.0)"] -pomegranate = ["pomegranate (>=0.14.3,<0.15)"] -test = ["jupyter (>=1.0.0,<2)", "pytest (>=3.4.2)", "pytest-cov (>=2.6.0)", "pytest-rerunfailures (>10)", "rundoc (>=0.4.3,<0.5)"] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] - -[[package]] -name = "smartnoise-sql" -version = "0.2.12" -description = "Differentially Private SQL Queries" -optional = false -python-versions = ">=3.7,<=3.11" -files = [ - {file = "smartnoise-sql-0.2.12.tar.gz", hash = "sha256:80cc3f51185528715dba9165fd7d30449bc506313dd4ab8e0f2833f3e59bddc3"}, - {file = "smartnoise_sql-0.2.12-py3-none-any.whl", hash = "sha256:17e89bbbb8e5c83da42270a2b6a3013b6bc8d279226fc903b89284115c1e6220"}, -] - -[package.dependencies] -antlr4-python3-runtime = "4.9.3" -graphviz = ">=0.17,<0.18" -opendp = ">=0.6.0,<0.7.0" -pandasql = ">=0.7.3,<0.8.0" -PyYAML = ">=5.4.1,<6.0.0" -sqlalchemy = ">=1.4.23,<2.0.0" - -[[package]] -name = "smartnoise-synth" -version = "0.3.3" -description = "Differentially Private Synthetic Data" -optional = false -python-versions = ">=3.7,<3.11" -files = [ - {file = "smartnoise-synth-0.3.3.tar.gz", hash = "sha256:2c662a2a2e660bef1416a144c9535bd1f0b088b7e2c9ae865db9a682bff5dd8f"}, - {file = "smartnoise_synth-0.3.3-py3-none-any.whl", hash = "sha256:03b46cfca53dc52702a6340089a913c7695172053938dc6e97564a0bd6933054"}, -] - -[package.dependencies] -opacus = ">=0.14.0,<0.15.0" -opendp = ">=0.6.0,<0.7.0" -pac-synth = ">=0.0.6,<0.0.7" -smartnoise-sql = ">=0.2.6,<0.3.0" - -[[package]] -name = "sqlalchemy" -version = "1.4.52" -description = "Database Abstraction Library" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "SQLAlchemy-1.4.52-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:f68016f9a5713684c1507cc37133c28035f29925c75c0df2f9d0f7571e23720a"}, - {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24bb0f81fbbb13d737b7f76d1821ec0b117ce8cbb8ee5e8641ad2de41aa916d3"}, - {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e93983cc0d2edae253b3f2141b0a3fb07e41c76cd79c2ad743fc27eb79c3f6db"}, - {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:84e10772cfc333eb08d0b7ef808cd76e4a9a30a725fb62a0495877a57ee41d81"}, - {file = "SQLAlchemy-1.4.52-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:427988398d2902de042093d17f2b9619a5ebc605bf6372f7d70e29bde6736842"}, - {file = "SQLAlchemy-1.4.52-cp310-cp310-win32.whl", hash = "sha256:1296f2cdd6db09b98ceb3c93025f0da4835303b8ac46c15c2136e27ee4d18d94"}, - {file = "SQLAlchemy-1.4.52-cp310-cp310-win_amd64.whl", hash = "sha256:80e7f697bccc56ac6eac9e2df5c98b47de57e7006d2e46e1a3c17c546254f6ef"}, - {file = "SQLAlchemy-1.4.52-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2f251af4c75a675ea42766880ff430ac33291c8d0057acca79710f9e5a77383d"}, - {file = "SQLAlchemy-1.4.52-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb8f9e4c4718f111d7b530c4e6fb4d28f9f110eb82e7961412955b3875b66de0"}, - {file = "SQLAlchemy-1.4.52-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afb1672b57f58c0318ad2cff80b384e816735ffc7e848d8aa51e0b0fc2f4b7bb"}, - {file = "SQLAlchemy-1.4.52-cp311-cp311-win32.whl", hash = "sha256:6e41cb5cda641f3754568d2ed8962f772a7f2b59403b95c60c89f3e0bd25f15e"}, - {file = "SQLAlchemy-1.4.52-cp311-cp311-win_amd64.whl", hash = "sha256:5bed4f8c3b69779de9d99eb03fd9ab67a850d74ab0243d1be9d4080e77b6af12"}, - {file = "SQLAlchemy-1.4.52-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:49e3772eb3380ac88d35495843daf3c03f094b713e66c7d017e322144a5c6b7c"}, - {file = "SQLAlchemy-1.4.52-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:618827c1a1c243d2540314c6e100aee7af09a709bd005bae971686fab6723554"}, - {file = "SQLAlchemy-1.4.52-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de9acf369aaadb71a725b7e83a5ef40ca3de1cf4cdc93fa847df6b12d3cd924b"}, - {file = "SQLAlchemy-1.4.52-cp312-cp312-win32.whl", hash = "sha256:763bd97c4ebc74136ecf3526b34808c58945023a59927b416acebcd68d1fc126"}, - {file = "SQLAlchemy-1.4.52-cp312-cp312-win_amd64.whl", hash = "sha256:f12aaf94f4d9679ca475975578739e12cc5b461172e04d66f7a3c39dd14ffc64"}, - {file = "SQLAlchemy-1.4.52-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:853fcfd1f54224ea7aabcf34b227d2b64a08cbac116ecf376907968b29b8e763"}, - {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f98dbb8fcc6d1c03ae8ec735d3c62110949a3b8bc6e215053aa27096857afb45"}, - {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e135fff2e84103bc15c07edd8569612ce317d64bdb391f49ce57124a73f45c5"}, - {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5b5de6af8852500d01398f5047d62ca3431d1e29a331d0b56c3e14cb03f8094c"}, - {file = "SQLAlchemy-1.4.52-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3491c85df263a5c2157c594f54a1a9c72265b75d3777e61ee13c556d9e43ffc9"}, - {file = "SQLAlchemy-1.4.52-cp36-cp36m-win32.whl", hash = "sha256:427c282dd0deba1f07bcbf499cbcc9fe9a626743f5d4989bfdfd3ed3513003dd"}, - {file = "SQLAlchemy-1.4.52-cp36-cp36m-win_amd64.whl", hash = "sha256:ca5ce82b11731492204cff8845c5e8ca1a4bd1ade85e3b8fcf86e7601bfc6a39"}, - {file = "SQLAlchemy-1.4.52-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:29d4247313abb2015f8979137fe65f4eaceead5247d39603cc4b4a610936cd2b"}, - {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a752bff4796bf22803d052d4841ebc3c55c26fb65551f2c96e90ac7c62be763a"}, - {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7ea11727feb2861deaa293c7971a4df57ef1c90e42cb53f0da40c3468388000"}, - {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d913f8953e098ca931ad7f58797f91deed26b435ec3756478b75c608aa80d139"}, - {file = "SQLAlchemy-1.4.52-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a251146b921725547ea1735b060a11e1be705017b568c9f8067ca61e6ef85f20"}, - {file = "SQLAlchemy-1.4.52-cp37-cp37m-win32.whl", hash = "sha256:1f8e1c6a6b7f8e9407ad9afc0ea41c1f65225ce505b79bc0342159de9c890782"}, - {file = "SQLAlchemy-1.4.52-cp37-cp37m-win_amd64.whl", hash = "sha256:346ed50cb2c30f5d7a03d888e25744154ceac6f0e6e1ab3bc7b5b77138d37710"}, - {file = "SQLAlchemy-1.4.52-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:4dae6001457d4497736e3bc422165f107ecdd70b0d651fab7f731276e8b9e12d"}, - {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5d2e08d79f5bf250afb4a61426b41026e448da446b55e4770c2afdc1e200fce"}, - {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bbce5dd7c7735e01d24f5a60177f3e589078f83c8a29e124a6521b76d825b85"}, - {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:bdb7b4d889631a3b2a81a3347c4c3f031812eb4adeaa3ee4e6b0d028ad1852b5"}, - {file = "SQLAlchemy-1.4.52-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c294ae4e6bbd060dd79e2bd5bba8b6274d08ffd65b58d106394cb6abbf35cf45"}, - {file = "SQLAlchemy-1.4.52-cp38-cp38-win32.whl", hash = "sha256:bcdfb4b47fe04967669874fb1ce782a006756fdbebe7263f6a000e1db969120e"}, - {file = "SQLAlchemy-1.4.52-cp38-cp38-win_amd64.whl", hash = "sha256:7d0dbc56cb6af5088f3658982d3d8c1d6a82691f31f7b0da682c7b98fa914e91"}, - {file = "SQLAlchemy-1.4.52-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:a551d5f3dc63f096ed41775ceec72fdf91462bb95abdc179010dc95a93957800"}, - {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ab773f9ad848118df7a9bbabca53e3f1002387cdbb6ee81693db808b82aaab0"}, - {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2de46f5d5396d5331127cfa71f837cca945f9a2b04f7cb5a01949cf676db7d1"}, - {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7027be7930a90d18a386b25ee8af30514c61f3852c7268899f23fdfbd3107181"}, - {file = "SQLAlchemy-1.4.52-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99224d621affbb3c1a4f72b631f8393045f4ce647dd3262f12fe3576918f8bf3"}, - {file = "SQLAlchemy-1.4.52-cp39-cp39-win32.whl", hash = "sha256:c124912fd4e1bb9d1e7dc193ed482a9f812769cb1e69363ab68e01801e859821"}, - {file = "SQLAlchemy-1.4.52-cp39-cp39-win_amd64.whl", hash = "sha256:2c286fab42e49db23c46ab02479f328b8bdb837d3e281cae546cc4085c83b680"}, - {file = "SQLAlchemy-1.4.52.tar.gz", hash = "sha256:80e63bbdc5217dad3485059bdf6f65a7d43f33c8bde619df5c220edf03d87296"}, -] - -[package.dependencies] -greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"} - -[package.extras] -aiomysql = ["aiomysql (>=0.2.0)", "greenlet (!=0.4.17)"] -aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] -asyncio = ["greenlet (!=0.4.17)"] -asyncmy = ["asyncmy (>=0.2.3,!=0.2.4)", "greenlet (!=0.4.17)"] -mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2)"] -mssql = ["pyodbc"] -mssql-pymssql = ["pymssql"] -mssql-pyodbc = ["pyodbc"] -mypy = ["mypy (>=0.910)", "sqlalchemy2-stubs"] -mysql = ["mysqlclient (>=1.4.0)", "mysqlclient (>=1.4.0,<2)"] -mysql-connector = ["mysql-connector-python"] -oracle = ["cx_oracle (>=7)", "cx_oracle (>=7,<8)"] -postgresql = ["psycopg2 (>=2.7)"] -postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] -postgresql-pg8000 = ["pg8000 (>=1.16.6,!=1.29.0)"] -postgresql-psycopg2binary = ["psycopg2-binary"] -postgresql-psycopg2cffi = ["psycopg2cffi"] -pymysql = ["pymysql", "pymysql (<1)"] -sqlcipher = ["sqlcipher3_binary"] - -[[package]] -name = "stack-data" -version = "0.6.3" -description = "Extract data from python stack frames and tracebacks for informative displays" -optional = false -python-versions = "*" -files = [ - {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, - {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, -] - -[package.dependencies] -asttokens = ">=2.1.0" -executing = ">=1.2.0" -pure-eval = "*" - -[package.extras] -tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] - -[[package]] -name = "sympy" -version = "1.12" -description = "Computer algebra system (CAS) in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"}, - {file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"}, -] - -[package.dependencies] -mpmath = ">=0.19" - -[[package]] -name = "tenacity" -version = "8.2.3" -description = "Retry code until it succeeds" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tenacity-8.2.3-py3-none-any.whl", hash = "sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c"}, - {file = "tenacity-8.2.3.tar.gz", hash = "sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a"}, -] - -[package.extras] -doc = ["reno", "sphinx", "tornado (>=4.5)"] - -[[package]] -name = "threadpoolctl" -version = "3.3.0" -description = "threadpoolctl" -optional = false -python-versions = ">=3.8" -files = [ - {file = "threadpoolctl-3.3.0-py3-none-any.whl", hash = "sha256:6155be1f4a39f31a18ea70f94a77e0ccd57dced08122ea61109e7da89883781e"}, - {file = "threadpoolctl-3.3.0.tar.gz", hash = "sha256:5dac632b4fa2d43f42130267929af3ba01399ef4bd1882918e92dbc30365d30c"}, -] - -[[package]] -name = "toml" -version = "0.10.2" -description = "Python Library for Tom's Obvious, Minimal Language" -optional = false -python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, - {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, -] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] - -[[package]] -name = "torch" -version = "2.2.1" -description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "torch-2.2.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:8d3bad336dd2c93c6bcb3268e8e9876185bda50ebde325ef211fb565c7d15273"}, - {file = "torch-2.2.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:5297f13370fdaca05959134b26a06a7f232ae254bf2e11a50eddec62525c9006"}, - {file = "torch-2.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:5f5dee8433798888ca1415055f5e3faf28a3bad660e4c29e1014acd3275ab11a"}, - {file = "torch-2.2.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:b6d78338acabf1fb2e88bf4559d837d30230cf9c3e4337261f4d83200df1fcbe"}, - {file = "torch-2.2.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:6ab3ea2e29d1aac962e905142bbe50943758f55292f1b4fdfb6f4792aae3323e"}, - {file = "torch-2.2.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:d86664ec85902967d902e78272e97d1aff1d331f7619d398d3ffab1c9b8e9157"}, - {file = "torch-2.2.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d6227060f268894f92c61af0a44c0d8212e19cb98d05c20141c73312d923bc0a"}, - {file = "torch-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:77e990af75fb1675490deb374d36e726f84732cd5677d16f19124934b2409ce9"}, - {file = "torch-2.2.1-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:46085e328d9b738c261f470231e987930f4cc9472d9ffb7087c7a1343826ac51"}, - {file = "torch-2.2.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:2d9e7e5ecbb002257cf98fae13003abbd620196c35f85c9e34c2adfb961321ec"}, - {file = "torch-2.2.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:ada53aebede1c89570e56861b08d12ba4518a1f8b82d467c32665ec4d1f4b3c8"}, - {file = "torch-2.2.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:be21d4c41ecebed9e99430dac87de1439a8c7882faf23bba7fea3fea7b906ac1"}, - {file = "torch-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:79848f46196750367dcdf1d2132b722180b9d889571e14d579ae82d2f50596c5"}, - {file = "torch-2.2.1-cp312-none-macosx_10_9_x86_64.whl", hash = "sha256:7ee804847be6be0032fbd2d1e6742fea2814c92bebccb177f0d3b8e92b2d2b18"}, - {file = "torch-2.2.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:84b2fb322ab091039fdfe74e17442ff046b258eb5e513a28093152c5b07325a7"}, - {file = "torch-2.2.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:5c0c83aa7d94569997f1f474595e808072d80b04d34912ce6f1a0e1c24b0c12a"}, - {file = "torch-2.2.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:91a1b598055ba06b2c386415d2e7f6ac818545e94c5def597a74754940188513"}, - {file = "torch-2.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:8f93ddf3001ecec16568390b507652644a3a103baa72de3ad3b9c530e3277098"}, - {file = "torch-2.2.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:0e8bdd4c77ac2584f33ee14c6cd3b12767b4da508ec4eed109520be7212d1069"}, - {file = "torch-2.2.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:6a21bcd7076677c97ca7db7506d683e4e9db137e8420eb4a68fb67c3668232a7"}, - {file = "torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:f1b90ac61f862634039265cd0f746cc9879feee03ff962c803486301b778714b"}, - {file = "torch-2.2.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ed9e29eb94cd493b36bca9cb0b1fd7f06a0688215ad1e4b3ab4931726e0ec092"}, - {file = "torch-2.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:c47bc25744c743f3835831a20efdcfd60aeb7c3f9804a213f61e45803d16c2a5"}, - {file = "torch-2.2.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:0952549bcb43448c8d860d5e3e947dd18cbab491b14638e21750cb3090d5ad3e"}, - {file = "torch-2.2.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:26bd2272ec46fc62dcf7d24b2fb284d44fcb7be9d529ebf336b9860350d674ed"}, -] - -[package.dependencies] -filelock = "*" -fsspec = "*" -jinja2 = "*" -networkx = "*" -nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -sympy = "*" -triton = {version = "2.2.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""} -typing-extensions = ">=4.8.0" - -[package.extras] -opt-einsum = ["opt-einsum (>=3.3)"] -optree = ["optree (>=0.9.1)"] - -[[package]] -name = "tornado" -version = "6.4" -description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." -optional = false -python-versions = ">= 3.8" -files = [ - {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, - {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, - {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, - {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, - {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, -] - -[[package]] -name = "tqdm" -version = "4.66.2" -description = "Fast, Extensible Progress Meter" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tqdm-4.66.2-py3-none-any.whl", hash = "sha256:1ee4f8a893eb9bef51c6e35730cebf234d5d0b6bd112b0271e10ed7c24a02bd9"}, - {file = "tqdm-4.66.2.tar.gz", hash = "sha256:6cd52cdf0fef0e0f543299cfc96fec90d7b8a7e88745f411ec33eb44d5ed3531"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "traitlets" -version = "5.14.1" -description = "Traitlets Python configuration system" -optional = false -python-versions = ">=3.8" -files = [ - {file = "traitlets-5.14.1-py3-none-any.whl", hash = "sha256:2e5a030e6eff91737c643231bfcf04a65b0132078dad75e4936700b213652e74"}, - {file = "traitlets-5.14.1.tar.gz", hash = "sha256:8585105b371a04b8316a43d5ce29c098575c2e477850b62b848b964f1444527e"}, -] - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] - -[[package]] -name = "triton" -version = "2.2.0" -description = "A language and compiler for custom Deep Learning operations" -optional = false -python-versions = "*" -files = [ - {file = "triton-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2294514340cfe4e8f4f9e5c66c702744c4a117d25e618bd08469d0bfed1e2e5"}, - {file = "triton-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da58a152bddb62cafa9a857dd2bc1f886dbf9f9c90a2b5da82157cd2b34392b0"}, - {file = "triton-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af58716e721460a61886668b205963dc4d1e4ac20508cc3f623aef0d70283d5"}, - {file = "triton-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8fe46d3ab94a8103e291bd44c741cc294b91d1d81c1a2888254cbf7ff846dab"}, - {file = "triton-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8ce26093e539d727e7cf6f6f0d932b1ab0574dc02567e684377630d86723ace"}, - {file = "triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:227cc6f357c5efcb357f3867ac2a8e7ecea2298cd4606a8ba1e931d1d5a947df"}, -] - -[package.dependencies] -filelock = "*" - -[package.extras] -build = ["cmake (>=3.20)", "lit"] -tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)", "torch"] -tutorials = ["matplotlib", "pandas", "tabulate", "torch"] - -[[package]] -name = "typing-extensions" -version = "4.10.0" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.10.0-py3-none-any.whl", hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475"}, - {file = "typing_extensions-4.10.0.tar.gz", hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb"}, -] - -[[package]] -name = "tzdata" -version = "2024.1" -description = "Provider of IANA time zone data" -optional = false -python-versions = ">=2" -files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, -] - -[[package]] -name = "urllib3" -version = "1.26.18" -description = "HTTP library with thread-safe connection pooling, file post, and more." -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "urllib3-1.26.18-py2.py3-none-any.whl", hash = "sha256:34b97092d7e0a3a8cf7cd10e386f401b3737364026c45e622aa02903dffe0f07"}, - {file = "urllib3-1.26.18.tar.gz", hash = "sha256:f8ecc1bba5667413457c529ab955bf8c67b45db799d159066261719e328580a0"}, -] - -[package.extras] -brotli = ["brotli (==1.0.9)", "brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] -secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] -socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] - -[[package]] -name = "wcwidth" -version = "0.2.13" -description = "Measures the displayed width of unicode strings in a terminal" -optional = false -python-versions = "*" -files = [ - {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, - {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, -] - -[[package]] -name = "wheel" -version = "0.42.0" -description = "A built-package format for Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "wheel-0.42.0-py3-none-any.whl", hash = "sha256:177f9c9b0d45c47873b619f5b650346d632cdc35fb5e4d25058e09c9e581433d"}, - {file = "wheel-0.42.0.tar.gz", hash = "sha256:c45be39f7882c9d34243236f2d63cbd58039e360f85d0913425fbd7ceea617a8"}, -] - -[package.extras] -test = ["pytest (>=6.0.0)", "setuptools (>=65)"] - -[[package]] -name = "zipp" -version = "3.17.0" -description = "Backport of pathlib-compatible object wrapper for zip files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, - {file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, -] - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] - -[metadata] -lock-version = "2.0" -python-versions = ">=3.8,<3.11" -content-hash = "64f9c6126627b7f06c2c479c2b44f696a8856b02d5cd6aeac2a15f3920cddc14" diff --git a/pyproject.toml b/pyproject.toml index 8f6eec6f..ff8301a6 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -106,24 +106,6 @@ authors = [ ] readme = "README.md" -[tool.poetry.dependencies] -python = ">=3.8,<3.11" -wheel = "^0.42.0" -pyyaml = "^5.4.1" -sdv = "^1.9.0" -smartnoise-synth = "^0.3.3" -anonymeter = "^1.0.0" -sdmetrics = "^0.13.0" -requests = "^2.31.0" -boto3 = "^1.34.37" -toml = "^0.10.2" -tqdm = "^4.66.1" -urllib3 = "<2" # https://github.com/python-poetry/poetry-plugin-export/issues/239 - -[tool.poetry.group.dev.dependencies] -ipykernel = "^6.29.2" -pytest = "^8.0.0" - [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" diff --git a/requirements-dev.txt b/requirements-dev.txt deleted file mode 100644 index 5d71c8a1..00000000 --- a/requirements-dev.txt +++ /dev/null @@ -1,1444 +0,0 @@ -anonymeter==1.0.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:b4144ddf5d4ca51fd464479d963eb3959f6bbf990affdde7a778ffb89096641e \ - --hash=sha256:bba90478b266733a9dd41aa085b38de5d4666d5dc9373404923c27a3012a504c -antlr4-python3-runtime==4.9.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:f224469b4168294902bb1efa80a8bf7855f24c99aef99cbefc1bcd3cce77881b -appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.11" and (platform_system == "Darwin" or sys_platform == "darwin") \ - --hash=sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee \ - --hash=sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c -asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24 \ - --hash=sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0 -backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e \ - --hash=sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255 -boto3==1.34.54 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:8b3f5cc7fbedcbb22271c328039df8a6ab343001e746e0cdb24774c426cadcf8 \ - --hash=sha256:f201b6a416f809283d554c652211eecec9fe3a52ed4063dab3f3e7aea7571d9c -botocore==1.34.54 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4061ff4be3efcf53547ebadf2c94d419dfc8be7beec24e9fa1819599ffd936fa \ - --hash=sha256:bf215d93e9d5544c593962780d194e74c6ee40b883d0b885e62ef35fc0ec01e5 -certifi==2024.2.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f \ - --hash=sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1 -cffi==1.16.0 ; python_version >= "3.8" and python_version < "3.11" and implementation_name == "pypy" \ - --hash=sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc \ - --hash=sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a \ - --hash=sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417 \ - --hash=sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab \ - --hash=sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520 \ - --hash=sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36 \ - --hash=sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743 \ - --hash=sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8 \ - --hash=sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed \ - --hash=sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684 \ - --hash=sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56 \ - --hash=sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324 \ - --hash=sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d \ - --hash=sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235 \ - --hash=sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e \ - --hash=sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088 \ - --hash=sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000 \ - --hash=sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7 \ - --hash=sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e \ - --hash=sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673 \ - --hash=sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c \ - --hash=sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe \ - --hash=sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2 \ - --hash=sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098 \ - --hash=sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8 \ - --hash=sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a \ - --hash=sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0 \ - --hash=sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b \ - --hash=sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896 \ - --hash=sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e \ - --hash=sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9 \ - --hash=sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2 \ - --hash=sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b \ - --hash=sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6 \ - --hash=sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404 \ - --hash=sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f \ - --hash=sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0 \ - --hash=sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4 \ - --hash=sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc \ - --hash=sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936 \ - --hash=sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba \ - --hash=sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872 \ - --hash=sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb \ - --hash=sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614 \ - --hash=sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1 \ - --hash=sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d \ - --hash=sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969 \ - --hash=sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b \ - --hash=sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4 \ - --hash=sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627 \ - --hash=sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956 \ - --hash=sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357 -charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027 \ - --hash=sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087 \ - --hash=sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786 \ - --hash=sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8 \ - --hash=sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09 \ - --hash=sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185 \ - --hash=sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574 \ - --hash=sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e \ - --hash=sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519 \ - --hash=sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898 \ - --hash=sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269 \ - --hash=sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3 \ - --hash=sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f \ - --hash=sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6 \ - --hash=sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8 \ - --hash=sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a \ - --hash=sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73 \ - --hash=sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc \ - --hash=sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714 \ - --hash=sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2 \ - --hash=sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc \ - --hash=sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce \ - --hash=sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d \ - --hash=sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e \ - --hash=sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6 \ - --hash=sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269 \ - --hash=sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96 \ - --hash=sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d \ - --hash=sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a \ - --hash=sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4 \ - --hash=sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77 \ - --hash=sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d \ - --hash=sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0 \ - --hash=sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed \ - --hash=sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068 \ - --hash=sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac \ - --hash=sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25 \ - --hash=sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8 \ - --hash=sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab \ - --hash=sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26 \ - --hash=sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2 \ - --hash=sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db \ - --hash=sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f \ - --hash=sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5 \ - --hash=sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99 \ - --hash=sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c \ - --hash=sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d \ - --hash=sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811 \ - --hash=sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa \ - --hash=sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a \ - --hash=sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03 \ - --hash=sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b \ - --hash=sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04 \ - --hash=sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c \ - --hash=sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001 \ - --hash=sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458 \ - --hash=sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389 \ - --hash=sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99 \ - --hash=sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985 \ - --hash=sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537 \ - --hash=sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238 \ - --hash=sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f \ - --hash=sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d \ - --hash=sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796 \ - --hash=sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a \ - --hash=sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143 \ - --hash=sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8 \ - --hash=sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c \ - --hash=sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5 \ - --hash=sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5 \ - --hash=sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711 \ - --hash=sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4 \ - --hash=sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6 \ - --hash=sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c \ - --hash=sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7 \ - --hash=sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4 \ - --hash=sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b \ - --hash=sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae \ - --hash=sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12 \ - --hash=sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c \ - --hash=sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae \ - --hash=sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8 \ - --hash=sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887 \ - --hash=sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b \ - --hash=sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4 \ - --hash=sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f \ - --hash=sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5 \ - --hash=sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33 \ - --hash=sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519 \ - --hash=sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561 -cloudpickle==2.2.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:61f594d1f4c295fa5cd9014ceb3a1fc4a70b0de1164b94fbc2d854ccba056f9f \ - --hash=sha256:d89684b8de9e34a2a43b3460fbca07d09d6e25ce858df4d5a44240403b6178f5 -colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.11" and (platform_system == "Windows" or sys_platform == "win32") \ - --hash=sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44 \ - --hash=sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6 -comm==0.2.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0bc91edae1344d39d3661dcbc36937181fdaddb304790458f8b044dbc064b89a \ - --hash=sha256:87928485c0dfc0e7976fd89fc1e187023cf587e7c353e4a9b417555b44adf021 -contourpy==1.1.1 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:059c3d2a94b930f4dafe8105bcdc1b21de99b30b51b5bce74c753686de858cb6 \ - --hash=sha256:0683e1ae20dc038075d92e0e0148f09ffcefab120e57f6b4c9c0f477ec171f33 \ - --hash=sha256:07d6f11dfaf80a84c97f1a5ba50d129d9303c5b4206f776e94037332e298dda8 \ - --hash=sha256:081f3c0880712e40effc5f4c3b08feca6d064cb8cfbb372ca548105b86fd6c3d \ - --hash=sha256:0e48694d6a9c5a26ee85b10130c77a011a4fedf50a7279fa0bdaf44bafb4299d \ - --hash=sha256:11b836b7dbfb74e049c302bbf74b4b8f6cb9d0b6ca1bf86cfa8ba144aedadd9c \ - --hash=sha256:19557fa407e70f20bfaba7d55b4d97b14f9480856c4fb65812e8a05fe1c6f9bf \ - --hash=sha256:229a25f68046c5cf8067d6d6351c8b99e40da11b04d8416bf8d2b1d75922521e \ - --hash=sha256:24216552104ae8f3b34120ef84825400b16eb6133af2e27a190fdc13529f023e \ - --hash=sha256:3b53d5769aa1f2d4ea407c65f2d1d08002952fac1d9e9d307aa2e1023554a163 \ - --hash=sha256:3de23ca4f381c3770dee6d10ead6fff524d540c0f662e763ad1530bde5112532 \ - --hash=sha256:407d864db716a067cc696d61fa1ef6637fedf03606e8417fe2aeed20a061e6b2 \ - --hash=sha256:41339b24471c58dc1499e56783fedc1afa4bb018bcd035cfb0ee2ad2a7501ef8 \ - --hash=sha256:462c59914dc6d81e0b11f37e560b8a7c2dbab6aca4f38be31519d442d6cde1a1 \ - --hash=sha256:46e24f5412c948d81736509377e255f6040e94216bf1a9b5ea1eaa9d29f6ec1b \ - --hash=sha256:498e53573e8b94b1caeb9e62d7c2d053c263ebb6aa259c81050766beb50ff8d9 \ - --hash=sha256:4ebf42695f75ee1a952f98ce9775c873e4971732a87334b099dde90b6af6a916 \ - --hash=sha256:4f9147051cb8fdb29a51dc2482d792b3b23e50f8f57e3720ca2e3d438b7adf23 \ - --hash=sha256:549174b0713d49871c6dee90a4b499d3f12f5e5f69641cd23c50a4542e2ca1eb \ - --hash=sha256:560f1d68a33e89c62da5da4077ba98137a5e4d3a271b29f2f195d0fba2adcb6a \ - --hash=sha256:566f0e41df06dfef2431defcfaa155f0acfa1ca4acbf8fd80895b1e7e2ada40e \ - --hash=sha256:56de98a2fb23025882a18b60c7f0ea2d2d70bbbcfcf878f9067234b1c4818442 \ - --hash=sha256:66544f853bfa85c0d07a68f6c648b2ec81dafd30f272565c37ab47a33b220684 \ - --hash=sha256:6c06e4c6e234fcc65435223c7b2a90f286b7f1b2733058bdf1345d218cc59e34 \ - --hash=sha256:6d0a8efc258659edc5299f9ef32d8d81de8b53b45d67bf4bfa3067f31366764d \ - --hash=sha256:70e5a10f8093d228bb2b552beeb318b8928b8a94763ef03b858ef3612b29395d \ - --hash=sha256:8394e652925a18ef0091115e3cc191fef350ab6dc3cc417f06da66bf98071ae9 \ - --hash=sha256:8636cd2fc5da0fb102a2504fa2c4bea3cbc149533b345d72cdf0e7a924decc45 \ - --hash=sha256:93df44ab351119d14cd1e6b52a5063d3336f0754b72736cc63db59307dabb718 \ - --hash=sha256:96ba37c2e24b7212a77da85004c38e7c4d155d3e72a45eeaf22c1f03f607e8ab \ - --hash=sha256:a10dab5ea1bd4401c9483450b5b0ba5416be799bbd50fc7a6cc5e2a15e03e8a3 \ - --hash=sha256:a66045af6cf00e19d02191ab578a50cb93b2028c3eefed999793698e9ea768ae \ - --hash=sha256:a75cc163a5f4531a256f2c523bd80db509a49fc23721b36dd1ef2f60ff41c3cb \ - --hash=sha256:b04c2f0adaf255bf756cf08ebef1be132d3c7a06fe6f9877d55640c5e60c72c5 \ - --hash=sha256:ba42e3810999a0ddd0439e6e5dbf6d034055cdc72b7c5c839f37a7c274cb4eba \ - --hash=sha256:bfc8a5e9238232a45ebc5cb3bfee71f1167064c8d382cadd6076f0d51cff1da0 \ - --hash=sha256:c5bd5680f844c3ff0008523a71949a3ff5e4953eb7701b28760805bc9bcff217 \ - --hash=sha256:c84fdf3da00c2827d634de4fcf17e3e067490c4aea82833625c4c8e6cdea0887 \ - --hash=sha256:ca6fab080484e419528e98624fb5c4282148b847e3602dc8dbe0cb0669469887 \ - --hash=sha256:d0c188ae66b772d9d61d43c6030500344c13e3f73a00d1dc241da896f379bb62 \ - --hash=sha256:d6ab42f223e58b7dac1bb0af32194a7b9311065583cc75ff59dcf301afd8a431 \ - --hash=sha256:dfe80c017973e6a4c367e037cb31601044dd55e6bfacd57370674867d15a899b \ - --hash=sha256:e0c02b75acfea5cab07585d25069207e478d12309557f90a61b5a3b4f77f46ce \ - --hash=sha256:e30aaf2b8a2bac57eb7e1650df1b3a4130e8d0c66fc2f861039d507a11760e1b \ - --hash=sha256:eafbef886566dc1047d7b3d4b14db0d5b7deb99638d8e1be4e23a7c7ac59ff0f \ - --hash=sha256:efe0fab26d598e1ec07d72cf03eaeeba8e42b4ecf6b9ccb5a356fde60ff08b85 \ - --hash=sha256:f08e469821a5e4751c97fcd34bcb586bc243c39c2e39321822060ba902eac49e \ - --hash=sha256:f1eaac5257a8f8a047248d60e8f9315c6cff58f7803971170d952555ef6344a7 \ - --hash=sha256:f29fb0b3f1217dfe9362ec55440d0743fe868497359f2cf93293f4b2701b8251 \ - --hash=sha256:f44d78b61740e4e8c71db1cf1fd56d9050a4747681c59ec1094750a658ceb970 \ - --hash=sha256:f6aec19457617ef468ff091669cca01fa7ea557b12b59a7908b9474bb9674cf0 \ - --hash=sha256:f9dc7f933975367251c1b34da882c4f0e0b2e24bb35dc906d2f598a40b72bfc7 -contourpy==1.2.0 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8 \ - --hash=sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956 \ - --hash=sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5 \ - --hash=sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063 \ - --hash=sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286 \ - --hash=sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a \ - --hash=sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686 \ - --hash=sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9 \ - --hash=sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f \ - --hash=sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4 \ - --hash=sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e \ - --hash=sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0 \ - --hash=sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e \ - --hash=sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488 \ - --hash=sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399 \ - --hash=sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431 \ - --hash=sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779 \ - --hash=sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9 \ - --hash=sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab \ - --hash=sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0 \ - --hash=sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd \ - --hash=sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e \ - --hash=sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc \ - --hash=sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6 \ - --hash=sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316 \ - --hash=sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808 \ - --hash=sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0 \ - --hash=sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f \ - --hash=sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843 \ - --hash=sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9 \ - --hash=sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95 \ - --hash=sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9 \ - --hash=sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de \ - --hash=sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4 \ - --hash=sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4 \ - --hash=sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa \ - --hash=sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8 \ - --hash=sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776 \ - --hash=sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41 \ - --hash=sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108 \ - --hash=sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e \ - --hash=sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8 \ - --hash=sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727 \ - --hash=sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a -copulas==0.9.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5aab94fdc5f933227e6a0775422e1c593234f3d021006be91c33ed180097aac1 \ - --hash=sha256:c9ac99bbe3b0f30990748042b2d786e88f59abac26a33c06e8aff1d00cb5b2c2 -ctgan==0.9.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:efb4587591a7ee0ae81de3829104a6574aee26213b3a54965a06b0a89ccf1e53 \ - --hash=sha256:f879830ed112a9b3173646eb625afda53ef812938116e96655dda2945a952f33 -cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 \ - --hash=sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c -debugpy==1.8.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb \ - --hash=sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146 \ - --hash=sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8 \ - --hash=sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242 \ - --hash=sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0 \ - --hash=sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741 \ - --hash=sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539 \ - --hash=sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23 \ - --hash=sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3 \ - --hash=sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39 \ - --hash=sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd \ - --hash=sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9 \ - --hash=sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace \ - --hash=sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42 \ - --hash=sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0 \ - --hash=sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7 \ - --hash=sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e \ - --hash=sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234 \ - --hash=sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98 \ - --hash=sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703 \ - --hash=sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42 \ - --hash=sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099 -decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330 \ - --hash=sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186 -deepecho==0.5.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:054de22c58d67e8db9b4b0159398afcc84563a38a7abe399031e4149c6daa940 \ - --hash=sha256:49afaf8305cd695f8f6dbc7969ada55c81a3048e2928712422bed98f6fbd4282 -exceptiongroup==1.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14 \ - --hash=sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68 -executing==2.0.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147 \ - --hash=sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc -faker==19.13.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:14ccb0aec342d33aa3889a864a56e5b3c2d56bce1b89f9189f4fbc128b9afc1e \ - --hash=sha256:da880a76322db7a879c848a0771e129338e0a680a9f695fd9a3e7a6ac82b45e1 -filelock==3.13.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e \ - --hash=sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c -fonttools==4.49.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0404faea044577a01bb82d47a8fa4bc7a54067fa7e324785dd65d200d6dd1133 \ - --hash=sha256:07bc5ea02bb7bc3aa40a1eb0481ce20e8d9b9642a9536cde0218290dd6085828 \ - --hash=sha256:08877e355d3dde1c11973bb58d4acad1981e6d1140711230a4bfb40b2b937ccc \ - --hash=sha256:0af65c720520710cc01c293f9c70bd69684365c6015cc3671db2b7d807fe51f2 \ - --hash=sha256:0ba0e00620ca28d4ca11fc700806fd69144b463aa3275e1b36e56c7c09915559 \ - --hash=sha256:1f255ce8ed7556658f6d23f6afd22a6d9bbc3edb9b96c96682124dc487e1bf42 \ - --hash=sha256:1fac1b7eebfce75ea663e860e7c5b4a8831b858c17acd68263bc156125201abf \ - --hash=sha256:263832fae27481d48dfafcc43174644b6706639661e242902ceb30553557e16c \ - --hash=sha256:29e89d0e1a7f18bc30f197cfadcbef5a13d99806447c7e245f5667579a808036 \ - --hash=sha256:33037d9e56e2562c710c8954d0f20d25b8386b397250d65581e544edc9d6b942 \ - --hash=sha256:33c584c0ef7dc54f5dd4f84082eabd8d09d1871a3d8ca2986b0c0c98165f8e86 \ - --hash=sha256:36c8865bdb5cfeec88f5028e7e592370a0657b676c6f1d84a2108e0564f90e22 \ - --hash=sha256:4145f91531fd43c50f9eb893faa08399816bb0b13c425667c48475c9f3a2b9b5 \ - --hash=sha256:4d418b1fee41a1d14931f7ab4b92dc0bc323b490e41d7a333eec82c9f1780c75 \ - --hash=sha256:768947008b4dc552d02772e5ebd49e71430a466e2373008ce905f953afea755a \ - --hash=sha256:7c7125068e04a70739dad11857a4d47626f2b0bd54de39e8622e89701836eabd \ - --hash=sha256:83a0d9336de2cba86d886507dd6e0153df333ac787377325a39a2797ec529814 \ - --hash=sha256:86eef6aab7fd7c6c8545f3ebd00fd1d6729ca1f63b0cb4d621bccb7d1d1c852b \ - --hash=sha256:8fb022d799b96df3eaa27263e9eea306bd3d437cc9aa981820850281a02b6c9a \ - --hash=sha256:9d95fa0d22bf4f12d2fb7b07a46070cdfc19ef5a7b1c98bc172bfab5bf0d6844 \ - --hash=sha256:a974c49a981e187381b9cc2c07c6b902d0079b88ff01aed34695ec5360767034 \ - --hash=sha256:ac9a745b7609f489faa65e1dc842168c18530874a5f5b742ac3dd79e26bca8bc \ - --hash=sha256:af20acbe198a8a790618ee42db192eb128afcdcc4e96d99993aca0b60d1faeb4 \ - --hash=sha256:af281525e5dd7fa0b39fb1667b8d5ca0e2a9079967e14c4bfe90fd1cd13e0f18 \ - --hash=sha256:b050d362df50fc6e38ae3954d8c29bf2da52be384649ee8245fdb5186b620836 \ - --hash=sha256:b44a52b8e6244b6548851b03b2b377a9702b88ddc21dcaf56a15a0393d425cb9 \ - --hash=sha256:b607ea1e96768d13be26d2b400d10d3ebd1456343eb5eaddd2f47d1c4bd00880 \ - --hash=sha256:b85ec0bdd7bdaa5c1946398cbb541e90a6dfc51df76dfa88e0aaa41b335940cb \ - --hash=sha256:bebd91041dda0d511b0d303180ed36e31f4f54b106b1259b69fade68413aa7ff \ - --hash=sha256:c076a9e548521ecc13d944b1d261ff3d7825048c338722a4bd126d22316087b7 \ - --hash=sha256:cbe61b158deb09cffdd8540dc4a948d6e8f4d5b4f3bf5cd7db09bd6a61fee64e \ - --hash=sha256:cdee3ab220283057e7840d5fb768ad4c2ebe65bdba6f75d5d7bf47f4e0ed7d29 \ - --hash=sha256:ce7033cb61f2bb65d8849658d3786188afd80f53dad8366a7232654804529532 \ - --hash=sha256:d00af0884c0e65f60dfaf9340e26658836b935052fdd0439952ae42e44fdd2be \ - --hash=sha256:d647a0e697e5daa98c87993726da8281c7233d9d4ffe410812a4896c7c57c075 \ - --hash=sha256:d970ecca0aac90d399e458f0b7a8a597e08f95de021f17785fb68e2dc0b99717 \ - --hash=sha256:ea329dafb9670ffbdf4dbc3b0e5c264104abcd8441d56de77f06967f032943cb \ - --hash=sha256:ebf46e7f01b7af7861310417d7c49591a85d99146fc23a5ba82fdb28af156321 \ - --hash=sha256:edc0cce355984bb3c1d1e89d6a661934d39586bb32191ebff98c600f8957c63e \ - --hash=sha256:f3bbe672df03563d1f3a691ae531f2e31f84061724c319652039e5a70927167e \ - --hash=sha256:fc11e5114f3f978d0cea7e9853627935b30d451742eeb4239a81a677bdee6bf6 \ - --hash=sha256:fdb54b076f25d6b0f0298dc706acee5052de20c83530fa165b60d1f2e9cbe3cb -fsspec==2024.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:817f969556fa5916bc682e02ca2045f96ff7f586d45110fcb76022063ad2c7d8 \ - --hash=sha256:b6ad1a679f760dda52b1168c859d01b7b80648ea6f7f7c7f5a8a91dc3f3ecb84 -graphviz==0.17 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5dadec94046d82adaae6019311a30e0487536d9d5a60d85451f0ba32f9fc6559 \ - --hash=sha256:ef6e2c5deb9cdcc0c7eece1d89625fd07b0f2208ea2bcb483520907ddf8b4e12 -greenlet==3.0.3 ; python_version >= "3.8" and (platform_machine == "aarch64" or platform_machine == "ppc64le" or platform_machine == "x86_64" or platform_machine == "amd64" or platform_machine == "AMD64" or platform_machine == "win32" or platform_machine == "WIN32") and python_version < "3.11" \ - --hash=sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67 \ - --hash=sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6 \ - --hash=sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257 \ - --hash=sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4 \ - --hash=sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676 \ - --hash=sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61 \ - --hash=sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc \ - --hash=sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca \ - --hash=sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7 \ - --hash=sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728 \ - --hash=sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305 \ - --hash=sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6 \ - --hash=sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379 \ - --hash=sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414 \ - --hash=sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04 \ - --hash=sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a \ - --hash=sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf \ - --hash=sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491 \ - --hash=sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559 \ - --hash=sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e \ - --hash=sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274 \ - --hash=sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb \ - --hash=sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b \ - --hash=sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9 \ - --hash=sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b \ - --hash=sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be \ - --hash=sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506 \ - --hash=sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405 \ - --hash=sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113 \ - --hash=sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f \ - --hash=sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5 \ - --hash=sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230 \ - --hash=sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d \ - --hash=sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f \ - --hash=sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a \ - --hash=sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e \ - --hash=sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61 \ - --hash=sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6 \ - --hash=sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d \ - --hash=sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71 \ - --hash=sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22 \ - --hash=sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2 \ - --hash=sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3 \ - --hash=sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067 \ - --hash=sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc \ - --hash=sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881 \ - --hash=sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3 \ - --hash=sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e \ - --hash=sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac \ - --hash=sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53 \ - --hash=sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0 \ - --hash=sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b \ - --hash=sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83 \ - --hash=sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41 \ - --hash=sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c \ - --hash=sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf \ - --hash=sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da \ - --hash=sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33 -idna==3.6 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca \ - --hash=sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f -importlib-metadata==7.0.1 ; python_version >= "3.8" and python_version < "3.10" \ - --hash=sha256:4805911c3a4ec7c3966410053e9ec6a1fecd629117df5adee56dfc9432a1081e \ - --hash=sha256:f238736bb06590ae52ac1fab06a3a9ef1d8dce2b7a35b5ab329371d6c8f5d2cc -importlib-resources==6.1.2 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:308abf8474e2dba5f867d279237cd4076482c3de7104a40b41426370e891549b \ - --hash=sha256:9a0a862501dc38b68adebc82970140c9e4209fc99601782925178f8386339938 -iniconfig==2.0.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3 \ - --hash=sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 -ipykernel==6.29.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5aa086a4175b0229d4eca211e181fb473ea78ffd9869af36ba7694c947302a21 \ - --hash=sha256:e14c250d1f9ea3989490225cc1a542781b095a18a19447fcf2b5eaf7d0ac5bd2 -ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363 \ - --hash=sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c -jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd \ - --hash=sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0 -jinja2==3.1.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa \ - --hash=sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90 -jmespath==1.0.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980 \ - --hash=sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe -joblib==1.3.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1 \ - --hash=sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9 -jupyter-client==8.6.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7 \ - --hash=sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99 -jupyter-core==5.7.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:c65c82126453a723a2804aa52409930434598fd9d35091d63dfb919d2b765bb7 \ - --hash=sha256:de61a9d7fc71240f688b2fb5ab659fbb56979458dc66a71decd098e03c79e218 -kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf \ - --hash=sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e \ - --hash=sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af \ - --hash=sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f \ - --hash=sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046 \ - --hash=sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3 \ - --hash=sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5 \ - --hash=sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71 \ - --hash=sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee \ - --hash=sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3 \ - --hash=sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9 \ - --hash=sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b \ - --hash=sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985 \ - --hash=sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea \ - --hash=sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16 \ - --hash=sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89 \ - --hash=sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c \ - --hash=sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9 \ - --hash=sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712 \ - --hash=sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342 \ - --hash=sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a \ - --hash=sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958 \ - --hash=sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d \ - --hash=sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a \ - --hash=sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130 \ - --hash=sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff \ - --hash=sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898 \ - --hash=sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b \ - --hash=sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f \ - --hash=sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265 \ - --hash=sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93 \ - --hash=sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929 \ - --hash=sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635 \ - --hash=sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709 \ - --hash=sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b \ - --hash=sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb \ - --hash=sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a \ - --hash=sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920 \ - --hash=sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e \ - --hash=sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544 \ - --hash=sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45 \ - --hash=sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390 \ - --hash=sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77 \ - --hash=sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355 \ - --hash=sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff \ - --hash=sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4 \ - --hash=sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7 \ - --hash=sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20 \ - --hash=sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c \ - --hash=sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162 \ - --hash=sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228 \ - --hash=sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437 \ - --hash=sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc \ - --hash=sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a \ - --hash=sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901 \ - --hash=sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4 \ - --hash=sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770 \ - --hash=sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525 \ - --hash=sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad \ - --hash=sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a \ - --hash=sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29 \ - --hash=sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90 \ - --hash=sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250 \ - --hash=sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d \ - --hash=sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3 \ - --hash=sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54 \ - --hash=sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f \ - --hash=sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1 \ - --hash=sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da \ - --hash=sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238 \ - --hash=sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa \ - --hash=sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523 \ - --hash=sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0 \ - --hash=sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205 \ - --hash=sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3 \ - --hash=sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4 \ - --hash=sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac \ - --hash=sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9 \ - --hash=sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb \ - --hash=sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced \ - --hash=sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd \ - --hash=sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0 \ - --hash=sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da \ - --hash=sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18 \ - --hash=sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9 \ - --hash=sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276 \ - --hash=sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333 \ - --hash=sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b \ - --hash=sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db \ - --hash=sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126 \ - --hash=sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9 \ - --hash=sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09 \ - --hash=sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0 \ - --hash=sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec \ - --hash=sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7 \ - --hash=sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff \ - --hash=sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9 \ - --hash=sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192 \ - --hash=sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8 \ - --hash=sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d \ - --hash=sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6 \ - --hash=sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797 \ - --hash=sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892 \ - --hash=sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f -llvmlite==0.41.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:04725975e5b2af416d685ea0769f4ecc33f97be541e301054c9f741003085802 \ - --hash=sha256:0dd0338da625346538f1173a17cabf21d1e315cf387ca21b294ff209d176e244 \ - --hash=sha256:150d0bc275a8ac664a705135e639178883293cf08c1a38de3bbaa2f693a0a867 \ - --hash=sha256:1eee5cf17ec2b4198b509272cf300ee6577229d237c98cc6e63861b08463ddc6 \ - --hash=sha256:210e458723436b2469d61b54b453474e09e12a94453c97ea3fbb0742ba5a83d8 \ - --hash=sha256:2181bb63ef3c607e6403813421b46982c3ac6bfc1f11fa16a13eaafb46f578e6 \ - --hash=sha256:24091a6b31242bcdd56ae2dbea40007f462260bc9bdf947953acc39dffd54f8f \ - --hash=sha256:2b76acee82ea0e9304be6be9d4b3840208d050ea0dcad75b1635fa06e949a0ae \ - --hash=sha256:2d92c51e6e9394d503033ffe3292f5bef1566ab73029ec853861f60ad5c925d0 \ - --hash=sha256:5940bc901fb0325970415dbede82c0b7f3e35c2d5fd1d5e0047134c2c46b3281 \ - --hash=sha256:8454c1133ef701e8c050a59edd85d238ee18bb9a0eb95faf2fca8b909ee3c89a \ - --hash=sha256:855f280e781d49e0640aef4c4af586831ade8f1a6c4df483fb901cbe1a48d127 \ - --hash=sha256:880cb57ca49e862e1cd077104375b9d1dfdc0622596dfa22105f470d7bacb309 \ - --hash=sha256:8b0a9a47c28f67a269bb62f6256e63cef28d3c5f13cbae4fab587c3ad506778b \ - --hash=sha256:92c32356f669e036eb01016e883b22add883c60739bc1ebee3a1cc0249a50828 \ - --hash=sha256:92f093986ab92e71c9ffe334c002f96defc7986efda18397d0f08534f3ebdc4d \ - --hash=sha256:9564c19b31a0434f01d2025b06b44c7ed422f51e719ab5d24ff03b7560066c9a \ - --hash=sha256:b67340c62c93a11fae482910dc29163a50dff3dfa88bc874872d28ee604a83be \ - --hash=sha256:bf14aa0eb22b58c231243dccf7e7f42f7beec48970f2549b3a6acc737d1a4ba4 \ - --hash=sha256:c1e1029d47ee66d3a0c4d6088641882f75b93db82bd0e6178f7bd744ebce42b9 \ - --hash=sha256:df75594e5a4702b032684d5481db3af990b69c249ccb1d32687b8501f0689432 \ - --hash=sha256:f19f767a018e6ec89608e1f6b13348fa2fcde657151137cb64e56d48598a92db \ - --hash=sha256:f8afdfa6da33f0b4226af8e64cfc2b28986e005528fbf944d0a24a72acfc9432 \ - --hash=sha256:fa1469901a2e100c17eb8fe2678e34bd4255a3576d1a543421356e9c14d6e2ae -markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf \ - --hash=sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff \ - --hash=sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f \ - --hash=sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3 \ - --hash=sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532 \ - --hash=sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f \ - --hash=sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617 \ - --hash=sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df \ - --hash=sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4 \ - --hash=sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906 \ - --hash=sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f \ - --hash=sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4 \ - --hash=sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8 \ - --hash=sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371 \ - --hash=sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2 \ - --hash=sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465 \ - --hash=sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52 \ - --hash=sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6 \ - --hash=sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169 \ - --hash=sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad \ - --hash=sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2 \ - --hash=sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0 \ - --hash=sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029 \ - --hash=sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f \ - --hash=sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a \ - --hash=sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced \ - --hash=sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5 \ - --hash=sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c \ - --hash=sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf \ - --hash=sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9 \ - --hash=sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb \ - --hash=sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad \ - --hash=sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3 \ - --hash=sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1 \ - --hash=sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46 \ - --hash=sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc \ - --hash=sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a \ - --hash=sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee \ - --hash=sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900 \ - --hash=sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5 \ - --hash=sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea \ - --hash=sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f \ - --hash=sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5 \ - --hash=sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e \ - --hash=sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a \ - --hash=sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f \ - --hash=sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50 \ - --hash=sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a \ - --hash=sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b \ - --hash=sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4 \ - --hash=sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff \ - --hash=sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2 \ - --hash=sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46 \ - --hash=sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b \ - --hash=sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf \ - --hash=sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5 \ - --hash=sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5 \ - --hash=sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab \ - --hash=sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd \ - --hash=sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68 -matplotlib-inline==0.1.6 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311 \ - --hash=sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304 -matplotlib==3.7.5 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:039ad54683a814002ff37bf7981aa1faa40b91f4ff84149beb53d1eb64617980 \ - --hash=sha256:068ebcc59c072781d9dcdb82f0d3f1458271c2de7ca9c78f5bd672141091e9e1 \ - --hash=sha256:084f1f0f2f1010868c6f1f50b4e1c6f2fb201c58475494f1e5b66fed66093647 \ - --hash=sha256:090964d0afaff9c90e4d8de7836757e72ecfb252fb02884016d809239f715651 \ - --hash=sha256:0ccb830fc29442360d91be48527809f23a5dcaee8da5f4d9b2d5b867c1b087b8 \ - --hash=sha256:1210b7919b4ed94b5573870f316bca26de3e3b07ffdb563e79327dc0e6bba515 \ - --hash=sha256:167200ccfefd1674b60e957186dfd9baf58b324562ad1a28e5d0a6b3bea77905 \ - --hash=sha256:1dbcca4508bca7847fe2d64a05b237a3dcaec1f959aedb756d5b1c67b770c5ee \ - --hash=sha256:1e4e9a868e8163abaaa8259842d85f949a919e1ead17644fb77a60427c90473c \ - --hash=sha256:1e5c971558ebc811aa07f54c7b7c677d78aa518ef4c390e14673a09e0860184a \ - --hash=sha256:20da7924a08306a861b3f2d1da0d1aa9a6678e480cf8eacffe18b565af2813e7 \ - --hash=sha256:29b058738c104d0ca8806395f1c9089dfe4d4f0f78ea765c6c704469f3fffc81 \ - --hash=sha256:2a9a3f4d6a7f88a62a6a18c7e6a84aedcaf4faf0708b4ca46d87b19f1b526f88 \ - --hash=sha256:2b6aa62adb6c268fc87d80f963aca39c64615c31830b02697743c95590ce3fbb \ - --hash=sha256:34bceb9d8ddb142055ff27cd7135f539f2f01be2ce0bafbace4117abe58f8fe4 \ - --hash=sha256:3785bfd83b05fc0e0c2ae4c4a90034fe693ef96c679634756c50fe6efcc09856 \ - --hash=sha256:3b15c4c2d374f249f324f46e883340d494c01768dd5287f8bc00b65b625ab56c \ - --hash=sha256:3d028555421912307845e59e3de328260b26d055c5dac9b182cc9783854e98fb \ - --hash=sha256:4a87b69cb1cb20943010f63feb0b2901c17a3b435f75349fd9865713bfa63925 \ - --hash=sha256:4cdf4ef46c2a1609a50411b66940b31778db1e4b73d4ecc2eaa40bd588979b13 \ - --hash=sha256:4d742ccd1b09e863b4ca58291728db645b51dab343eebb08d5d4b31b308296ce \ - --hash=sha256:4ddf7fc0e0dc553891a117aa083039088d8a07686d4c93fb8a810adca68810af \ - --hash=sha256:53e64522934df6e1818b25fd48cf3b645b11740d78e6ef765fbb5fa5ce080d02 \ - --hash=sha256:5e7cc3078b019bb863752b8b60e8b269423000f1603cb2299608231996bd9d54 \ - --hash=sha256:6738c89a635ced486c8a20e20111d33f6398a9cbebce1ced59c211e12cd61455 \ - --hash=sha256:6b641b48c6819726ed47c55835cdd330e53747d4efff574109fd79b2d8a13748 \ - --hash=sha256:743b1c488ca6a2bc7f56079d282e44d236bf375968bfd1b7ba701fd4d0fa32d6 \ - --hash=sha256:9fc6fcfbc55cd719bc0bfa60bde248eb68cf43876d4c22864603bdd23962ba25 \ - --hash=sha256:a99866267da1e561c7776fe12bf4442174b79aac1a47bd7e627c7e4d077ebd83 \ - --hash=sha256:b45c9798ea6bb920cb77eb7306409756a7fab9db9b463e462618e0559aecb30e \ - --hash=sha256:b9b3fd853d4a7f008a938df909b96db0b454225f935d3917520305b90680579c \ - --hash=sha256:c5a2134162273eb8cdfd320ae907bf84d171de948e62180fa372a3ca7cf0f433 \ - --hash=sha256:cfff9b838531698ee40e40ea1a8a9dc2c01edb400b27d38de6ba44c1f9a8e3d2 \ - --hash=sha256:d3ce45010fefb028359accebb852ca0c21bd77ec0f281952831d235228f15810 \ - --hash=sha256:d3e3bc79b2d7d615067bd010caff9243ead1fc95cf735c16e4b2583173f717eb \ - --hash=sha256:e530ab6a0afd082d2e9c17eb1eb064a63c5b09bb607b2b74fa41adbe3e162286 \ - --hash=sha256:ec0e1adc0ad70ba8227e957551e25a9d2995e319c29f94a97575bb90fa1d4469 \ - --hash=sha256:efc6bb28178e844d1f408dd4d6341ee8a2e906fc9e0fa3dae497da4e0cab775d \ - --hash=sha256:f098ffbaab9df1e3ef04e5a5586a1e6b1791380698e84938d8640961c79b1fc0 \ - --hash=sha256:f0ad550da9f160737d7890217c5eeed4337d07e83ca1b2ca6535078f354e7675 \ - --hash=sha256:f0b60993ed3488b4532ec6b697059897891927cbfc2b8d458a891b60ec03d9d7 \ - --hash=sha256:f65342c147572673f02a4abec2d5a23ad9c3898167df9b47c149f32ce61ca078 \ - --hash=sha256:fa7ebc995a7d747dacf0a717d0eb3aa0f0c6a0e9ea88b0194d3a3cd241a1500f \ - --hash=sha256:fbea1e762b28400393d71be1a02144aa16692a3c4c676ba0178ce83fc2928fdd \ - --hash=sha256:fbf730fca3e1f23713bc1fae0a57db386e39dc81ea57dc305c67f628c1d7a342 \ - --hash=sha256:fd4028d570fa4b31b7b165d4a685942ae9cdc669f33741e388c01857d9723eab \ - --hash=sha256:fe184b4625b4052fa88ef350b815559dd90cc6cc8e97b62f966e1ca84074aafa -matplotlib==3.8.3 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:04b36ad07eac9740fc76c2aa16edf94e50b297d6eb4c081e3add863de4bb19a7 \ - --hash=sha256:09074f8057917d17ab52c242fdf4916f30e99959c1908958b1fc6032e2d0f6d4 \ - --hash=sha256:1c5c8290074ba31a41db1dc332dc2b62def469ff33766cbe325d32a3ee291aea \ - --hash=sha256:242489efdb75b690c9c2e70bb5c6550727058c8a614e4c7716f363c27e10bba1 \ - --hash=sha256:40321634e3a05ed02abf7c7b47a50be50b53ef3eaa3a573847431a545585b407 \ - --hash=sha256:4c6e00a65d017d26009bac6808f637b75ceade3e1ff91a138576f6b3065eeeba \ - --hash=sha256:5184e07c7e1d6d1481862ee361905b7059f7fe065fc837f7c3dc11eeb3f2f900 \ - --hash=sha256:5745f6d0fb5acfabbb2790318db03809a253096e98c91b9a31969df28ee604aa \ - --hash=sha256:5e431a09e6fab4012b01fc155db0ce6dccacdbabe8198197f523a4ef4805eb26 \ - --hash=sha256:5f557156f7116be3340cdeef7f128fa99b0d5d287d5f41a16e169819dcf22357 \ - --hash=sha256:6728dde0a3997396b053602dbd907a9bd64ec7d5cf99e728b404083698d3ca01 \ - --hash=sha256:7b416239e9ae38be54b028abbf9048aff5054a9aba5416bef0bd17f9162ce161 \ - --hash=sha256:7c42dae72a62f14982f1474f7e5c9959fc4bc70c9de11cc5244c6e766200ba65 \ - --hash=sha256:813925d08fb86aba139f2d31864928d67511f64e5945ca909ad5bc09a96189bb \ - --hash=sha256:83c0653c64b73926730bd9ea14aa0f50f202ba187c307a881673bad4985967b7 \ - --hash=sha256:83e0f72e2c116ca7e571c57aa29b0fe697d4c6425c4e87c6e994159e0c008635 \ - --hash=sha256:b3c5f96f57b0369c288bf6f9b5274ba45787f7e0589a34d24bdbaf6d3344632f \ - --hash=sha256:b97653d869a71721b639714b42d87cda4cfee0ee74b47c569e4874c7590c55c5 \ - --hash=sha256:bf5932eee0d428192c40b7eac1399d608f5d995f975cdb9d1e6b48539a5ad8d0 \ - --hash=sha256:c4af3f7317f8a1009bbb2d0bf23dfaba859eb7dd4ccbd604eba146dccaaaf0a4 \ - --hash=sha256:cd3a0c2be76f4e7be03d34a14d49ded6acf22ef61f88da600a18a5cd8b3c5f3c \ - --hash=sha256:cf60138ccc8004f117ab2a2bad513cc4d122e55864b4fe7adf4db20ca68a078f \ - --hash=sha256:d7e7e0993d0758933b1a241a432b42c2db22dfa37d4108342ab4afb9557cbe3e \ - --hash=sha256:e7b49ab49a3bea17802df6872f8d44f664ba8f9be0632a60c99b20b6db2165b7 \ - --hash=sha256:e9764df0e8778f06414b9d281a75235c1e85071f64bb5d71564b97c1306a2afc \ - --hash=sha256:ef6c1025a570354297d6c15f7d0f296d95f88bd3850066b7f1e7b4f2f4c13a39 \ - --hash=sha256:f386cf162b059809ecfac3bcc491a9ea17da69fa35c8ded8ad154cd4b933d5ec \ - --hash=sha256:fa93695d5c08544f4a0dfd0965f378e7afc410d8672816aff1e81be1f45dbf2e -mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f \ - --hash=sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c -nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe \ - --hash=sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c -networkx==3.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36 \ - --hash=sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61 -numba==0.58.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:07f2fa7e7144aa6f275f27260e73ce0d808d3c62b30cff8906ad1dec12d87bbe \ - --hash=sha256:240e7a1ae80eb6b14061dc91263b99dc8d6af9ea45d310751b780888097c1aaa \ - --hash=sha256:45698b995914003f890ad839cfc909eeb9c74921849c712a05405d1a79c50f68 \ - --hash=sha256:487ded0633efccd9ca3a46364b40006dbdaca0f95e99b8b83e778d1195ebcbaa \ - --hash=sha256:4e79b6cc0d2bf064a955934a2e02bf676bc7995ab2db929dbbc62e4c16551be6 \ - --hash=sha256:55a01e1881120e86d54efdff1be08381886fe9f04fc3006af309c602a72bc44d \ - --hash=sha256:5c765aef472a9406a97ea9782116335ad4f9ef5c9f93fc05fd44aab0db486954 \ - --hash=sha256:6fe7a9d8e3bd996fbe5eac0683227ccef26cba98dae6e5cee2c1894d4b9f16c1 \ - --hash=sha256:7bf1ddd4f7b9c2306de0384bf3854cac3edd7b4d8dffae2ec1b925e4c436233f \ - --hash=sha256:811305d5dc40ae43c3ace5b192c670c358a89a4d2ae4f86d1665003798ea7a1a \ - --hash=sha256:81fe5b51532478149b5081311b0fd4206959174e660c372b94ed5364cfb37c82 \ - --hash=sha256:898af055b03f09d33a587e9425500e5be84fc90cd2f80b3fb71c6a4a17a7e354 \ - --hash=sha256:9e9356e943617f5e35a74bf56ff6e7cc83e6b1865d5e13cee535d79bf2cae954 \ - --hash=sha256:a1eaa744f518bbd60e1f7ccddfb8002b3d06bd865b94a5d7eac25028efe0e0ff \ - --hash=sha256:bc2d904d0319d7a5857bd65062340bed627f5bfe9ae4a495aef342f072880d50 \ - --hash=sha256:bcecd3fb9df36554b342140a4d77d938a549be635d64caf8bd9ef6c47a47f8aa \ - --hash=sha256:bd3dda77955be03ff366eebbfdb39919ce7c2620d86c906203bed92124989032 \ - --hash=sha256:bf68df9c307fb0aa81cacd33faccd6e419496fdc621e83f1efce35cdc5e79cac \ - --hash=sha256:d3e2fe81fe9a59fcd99cc572002101119059d64d31eb6324995ee8b0f144a306 \ - --hash=sha256:e63d6aacaae1ba4ef3695f1c2122b30fa3d8ba039c8f517784668075856d79e2 \ - --hash=sha256:ea5bfcf7d641d351c6a80e8e1826eb4a145d619870016eeaf20bbd71ef5caa22 -numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f \ - --hash=sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61 \ - --hash=sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7 \ - --hash=sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400 \ - --hash=sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef \ - --hash=sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2 \ - --hash=sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d \ - --hash=sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc \ - --hash=sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835 \ - --hash=sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706 \ - --hash=sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5 \ - --hash=sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4 \ - --hash=sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6 \ - --hash=sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463 \ - --hash=sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a \ - --hash=sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f \ - --hash=sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e \ - --hash=sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e \ - --hash=sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694 \ - --hash=sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8 \ - --hash=sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64 \ - --hash=sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d \ - --hash=sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc \ - --hash=sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254 \ - --hash=sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2 \ - --hash=sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1 \ - --hash=sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810 \ - --hash=sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9 -numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b \ - --hash=sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818 \ - --hash=sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20 \ - --hash=sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0 \ - --hash=sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010 \ - --hash=sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a \ - --hash=sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea \ - --hash=sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c \ - --hash=sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71 \ - --hash=sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110 \ - --hash=sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be \ - --hash=sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a \ - --hash=sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a \ - --hash=sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5 \ - --hash=sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed \ - --hash=sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd \ - --hash=sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c \ - --hash=sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e \ - --hash=sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0 \ - --hash=sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c \ - --hash=sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a \ - --hash=sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b \ - --hash=sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0 \ - --hash=sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6 \ - --hash=sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2 \ - --hash=sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a \ - --hash=sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30 \ - --hash=sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218 \ - --hash=sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5 \ - --hash=sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07 \ - --hash=sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2 \ - --hash=sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4 \ - --hash=sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764 \ - --hash=sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef \ - --hash=sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3 \ - --hash=sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f -nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906 \ - --hash=sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728 -nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4 \ - --hash=sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e -nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed \ - --hash=sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2 -nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40 \ - --hash=sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344 -nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9 -nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56 \ - --hash=sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253 -nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a \ - --hash=sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0 -nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5 \ - --hash=sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd -nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a \ - --hash=sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c -nvidia-nccl-cu12==2.19.3 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:a9734707a2c96443331c1e48c717024aa6678a0e2a4cb66b2c364d18cee6b48d -nvidia-nvjitlink-cu12==12.3.101 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1 \ - --hash=sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c -nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82 \ - --hash=sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5 -opacus==0.14.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:4beb4519c86b4b8aec740cbe5ad97a12f0fb325044a8b2caeb74ce573a353276 \ - --hash=sha256:851f4bb01b285dba1a38c06f7f146031e1b8fbe0bfa1129624beba8f1f6e77d3 -opendp==0.6.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:d15e66ef0c0d86b35548bcc176a593bc645f8208ba594ce7c24afa38ba5045aa -pac-synth==0.0.6 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:119183b8d81140d68591a9321d668508990d7090fe8c362b2ed7e340b73b8b36 \ - --hash=sha256:2d25cbdf5d0f3a446a2ccb666eac551688bfcbb03a602222d132bd089d16f7d8 \ - --hash=sha256:3a847e2acd966c30d923827e2769c68eba86dd4f98de1238be79454038a7fbc3 \ - --hash=sha256:fd40fb750bc2651d813ac6e6af4f262d470c3e811664b36b11ca7cd1b6113fce -packaging==23.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5 \ - --hash=sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7 -pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682 \ - --hash=sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc \ - --hash=sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b \ - --hash=sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089 \ - --hash=sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5 \ - --hash=sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26 \ - --hash=sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210 \ - --hash=sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b \ - --hash=sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641 \ - --hash=sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd \ - --hash=sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78 \ - --hash=sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b \ - --hash=sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e \ - --hash=sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061 \ - --hash=sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0 \ - --hash=sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e \ - --hash=sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8 \ - --hash=sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d \ - --hash=sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0 \ - --hash=sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c \ - --hash=sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183 \ - --hash=sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df \ - --hash=sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8 \ - --hash=sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f \ - --hash=sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02 -pandas==2.2.1 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:04f6ec3baec203c13e3f8b139fb0f9f86cd8c0b94603ae3ae8ce9a422e9f5bee \ - --hash=sha256:06cf591dbaefb6da9de8472535b185cba556d0ce2e6ed28e21d919704fef1a9e \ - --hash=sha256:0ab90f87093c13f3e8fa45b48ba9f39181046e8f3317d3aadb2fffbb1b978572 \ - --hash=sha256:0f573ab277252ed9aaf38240f3b54cfc90fff8e5cab70411ee1d03f5d51f3944 \ - --hash=sha256:101d0eb9c5361aa0146f500773395a03839a5e6ecde4d4b6ced88b7e5a1a6403 \ - --hash=sha256:11940e9e3056576ac3244baef2fedade891977bcc1cb7e5cc8f8cc7d603edc89 \ - --hash=sha256:1ba21b1d5c0e43416218db63037dbe1a01fc101dc6e6024bcad08123e48004ab \ - --hash=sha256:4aa1d8707812a658debf03824016bf5ea0d516afdea29b7dc14cf687bc4d4ec6 \ - --hash=sha256:4acf681325ee1c7f950d058b05a820441075b0dd9a2adf5c4835b9bc056bf4fb \ - --hash=sha256:53680dc9b2519cbf609c62db3ed7c0b499077c7fefda564e330286e619ff0dd9 \ - --hash=sha256:739cc70eaf17d57608639e74d63387b0d8594ce02f69e7a0b046f117974b3019 \ - --hash=sha256:76f27a809cda87e07f192f001d11adc2b930e93a2b0c4a236fde5429527423be \ - --hash=sha256:7d2ed41c319c9fb4fd454fe25372028dfa417aacb9790f68171b2e3f06eae8cd \ - --hash=sha256:88ecb5c01bb9ca927ebc4098136038519aa5d66b44671861ffab754cae75102c \ - --hash=sha256:8df8612be9cd1c7797c93e1c5df861b2ddda0b48b08f2c3eaa0702cf88fb5f88 \ - --hash=sha256:94e714a1cca63e4f5939cdce5f29ba8d415d85166be3441165edd427dc9f6bc0 \ - --hash=sha256:9bd8a40f47080825af4317d0340c656744f2bfdb6819f818e6ba3cd24c0e1397 \ - --hash=sha256:9d1265545f579edf3f8f0cb6f89f234f5e44ba725a34d86535b1a1d38decbccc \ - --hash=sha256:a935a90a76c44fe170d01e90a3594beef9e9a6220021acfb26053d01426f7dc2 \ - --hash=sha256:af5d3c00557d657c8773ef9ee702c61dd13b9d7426794c9dfeb1dc4a0bf0ebc7 \ - --hash=sha256:c2ce852e1cf2509a69e98358e8458775f89599566ac3775e70419b98615f4b06 \ - --hash=sha256:c38ce92cb22a4bea4e3929429aa1067a454dcc9c335799af93ba9be21b6beb51 \ - --hash=sha256:c391f594aae2fd9f679d419e9a4d5ba4bce5bb13f6a989195656e7dc4b95c8f0 \ - --hash=sha256:c70e00c2d894cb230e5c15e4b1e1e6b2b478e09cf27cc593a11ef955b9ecc81a \ - --hash=sha256:df0c37ebd19e11d089ceba66eba59a168242fc6b7155cba4ffffa6eccdfb8f16 \ - --hash=sha256:e97fbb5387c69209f134893abc788a6486dbf2f9e511070ca05eed4b930b1b02 \ - --hash=sha256:f02a3a6c83df4026e55b63c1f06476c9aa3ed6af3d89b4f04ea656ccdaaaa359 \ - --hash=sha256:f821213d48f4ab353d20ebc24e4faf94ba40d76680642fb7ce2ea31a3ad94f9b \ - --hash=sha256:f9d3558d263073ed95e46f4650becff0c5e1ffe0fc3a015de3c79283dfbdb3df -pandasql==0.7.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1eb248869086435a7d85281ebd9fe525d69d9d954a0dceb854f71a8d0fd8de69 -parso==0.8.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0 \ - --hash=sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75 -pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.11" and sys_platform != "win32" \ - --hash=sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523 \ - --hash=sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f -pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca \ - --hash=sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56 -pillow==10.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0304004f8067386b477d20a518b50f3fa658a28d44e4116970abfcd94fac34a8 \ - --hash=sha256:0689b5a8c5288bc0504d9fcee48f61a6a586b9b98514d7d29b840143d6734f39 \ - --hash=sha256:0eae2073305f451d8ecacb5474997c08569fb4eb4ac231ffa4ad7d342fdc25ac \ - --hash=sha256:0fb3e7fc88a14eacd303e90481ad983fd5b69c761e9e6ef94c983f91025da869 \ - --hash=sha256:11fa2e5984b949b0dd6d7a94d967743d87c577ff0b83392f17cb3990d0d2fd6e \ - --hash=sha256:127cee571038f252a552760076407f9cff79761c3d436a12af6000cd182a9d04 \ - --hash=sha256:154e939c5f0053a383de4fd3d3da48d9427a7e985f58af8e94d0b3c9fcfcf4f9 \ - --hash=sha256:15587643b9e5eb26c48e49a7b33659790d28f190fc514a322d55da2fb5c2950e \ - --hash=sha256:170aeb00224ab3dc54230c797f8404507240dd868cf52066f66a41b33169bdbe \ - --hash=sha256:1b5e1b74d1bd1b78bc3477528919414874748dd363e6272efd5abf7654e68bef \ - --hash=sha256:1da3b2703afd040cf65ec97efea81cfba59cdbed9c11d8efc5ab09df9509fc56 \ - --hash=sha256:1e23412b5c41e58cec602f1135c57dfcf15482013ce6e5f093a86db69646a5aa \ - --hash=sha256:2247178effb34a77c11c0e8ac355c7a741ceca0a732b27bf11e747bbc950722f \ - --hash=sha256:257d8788df5ca62c980314053197f4d46eefedf4e6175bc9412f14412ec4ea2f \ - --hash=sha256:3031709084b6e7852d00479fd1d310b07d0ba82765f973b543c8af5061cf990e \ - --hash=sha256:322209c642aabdd6207517e9739c704dc9f9db943015535783239022002f054a \ - --hash=sha256:322bdf3c9b556e9ffb18f93462e5f749d3444ce081290352c6070d014c93feb2 \ - --hash=sha256:33870dc4653c5017bf4c8873e5488d8f8d5f8935e2f1fb9a2208c47cdd66efd2 \ - --hash=sha256:35bb52c37f256f662abdfa49d2dfa6ce5d93281d323a9af377a120e89a9eafb5 \ - --hash=sha256:3c31822339516fb3c82d03f30e22b1d038da87ef27b6a78c9549888f8ceda39a \ - --hash=sha256:3eedd52442c0a5ff4f887fab0c1c0bb164d8635b32c894bc1faf4c618dd89df2 \ - --hash=sha256:3ff074fc97dd4e80543a3e91f69d58889baf2002b6be64347ea8cf5533188213 \ - --hash=sha256:47c0995fc4e7f79b5cfcab1fc437ff2890b770440f7696a3ba065ee0fd496563 \ - --hash=sha256:49d9ba1ed0ef3e061088cd1e7538a0759aab559e2e0a80a36f9fd9d8c0c21591 \ - --hash=sha256:51f1a1bffc50e2e9492e87d8e09a17c5eea8409cda8d3f277eb6edc82813c17c \ - --hash=sha256:52a50aa3fb3acb9cf7213573ef55d31d6eca37f5709c69e6858fe3bc04a5c2a2 \ - --hash=sha256:54f1852cd531aa981bc0965b7d609f5f6cc8ce8c41b1139f6ed6b3c54ab82bfb \ - --hash=sha256:609448742444d9290fd687940ac0b57fb35e6fd92bdb65386e08e99af60bf757 \ - --hash=sha256:69ffdd6120a4737710a9eee73e1d2e37db89b620f702754b8f6e62594471dee0 \ - --hash=sha256:6fad5ff2f13d69b7e74ce5b4ecd12cc0ec530fcee76356cac6742785ff71c452 \ - --hash=sha256:7049e301399273a0136ff39b84c3678e314f2158f50f517bc50285fb5ec847ad \ - --hash=sha256:70c61d4c475835a19b3a5aa42492409878bbca7438554a1f89d20d58a7c75c01 \ - --hash=sha256:716d30ed977be8b37d3ef185fecb9e5a1d62d110dfbdcd1e2a122ab46fddb03f \ - --hash=sha256:753cd8f2086b2b80180d9b3010dd4ed147efc167c90d3bf593fe2af21265e5a5 \ - --hash=sha256:773efe0603db30c281521a7c0214cad7836c03b8ccff897beae9b47c0b657d61 \ - --hash=sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e \ - --hash=sha256:7c8f97e8e7a9009bcacbe3766a36175056c12f9a44e6e6f2d5caad06dcfbf03b \ - --hash=sha256:823ef7a27cf86df6597fa0671066c1b596f69eba53efa3d1e1cb8b30f3533068 \ - --hash=sha256:8373c6c251f7ef8bda6675dd6d2b3a0fcc31edf1201266b5cf608b62a37407f9 \ - --hash=sha256:83b2021f2ade7d1ed556bc50a399127d7fb245e725aa0113ebd05cfe88aaf588 \ - --hash=sha256:870ea1ada0899fd0b79643990809323b389d4d1d46c192f97342eeb6ee0b8483 \ - --hash=sha256:8d12251f02d69d8310b046e82572ed486685c38f02176bd08baf216746eb947f \ - --hash=sha256:9c23f307202661071d94b5e384e1e1dc7dfb972a28a2310e4ee16103e66ddb67 \ - --hash=sha256:9d189550615b4948f45252d7f005e53c2040cea1af5b60d6f79491a6e147eef7 \ - --hash=sha256:a086c2af425c5f62a65e12fbf385f7c9fcb8f107d0849dba5839461a129cf311 \ - --hash=sha256:a2b56ba36e05f973d450582fb015594aaa78834fefe8dfb8fcd79b93e64ba4c6 \ - --hash=sha256:aebb6044806f2e16ecc07b2a2637ee1ef67a11840a66752751714a0d924adf72 \ - --hash=sha256:b1b3020d90c2d8e1dae29cf3ce54f8094f7938460fb5ce8bc5c01450b01fbaf6 \ - --hash=sha256:b4b6b1e20608493548b1f32bce8cca185bf0480983890403d3b8753e44077129 \ - --hash=sha256:b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13 \ - --hash=sha256:b792a349405fbc0163190fde0dc7b3fef3c9268292586cf5645598b48e63dc67 \ - --hash=sha256:b7c2286c23cd350b80d2fc9d424fc797575fb16f854b831d16fd47ceec078f2c \ - --hash=sha256:babf5acfede515f176833ed6028754cbcd0d206f7f614ea3447d67c33be12516 \ - --hash=sha256:c365fd1703040de1ec284b176d6af5abe21b427cb3a5ff68e0759e1e313a5e7e \ - --hash=sha256:c4225f5220f46b2fde568c74fca27ae9771536c2e29d7c04f4fb62c83275ac4e \ - --hash=sha256:c570f24be1e468e3f0ce7ef56a89a60f0e05b30a3669a459e419c6eac2c35364 \ - --hash=sha256:c6dafac9e0f2b3c78df97e79af707cdc5ef8e88208d686a4847bab8266870023 \ - --hash=sha256:c8de2789052ed501dd829e9cae8d3dcce7acb4777ea4a479c14521c942d395b1 \ - --hash=sha256:cb28c753fd5eb3dd859b4ee95de66cc62af91bcff5db5f2571d32a520baf1f04 \ - --hash=sha256:cb4c38abeef13c61d6916f264d4845fab99d7b711be96c326b84df9e3e0ff62d \ - --hash=sha256:d1b35bcd6c5543b9cb547dee3150c93008f8dd0f1fef78fc0cd2b141c5baf58a \ - --hash=sha256:d8e6aeb9201e655354b3ad049cb77d19813ad4ece0df1249d3c793de3774f8c7 \ - --hash=sha256:d8ecd059fdaf60c1963c58ceb8997b32e9dc1b911f5da5307aab614f1ce5c2fb \ - --hash=sha256:da2b52b37dad6d9ec64e653637a096905b258d2fc2b984c41ae7d08b938a67e4 \ - --hash=sha256:e87f0b2c78157e12d7686b27d63c070fd65d994e8ddae6f328e0dcf4a0cd007e \ - --hash=sha256:edca80cbfb2b68d7b56930b84a0e45ae1694aeba0541f798e908a49d66b837f1 \ - --hash=sha256:f379abd2f1e3dddb2b61bc67977a6b5a0a3f7485538bcc6f39ec76163891ee48 \ - --hash=sha256:fe4c15f6c9285dc54ce6553a3ce908ed37c8f3825b5a51a15c91442bb955b868 -platformdirs==4.2.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068 \ - --hash=sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768 -plotly==5.19.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5ea91a56571292ade3e3bc9bf712eba0b95a1fb0a941375d978cc79432e055f4 \ - --hash=sha256:906abcc5f15945765328c5d47edaa884bc99f5985fbc61e8cd4dc361f4ff8f5a -pluggy==1.4.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981 \ - --hash=sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be -prompt-toolkit==3.0.43 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d \ - --hash=sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6 -psutil==5.9.8 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:02615ed8c5ea222323408ceba16c60e99c3f91639b07da6373fb7e6539abc56d \ - --hash=sha256:05806de88103b25903dff19bb6692bd2e714ccf9e668d050d144012055cbca73 \ - --hash=sha256:26bd09967ae00920df88e0352a91cff1a78f8d69b3ecabbfe733610c0af486c8 \ - --hash=sha256:27cc40c3493bb10de1be4b3f07cae4c010ce715290a5be22b98493509c6299e2 \ - --hash=sha256:36f435891adb138ed3c9e58c6af3e2e6ca9ac2f365efe1f9cfef2794e6c93b4e \ - --hash=sha256:50187900d73c1381ba1454cf40308c2bf6f34268518b3f36a9b663ca87e65e36 \ - --hash=sha256:611052c4bc70432ec770d5d54f64206aa7203a101ec273a0cd82418c86503bb7 \ - --hash=sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c \ - --hash=sha256:7d79560ad97af658a0f6adfef8b834b53f64746d45b403f225b85c5c2c140eee \ - --hash=sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421 \ - --hash=sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf \ - --hash=sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81 \ - --hash=sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0 \ - --hash=sha256:bd1184ceb3f87651a67b2708d4c3338e9b10c5df903f2e3776b62303b26cb631 \ - --hash=sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4 \ - --hash=sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8 -ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.11" and sys_platform != "win32" \ - --hash=sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35 \ - --hash=sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220 -pure-eval==0.2.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350 \ - --hash=sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3 -pycparser==2.21 ; python_version >= "3.8" and python_version < "3.11" and implementation_name == "pypy" \ - --hash=sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9 \ - --hash=sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206 -pygments==2.17.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c \ - --hash=sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367 -pyparsing==3.1.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb \ - --hash=sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db -pytest==8.1.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:ee32db7af8de4629a455806befa90559f307424c07b8413ccfc30bf5b221dd7e \ - --hash=sha256:f8fa04ab8f98d185113ae60ea6d79c22f8143b14bc1caeced44a0ab844928323 -python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3 \ - --hash=sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 -pytz==2024.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812 \ - --hash=sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319 -pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d \ - --hash=sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65 \ - --hash=sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e \ - --hash=sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b \ - --hash=sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4 \ - --hash=sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040 \ - --hash=sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a \ - --hash=sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36 \ - --hash=sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8 \ - --hash=sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e \ - --hash=sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802 \ - --hash=sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a \ - --hash=sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407 \ - --hash=sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0 -pyyaml==5.4.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:08682f6b72c722394747bddaf0aa62277e02557c0fd1c42cb853016a38f8dedf \ - --hash=sha256:0f5f5786c0e09baddcd8b4b45f20a7b5d61a7e7e99846e3c799b05c7c53fa696 \ - --hash=sha256:129def1b7c1bf22faffd67b8f3724645203b79d8f4cc81f674654d9902cb4393 \ - --hash=sha256:294db365efa064d00b8d1ef65d8ea2c3426ac366c0c4368d930bf1c5fb497f77 \ - --hash=sha256:3b2b1824fe7112845700f815ff6a489360226a5609b96ec2190a45e62a9fc922 \ - --hash=sha256:3bd0e463264cf257d1ffd2e40223b197271046d09dadf73a0fe82b9c1fc385a5 \ - --hash=sha256:4465124ef1b18d9ace298060f4eccc64b0850899ac4ac53294547536533800c8 \ - --hash=sha256:49d4cdd9065b9b6e206d0595fee27a96b5dd22618e7520c33204a4a3239d5b10 \ - --hash=sha256:4e0583d24c881e14342eaf4ec5fbc97f934b999a6828693a99157fde912540cc \ - --hash=sha256:5accb17103e43963b80e6f837831f38d314a0495500067cb25afab2e8d7a4018 \ - --hash=sha256:607774cbba28732bfa802b54baa7484215f530991055bb562efbed5b2f20a45e \ - --hash=sha256:6c78645d400265a062508ae399b60b8c167bf003db364ecb26dcab2bda048253 \ - --hash=sha256:72a01f726a9c7851ca9bfad6fd09ca4e090a023c00945ea05ba1638c09dc3347 \ - --hash=sha256:74c1485f7707cf707a7aef42ef6322b8f97921bd89be2ab6317fd782c2d53183 \ - --hash=sha256:895f61ef02e8fed38159bb70f7e100e00f471eae2bc838cd0f4ebb21e28f8541 \ - --hash=sha256:8c1be557ee92a20f184922c7b6424e8ab6691788e6d86137c5d93c1a6ec1b8fb \ - --hash=sha256:bb4191dfc9306777bc594117aee052446b3fa88737cd13b7188d0e7aa8162185 \ - --hash=sha256:bfb51918d4ff3d77c1c856a9699f8492c612cde32fd3bcd344af9be34999bfdc \ - --hash=sha256:c20cfa2d49991c8b4147af39859b167664f2ad4561704ee74c1de03318e898db \ - --hash=sha256:cb333c16912324fd5f769fff6bc5de372e9e7a202247b48870bc251ed40239aa \ - --hash=sha256:d2d9808ea7b4af864f35ea216be506ecec180628aced0704e34aca0b040ffe46 \ - --hash=sha256:d483ad4e639292c90170eb6f7783ad19490e7a8defb3e46f97dfe4bacae89122 \ - --hash=sha256:dd5de0646207f053eb0d6c74ae45ba98c3395a571a2891858e87df7c9b9bd51b \ - --hash=sha256:e1d4970ea66be07ae37a3c2e48b5ec63f7ba6804bdddfdbd3cfd954d25a82e63 \ - --hash=sha256:e4fac90784481d221a8e4b1162afa7c47ed953be40d31ab4629ae917510051df \ - --hash=sha256:fa5ae20527d8e831e8230cbffd9f8fe952815b2b7dae6ffec25318803a7528fc \ - --hash=sha256:fd7f6999a8070df521b6384004ef42833b9bd62cfee11a09bda1079b4b704247 \ - --hash=sha256:fdc842473cd33f45ff6bce46aea678a54e3d21f1b61a7750ce3c498eedfe25d6 \ - --hash=sha256:fe69978f3f768926cfa37b867e3843918e012cf83f680806599ddce33c2c68b0 -pyzmq==25.1.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565 \ - --hash=sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b \ - --hash=sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979 \ - --hash=sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1 \ - --hash=sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f \ - --hash=sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d \ - --hash=sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee \ - --hash=sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07 \ - --hash=sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98 \ - --hash=sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886 \ - --hash=sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7 \ - --hash=sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75 \ - --hash=sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220 \ - --hash=sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7 \ - --hash=sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a \ - --hash=sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314 \ - --hash=sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a \ - --hash=sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27 \ - --hash=sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611 \ - --hash=sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6 \ - --hash=sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6 \ - --hash=sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9 \ - --hash=sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561 \ - --hash=sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b \ - --hash=sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755 \ - --hash=sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e \ - --hash=sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc \ - --hash=sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc \ - --hash=sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289 \ - --hash=sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d \ - --hash=sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62 \ - --hash=sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642 \ - --hash=sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3 \ - --hash=sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8 \ - --hash=sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0 \ - --hash=sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4 \ - --hash=sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097 \ - --hash=sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b \ - --hash=sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181 \ - --hash=sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82 \ - --hash=sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68 \ - --hash=sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08 \ - --hash=sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7 \ - --hash=sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003 \ - --hash=sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0 \ - --hash=sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd \ - --hash=sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8 \ - --hash=sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840 \ - --hash=sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8 \ - --hash=sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe \ - --hash=sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438 \ - --hash=sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e \ - --hash=sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d \ - --hash=sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c \ - --hash=sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b \ - --hash=sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49 \ - --hash=sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d \ - --hash=sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae \ - --hash=sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e \ - --hash=sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226 \ - --hash=sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6 \ - --hash=sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b \ - --hash=sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3 \ - --hash=sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882 \ - --hash=sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15 \ - --hash=sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70 \ - --hash=sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d \ - --hash=sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16 \ - --hash=sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05 \ - --hash=sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b \ - --hash=sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737 \ - --hash=sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92 \ - --hash=sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348 \ - --hash=sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41 \ - --hash=sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add \ - --hash=sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b \ - --hash=sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7 \ - --hash=sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d \ - --hash=sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96 \ - --hash=sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e \ - --hash=sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2 \ - --hash=sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde \ - --hash=sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8 \ - --hash=sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4 \ - --hash=sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec \ - --hash=sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df \ - --hash=sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73 \ - --hash=sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088 \ - --hash=sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244 \ - --hash=sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537 \ - --hash=sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6 \ - --hash=sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872 \ - --hash=sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30 -rdt==1.9.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:7d06eb704a066a245dcf0544e42d2842447bd675ebefd54378a56aef492eddf5 \ - --hash=sha256:b53418cba74f7ff879a49ffd0729313b085c846c3d52e9cc65736fa68be29273 -requests==2.31.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f \ - --hash=sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1 -s3transfer==0.10.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3cdb40f5cfa6966e812209d0994f2a4709b561c88e90cf00c2696d2df4e56b2e \ - --hash=sha256:d0c8bbf672d5eebbe4e57945e23b972d963f07d82f661cabf678a5c88831595b -scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107 \ - --hash=sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161 \ - --hash=sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c \ - --hash=sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d \ - --hash=sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157 \ - --hash=sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a \ - --hash=sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb \ - --hash=sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c \ - --hash=sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a \ - --hash=sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c \ - --hash=sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5 \ - --hash=sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0 \ - --hash=sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b \ - --hash=sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03 \ - --hash=sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66 \ - --hash=sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9 \ - --hash=sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf \ - --hash=sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028 \ - --hash=sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93 \ - --hash=sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05 \ - --hash=sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073 \ - --hash=sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525 \ - --hash=sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e \ - --hash=sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1 \ - --hash=sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0 \ - --hash=sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433 -scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" \ - --hash=sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415 \ - --hash=sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f \ - --hash=sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd \ - --hash=sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f \ - --hash=sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d \ - --hash=sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601 \ - --hash=sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5 \ - --hash=sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88 \ - --hash=sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f \ - --hash=sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e \ - --hash=sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2 \ - --hash=sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353 \ - --hash=sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35 \ - --hash=sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6 \ - --hash=sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea \ - --hash=sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35 \ - --hash=sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1 \ - --hash=sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9 \ - --hash=sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5 \ - --hash=sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019 \ - --hash=sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1 -scipy==1.12.0 ; python_version >= "3.9" and python_version < "3.11" \ - --hash=sha256:196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc \ - --hash=sha256:408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08 \ - --hash=sha256:4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3 \ - --hash=sha256:4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd \ - --hash=sha256:5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c \ - --hash=sha256:5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c \ - --hash=sha256:6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490 \ - --hash=sha256:730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371 \ - --hash=sha256:75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2 \ - --hash=sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b \ - --hash=sha256:8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a \ - --hash=sha256:8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba \ - --hash=sha256:913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35 \ - --hash=sha256:95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338 \ - --hash=sha256:9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc \ - --hash=sha256:a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70 \ - --hash=sha256:a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c \ - --hash=sha256:b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e \ - --hash=sha256:bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067 \ - --hash=sha256:c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467 \ - --hash=sha256:e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563 \ - --hash=sha256:e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c \ - --hash=sha256:e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372 \ - --hash=sha256:f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1 \ - --hash=sha256:f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3 -sdmetrics==0.13.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2d277094b1081c637d90d818f23370feba745db8120d2813ede3ec024bc78a07 \ - --hash=sha256:83a483696b034f42e5f1f3d25c4cdbbc48b4d83fa98e0ec7c2c846582b0b94c8 -sdv==1.10.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:54ab6a664efe2ed2e4c05b642a8fc1f549fa5f1c52beba06c6760e350b1ac393 \ - --hash=sha256:9e84a859a7a2adfaeec54dcbd79debc8a78f5f9b2ebfb6da19989d1a99d73e1d -six==1.16.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926 \ - --hash=sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 -smartnoise-sql==0.2.12 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:17e89bbbb8e5c83da42270a2b6a3013b6bc8d279226fc903b89284115c1e6220 \ - --hash=sha256:80cc3f51185528715dba9165fd7d30449bc506313dd4ab8e0f2833f3e59bddc3 -smartnoise-synth==0.3.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:03b46cfca53dc52702a6340089a913c7695172053938dc6e97564a0bd6933054 \ - --hash=sha256:2c662a2a2e660bef1416a144c9535bd1f0b088b7e2c9ae865db9a682bff5dd8f -sqlalchemy==1.4.51 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0525c4905b4b52d8ccc3c203c9d7ab2a80329ffa077d4bacf31aefda7604dc65 \ - --hash=sha256:0535d5b57d014d06ceeaeffd816bb3a6e2dddeb670222570b8c4953e2d2ea678 \ - --hash=sha256:0892e7ac8bc76da499ad3ee8de8da4d7905a3110b952e2a35a940dab1ffa550e \ - --hash=sha256:0d661cff58c91726c601cc0ee626bf167b20cc4d7941c93c5f3ac28dc34ddbea \ - --hash=sha256:1980e6eb6c9be49ea8f89889989127daafc43f0b1b6843d71efab1514973cca0 \ - --hash=sha256:1a09d5bd1a40d76ad90e5570530e082ddc000e1d92de495746f6257dc08f166b \ - --hash=sha256:245c67c88e63f1523e9216cad6ba3107dea2d3ee19adc359597a628afcabfbcb \ - --hash=sha256:2ad16880ccd971ac8e570550fbdef1385e094b022d6fc85ef3ce7df400dddad3 \ - --hash=sha256:2be4e6294c53f2ec8ea36486b56390e3bcaa052bf3a9a47005687ccf376745d1 \ - --hash=sha256:2c55040d8ea65414de7c47f1a23823cd9f3fad0dc93e6b6b728fee81230f817b \ - --hash=sha256:352df882088a55293f621328ec33b6ffca936ad7f23013b22520542e1ab6ad1b \ - --hash=sha256:3823dda635988e6744d4417e13f2e2b5fe76c4bf29dd67e95f98717e1b094cad \ - --hash=sha256:38ef80328e3fee2be0a1abe3fe9445d3a2e52a1282ba342d0dab6edf1fef4707 \ - --hash=sha256:39b02b645632c5fe46b8dd30755682f629ffbb62ff317ecc14c998c21b2896ff \ - --hash=sha256:3b0cd89a7bd03f57ae58263d0f828a072d1b440c8c2949f38f3b446148321171 \ - --hash=sha256:3ec7a0ed9b32afdf337172678a4a0e6419775ba4e649b66f49415615fa47efbd \ - --hash=sha256:3f0ef620ecbab46e81035cf3dedfb412a7da35340500ba470f9ce43a1e6c423b \ - --hash=sha256:50e074aea505f4427151c286955ea025f51752fa42f9939749336672e0674c81 \ - --hash=sha256:55e699466106d09f028ab78d3c2e1f621b5ef2c8694598242259e4515715da7c \ - --hash=sha256:5e180fff133d21a800c4f050733d59340f40d42364fcb9d14f6a67764bdc48d2 \ - --hash=sha256:6cacc0b2dd7d22a918a9642fc89840a5d3cee18a0e1fe41080b1141b23b10916 \ - --hash=sha256:7af40425ac535cbda129d9915edcaa002afe35d84609fd3b9d6a8c46732e02ee \ - --hash=sha256:7d8139ca0b9f93890ab899da678816518af74312bb8cd71fb721436a93a93298 \ - --hash=sha256:7deeae5071930abb3669b5185abb6c33ddfd2398f87660fafdb9e6a5fb0f3f2f \ - --hash=sha256:86a22143a4001f53bf58027b044da1fb10d67b62a785fc1390b5c7f089d9838c \ - --hash=sha256:8ca484ca11c65e05639ffe80f20d45e6be81fbec7683d6c9a15cd421e6e8b340 \ - --hash=sha256:8d1d7d63e5d2f4e92a39ae1e897a5d551720179bb8d1254883e7113d3826d43c \ - --hash=sha256:8e702e7489f39375601c7ea5a0bef207256828a2bc5986c65cb15cd0cf097a87 \ - --hash=sha256:a055ba17f4675aadcda3005df2e28a86feb731fdcc865e1f6b4f209ed1225cba \ - --hash=sha256:a33cb3f095e7d776ec76e79d92d83117438b6153510770fcd57b9c96f9ef623d \ - --hash=sha256:a61184c7289146c8cff06b6b41807c6994c6d437278e72cf00ff7fe1c7a263d1 \ - --hash=sha256:af55cc207865d641a57f7044e98b08b09220da3d1b13a46f26487cc2f898a072 \ - --hash=sha256:b00cf0471888823b7a9f722c6c41eb6985cf34f077edcf62695ac4bed6ec01ee \ - --hash=sha256:b03850c290c765b87102959ea53299dc9addf76ca08a06ea98383348ae205c99 \ - --hash=sha256:b97fd5bb6b7c1a64b7ac0632f7ce389b8ab362e7bd5f60654c2a418496be5d7f \ - --hash=sha256:c37bc677690fd33932182b85d37433845de612962ed080c3e4d92f758d1bd894 \ - --hash=sha256:cecb66492440ae8592797dd705a0cbaa6abe0555f4fa6c5f40b078bd2740fc6b \ - --hash=sha256:d0a83afab5e062abffcdcbcc74f9d3ba37b2385294dd0927ad65fc6ebe04e054 \ - --hash=sha256:d3cf56cc36d42908495760b223ca9c2c0f9f0002b4eddc994b24db5fcb86a9e4 \ - --hash=sha256:e646b19f47d655261b22df9976e572f588185279970efba3d45c377127d35349 \ - --hash=sha256:e7908c2025eb18394e32d65dd02d2e37e17d733cdbe7d78231c2b6d7eb20cdb9 \ - --hash=sha256:e8f2df79a46e130235bc5e1bbef4de0583fb19d481eaa0bffa76e8347ea45ec6 \ - --hash=sha256:eaeeb2464019765bc4340214fca1143081d49972864773f3f1e95dba5c7edc7d \ - --hash=sha256:eb18549b770351b54e1ab5da37d22bc530b8bfe2ee31e22b9ebe650640d2ef12 \ - --hash=sha256:f2e5b6f5cf7c18df66d082604a1d9c7a2d18f7d1dbe9514a2afaccbb51cc4fc3 \ - --hash=sha256:f8cafa6f885a0ff5e39efa9325195217bb47d5929ab0051636610d24aef45ade -stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9 \ - --hash=sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695 -sympy==1.12 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5 \ - --hash=sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8 -tenacity==8.2.3 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a \ - --hash=sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c -threadpoolctl==3.3.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:5dac632b4fa2d43f42130267929af3ba01399ef4bd1882918e92dbc30365d30c \ - --hash=sha256:6155be1f4a39f31a18ea70f94a77e0ccd57dced08122ea61109e7da89883781e -toml==0.10.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b \ - --hash=sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f -tomli==2.0.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc \ - --hash=sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f -torch==2.2.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:0952549bcb43448c8d860d5e3e947dd18cbab491b14638e21750cb3090d5ad3e \ - --hash=sha256:0e8bdd4c77ac2584f33ee14c6cd3b12767b4da508ec4eed109520be7212d1069 \ - --hash=sha256:26bd2272ec46fc62dcf7d24b2fb284d44fcb7be9d529ebf336b9860350d674ed \ - --hash=sha256:2d9e7e5ecbb002257cf98fae13003abbd620196c35f85c9e34c2adfb961321ec \ - --hash=sha256:46085e328d9b738c261f470231e987930f4cc9472d9ffb7087c7a1343826ac51 \ - --hash=sha256:5297f13370fdaca05959134b26a06a7f232ae254bf2e11a50eddec62525c9006 \ - --hash=sha256:5c0c83aa7d94569997f1f474595e808072d80b04d34912ce6f1a0e1c24b0c12a \ - --hash=sha256:5f5dee8433798888ca1415055f5e3faf28a3bad660e4c29e1014acd3275ab11a \ - --hash=sha256:6a21bcd7076677c97ca7db7506d683e4e9db137e8420eb4a68fb67c3668232a7 \ - --hash=sha256:6ab3ea2e29d1aac962e905142bbe50943758f55292f1b4fdfb6f4792aae3323e \ - --hash=sha256:77e990af75fb1675490deb374d36e726f84732cd5677d16f19124934b2409ce9 \ - --hash=sha256:79848f46196750367dcdf1d2132b722180b9d889571e14d579ae82d2f50596c5 \ - --hash=sha256:7ee804847be6be0032fbd2d1e6742fea2814c92bebccb177f0d3b8e92b2d2b18 \ - --hash=sha256:84b2fb322ab091039fdfe74e17442ff046b258eb5e513a28093152c5b07325a7 \ - --hash=sha256:8d3bad336dd2c93c6bcb3268e8e9876185bda50ebde325ef211fb565c7d15273 \ - --hash=sha256:8f93ddf3001ecec16568390b507652644a3a103baa72de3ad3b9c530e3277098 \ - --hash=sha256:91a1b598055ba06b2c386415d2e7f6ac818545e94c5def597a74754940188513 \ - --hash=sha256:ada53aebede1c89570e56861b08d12ba4518a1f8b82d467c32665ec4d1f4b3c8 \ - --hash=sha256:b6d78338acabf1fb2e88bf4559d837d30230cf9c3e4337261f4d83200df1fcbe \ - --hash=sha256:be21d4c41ecebed9e99430dac87de1439a8c7882faf23bba7fea3fea7b906ac1 \ - --hash=sha256:c47bc25744c743f3835831a20efdcfd60aeb7c3f9804a213f61e45803d16c2a5 \ - --hash=sha256:d6227060f268894f92c61af0a44c0d8212e19cb98d05c20141c73312d923bc0a \ - --hash=sha256:d86664ec85902967d902e78272e97d1aff1d331f7619d398d3ffab1c9b8e9157 \ - --hash=sha256:ed9e29eb94cd493b36bca9cb0b1fd7f06a0688215ad1e4b3ab4931726e0ec092 \ - --hash=sha256:f1b90ac61f862634039265cd0f746cc9879feee03ff962c803486301b778714b -tornado==6.4 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0 \ - --hash=sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63 \ - --hash=sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263 \ - --hash=sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052 \ - --hash=sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f \ - --hash=sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee \ - --hash=sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78 \ - --hash=sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579 \ - --hash=sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212 \ - --hash=sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e \ - --hash=sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2 -tqdm==4.66.2 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:1ee4f8a893eb9bef51c6e35730cebf234d5d0b6bd112b0271e10ed7c24a02bd9 \ - --hash=sha256:6cd52cdf0fef0e0f543299cfc96fec90d7b8a7e88745f411ec33eb44d5ed3531 -traitlets==5.14.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2e5a030e6eff91737c643231bfcf04a65b0132078dad75e4936700b213652e74 \ - --hash=sha256:8585105b371a04b8316a43d5ce29c098575c2e477850b62b848b964f1444527e -triton==2.2.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version < "3.11" and python_version >= "3.8" \ - --hash=sha256:0af58716e721460a61886668b205963dc4d1e4ac20508cc3f623aef0d70283d5 \ - --hash=sha256:227cc6f357c5efcb357f3867ac2a8e7ecea2298cd4606a8ba1e931d1d5a947df \ - --hash=sha256:a2294514340cfe4e8f4f9e5c66c702744c4a117d25e618bd08469d0bfed1e2e5 \ - --hash=sha256:b8ce26093e539d727e7cf6f6f0d932b1ab0574dc02567e684377630d86723ace \ - --hash=sha256:da58a152bddb62cafa9a857dd2bc1f886dbf9f9c90a2b5da82157cd2b34392b0 \ - --hash=sha256:e8fe46d3ab94a8103e291bd44c741cc294b91d1d81c1a2888254cbf7ff846dab -typing-extensions==4.10.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475 \ - --hash=sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb -tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd \ - --hash=sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252 -urllib3==1.26.18 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:34b97092d7e0a3a8cf7cd10e386f401b3737364026c45e622aa02903dffe0f07 \ - --hash=sha256:f8ecc1bba5667413457c529ab955bf8c67b45db799d159066261719e328580a0 -wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859 \ - --hash=sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5 -wheel==0.42.0 ; python_version >= "3.8" and python_version < "3.11" \ - --hash=sha256:177f9c9b0d45c47873b619f5b650346d632cdc35fb5e4d25058e09c9e581433d \ - --hash=sha256:c45be39f7882c9d34243236f2d63cbd58039e360f85d0913425fbd7ceea617a8 -zipp==3.17.0 ; python_version >= "3.8" and python_version < "3.10" \ - --hash=sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31 \ - --hash=sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0 diff --git a/requirements.txt b/requirements.txt index 5b1001da7b91b609509e7f2a35b419684de27593..e4ff6b2d8963f37b4ae5374150765a814a83e832 100644 GIT binary patch literal 3354 zcmZveOK;m&6ol`(K>tJbg&gbUM}Yvzri-EhT4dE#ptosBv_sNK>>uBDzB9bKRB8xJ zYn}I;IYa&X&mz_7LCX{}-xAO1gzgPY`wNYUrJAUKvS;~sX^i+Ks)_J-)v#;dSC`<0~+-nv6 zcd1HSJ@`yC#UwIOZxXpy>V2Ust-L$+4+4#PUueQAy+jUTr!hf^I>_%Stu=p@R+{C| z_uKXB*_lidAcs` zWUEj4vE|rjbxz;jGLd7&<@#$`mdd?5t9^53_XZZxrL)Y#KFqOE{6>}FNS+@rcd-_J zZMv7OifKpvCbH+XJZCZMCVf{HvawUJ*{O5Td5pZUv><~wRiDBeUozUByZcSZz{1RO zx?<0+2Wvow{jp)ZnFrV49cffXMu?5e#)%R_Wg1Z><&_2wvkk4KEs=6;x z%^SIn>9KG0siUXv)D1qqtV(RGl_U3QepSl(+)r7@G}x~cH5pu`z49I7!Ja39mzi|0 zSayZYeZeF%^>=+=YljQ@=jv?3ecg-Qo0uP-+=WM06vwmurRJ*iFY%7e9KMeYqcUvj zvvz?eNEih=Wgg@BfA69Z>=!<{>RwsC>1kE{Ak+&Fe4q2c{SdZe)TDzv|17X^&5xSA z5ymj_lm36(`}vkGk~4Atojl+Z`kAMNQ_NtrUh^8sm%a0E=>U|x*x}g;6A;_$e)2AhCZLWeWsaqa`B`iFqxM%cZa%mGTVZ03oW#z2 zX%Fgu5w}`2Y#bWt39z$o)RuVo2V%B57TsXB%rJcH$DP_|uPVDhF{=Uno8Nd)A?qkJ zm$|X>jwlLNHpUwOmOKbKPe)y1bAPCF7h1uag)1T#z9_}Hr@3LAtffV<9~D=Lsbt&4 zyLYF2Z_;}`%+;k|bYG~^qw@cn-sOI`Uu%}Jx|-|1*w^|jHS;#Uzm;VX_A8;Xk@t;0-V7QJgJCFd zJFb!2JlD8ce;-U{O+N&JU<5)r8}CZ6*#u7Z$@}o8|J3Z@W(DycylJ!{v*9^7!=AW0 z^98nWb;Tzu<|vrMR))Qi)!VyJHZG?-aRNQF%9mdy)+Me4U8*&4*3--W(&_#0^dWsr zf5h~@-K=OtzG$*9VVh_d!+sm}XiS-bzB~tbeNo?5iGs&8W;KUf_0kDhIMar{`JD-} zf$x;q3WDRd`f?5Pal+xUq2hgdqQ74 z_?xxx0{z>oIts*JAVF<5oa^(u{700yA$Z4|AMCrn2Kq!D$HG(gyik6a$c?S!>p4NO zAju6j(J?)cgU6e)jaqAYVW&T)*fs{N?js{_*c> z?J%6@J)Xm{jqQC7(=g2IxlaAH_v^Uc)4t#9+HCiIp4Yt1^K#$&vNr294eeE5bl=uy zn3uhqrn&F8^*o1m+nQzE`{lg+tZACg@jTXk?uTYryZ-3rt#8_H8=K+yuzmji>Fe<4 z-yX96^Vh$9{{Hco>!+WFAJ-rIKk(`At{aAFwFuMFt;5=M``%vnwlv$a-}5q#cQ+jC zx?Psw*suF&_v7r3cb!8s^{1b4_g?w6&Ewpj>+wA9@#U*G@y9>0AKBjbuwT7pzQ=wX=4;>1 zyF1pw_VL)qvS0J=M!Vr!@2y>0`*XD~*M7RU@`?AmYe&C-t$Ebp7}tKCx_N2Nb{(wU zFZ%U%!96KmPPn*L1^=-H+WL_>P-#S{Em5_4DSb z-P>g!#_JwB|Jpfm%{`5GYZ=yVb1%;0HMzHS8?WJ-rn`LN^XQlUXy)A&oAvIe<@PTg z^Xhg_zc<6yc-z}xL0rE(Y?yBFhKI8~&a?e+{Jeerc76Zz=PzG>**<;zZ;3knkNqF} z%5z080}X-V4Iq0+^%C7-Q;<7=XCe?a;@_+)pxpg`!t+_&2;wnzP4?* zZ}&F$-Rbo&lZfa|pVvCs60X?`I&Qo@7s2{C>%;ABkN#{o&Yop*4Yw=Kw)cJ<`>`JL zH7#QNJ@nnt_@C`~*(&#Lx!rrSmUr5Aofx!D-QM=il`XT}oiKi%RxwXMY~EwjPtAHd zkM`#25RK!ptoP6^V|~%%+OFbuFoY|g_`SenM^7m%F!y=!g%y%mS-cVok?Ax`skEW$LCO0O~S=e#4)B5E)rL0LPZP(^*5>BtVcS7cN8r!v-mO7EO z_q@ssf^gs1Bx|=HR-*N|?X>mFHgwn0C%$-pyX59Z#jgEsrlGl9xV+P@?dEZs4*7Es zugC5dT8^cko3)i!k6mc$j=qr`x6?x}UDux$beuikves|E>$dyY*Si~S^`n{AX&*Pi zblBRXxowEdWumJQo%_3U#jTzFsq^gX$G?{LnD^Ba&FdkyU1#4+V)_aeEUPr;#o5b^vwPQPSi|Xg+ zc-S3c+9dYxP2XEzV5>dnb6#grX>?a|Vcz9AS>|OqZac7_=Q_>x=irofO~1`v>M`!q zA+OE7u%9#E^rF<=<$xSA-?6Q$L+gmn-878HT)(LP^88Z7A})2Oq$x{!HS000jqSAW z_G{m_P=n3hbZ6`Td!y|+_E+Z|mv7(B-aF9IqaX6QgE9zsXFDEk=Rjr)Cl?L9<-YfB zJTG~9YPxG0B#5>?`-9y$US7{VoZe7!HvrqtecQPDw#-d;&&{<;>27^*P8o37&s)rL z^6sv_(=7mYhY$C2hE(mJQ`kQwskITcyW946Pfo+xt=HIP*8*4l>?{H+FBkRqyqSBm zO&d4h1s#n@IUiuLd@UAk`!%)gel4BgH2|fPgTL*wC|*aY;q+3cMB&vxwsyGk|NWHR zy&S?q-<|;D05mun*8d!?(W@VU3=4FYcRD&Lwv!#WHeTs|^vC5C3|BKXejJQEjux+N zoV?pF4Km3t&Nvo8<4a*M+I99MJObp5vxITq{kpZH%sP4{$J#mUV{=ZuL(yHs0irpu z_jX9`cYRDf%33Nd-!Olb`oBC@wX0rC=_ttDX}|A_$2y0xeo@n)RJ-r3Z!N908d|TbfuU!qSf)zJ zHCkUUr|~$~;AP!b>$bBlD5-q=fTxfzM>eR0gi3&ypIPYl_LAy=WxlauYsuYo|Ld9NBuC^XW2iSn&LiZ`EhTovO7N@xaMU|7dw2}*5r~|Wa@fQ z(v5p><2gA=s#pi0QJl?Z((AVLZF~FS&WpfUujvL#c`ZUZMB0q4T1G~O%0*UKFJ*qR@T|L6%I_;@`n^cC=Br(m92XO059;s{&kZS0x+@Xe8PI1LM2MMMp_KO!A z@C9|&0cF0iC5ug@dY$%l*&UOyX}6~7yp`Nlo7d#O$40hY{eW@VTn!MkNOj^{WXnsM zKel*OyF=e((>TAOE;I7W4af&yPM zoSXV>K9NjNCg9@S_sWC4-crldsqs{J*8rXX3E+v5Kq znO!4UtaUnBW?RZ1w-F`deNOUU@DH*R;OjJWi<)&606Iu*>Q*>IKD0KcG&9sE3WQM| z$`(0DUis#!mu5MqMwGX;{4h23+}TvhG>PgOrR`&y#oGb6EBC42hhMx9dD-*K5cvQ> z*_r#YL3UT;s38ekICtvQ0nWai0D#TyzO-$9Q7>}301y{jydAYn8zgY6EhK^ExP(s? znX&}Zlu8cS-lKQkV%KbSj*^*C83SaZiaykZP-3^L>}6!hNb1b0*hx4LIY+U32-rZ% zg2MF9$~%R&1e@VL@qh!EzoXrDuf>5GEQ~yJ_^Bw;2@Kde(SDpS`5Ad>H#aqsUK^FO zz@zdKbkqsz_`UH%bF)OU1CHWQYuZ@NeG2>SSf8knrVe%ALWVG2qo8;C zRKV^~*)}!`Yz3f|c8EvsYFfv>QL=-xs{~X(KEiX8FsHs#)G8ZpTVCm-65nTx8zyE@ z`K~8Q;PP(d>AOWIdR^By{R_Q2? zPmMxgR&~{PdOsM#DyV6(GEmsnxUBV^PtZ=R_9Rd>p05F+=fjmS%!^Ihi-P4vx7L2? zR2*1jeNpa&TuhyW?hkx zcF&#V6hBqws#Zm?xHZdS)3W8IOFUxKTR_>?rF9%9A!Fa|8gEG|8EhBfB+#aHi;6Ym zNxunWr$n6!4%wjSd?9AGb;DXUDHmD`**T6<2d*kms#DxP9Kr@%?(GQ)cy=2hO#X>V z?rVUyi8^o%bR@L2iytp}ZcvGzlk=#2Sd~BGb0ERF0h_|awL|~S02b6Q%6h2>E>Q_j z4wBt)`R#e-X6){?BYfrgghm-_%|UMQfna>IjmnPlqJW{`AVqG9Qx6@?539iu7Usez z2_>_fGT(=lmzRZc#jj);RMgk;lm^ls$LVA*5-AQ(7#1zjc?;gb>ye97|H^y{GNA_B zFGG(qLL*Pqd0)`M{5IKrp+ZEQMfP59p&K*j0cZOmEC6U7XMDpJPR;6J zZ3b&7Goe*H%i#FS4>Y|tm4yPKd{M_aHxe^BLz1^2ReP}MDw2+b9fhmQ!aAwg(5AAW zihYq&Z0G)R49km(4+jO#o1!2@(LzUG`wm;n_T!CC2HxReM@`x~s5&=b-1u47Jg!Uq z_VGodgO}W)G+7S(Hat#|7#{L%qBEglZ@cUe2}V@cIpc1c`54EQ*izr=-cQ3tU%}gg zjKa$5b$KbYguK8_@}$SCGYqLd8L;Mt54GruA-q{=yXvu zAf4>0x>E1$i`S@-lFy@Hx^cA&>l-w+b+I{qh zRz2f#v(T(+i=c&%7hu$d6ulesiJi1FumdgN`m*_Nw7b$>{h}Ooo;$T}!sP)p&Zxu* z?#EoYVP_bHl<4E~J(@#4yN#%=2B1id4$)a)yeOXo$t~Qzib;VmESOk+EI3EcW1qKb-vgO;qPvI81 zt%h>Xl7xLjHy=(#9X=gE&3=1~8^`FJI?pKTC+R9_U-T%%lbkytvR1JJ(1TQER6*WJ z4G%e?e%6RJi{*4Y{o5|%t@f03Mlt^M(3+9P%-)JNXkVl}kk7@kpX{ z!iG9gi#$m=)_OZsm7AD_r4xrInRJHGL2U9&x>Z!6_`lB05CsP!VE z1nBl^>=R=tjfaSVmF+AgFHZ@4A$fL!J#|B#p&bzd<_JDi!1{FBIg@Hwnq;q$pYS=i zB8{9!FadMiKAr;NQ3FvcRXMVNtbnyxMA|=l}4+ z338EpB*ABOdx+sy>?IQdeDP)vwAQ>8K>f=L6?gc|891aRs;a2#7*y#nK6@u5+ z`l487IYF(l-^!TKa71jt?*;&!wL9WocuKoV9t8M!tiaWQZbIi?>&(pJ;|**WrVANt zGkPr>^M++SWnaA9D!mBN(kMc1u|~o&`l>yg{=Gi_UAH1D#ajjmM4`7O`Z*^Uy0DNS zGv&eK@KB)TQe5(C09@mW0g@=oErnW)2+;-6T?nS=<@S%_o{&c--Vr^*2Rj^<1c-?f z!4B>TNelpeeNk2uz=!~~33k!#vJxCy{++Fbj4vk2Rzz318-;*Af}C6~o|Sg0_bF$I zO3o`r$575@;WH&@be@TfK-N3munj*Uc_OSSPaQBM2UZ5;E+5~0or_E)g-ihq2btKC z5(?1<_#N6ic!gG(NYcm;2n*?f+++K~pub$ya`7mj+ZcKlt0fO%%VtO{UJjlarDr&u z1JUb6?i3K>Yxl6=mcG8z(3WCdvL;6jfmyW|S)Nw5s7j$}L^8!F3q+!UToMYodX({) zi6UI;NW_FzY+TMMd@;@Ax;|j18nJ;#QhLL_dqq z%H4NL0Kl2Z&%KEh@>3{w@L_#Xs0~-={Diir;UT0>Z2RI~xn>|MnFE@ZGbn1E3=?@p zZJ}IO3D)}*Qy2Z`F?Tm6wgEM0^kz>VCwgbRy0ez{6jw+s9alJ!~eoPqc z_yjsHtW{IBN~rooDMY|v1-C$ouO*Ox`H9U?I?Bx^66pn!0BtT7;UV?C#o`iD5ZCBo zVmQKvz)W~|2Y(Vho`203$QrRJz}6c-5E)<$$R&#nWwxgybS7dV;9n<-Wd zU_y$f9^1_57H}SHO-S1p1)jPPPPl{jy&->(F^2Q(qBkjMY=_>yBuyzYj)XpY1Z#@g zO-^S7DIXuFB;ItAz4{B^nyQ;On#%{he?=TlG-SS#XH=22HM;^)DR`qthPo*6(9$?x zZ-i1b7BgXjFYn42!!KFfKE}G^xy3JUk`Tc(DzsCz=eCZg=>3g6?9}D&v2aI%Q75NN zrEwj=`#9nONM!7-xGJ7P44B$bQdh;5kMAW#TM;I4OG85&L+cC_cXS&-m8`7%UWpmP z3jW*8qD-AO8jOq90mZ8GY>H!%{$npBld3pLIHWCQ8hb38@1kfTaR(18dr?t}giYP^ zQs&Dw-m@$Tl|5iw*&)FY3L=UN#p>qOHWu~>-I#d!u=DK9O0w@!KR)QeW=GGkTCk2# zoqJv`z7a6Kbp)I)sgn{P_B?Ij1hF}77!wW@ zGCmd>Dzd9(#pJ_q()h?a^kFV79vdG4U()b~_h_%;%Y|!h$+TOpECdwKPB$8(;f>ks`cGPU#v5@s* z&}cA2gdKR#SrM=ZWmq!7gCj;kiT6TCt9(Wb!a_&Igu&l07e(q3iXcf$p?Z0w-{Rt7 z0TME)pK>gs@Nh#uT+ItZhK<%t(6^oSa?!KFI@oW5#7r1ed|~xj3os?2@T^IT)x$x1 z6gW_xwUSC&@5_mp>d60Cz&Lc0iKSgGQLb8Y7j_Qg6cxW^2*GiPQZqNoNHWEY09hyM zwy$B2WQX5qIHCXt<~RH>T2eF+PMKumF0(a-7#J0fRY6*1ZVe&94X^d)w?gWMSt)v7 z>V3wkISig$m+`KY#vb{j7BPJ%ewO-RZ7*?o@*_B<&<3oH- zxbnwt8nqVKM)43>OuBdSjF7>lON*r4;vagO6>R;AZ5WyPWBnaTw6qJZ2 zmfSL)!oy+LVv-R-Y`qv`AY^hW8cF3d+rFbBHJumR%-RISN3UHS0`IfFsAFeWt9wFY z0Aa`$Dc<=OKLXRWwLn2|vM&idS@YK%6cp9x%Iy0p&nytYEGkfnf3)!3oMlY{4%VS0nVvpmGFCd30i}*vj zTddX=rHKxIkLT3BV?8`;fVc1Ny zgVTw@(<#gylp^*iI>Y*Ev_MU+J8LL5QL`M05|m0m>Pw9`M!BQ+fe#uzB9rnSDg5Ag z(Tn(~1f@fy=YV4gZo`||d{!tG%T@1Fs6#;@FUT7yNZ`|!L?#dDO#{v#KCdmg2D=h@ z$9ZF(F-79JxmM_TV~bEM>XsMEkZDsOgN{SO(f?N}qf~&wcT)&T?hUQYuH2_9yjAfd z%MeQHR=`ZcvZX{w zCnd{jKSO&gAVii#1b`)Gdax1iL3fPoW_1xt7_)3-Kk^0T&jBNrK>N`}vrxO!jksgd z-`qdE`JoITX(-B>Wf9xBgWYp0rQqKhOt4Paqw*1O0>rZv@&?LHascW_uhN9`BYegx z?H*B(Vbl4<*O2vhefF)k{3wcup6X#l6j?+bVEatq5~@%cN9HOk!m}{VW-k7`ab{=@q7cGRxX=-( zB2+F4#?lZFog^Jvf?Za6kRq{((lfAWONXYak7-Q$w)Dsj0yC1TXckyuJ{de#z!X9u zHm3wU?sYg1%@1E{+aStpb>2s+DhU8Ia)2ZxP)IyV4~R_5-HFT+{ZfR*cmr5#GGK@m z&){g1T76O3A`0VUos5^ndI3=}h=}u8Cx$Ku2LQL zXTAW%>@l*d>ahkGUnP%521Vqg;7iqn3{womD9<2q)yI@?a3iH*^}{-A1Y*s$ThVx^ z@-+UT2qc`mKhcKC9EL%9Im2{R=&KBUyEG5orcEbJo48U+l$a&0+V;9G6%A^6(Q2id zDF}Ea_&Y_&l-5ICID+wnb-2XAax?mrWh-rPEGt-M$sq0y%o~*FM+a!@nsRZVM>qOQ zl!A=#fHXl=h@)?lyQge0f*xCJ; zh^uJ~>JPgIiE<;w+;h8K4jed&rs`18L(o9=i^5jMMg{fDXv_nYH{3FvFiNNO=+KYR zW%A0?UQF1gb3*BSywQ%!7X>(n08!u(X(+>XK}vgdxEc_DV+SaF>^LQf+A)2<>C<#3 zEDe2HiTmr{K5gG(zF7azxdfV6Vj@W!y6kA?h8IB@g5^{7c?A(ToEl}x<1t3y^2K@E zGB=!FZy|`-2$5h~PExED#7nZq;XD;2d!f>isBM`gjbQ!78>8;pS@y)yeK@}V*X{Ff z5Bo=se&OQggC}aIRhsvYtKvit^UzYTZF5YhkgoR*N|4peMw|~uuZ)il+4mogzaO76a-#XM{bP+pGM^9_ zepoj%r8=H;pioA2tYi)9b{O#0y(ly|r{W>vj^HMO3;P;v#>CCOOu(1%9~Rc}3JvCY z(DV{#l22M4X+)@JkrrdZjD{TL(LFxEd%s@C&tLMu<2zaNJ0|<2!n>p>7#AmtcsAyS zR&Eoci_&~O=xEFk16Tm*7u&xe$h0AffnN3VV&CI#5#mHn60*=LD=JZB-t@0(N&q?# z6@)Z?73W5aBvWFjm9XI-?(MJ77^C&aw*NyPmzITBN61OPDZxCM;>LSUTMc(T*rz6d z^oV@K>ddEzM-oc#NL+a3ZVv0l1EXGw#g-yYWq<0Nxdj=82yiF^Cr~I^jgvM(gTo0( zDwL4+!~OBo_36v;*Njl{z`w^9)xJz_;xy6GN*9W*o2R`-zY001&RGx$Ou{Repjc>$VKiVvZtyN zU#M);*6Ap+0I<_A8pLsL$F(({f?CXuLJ4$3Uasz@}3FrF8}$ zkl3hb)%xPmBVIlgUJH+S?Q#DLeyV&55{jZ+Q&i(ZTgHN`86g;Kk@ufA|BMjh5#XJb zcU+$o zbsNx$Ue*-eKvSsN`SPJ`yo$O(JLf|6Az#M`Ycz$JuAf?#_5(2fct0?bll_I#bxfj& zr8yN9q+|qesOoAM6gdSDj1XI(XVtN0BKBK28S4@6Hc(pcQ<(`SL$72+U5q}QAR>9M zW>z^^P8E$n#P5!GP2-jVT`hu0`i(a#*EDm*w1&7z9-fLD%vxO2B z3j-&>IxMq!Zz#?9iY;|ICv@|xM4)cfm%dM2`N{+v-1IVwMMXp2gQI8D7UUlAX+;0( z!e@76ykb%oV+eq@k`;n4GoMNUlvz87lk!Dj0Ej6#-$aZM9 zSXfx|9cjP3Q}si7@$odz zgc#Ib1`-hd<$ZZQEeeek9ONut+={@3v*S0}vX4xtAP?!RQveai;aHMpo%pN{9gONFy74IV zLF_n9KjGR!g)R0Ah9Rxh+0-s)5e+#Smoy?sqO-V!3qD|VvldwD1%Fk)WJr>yMrt{K@roeiYPP@@ z&1}R7narr_H)JfJ2QH{m)HXCNvLLPxx2GxrVD+&uyZDi8%`Z3?kR#{B(?|uofB*}jue9n?T51_%?~=! z$m5|Z!fLAKW8_e5b65JK7(JxIo4YO!Xi7mEyvSsEImmitO`7qH6wM$P2o2#G+g=(t z!lJ6HHuaQRu%>xHEtou@f5osXIAyfpKs#|lbdy`jO+bpjkBr^#n6A_R55z@%t6!8& zZ6or4c_2Sp=;ab{gXkBVEXUNorJke5On2i!6`{!bh79m83$o>llGuPl)rYoqGb*Eh zsF}iVHczOd%d!vlEXfPX*0uaZEgTWDIJpz_;8qj{35=8pfjTfQKpB6 zsmmoleE6?lw_kt$$B+N*;kxGE(J=MO3@%8aTYne^jfepz_54OE1)ssm9VPuKN zy{^xnuJ55jn*Ze#=YRL>|LBYRWjlWU`1yJo4z_0e<=UJufK9oe7fHM zz&|h3U;ecVY`=(&?|=P2|6l+6zxLbz^zn1wz5nh1@_+o_e*1s>xBISO2v|64@6mR85FvxYS`+b|741I=-_n_xGJt!wZ1NP<&E1}UTKS1^R@lhg@2Q7z}DU)bX7Rm{w z6Up8$!D~*2#t>7SMOJPy)jrs+&O{|qRLeCrE5X1X&!Y0AqPk7X*K89F1)O*6chkCdsQV#Y~zeD_|Tr_(Y_a zN>a+sj0zjMnj`~8fEHq{JR;4fSO@SaB7t@e9fnt69K0l@~Y}P zO^MIQrI}O$NQaGVhA>&MASs6=ZgoX&5L#gtc3hP|V!uP<(dyby%}M{~%Zjl9=80^_ ze&+RPWC$N<(2L{9X6uxBGqN#|oR$m#1L0cUDVmU(K)ad;=Z?$lb}$^Dis*-ou0*9u<(G5My7588su}rX)>2#(}~sB7YDy97Qov znB?Pi)y0qbDAZJN36f9jV~9uvW>dz-MSXy?{Yd^DNR?gcnQd>*DXS)9_*$QRu@s!p z9BZRk$HWj=kMq+{f;&k4LEB0WRw`P*;FQVg%6g3vL89fF+Mv%!ADsYkFYqxS4{^sC z?}&^RmiaK_`5{zEAtWQOE`~ykctCA^Q582|m?IyPgiVkkV_uVLlA2((B`5?Yvj|Y2 z_DQQC-OU;HOxV}*q6&KaIa5?z>oGQ{C*VaYdANWKSkL=-Mp`>laW{DE39~@=!K>7z zFN>v!M#P3u9Cw~BxggeXUH=zY zPSHK=P`y_?KSapvJDnx067`)*j*^gqhI?L6GaJr92LPkR0^{0Yl&j*Qh-e2PYx5-r zLtB(=cJoU?seE%|#3o8N69y*Do|RniQKm_$!u6SO%Gw+XIV@vZfi&u?yxH3Dn&sm& z#`&=*IDh{)bDW+paajPAw)qw?tE{q!Pb(ivf$9d-+rjn$DYw38hFVg50axcdB7q)s zPp0;R-nnlTRO(WMh{2431$+m7068t;u&q^ZZHHzy>Y4#1;HfZg1WGLW{Q z@&U>+!rqpTi9)l!-WqYRyi?R6tQ}9dSu1L0s_TooDvIPOK!qSiNY#P*0Ar*$!Rr|YPsI(<7V(S07XhI*w&Nb9s=g>tYHBCP zyGk+xJ)=@^ainKZ4^>9b`$1TyNd71iK#QqSJ%})fK387UUZZ#6d0qN(n~Qi^PtE;c@5cXCsYG4@1za z+Zb=su_IUyeu_yO<()uG+258B=T%1C4t@9gj9M=IOYW59?;L%&WR1Af||85WonqE zw>ZwfB8McSSm7;p65@d)_B`L7;nyZuJ;MM&KXF_Lc8st3q9kboOoSOXi+g0{?KG%E zSFz2}AEav~M)(HMU$cp&w50&f^hn)xlyXrS+TREhr-n-VeArlGF(nng*Wt^sYQIY< zA(Dg?Hb#lt51_1=6Kz15_{w#8zy;Dv{r2^&=#LAd z4yW0Bw0}UrzAImpA8*H`@m6t<)|Vua9b`=OP-aU zBGCAuzA}|Tc;({@woe?rFqIujkn`4IG$w5vIr#fh@}T{=Oewu)95Ba+ zenGIRq%(@+mI2aj=HoURtT6wepongL0=iuIth1?o?|{VhPs(DGL7#X`IoK-OOzzrm zkWKhmqXtk!xY&}=Y4w)fv$dIOOp<0>yBA)AB2~fVI|)dTX*Av9iZU8ivCL2foD1bTv`C{6pbaERabeqF z38IP~C>T1uKYaY<*DqhcfBLxp+1CNl0N*|Lj9mRaHnW%MThu8@md|xdFQyLReDyCM zX!0h_x~H)*+pvtLRaXc}KLIro9#nroEp>cTWhyR&AZ!hu0sALcs=U-h0-wF4`j8n# zsC*^NxC%BWb|%0yyzlD-$Hi|pnLGA-KF{{@;*Io%&7hmQs@L6CzBLv_Dh>hkYFqE-s&}xBFNZI;< z$++E26!8zyN0SactzSO;!^hA6uyv1}@PEmn|BG)#{;S`C%={~08`hMYbnGhqGS?I{ z$0Na<2K`Dgf|6E2a+VS^%^gooFND5)eJ|red65J`d0#k5Z>KsigaS5|td`ycd;sUM zpNQg83)(sQ-uan?;Sc}t%k}No?fcKaefRSBZ0k3TL|;3N)TD!FYFviGXAm1%j%I-u zG@Q#?q|*(8i>1&zNc5$?$!^SB<$>n!AXQ`LEoSNf&lf~$FbJNW<%JhXZV^5}Ot?}( zpS_~>2S>;bcYXMWFT2zHd|mN(ZRNM8T{F@^qNB=3c?~&}Pw^;pAz?lH-X}PSqF1@J2fOo=-mI}E2RJs4Ci zuzmRJ$A9|x?aL?MFwGPDfaV{lfk6&%24+YMX0IUlvb5w@AH2q{D#=JEOhuFf;;GxC zXX%fksq2fEAc>(abfq1tR;7MPg z3LA<-EIObE_K7uf0~8mEQFN$*60y2yMZjRx7mbMpGHsMQDWB=X>M2(81*|lzAw+F4 z1hvmRD)U}YIZ-5@RTs`DZE+DA9!;aU&$@~}** z__!=;h7+w!R~DBzgz3ciF1bRyWNOMsJ47V?8ghq6RSeN0jB%h9S_S7q9ald-zD|p` zr+oU;(*QN%MfvXHL=Ni@N^`iYC(tqYE=8Yg|7aU&9V{;@5188|OJ#Ib%!jU`O(#S3 zXGM34kJ@+R18?FjJx73L!}_RF-a1mS{DtIA%T*v zPz!NptXdQ!FA^76-zmEpcx5ArXF@!zN-53c8$&(0h+^;M^?J++_NCazxu4b-yhR)< z^+iD(u|&Q^l;+!xvKXyFi-m2@b>|}-iJ=F^KE$qD20IzKy==|Q8FU)R5vO}5OCaSk0I$ANJUd!ncaSqxGtK4_(1&aixc05JA$F|?eJ_2X+u5+m3NGIqiCiphb zL_~ZwaO@6XaAd4VuG$C7UmhR7t2zO*Q$2vuhyhY#MuWO>!pCFgQmAQ6#)HLyj-ACd zb83qRHLjC;3~3Rj5!n&-L}T69Mx~-6!alR*`Y+gy(Kifq`hOh^vD?TE)5_|{r`~3! zs4g)G7z8AWfklxIY%S!UMC3bp%zR1naq7rls3oMYFA=WZ@}~0H-^WAalb@rk{d zfT<4BUVOT2(yt|b%9%`kl2Gz9-as6cRwN@IoFuygJmv{z3K`;7%(mOg$Jdx)UqT4x zC8&aE%?dVs0&u>WLEt=%SM?t7Lp{dJ=A*LgWi&>@;)_?5HCKGdx0Ev22pt4{vIoeh zULZk+AJ=juFGS}`Qv)v6WQ@P}SyRUr7A|RIFA#H;x`7A}f zrf4EJl0mF$W~8$S7!NEMfyQ(JKuU^}n`|{H3Kgcf%IEImU3~F0kNR8`XX#eQSvda) zOt$iTR}6dM|6(O!w_(4@_zy3L`shz1QT4yRh&y&RXe1Wvj>1>_%U&}@#PbC&3j|21 zIPOgoL5_GN`;*f1u=mE*)sG*0h2j~ERfVdsxbi%kW@@Jw+mH|0V!54PO(SupdP%7$8Z|o6-+@)%Oq;y8PR44K#KJGPGKjC zaK0jj7X~Z2tc~|T$fhHPKo`n_gAxZ2AG?%*fy~0F9bw{npQhXFF>HkkVOjC~I9aAD zt@P3yYTr2`kznBsoRG;C60r$MzZnQ!uW7!sSH@u=_Gn(8a80r z3<#5XxlQxsUY2d8Dq{q$2~P*IWXiE=jPYheg#>~0DwS^^%!SEF7_pP-Ik94zsx$!c z9@rQlDq%Bj9=SEXdk)~RMEdTSk2tJfE^1HfPM|Kc)`&w|+Z3ga0p8z_V@6?W;&3pV zNTAJ}1f_sX6@~%`sxRuzXz9qv!F*UeJ{Zcq(n}gP74$K&LF%H4ch5~7ywvANWE7CR zn!zG!c2yws^`L_GxarDV~5gPx&%0{$A$GkK`IsF_I2309UCM}CKqG9pg2R|AWMWOvi+ z4eBNL(lON>-n<_VtT7cz1NB9z|B1qU5hn5QEdoIn)#3#O8(gLA;k8qTAX2y~bEbSE z;~CDzwNOVXzCdkTpc7!94tIT=J|2q4P)-VdDaQevG>*yC)`mW9C+i$h|0d(qcdCw1 zE$b}Fp9`0+!U@~xvy-hX1)ZcH#CDYdF-_@8gsJ;!%V(WHpBJlyV6{yMgvj2yZ{_q zN?9NM*z!Q{xS;fBYOqkEj`fLpD9KD726^P5Oq+Ed2o3$~6mrpB4+d5exOQTLBH|~d zT>!Hdqt2$>8~E zpD*8t$V3x=(}srqq&fUlvZbhM0Exnxumjz2CouCO%QF_iHqm$><7Aj*xu)0`W*EhT zi)UcIYBEV0*afQLNh1mZ{WAX{-^bA}Cu1w;R1s={7vo{Do!-oR5S~qQmm-NW9tJ%!qFS_Evg^9%h8hVSon6PzlvkH*Nv-)LXwTz=77lxrgCQ zK_!`6KY|J6IG=U_)#B_R!AF$Ngj1tvH3y&;`O3>Rb+V)LsP=3SC{LN_O{7Xf{IZHN z`51lYc&UoL$&3fGT6D_{Mia*Bi*hrfL#g}f2Rl^%o$zDbSYt6CX;OIjtN3P%S(1s@cxj*jmF zBF-3pgc*}6p^8ZEivF$6`(Qj;hH1qO!)jzG`8ph(L#{e8CPhPnripyI*6lk@W|GrJ zNESl%OJ5L5$3Q6O1nnsD%J$R*r8Kz^Q68WnsAl%8Ily4R zQcTRB;oHmR@DJF6E|>46$&lhjlr%M3xurxX;LWNkKhcH`s)Up#?X*SPt{91Qb$EZ| zMCLaeo+(i?K9xn)QOg``N~DN5=}i{%)K=Awgw|lcr)yt?74pyvp}mwSNG6F3DPoYN zw^80HT35l1HqTvV9*I)qf%|!WwXS!e5kC%A^cIAv#0M%kMeaNfv)!qr*a$N8kUcye><~h( zNlC?$z0~{E*G$DX7}a+~6#7POI8F>wnSL0xOiC4667^A5`gvGB0bmVjjP!4GM|gXL z0re6c9xJRMp|e(N1DZ>8_HUUBr6CK2VNw9!3jPFnAq+bb^^1~4o^P8f4by5Jy^+5X z5{os^ovXvx{5(One0-Ei2KW`yiSd_ft?~%GOhOV;8Xk}u4omcHwW=7ek2@1d73yZP zg1Y{III7Rma6Y**qjbs_h1SX^{2Y1yUEq&fMX7_NCp%_N0J9AqhDe7Nf;xSH0LcUU zILpHO%g2$x5PYp;Vs;9sh%JHk73S(Rpv>m9{WWvrq8QdP){ij@;!FdJ4xyJXEz0vY zv!+c)%Hsd#KU(?>8R-vCLL8ZFs4`G-D=%u-H60QQW}fKA)}f!=#o_YTg?lSKet9{q!>f!ouBe z?pSWH*n;WqP@UEQpht%m$z2gC0uW_lo$zS3!^=gfXi8)GScPMLD5eG9iiL1&7<3s3 zxaq~`jN8{=O?g*{30vyMjD)T)3JM02;i3I_>bq$)F(u|}kTD84kWu;xer7oHIgos8 z3Dp`8nmu2axa^hBXa)o!!T~vmjguNd1<4+$#6={l=3s(6Q4ygktf4wLF2>q^X+=f{>aEQMl*rdIZ!b*jr48xIGF1rj(05DvQe zib@CoVBL96l*y4G`0bQfm=ncC21Y|rburG^C}#jycyqcEQ?{ZhS{H0*BN>GRnwSj< zS7b~S`X{55)Ntx+WkwBiwWn*xqBw-7{eQfxM6ab-Vwzu1;=`6_=|P@dEM zO(!552`)~sT_J?Oq&hwdZ$I;CHp?Vf}Q2_-O^~h59BXKQKw< zNDL>qC_JHw$8`mtq`6#61EIX!Qel7`Rh5q2$AtmClQiIC$yeyAZ3dkkS0{%j15#JC&4vcVeeX3dJNauXyNoSdVg0mwZx=^1<*Ft1@ zr;KpgUl|ht4xO*wH8Ae_>M8jp<_g`0%=yj+49a*5kZ2Iua_VurS`}G_1K)#~h{=s%wBt?9C z98Pvq8f#%ke(V_BZ6|`Eq(Wrmb5e-loq%3@KqZ<}RA&(W7KcX1hfhz%n-)I{izN5T zQ$L%YMG4NluM8R0{pU?_5X2L$*OGarT*ij*g{~*1dqp8$H2V!0$|4QF|x_R z$O&Ff<+*>RN>O0Hw0#n7`AX6xYbN{CP5>aVRcRa5Q08A?2g-(bo@zcGH)DQ@usD5D z`^{vUa)Tfusi`w^)+KSdNqW;woW6e^CK{7WZN>3#dZ6@^>9EO1cVG6qlEasP@*RLQ zfkAKi0sw6zGvoxjOv;Lk8DbcZ!zqy-JB2;^2qx_6HT58%eL8zke-C$M%g5{*g)2aZ zO9GQ(nQ@%bw~lKHJswx?^8@O%6h%fgldn^8Pf~FKBbh7)B`xTPDHXF5K;NJUIy&kG zW|w?!6hzm!R=$0onHFNB+GP(wW~h3wRP{o?qAGjq!R0Z|&`wOO=7kavpCQivR2}VX zC`M#>6CJ1{Tl{=JsiE!ymT09RWK1za9w6q8>@~teKv0@lB?-F5WKZQC2Ev{;Y(@}s zTZ&6f)VDr3uf`}iH8OS8eusTB5YL|hi5YobWCz(%1soqes~*#|lNj10##jf(){3Vu zzE+~kL;NR;%i6MlmcSRuky<1Cs?&Y;7ZHYN^2g)&VB3jk zLs4nfs_@{J`*I;pAEzC&(xSqqZr2= zx>p$kf;c|d^h9_t%Aw8J(6Ngrfp|AcKti&L z*2|Wf1Y;>4(Pr<1QZbHcj8H8rvD`r|jygt(qre;D4{Flt3KytCLJUU<@xhRI8}qYq zWL#5nvfO~qu?xrgPBC{taO|53ZzWGu2u^>IBNlTciZhm88JUVf%pVdB=~aJw|dcgeXSy_2=1sgd`iy=r3gwIzrF|?{$+0a|#f?eNkVOlHp$B*I|N& zck>Zqyt~c^P|?0u*qM!E$UZEwN^^r4cbWAC$=2Vak|E?5$Xtj0fbg zc|KhMO7YnM(t4EbX%f7xO2vGcZ;ct%XsN0P_S9_|AETtBj!Hok6R6)as?#BaXV zYFSbGWL_ob3-^|baT-AJL<>hC^LbF$Ob9gGP}>oD!glb6YN4_#$li9FF>|2Si{Q*Z znt`BTJ_44oY(uBtQ6E%D(VSV@tv+{OsZ|1zHWhwglkDUDswc}A<)zz=3{;ulDe4HW zBz>M^)On;u2rqLF@mGj;YfQhyobWSq@Fif^7o|#T_W|Y@ft&(O35L@u81s#wjHLn^ zVk>57&;b)239yc#TYmCL_1llah`>NC#y7nZ%D-hU=hy1?l&yu?E=ogqM|q-$ySF@ z$Q8aJn-x&>a>ISOBq-MDvNEUweFnq|g@!uR$J7^@@wPUgs-1o(VW*~XAdMyEx6<+J ztM-}ooH1z-Rws*>1{gFE3Rg9oRh7Up3Cz#)^j^E59U+E6r+iV^ zCF>qwNtffASmS|g{OUZ|HQD3n{O6%9T{c!(=P23h`47gJ62y1nXi_CJ# z3=IyGz7D6Fz=B2p!W=3~*EHIQGv zTo%`^==`+2r;$6+mBME&6#yBCPE#zm)D!k;c0@G%jVz6%N2}BQLnNFjWcepy1vmqTQe-g-gaf!XtW$M44DR(D`%)?*Z{# z-zgTKN0%(j4h;S3OiE-@fD&6d29TNgRu{uLccc*m@nvLcAi77B;Y&P~knxzT*z8D* zMfnh#q^`9@jpwRFT-#K?4>Sz+uGp zEGsvx8N{JEfHISEA!b+7=1;1|@RE!zAw^Ww%>iMG0jC0_*xJfF^|-ziOaT+C$;A2} zB+87$OCv`jD+V6|>R>XpKEm(81(_SHtGvY*j2J*#U%J7JKm*mhK z>5tY6i!YU_==joYzJf`Ytc$Z85lG7tig)M&?dO_3kk^^QV}sd@DzcdDyvlGeDH7Ch zB8&s_LLyLmWN4e*6jLsGb|NKudY;VXfz%M0d?uI)a0rB>_Mjt_2$n(J!H!oxJ|c__ zB7<_#8pMc9p-S7M6-DjjzcS9zhJq^nQ#If_PtlJuu7UtxUo_v=@PE#{6;((nqWHn` zMLqGJ^OeJdxd-%xPMH=QDK8zCdL|Q2^^3}62HLQPibRIQkJ(-Y=&u5dPFrTxXt|RG zgH>rWG-UrHU6|l>z4_Td6nP=l{Z+U=%!#dwHCIX4rXkc3-a3#7PD)CH@Gz%2elR^u zT|T}uV`2?XI3Lf_FM|5fqD0x^uF0St*8`gL1NjMdEBIp3p=<>f#rt@>sFSaFQl6^4 z01};jkBb^xML=j8Nm$Y- zuQ&*Zbta$M8)>nK`vm%sb8Ni&@fBvV<)}0i;+Zle!h@ADK4o+a4k;j=Z8@_?06C3s zAieqzv{D)248Q;S=}Sg{WF*A=yEwy_`4GBv$rcr`mc z<~PIL%-@vZ^=MFbglX0br7n~v*3qN@V5y(qCfzjXYWZt?xzjL^b_hWrlS26xVipD@ ztObTN!{(`N`m%KbK%g3#*dXZktWfztLQTb_`3mKzCN%}wnMQ6=Y{k9|I#*I)U2Rdt zQbx2>CXsdwVnUts24&P|$jmD?7&1ewXc8V;PJ>ehguypS^SC$_J)$sE(A7-hU=&Ii z2kv{ZKw?`M{djumAL6$UD&R&@2lnF@;9;_1CXv;Y_KYqPteP(!zk zr6V8DkSRK}Fvf36o(h>AS?CW_sKAi8U5p=C7V%D%k2Q9-M`*rMUAC)oI90BR3Qu<( z{R=-V%OhfFd-{ERTyJP6K3nu?fu1Vy1qrUwr5skxW$vd4RxOF=go zwBd*I;PWMVX*h1cL*M|;&{60&f~58Y7=xswyjNP(sSZ7WSyo=AJuV+$SIv2~Vkxy6 zsp0hV8?pm4sKBNIb|#r3s<~E!49mw?TI&xnbj#98<|28%sX@h6Yba5nM6?Tz*CZ%a zkbSBa^{bRf4Ry;{XL>vc6ezeUW!SyE0IDK}Gl^fB|Fmq`p&kSRN{JCnmd_*@&6a-u z`cBi%WmFF}2``2cl7*FTm$^ig@0bFde~V&>Cb*00%Rogjj8#+Oe=)$OxjRx_tT|Xm zX+HBDWHhKM18l%$Vmttl?Dg!0E&gc&VY@gg_i|-{;m8 zi~!Hm02B6&DIp0aOeDpF+E+e)V1_4R`F8ds+iXTTgwX_ul!-Ec)m#Mz4@8;}Dx-2Y zICj)#@2{>#p&Ko^dF|Y@90~~IY?VTx6EGBebU4|QP#PWqiQO9C;c-_tB=8zgOoN%yRgNq;7i z`<*)Ri4V3YI>^%FSJ9i)2B^=*&)_}zl^&y^7+oicVVBi6gbh&=M=kM`kN-@Vm)hN3 zq6ngwjv--az`~P&H|fEZU-R}umx9Bwgi8GMLal4%MN_nD;0cc@vzVi;Hh@6b^7vDo zUHMg|p4wkM7Bxl)Lw3gJL4JK1KB&0ONG)+az?ontvjrQ+b;2r^*v&FQGDM&nALz$R zSYmwiAk&x%8+N7n9D5y*y*WU>nMfH zNB?lGY2}F~C=`$~SYuGQ8L=iaQ$`36nFJ#x&UKB@*w@AEWz!X};FDT%hEs_M6go-z+ z6FE{!#_h56L@}}vIGddQmy5z*fb+bVL6+*?Kob=ogPXzz-zf@esm-U8 zVM(vFyr>hyNo?E(D}z(bVa`h64@2NKfYTe&J*FN@O#hXx$%Jw5bzc8a*=FAif%hF(1&w^VwzAl~)@Uh!SIt7&PUCX6&J{ zf>fP+Li)9CR)?mHLK7;Vk*>~H{8k)%M$a)7V&*UuK)?U}3<^d@P5cd<9hnqdzbIX? zV1sUHXC){Bqz!Q+ucKQaz*=&O_x3L;{N;Vn$f5+|n>}(YeAF@l3fh19UQ53EM8HWlc$CG6>s(*?-~hUHLXc=6 zNNXbI-fTRAllZ_arWAxSUpx%ySp?abUE}JOCY6%fc`{(ivC;7yWXTxl)sRm_Ic8FN z1K0-)>eDY@xSL{}Q{XB!okxxruv6T_*7_Dg2#SoAPyeJ&IVn3gFRqG-5y!T=bRsi8 z+K9z^?C83=pXpBIHp`hM1qFE%eNoxw#6UqYF@%X+*&_9E&p<{4CG1A$BVPg%+4+dI zHiBcyV@Qp&G=~Ad1u@x`NUe-{PT<<>$5+1!vd^>_?dqX3<1Xdr@nUH4q7xX*!>R<* zGUOrD=dmTEXaxxB5DL6ehP_D~FtY`6S%YN0D+xP@#{?&NE7lRV1mcNzNrj>m{&ySX z%blVc1q{=rTrnL%q7TU%5l#Cem1lqgJ|BTk9fB|Qv}ax|?$s**gv+K-YRXqn0p+vz``(q;jGkOhpcUF)>i zdyjx#-YHHzE*~T?fh>kd1(@jpsQB=~PZQwNckCymred%n=L%QhO;Y&R7u72)71GH%EG2oEE)s32kuQoY3_VzL8gLwV8I+(A~rl~O}+_d-G5*uY|X z1}6~{zIVT2JSjjLFq06mNl70<5WDbkqCZAI3CC9Nr&Al;0GNQDIo1U=PA zN8RS#LV6OaHyq;&RZFhojD*z$0Y=EwHon{7%tI7x6eM$DC>g7+$2>6xGyfNA6*!8o zf>^=03vm-J>?{5#%aVzJ8F#15z#I8tz{|_#hc!^!>;-I4(Q5Jc-m!f^ERO$;BpyZB zNzEXU1WCUSLx#1~epIiicYuOaCS=@pkLz5Xb~lngT-s8xyd{*TF=a1@X?wl5Sdshb_p=H+@^I%WRh~U5-9-KnM?$yIxEJdGcI`IYYS45jud%Rg{vai(I( zSL!Ni681fxq_Kk#ZfaH)KF$V%3@Qtl#sfGExI-GLxzbAT7Yi7_Ar~u;Mw(hPL&ct< z1>}>r4{c1;%VDFGHBn0la8wesBV@?M(8te|5ESu&k37o5zH- z5gL4|YfCxF`4pt`b{R#KZe#=M8w4aC07&_Y6X{2y#bEm0MHpf39sn*4!u6ffvWN*L z5hBvUdPFUd9P({niB~R{#$0Q?0;UTaCGL*qFamHUFh8YHwLUHrNS*1h>*x~(4bQDsL z7hIT;8u?fXOF1u>S0m#pVMSt*HFFMG^*Cygg84v{4Qgq}s3Sgs=0KNsYAvyZq8FHf z--#bMu9)BsCJ+9jkRJLIBD07D6h~kF;&lqSnf?88(ey76Fyk!F%sWm80FG1KzV(Y@vQVi=KI*bKtQC?j zjj`nFQ@wKcxPKk%DiI&OaI|93C9%Z>s$8mZA)z2v$uM#7%jMQHK9DXGHzV^q|E zkclEVQ6RxtV6J9R4U(+iJ|tlf1Fbo}IxowmwHd@Frm$9yy1((rN)2@s;hw0X+6K9iX)#aO%OVz5)Fw`*Z~)8AZ@I*FF*BoLQ|kuNWcnWD zDuskd)zN@%%QsV^uH}of!KFlXzRY^_qs!2c5F13u-JG2*vG7Af262OvcktKjT+Fl< zn=TDgz=w%kDyJ^V^Vh%UV-DT$@cr6?V1f>Sq1kaRK@Vpi6W5M@cQ``aNoyO+s?%0e~ z7p%k?M=L*YF`LX8h>jL=!>k3wUOgyImv55U^=T-PUdxMWOyMaAEvYvr)u(jq%nJ?C zrZ5NmK2ntZD#~-wGtMH_&3uugS#|3*C5Bm3z>Z3!W(D6elpquCh=%?**NF6t`36Kn znyQdlW;6?+;cTUPSCRvqTa+|cYWfq?P6amj9H*G>?LQweB`l=nk_Lu)N+&G(f=-o2 zl=AV@0{~scXlaQMaZaDJ=m3Zkpo~M$dBJ?D!7G*po;E-k7GS~8tfKOwAxCH@>W?^G zaH}jHc`VfCmx5vM!}gzubM zj0oZxMBjjl93Oy127G5a<4gF!Bg7AdX_t9H1G_swQDk&@a5w76kncbl?8R)XQx`Jri40RmPcKsz7B(e=RKIxq1b(1F z3l9kf@&oLc(J7E@SK45i`y5%2lEZ4M1xfK&(<1w9oKk^;QPHAFv-Mj*uT8m~X0CV? z1gyx1`OXzch9!J4^3nq$vT;=#Ns^iMUIEU-M3-n%*`%UEj+3T4tBF%#+4DkUv7n~b z$5g^~@b&3MzEp;jn$`K98VfE;`967CnCWGT`E(FOyrCEAVP;j-}#!82$STK@;y2^c{6+v(S*%{K2Z!Z_6!N6My!$e$pi}~N=A6y|jJnwqG zFprN2(KWA9&oH2A`1GLsd`Dea)#{?IU=8mv{K&Wi*G;xqh#7qDT?SZ>M%WVIH9<$ zBFby540(nlisokUl~#V$j&>Z3-M0QuaBO;qW4}i?bYtAP#3>Y;-m0O!DtPZpY*Ze z1|s>#Tu`4%J?AyqYXNG<6*S44of=Urc?y68AWY;FO!@5m z5XTh06?AXynmwB`!m*ib<1G$mfa}&sbmdH`^XCsH{mRwtc|WBk|Z}ZWLn>Q6us% zbpCW^lNd7kA>OMOcF<34O!qpGB*q-TwhesaU;qBUUPDj<|YESdLvRJ z5bte>DMBR&snZ*BSs1{z<|Jypdby~>VLM_Mot}tDT0nKDh=@5j2CSqfi}xVSFcw@S z0IU@hoQk4VeNo+KYCu^wvmN9EC6s-r6t$kj_q1Nf^f3*xgz_XQvM_t1luV$!sy9EA zGp>bLt|rL$vp8>Akknpsrn-ylY5c#5S*O`mXDjE(z8LdPl3 z=4BhHL+mvB&b)n3G)Avj+0unRB-_9OfyklGO02@w}r z=a9bMlb=>Tej4E5cfuYbl;4z+i(5kzp|$PUxQtOf(JD+by$kroO7hUa0X{%t&@#6O*8lE6^#FGCXeMW=s^;nQabH z7Kr1eL&FmyD+5u8IOUomKX|tA)AoHTgG9Qg3qp25CcuPV*@|C{*_f=nt#&Z+vMnGC4fOnoa>hseu^PlJ4HO@%_Ne2R3# z38XGz!FM*}YvGI~Z1MD$YZ_cHZ^rLu<9JM8Rf$I$gND}<4>I3%=VM{}pljF`(XFV} z1};0vH4#CWF?}=SEGmxi$~%=RWQ~9<{!lUs}=$_PycnkpY`GMKYlzv zZht=hwtw2b`A6%6(``nQ^}k7?pSJJ!m#@G4<=fxCeZPMB;isQ|_|yOS@$=vQ`M*05 z|Hp6tvK>Ev{CqvX|If?xmudKao4dE&I*;sX!{_TNj6Sy@l9EU#ajqmlKv7hSu|&z_ zvfJ|2=Xr~kH^3|(5DcQf^CPia`qsCpnwv4k95qT5|I=STdv-DYcYk|kb?~1qQ@=wZ zVDt!Pp)#fXZSaf01|aA$tt&Z1;h+lDkC11HO#saeG8Xwl7oz1v(h>-uEx?slFr-;# z5JnNmOmieV)}_uRFbYLH6bzRm>BS!}?@e#;)A8odFVF@K7XR{w{-0kU_{Gu)St27> z@5;I)-cSi=GieJ9&8ZXtL1N@OH_6Z=PKNdPwF*vtmj_S#L%&VJ+9j z!NU}Kfi#U`h;ZrW;Wl18Nz?iDUtZwt&v(bGulEH48neI0nI))@lt86=7*$zRiM>iQ zWd%ZSY)G|xQf1?pR5qSnxF2JJql!qFp&aYrAr2S`&3kQ~vB=3zxn?+A;hkH2>A>$+ zh=|X)(km>?m+fl>-u-lYy!mkb^}a$rB<{VjH?lcJso4?{6LTvq*`@X|=-*hlSKWB4 zeyhnrc4g+pTc6`AY*Jmw1&}GA#W?>VU)1=c%8^KjF#hVGee~KIJ<3Lf7y-?f9QVbG zKfS`++uz>Z#k238ojxNb{d)GVnhEsLIZgx$(suF^>_S~=_$6vuMq*;JXqTYe z8YI~OD!M^|=moL$Fi9;hlu12;PlIvk2Tg?vbdoPlPv4iyOh2IS@JkvEO{e1QkJoqq z@%_)&cVAxM$+H*FUV4G&U(*Y07)h%c%<;;*TeL<*ezyBwBAhcek%=?<7nGq5AY6g6 zHywld8DkVPlTP;{p3o|2Of5Jv3Z<7r&M zx#}@ZlbBAv_i!pN(4g}!mRm=9AU|V@H!JF{qAAH z<}0btwB)fIuvDnO?hTPZor~vEN2upvB3gUglwu5*4d%uu2!%$dmSFq$MRNP||J-m1 zx&7hGHao4BH*fIuL@6|a(L&e(`WVDa0;Ms-eN!ng<>`LY0Db0k?3dFGHVON#0+qSAZJWR47{=~iJyV7zps&>kH7r! z>YVNHRn_rOa%LfbEuw%%2Rl7kf5)wa>I#@(XEn%6K+ik|PT>WpDM_1~+s1W{uMUnW zu9=iav1k>cg}|toVYx#fuc=pss@~DPA{cQrev+&LGt)Hw%frV{msdaCC#5}k@uV_o zsI5j-o3hRifse@eR11+q3Pra9&WC-mxd`{@eq=s98kM=sv^ktGpEeU%Y)DG?fvK5 z1nbY$cB?XZqI)A=W7lD96_7;s)Sx7+59)`83}M2`ZDm20-(wP>;=NYhy_#* zkEHWLOU|qW?~RH`@)g4QEKJ30ss=EvAwXjQwn`utXdPd`93V6lwy2{~P~(%vJ5{uc z=>k&cyXjt+R~6VmlIu8+=2kPwAP_<#DX6lt09F(HC4Rh^CvW(<(p<17!v#}bQF#ik zS$9AvtzWYfBvN>Kn40dZ!-Tb7c#jZOT;p8xn$A`Fk*jk{06D_c>~cXXdA5d*c8@3u zy3C#-z>*kNcb7)R7$3xG7IQ&Mg=|({z6yE@c|fnv{~}qP))2H0N8kp4({;u!eqN`d zuoS*w)Znf0okEa(7SdYfmrlmmykwVnfY>&vsIzEHF3^RUBf^5FbBXbTtMYE}8}mgK z{KTL14QNPj(lvo()*zfWJ228+{(cJml*L+H;{fF$xS0->25Y>i7T81w4k}?TYD;$o zGDk;|u`#kC%BK1T0APNhmFWc0E&hTJN_e+9SuzHS)=rh|`HX7Ff07K>cnBVx#&i^^ z0_z8kve0HKKkg+R+*`PlgJv;?K<*S)ZwD!pQLxqM7ACtkUWW#nocCgdtLexwV3Qcn&P{9p9QfN&9$fQ?umvPNoB)mN*Z89RVw1;r z3gpa`i=5jWYsG zkPE&FDjI88o@^! zmsb%&Y5w}eQP^8=otTz{k`hS%ppT$b<9J6o){s4t1shR@MlvA}rDUf9(m$QfSSiwm zxtnP{ON%IoFHd6;;AK6Lfe>?-E&|hQI0dz13|%}(^xFKSigx_^b&5IAXc~MND}b0$ zc)>r5-Qu0v%YUVpY!=TZ76*9C=1NK_Z57TJE!7Z05*QX$*uW?_iEju%&80P}0XH$y ztosp}1xeklU&+-Cxwx?aA_J_I72Hu1kYe)~_N1}*3jU%pZeGF2PKme;@sCKe(yTa< z%cRH5N#%7Q@&J<&mzuEtk%qyY0%Eym((vK=6<#Oei8ODP3;~!o808j{Y1GbUyH+w?kOsU(Ht$HN-*5@U+ z5lJQdW*w5m8Fn)dFMivov>28%_3ZQ0Kh+~T|6M)u7=auF5`f09msjgLC|=713v=|i z6z36rHd-8-j1*D+N6^HRLXX;O8<%WtE^$RCR?vj{lBONvl{Ly{hg8gJJH`v->RMXt zygtq6LSD&=G4S(N=OLu#fOksd(W2opG(|WbCOCjX+QdBSjA|B;1bJcspH5~>WPU!E zPFQ@Q7M<(v6qRy=Tw+!+#0HLPGQl-iMrQDn3!E5c;z%jbmOwI%D+pSV5e=1u&7=Cz zmZ3;W>D&%mISr?KbW(vv+)}&f6bM#CTgt1MDwQ;oYcGZ!^9vECz3Bz#X5V3Ly+M*o za^5aQqwv;VYcrXHlgQ>f@qkSq*{RGd0Oi09tD4OwKoQ#wO`Mw%h| zpvqN!(UZ_qvf0*BvNSg_lopU}hkVBif$oYhr&BXHmu>6=eILZTA~{23!ZVscNz7Q5 z1ZUCH$N6Y}OqB*%fb1(%Wodz29Q0e`ol>cFkZ7fml13?q0_yN*DlkFcJ?7CP0Z|Y6 z*LZZxwz+=AB>MMcbJ50dp+ll5%R`edOroI&K8;C`jAfjPXml^g$v}ew&D(|8s!`bv zLZIe5O%Gxbva{)w(i$ACWyAdAE}xM&a_{7Xl~6hc{!=z)H<>#R9_- z%lQ~)3#P+i=Zvgnfj9ws8IF=g5;rh}VJr~G-?=t)4l;^8M%?2>Fyyrq3wu|(8K~SG zA`36jwW}^89+Tc^T);>K{*qrOQ7{q2fA}>GtvSl#tUZ{OoEq(Fey7k6x)0@m`9)tH zN{eAJ`~Z3a@#{=-agjXrpJuc;2)`o6^G6gt>dLD*o+`Ob4Rj)%$ipo{v!&@#`t>=; z7Ugu{rZvfsRK-pnmpKx-oe*K6Y~(!ZHKI-5n>?8Xi+zK$*FCWi^#eX|nw*a7TwI&q zBFP~TR=EJmHtGo#m`sL~rX}*YdKt1Jy^Zy$E>0PvQ{uCvDlr3~s*od@SLAAIJ3BOY0xZ`3pTW?L>lkZI9Fz%!d!>ebdVlS?E#KZ$aac0?JP&8rsEpl%6Ccx zDtJlL8|%;v<5aY!NQ^y&7ke_00Wp_yxf3pVXJsCM3=Hjveezb_DA$12@_46O#F#~9 z5_%6vr8d6xS7o0H)^5t-v_VwPI)Jlk6|JQkp~hv+FkjRJ0r3vH5g*{D47>>KkZiJN z>P5U}wpRw^Fm#UaAU!c&((wnNZ$r>;e=G8Sd>{OI{wUaK=jmYXl!KUtN;Wc=qKLJj zGN`vm4Sk8oQCi?}$=O0MK+kNdgMpe6Q8*ty-MoMQ@n6JMQSMLaBw}E|pkX#_n%-b? z5VaNP#SGLbM>K7s`3y=mYnUddt0Yr0yM zsP!XS(z4BWiU82M10BsQ>n-(fXM!-36Dy4XMA!iPLNk)O+SY=me@jpAo7EtX7p0X1 zh~+F^V^Ue9y`V~gC_}((6nGvikLp-+9C2kD)f9;Yz%0P@_|MtNznL!{TvL5#Pxi zUI(9ghK7`VOaHME=R36t-IYwkWCpmeF&lpX|fc#->e8ZK+g%GVX>3 z<;UovriKL!uwj2#kCV2>ntj1v1= z;O12u^(Q(DokjVWk@KxW-IX?KC~wd>j7!A`8o2?9m}IgF#yhnuEdbH8BO;q10n1Yu z!scLKN_Z8XlF@$1h^*cbdaD)!ur*k=nL}lMB1z`mMy6?x3NGXTlBf-#hN;eM4k%Z1 zBg1B0h*gYFSCP^4Z`3X>3beLG%v6|V^=ePd6oBgl1X3d@3QiUN)gWSeMp$!|pTLrD z`drr4xkwCBnW1igpO#9*lH+`IFdl@eBFwmpS4oD-U;!Bmj`mQ3)<#aRO3iSSVI#oK zb}>{|%R#Q=e`$)r)t!kB99e1zkxX>iHETB?6Qs6(>7$-Gf z{VwboK$8|1kYPnA{?6xYT2?ZIOH0tOkemdWwQ;l{B0T<20SmU&MYZiDRP2=#+GE}t zslJ>)lv)UCMNBP(;N~cUyyG0}U@Jhd=4P!P>m8C3aOO6V-x35H5WU`9EBdS8VvUg9 zh>nnq0FHVh>SiRRGTLU+!~?4ZQSTWyAp7Y%7&c%xw;!~ocDJ%!xh$0tZVDfnaaaQAZtl;J*J`U! zU6dxDBw0JQ1^@->FSOYZBkfE@e4E0V5jskuUSA?>rup&3QDIY*tba3S4u(qn?=oTmVnKw0 zTzBw`(b13zu#9jJ4B$8C(6?G`+tU=WOVQN=y`jlC0>QmuyabKZ4D4q-dX5HJSp;OM+3ZLo`eUI*J(2Bpi0kWFqPLqIz8gNkdsE zdMI6!efc5BHX!CLBS~4)EJ@o1>NBJ`lPD8XL5cH@a-*n7!-(%> z7CBN?JU%`h3Ve+nIM~*Swg&lulva3Fye9GxKbkd!o~FUhpemyoaplOMPBYrvX^^9) z!5Ef#aOH@%kCRrisKtCkChNY7Z{uYs`BUrR%*9kfp-8g%PHpj?ot3AoWKLqCm6!{7 zy2hP84VsFDaZrN}lnYBsCVT=em?w!hf8#{9qA0_UlNfyyq-{%(_ z3}+3jEuvQy4Cl}XB7*`|a0yL#=0skqv<`+?gQqZJgo77^wJ^Q}!jf@xf@r>T1>t;A z?=qKh%FRaReO0^9!dwn>SZ~#GSV+a6v3hKWu!AU()^Ju1wVHPnjMnG2(z)yQ8Gx>U zY*($y3p!Gk5NrUQ$w32K%vozyJ$|Uf1|E-1GtLK=w_UuhCVn|NIa3SBpGG@VKE7rxA+~K!2F0y{NBOg~*vf>kZP%bk;oZLyw~a5bvor5Ca@dHejAa?9?A! zPXG<6S(6$ab}Pi&M2reRp%OjhpprOomP*hcqXocjZTNb_x28VG6CmVLUo1riIG(*J za;*=%QJO+eLy47TQ8#)xosY33MeX>ZbfAoTfw=U>?gK$V*wMIrR*hCC_*89PVah9o z0IG>ij24)tv5L(QWehZksiQuG`aDERS!;TZ6Ma5<;0T2{pPOaJpe*qj%p)k{RPFPU z%KBGrWC%+5)JW+MPNBod54tFDb5qJ8U}}8|2u6Kbzfo}+H`CB;99^2MQNV;1A<nsSn@6@m}!kZIdxeD3m#NF0 z1_2gBd zicBq~qb`8uB<%ss6OWJIxp@xv)4XUu8_R-i!syKkOUI-eFfGal%_BXvB%m{)+V*Od zKpns^Cq7CQ-VvTpj6m3R=`UbJAX)%DoVA%4uT(%TQ;7q)WeDg6 z6%gz}@h1zFv0%p9bTE>lS{%h0z9g~!{K*K;((xLr*h@(sG2{&WsF@HGh+()k7&Im2 z2jEC;YB^B|X`_D>rt*ptT2*}d2ac_p+|8bm()?Y-i>8D5LynB}Fj=-FL7-4D%dg<~ zf7C7tsT$dJdKyik`sTFeJLBjt5qV^ zEWtD+0LVKPJSsi+E0z@A0ktTc&r{)ad3Le>7#DX#0Z36GiOLJA1-|WoTQ4DjOW9$~ z;ZuF76_LV_6pKzehLSc5-NXOtiAgt}^h>KN6|OCCo*HEl9!P+|+Cn{{4^zX8;ssff z{lLIFp^pDIaa#*wt~SH^2xu({3j#2J08j)rJ)ukzwQLutsDfSdAQ8#u@DhNgoT-gF zK~a7FeEGo#erYamE0KD{y4D0J&rzY)H)K&?)6sVl1EdK*E?FaEaNS~U4p@2u34y>R zg&0$y836!mfT0wEijzEkUGML)I`Y|U9=EfU9 z$xNy@OhuQVC05I5x+s#zI~7KxCtfx=XGa4d;ox3KV-W`W@5E+W8-5`2FMk&8yG~XW zlCvNk?~JO@sgO&uEr#xSIBwt$de^*IsFW3YGQ?jkx9Zf;N4`B6K}j8`AV6KsSxc%k z@0$%rA|<2bunpA)P)T`c{K@x!;{}k1bZlXVM?oklF0H-}8lHhVqn{ekq$C{S^|dwl zdRO?IWZ+XE0aR@&;$<0WCvw%GE*6KffZC`;Y&v4tNIwEGRgi{76(PxMPUKafs+xek zb|x=kx(Y_sOeLgfK%sA(WRkZ-5&2hXP;ypOY$%QNx6nDqAzKHwko(KtTMnN*PI9Lp9sMTF(|A!ZM5dtD zB1#5ZoTVE)R8s~)rWrvA$vi1ue0Rz=g=z&$b8Noa=D==`j@uKZY2-lEO~cdi`C2CX zu@qrr%-9Ht(wnF&QBTGMI4T0dfdBKI3bML8!&lzDM$jO$HXx5-=|}>yy@0$i*iMOd zgQ{#)wK-IYrDk(3*}OHQ2kJ^n8Aq#1=%Cb`9dTAlO82HMNMdY~m{*PHWc!n_+Olg1 zZG5M+&W5pYh9U(%I&fDBL}>>YV=r-~X)TT~2nO%PyRiQdA)%GtT*4USk51dP#$}mz zn7|^9PwZlRuSu&7?UfYBL#tsra)yYUQ8WO=A{652=~c2O)L!SJju`6XL}v}y4rGk{ zkT!YWLCL8|NGGIEF;oVE)vNI6Q|#NEmLZttS5~){Jw{tzMb&{vTH^6Ti4L%Bp*_10 zymulsz+98~!U`;?cLzq1UdTn|RJN}smem`TiJK^8QwYVKJKwPa3X@i-&#d%rlA8oU zt^uCu;uaQEhzYd?dNoe2IB6`n2|VC`MV8b*II#ED?1I5OecOQ_&e&YHurU)Am& z-+O>Lf^od>@lomEOeN&j3n$fmX?~Ue5{JV8)VI|QUNGzgvkU^F4rNJ+_@?Wy+s@Ap zch^7ubbWtZLx^X*PM+|AK^eXs84%3Gwo!l(sX=BevTQr`7Eolw0Ko)Q20`xSd}nsX z*YVFAQVU8&N`iZ9G?mImvN5d*F^*&aZjvGxQjzdFw!~vIvZJZ(K%EW{x;{DFpB)*L z+`qlPTcg-UfS>S@Eo0*^G$CHG_S39u;tOdUj7qC#3`?nn<@1+}P3K*6crq_+Y_+UeQ{*M`!ro#RLBeC6Kj!~NCG4>!ke-(O$e z-L|fudbCz4B-x|lDxs;jL~(T&rK3}o^bWzi4v_Y6G11Mh+N7mhVr!LvJqIqAs9^GziSZA8Xvtb8Y_?isF2^dLqOY@DR&dW3 z1@ocqfcCY@A`H0#!c}hq@9~g6putd*JsSpT8ITu_t^?&Mr|}ps>J51gNH2}GKkpYF z7=T_XbUWTdqX}Fm?SN&AW7%8kWz9q2w&qNWS2z2Eu_md!fGxXiTc{DAIDyPxI*~;G zfg}OCBVFwg(NEad9$m~I3TR9Jf@$N!-H@8f+E9RZ;t*toKnbUVhEM|?NW@mjrlo3H zGk8?R^W)2+SPSYTyss&G^fdLYsXNQGc}XT{O<*dOa7Ln&?XfEI4x_9RpYJsBs2m_! zfol6MCk2wLkY!lXHKyf z6Y7HWy$e04qb_*2ZpMO1DRsCiT#Y?7yXqRR#F#|?s`bp7GGR8#1~3l9h47;5Gf8W` z5ns)B>d$LXv0GSAs1L;?e7N_9&-3OKcR8yFCazK)2)zY>i85Ly9msf5Vw7xHR5)-G z24c8HQAC{cQ!r9B79#+y0!Y6I0BIKg2swC$D$%ZHno+c|`lUb!JHv4CoJp1CNdp1U zCpADAWQLA4bz;2qPsj(qF|&l+p^+T#RG;7rn;L=pLcTL0*Ha=>tS@YeHWTipv#vQZ zNftgVi)iVjX4;M!U?6@8X_R7&d90bjg+4Br0r!ckF=hyafhq!TG*2i9A)BW!34tDN zyi*|_zTWJaDYIrx{5=o`i3YJ|nhlZ#zNH8e6ZW8nl_j7-VhrI1ADaIcD@*SiB5*` zns}i!PsA$~I)g7u1w8_h7V=Ha&P@Xn$mM3dsE#xYFy)8|vBnPIG#m;vfTl(eBRT?9 zkhly@Wtnn~=d=bB&N|>}bF#O_#44d9(1%D*+*1GDe42KBtD984(B1B`fSnv7EI4)GE}PUde7m;pU| z-PGpIrfbxdG>ulNix~P6(dQ(S*bZ(5rgKfW8w5%e;psPiYxqf1gxYf2r*#$qcu)Vp zi`72Wx*@#0R)I@uWe$+jwXP1XlV$bB{~&2FxKM)O>EX!}b;y;lQW6E-1#DCE$mpU; zMq$<_t-#5M%$nGg^6hR)Z!(RX`tDU4AO!Ni6WYJVWs1jOP)3(nY-=~Ur_v5W~;g-h}%YQw>nKT8m(#K@k?6;k$BnJR>{LTjRB}4=eb~f-y!%A>!rKX~e{b%!^5DHW2 zFpfmdYO0_C<)eg%jtIIMA0OeZyETMwWDPRk7>hiq`!ma7%G$)PdctPRLJxjHVHIAf znxuIJvCT^g*R8|%*VJPC%gugCUL?)HcS;YLo+uG=M@k^OtRn`zNy(Gzh{>Lfp294m zX1~cfb+L*|ZH{zQ@HQkZK~<-#JZb8*t4GJIB%d5dg<9SF_ehJB6R~4N%5RYxxGP+MdR*^ z$s7V|Fj%JK>r zzrL_kK}J%gjkcMAWL!7^P+(LLtT-SZ>8YAq$6(WOBv}ED3e)1)T;hu5$ipx`sHv?= z)hm4^rZHd#(+3G^to41N3aKcK z0}*2j$i?1=7>EQ+MdWkYUz8t0pwC1@qz(0FGhGuFHsjklND5FQlA!81T6GDq2V1D1 zk+jsmgc%N;qnFm5$f+ht2yirHR3U1YKjqH9nZA33{R3eOx*VGfXx1U(1oexSsNIK{ zacrj|kGNSLwKQ9Zc^*=|ijMZ!1~zx1wH>L+?wCu*_tHt@^OQpHkz_a>f~8(S--GIn z;lLosx+Of#PX+_y2I>^r+>rwoG##BN)#1;Hg#>lk)L)c+@XbYMBh6aIv?humbmHY4 zKdfm2M?b3Q)V*03#}G=pZk z#f8vzN*9O*eva1$@K1xl)rY!MeMC`&Vl_|XN9M*;3jv9gE1O@5QTHNgUd1B<#loKC zfq!_*O3_}F++}6hfe*&WOIbbMDfU-K<=thf=Fxm`u#n28k=pcrW~xD2+8ztuxlnW+ zHT@a{DH{4eUi4hWPwj$Tk+(b*uvd8rCLLIw#calj@qguI|{vNXI= zQEI$XMq>tIRQ&R=#fiGAinq1hK3$(#NRdrs@-5Ls`gypv7#F!M~Mz?=h) zr5{4)R5wc?7@bZO`;Eqw>+`+rATvT}27ThJ2I6eq`+Y_hb83WEof6&)jK^`Y6{ee> z%W)yKn4f@Q^)Q*J|8rQS2&HnfDA)_58*DZzQpV`E`iGr?^3gRAWbQdydyj3JGF^~IY~lO z*=P-!hv_z*Cptm>0m;iLuUV>kuO`r-eu@H9)3CDLd6m|W0X8Ka^c{fPS%;zpscZJe zz`;(!BwI2z&g(>W)`E~OH6@v4*NkK8HS%zza{{_46*4>lISEG$OYL#D4S(+(o~3ND z6@-S4CBaH%2r|A?8(68-@Kv?~@lXkbje*jiTD)pi9lr7ht7Z~U)&xJaU|^bR#~rzc zfuxkR<+Zc$u+;6wZzN>ZuKpW2Q(@*&ai(Btm~1gjWVNLTyyiRAp=06fE%0A1zOrg&0ImiZyWlF*VpZB+P#LJ7#Qx!W(CZ4vH2Iuzx8-xI%D(s17@{i&*-dTa@zO<7yJ?>d-P)G_Z71o5PWi)h$SYXEc zaR27R_3`fJ>cKVl>`AE_Ed*(VWh}ip*&B?h)Zmo@AOrzH*o0FzV;}fh!kt{@fac{- zq*~n27Qz=g8>geDBP(wjw(>)J6=Kb!2EA{>#b(uvfCHsP?3~^Yyl?+rc;cU9Xn+?_ zNlP^)==>J20M-;-qWVx~HWCcq?(ARFa$cKDhr%~B+#Y` zM<_uX9Ie#JxXwV7DwJD?`wy3Q$J>uLeCh8WtT#BUJteyw+Cz%N?oMhX(26QzCZOsU zco4ygg$n+BHr19*=+QD0#K=gH_07qi_Bm`vo2SRsK5`R*{a}ZbQo;KGK9NPC4Yz3y zwJ8QV0OPyS2((FmdF(Hi%V$sOIpRss+cl%vCFE_2-5^S6fLj4b^%9~$0-~Q7S;d9qu{Xj2CkQQFwuLeY6X}YKsjiXb%Nsgeli?;{g z`11YLyXy}$-|Ga2$3T%gn-vhfc#@L89BcyGM_RsmHkS4YV2wV3DyZ4m-XI_(HPtE) zCgmCh!1&1Ckp2~o*pxn{f?*(ksk22oZWAAs{S`3R3q}f(3u!XF4gVSj3?P{=YLOA| zXuEs}OAGi-`*8iY_Ck(FmWpOf|ugLV-;lR89*fFzTZzF4Gv1$!J-?a~TNf zIRRTTt=m)|ktoOdjE|oR#yb`BJQcKEhDqn?rya=lVi^Bo6)t^FiV`HR028 z1RF1^su!M<5GZ&gWo#}5meQ|rzs3ahFui0RXdYSP&qp!_)fN$luQnG|IRePMHxmM4 zz98Z@jYVr4F}V2eGNn&Xlt}W{RGMTB-Zn}siO+qnWJ1l`QG1U@G0Q0G zfo#y|vN-HWV>3TK^br#lHlb?fxJ(#?fFlQQdJVJ#K+@gkmAYc74IrY(?hx5jC7X-7 zA1}wex`l*IGlCx|m$cks@8~>b9KeB`8mkA91^!b=^fZ3htpVO$g&9Jy zuzxULk148;Y&cvjf~s((u$v&3YuKsYWxlAKC{cigOjmTIp8*^2C^ELF?RYm4kT$xI^7(XZ~q3L*NIwoauZNar-coH$5~(M^chOAuR$)TDl)3h z$wHHdzCw-Ud6q35K?57sUE<_gs2V8{6+wgVN1Za>X$)6-LsXVA8x56UAqq)HDR>)C zq~X)GAqceGjTrC^BJlyBtFkZV$B%HKN@$=tg*h3n!o<*ED#TE=4*jEn@hc`iGFQvq zoeDt*VuEaEXOS^HX{g3nTOxZXgaFTZP{9p7wr#FMvvt8X3OHV_0zT^_sK4TVMm@4< zK-GwGuqeuahIG`MOSA)j$iGjBvJTvLe#PWCCVDI=8hWVuT!oQUXhd?klB^V(jX+~? zfJQ{tFn>!z(F&2sG9#>p<}309$fye2*vJx21=A}D6m*RPD`e7|SX6Rf`kN>$SfY$4 z?l)IM^-lCFYRR*6;uD3XPwx;0 z^Nw<)4`{@~6LuBtSvDwQ0TCigLtc;?$xq<|N>kR0u?S!CS5)n*5lQzm;srRB_KmO-;j7Rpiuo1jP(HKerugduL#>rZ>Fv56HN~8v(LKRRP zu>eJ&0J4xXdUpstFA8Bviw|Z5B52Qq-8rC8xxwPRylPnClc>U|09-22+y7`6WDtKF zP3C-rMsrKi+`<8FUildMXaW2@?EnR$97y%ypkj=;Xvqr@o?dVjV$3vQXH{(tT^X#- zIEPepuKG08MqoOi!OJ91BVWS$E7Y2XF$baA!Ep;ak!QfZRy=UdY=%@VUCnoDU`2se znb14|Y87-U2?ksU1!w>}Hxvj1=~yLb2N7rE39(_yf$^f6&jwC)9%i*5^U|4Yj2+UH z!X9O59cm}$5Xq~!^o|w=A&0%tG{)SK(ALXmSwQ z`CmE|`YIit_|0K+yi=zQ04x-;HomZ-dqJ0@wvaExWeNzTw71@DmTZHnGUn@I*iTT_ zu6GjI;e}cftI^l;va%;80z$hm<-q!OAi8>k1&z<9tb{kIh5$)|>TdoRke2a&vPlJ6 zZoC0WtQQoj1Vci#`!v2rXH1!q-G$Epr_`s)-1FDBC2>eNfwYU6YG6MaWOf?vGBTp( zfm9^vZ5vz35;!0O_^QDWu*Y|5F2SVrC4-NUr zs!JpyFsYnXCP2byZlqW}UI%A4IiIgttTzF-oA7q%Ovj6gn}DSR&~_B$kDH24N8<@L zqyg5NK-kR8d8eVvdTiqlX0#MX9mp~_5(en~F?fpnDXPWHXuoW%#x@hJ(0n9`GWgw4 zgd;N)NQ(l4P=Xx~_n$xfCJK5=$VGRRMOg;evJAn8u`hWOdyT|p{|0XJqR5jlJQAiA zEaSx>dI!nD#uo@I)3d>90B<>_iJ6pbN(Z~SQPl<&as181$OGvtq++r#l`iV&^~K?M zeS3Lza|AqGFj0NXsX{y40fwUci2kbeRD{SoY6DoJW$eC8MkzYXyHKYzxMPHei8-VZ zm@a?LjdzL^6gK1Y|QLQ!|3pn5GpS`Wim+Y3b2A-cBN+j__<3~>V zP3eIFS8YLO2y$>$M6&=z=VDY4kQG`f#s~Dd5E7y{0KZ1kSjfrs;rOu`df2-whqXCu_)&_!-Exi@DgHH;Z1~ESBTY78 z0Znu&7=` zAkB_z(A0l{!_F*l)cgVRYmAK?B!tJnAe2uWNkex+yOTU}Pp(&cF>gbes4rIS(?J0}HN8Tk(B zf9H#KOca57#Ivf>jI{wO8%8Fkol-se?y7U}zXXs5#FhcmHY~4X(F~67RK195)a1m- z7(i5w0%O_kD^$pJQ;lG6ym_pLt?j!5Qv^L?FmvLY#V>f#Q|g!Xv2a+Mi=`7OpO+|- zM2OI4W^w5`@|=<|khp!xJUFlCg36oBXiX+@MNw5`1ZP1i1m&axz7n$mS`~>zmk(O;R*LCLxu5k@r&Py-Ixfu&MMogh8KxMITuA#_gUG=9UsabHgQZng?sxQWNE~xVA)h_9DZDdosbRp@=c%iE<^?33U-G?70 z#&BJ~uRmRi(Z!k0kI!i&14Oltj#_I<&Z`~;JZYdnMldbqCRY}4Fi<&I8cAo3G{BF# zp6?VzOnsyBr13KF1(nXrOZ{IJ1>*#65eAa^_~csnJfigJGK$TdAKUn$D&jSVICnjd z*F`d<(rwm7e;%_1<`oTV&FthA!~7RgQ#h)mG+(p>hVoPLM%^yMtvrL)*KnnGOjjl3eyODs^LyO!hY+It?e2k|; z6eU1pH{Pkpjwb^Pg&5OD9w8DM`ur3uTB3kqYmt4DZ&d4@2*-C)T#9FVhlxEE+a2f1b{hCN*IY`E) zECG0>l*6`ej$BG)5cN9lx05@^#~089DUVD&(*%u;YA`jg0tAfgBu^>YjWJZz0#h;h zq!#23CeryCzCIj(eDmS^?_WH7^|S}uWni{S8T9SmPJqi3jzWE1-sFQzu<0RDW5y8_$k2IslqQnZ0wGTwXRv-m( zVILPP1YAq5{!x=}ivZRTnjRQv4%i--hJ9hwfQE+01YL^0O{-;Y++~ajp*~~=kgvrE z4Kfdc0R`1}gck%sJ{*5#D0caOVXdXip=%=c@<62ERFTVvQJ{dq%SIR)YZ9PF zrLLKcY(v{x{zxsUXZ+C87@l95X6#4DM6WK}CrPtVQ403I%y;G z7XRttr@Qy>Z(g6Jm^gj)Op*2P+lVkki{B&36fM-4ph5V%_F8QNJkRz8?$Al8LOaE! zP8X&IqqYr|aAKz+A(J+J=ho8at(EuO3>} z2xvn{!qkR;@M7@HkbFCom25MU8Ud6*9*_WXdD5e)Dj?m;U;n-9TmH?3n8>*}{Ce}r zaqy!3`J(`u-C&-g9DCHOg&t^)dy)>2KnS3caUc(xsF+pMf$tu>P0!?OhrNtT*~}7= oP<*Y0qC5degr*C+(bdM6LAcy~gWR+jSy!g%4e?h|s-zD83&xgD4*&oF From a6d4b2a527a367d3f2088c21ac9ee3942865e2b4 Mon Sep 17 00:00:00 2001 From: matheme-justyn Date: Fri, 8 Mar 2024 06:22:10 +0000 Subject: [PATCH 16/17] 20240308, failed test on SageMaker --- demo/dev/executable_smartnoise.ipynb | 1332 ++++---------------------- requirements.txt | Bin 3354 -> 1587 bytes 2 files changed, 168 insertions(+), 1164 deletions(-) diff --git a/demo/dev/executable_smartnoise.ipynb b/demo/dev/executable_smartnoise.ipynb index aad74b2d..76d5f0e8 100644 --- a/demo/dev/executable_smartnoise.ipynb +++ b/demo/dev/executable_smartnoise.ipynb @@ -3,7 +3,133 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting private-pgm@ git+https://github.com/ryan112358/private-pgm.git@5b9126295c110b741e5426ddbff419ea1e60e788 (from -r ../../requirements.txt (line 56))\n", + " Cloning https://github.com/ryan112358/private-pgm.git (to revision 5b9126295c110b741e5426ddbff419ea1e60e788) to /tmp/pip-install-vn8m0m34/private-pgm_80e5de69f17543b59c34dff626211cba\n", + " Running command git clone --filter=blob:none --quiet https://github.com/ryan112358/private-pgm.git /tmp/pip-install-vn8m0m34/private-pgm_80e5de69f17543b59c34dff626211cba\n", + " Running command git rev-parse -q --verify 'sha^5b9126295c110b741e5426ddbff419ea1e60e788'\n", + " Running command git fetch -q https://github.com/ryan112358/private-pgm.git 5b9126295c110b741e5426ddbff419ea1e60e788\n", + " Resolved https://github.com/ryan112358/private-pgm.git to commit 5b9126295c110b741e5426ddbff419ea1e60e788\n", + " Preparing metadata (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25hCollecting anonymeter==1.0.0 (from -r ../../requirements.txt (line 1))\n", + " Using cached anonymeter-1.0.0-py3-none-any.whl.metadata (10 kB)\n", + "Collecting antlr4-python3-runtime==4.9.3 (from -r ../../requirements.txt (line 2))\n", + " Using cached antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: asttokens==2.4.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 3)) (2.4.1)\n", + "Collecting boto3==1.34.58 (from -r ../../requirements.txt (line 4))\n", + " Using cached boto3-1.34.58-py3-none-any.whl.metadata (6.6 kB)\n", + "Collecting botocore==1.34.58 (from -r ../../requirements.txt (line 5))\n", + " Using cached botocore-1.34.58-py3-none-any.whl.metadata (5.7 kB)\n", + "Collecting certifi==2024.2.2 (from -r ../../requirements.txt (line 6))\n", + " Using cached certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB)\n", + "Requirement already satisfied: charset-normalizer==3.3.2 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 7)) (3.3.2)\n", + "Requirement already satisfied: cloudpickle==2.2.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 8)) (2.2.1)\n", + "Collecting colorama==0.4.6 (from -r ../../requirements.txt (line 9))\n", + " Using cached colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\n", + "Requirement already satisfied: comm==0.2.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 10)) (0.2.1)\n", + "Requirement already satisfied: contourpy==1.2.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 11)) (1.2.0)\n", + "Collecting copulas==0.9.2 (from -r ../../requirements.txt (line 12))\n", + " Using cached copulas-0.9.2-py2.py3-none-any.whl.metadata (21 kB)\n", + "Collecting ctgan==0.9.0 (from -r ../../requirements.txt (line 13))\n", + " Using cached ctgan-0.9.0-py2.py3-none-any.whl.metadata (22 kB)\n", + "Requirement already satisfied: cycler==0.12.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 14)) (0.12.1)\n", + "Collecting debugpy==1.8.1 (from -r ../../requirements.txt (line 15))\n", + " Using cached debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.1 kB)\n", + "Requirement already satisfied: decorator==5.1.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 16)) (5.1.1)\n", + "Collecting deepecho==0.5.0 (from -r ../../requirements.txt (line 17))\n", + " Using cached deepecho-0.5.0-py2.py3-none-any.whl.metadata (15 kB)\n", + "Collecting disjoint-set==0.7.4 (from -r ../../requirements.txt (line 18))\n", + " Using cached disjoint_set-0.7.4-py3-none-any.whl.metadata (1.9 kB)\n", + "Requirement already satisfied: exceptiongroup==1.2.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 19)) (1.2.0)\n", + "Requirement already satisfied: executing==2.0.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 20)) (2.0.1)\n", + "Collecting Faker==15.3.4 (from -r ../../requirements.txt (line 21))\n", + " Using cached Faker-15.3.4-py3-none-any.whl.metadata (15 kB)\n", + "Requirement already satisfied: filelock==3.13.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 22)) (3.13.1)\n", + "Collecting fonttools==4.49.0 (from -r ../../requirements.txt (line 23))\n", + " Using cached fonttools-4.49.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (159 kB)\n", + "Collecting fsspec==2024.2.0 (from -r ../../requirements.txt (line 24))\n", + " Using cached fsspec-2024.2.0-py3-none-any.whl.metadata (6.8 kB)\n", + "Collecting graphviz==0.17 (from -r ../../requirements.txt (line 25))\n", + " Using cached graphviz-0.17-py3-none-any.whl.metadata (8.1 kB)\n", + "Collecting greenlet==3.0.3 (from -r ../../requirements.txt (line 26))\n", + " Using cached greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.metadata (3.8 kB)\n", + "Requirement already satisfied: idna==3.6 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 27)) (3.6)\n", + "Collecting ipykernel==6.29.3 (from -r ../../requirements.txt (line 28))\n", + " Using cached ipykernel-6.29.3-py3-none-any.whl.metadata (6.3 kB)\n", + "Collecting ipython==8.22.2 (from -r ../../requirements.txt (line 29))\n", + " Using cached ipython-8.22.2-py3-none-any.whl.metadata (4.8 kB)\n", + "Requirement already satisfied: jedi==0.19.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 30)) (0.19.1)\n", + "Requirement already satisfied: Jinja2==3.1.3 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 31)) (3.1.3)\n", + "Requirement already satisfied: jmespath==1.0.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 32)) (1.0.1)\n", + "Requirement already satisfied: joblib==1.3.2 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 33)) (1.3.2)\n", + "Requirement already satisfied: jupyter_client==8.6.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 34)) (8.6.0)\n", + "Requirement already satisfied: jupyter_core==5.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 35)) (5.7.1)\n", + "Requirement already satisfied: kiwisolver==1.4.5 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 36)) (1.4.5)\n", + "Requirement already satisfied: llvmlite==0.42.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 37)) (0.42.0)\n", + "Collecting MarkupSafe==2.1.5 (from -r ../../requirements.txt (line 38))\n", + " Using cached MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB)\n", + "Collecting matplotlib==3.8.3 (from -r ../../requirements.txt (line 39))\n", + " Using cached matplotlib-3.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.8 kB)\n", + "Requirement already satisfied: matplotlib-inline==0.1.6 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 40)) (0.1.6)\n", + "Requirement already satisfied: mpmath==1.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 41)) (1.3.0)\n", + "Requirement already satisfied: nest-asyncio==1.6.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 42)) (1.6.0)\n", + "Requirement already satisfied: networkx==3.2.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 43)) (3.2.1)\n", + "Collecting nose==1.3.7 (from -r ../../requirements.txt (line 44))\n", + " Using cached nose-1.3.7-py3-none-any.whl.metadata (1.7 kB)\n", + "Requirement already satisfied: numba==0.59.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 45)) (0.59.0)\n", + "Collecting numpy==1.26.4 (from -r ../../requirements.txt (line 46))\n", + " Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)\n", + "Collecting opacus==0.14.0 (from -r ../../requirements.txt (line 47))\n", + " Using cached opacus-0.14.0-py3-none-any.whl.metadata (5.5 kB)\n", + "Collecting opendp==0.8.0 (from -r ../../requirements.txt (line 48))\n", + " Using cached opendp-0.8.0-py3-none-any.whl.metadata (4.6 kB)\n", + "Collecting pac-synth==0.0.8 (from -r ../../requirements.txt (line 49))\n", + " Using cached pac_synth-0.0.8-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.4 kB)\n", + "Collecting packaging==23.2 (from -r ../../requirements.txt (line 50))\n", + " Using cached packaging-23.2-py3-none-any.whl.metadata (3.2 kB)\n", + "Collecting pandas==2.2.1 (from -r ../../requirements.txt (line 51))\n", + " Using cached pandas-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB)\n", + "Requirement already satisfied: parso==0.8.3 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 52)) (0.8.3)\n", + "Requirement already satisfied: pillow==10.2.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 53)) (10.2.0)\n", + "Requirement already satisfied: platformdirs==4.2.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 54)) (4.2.0)\n", + "Collecting plotly==5.19.0 (from -r ../../requirements.txt (line 55))\n", + " Using cached plotly-5.19.0-py3-none-any.whl.metadata (7.0 kB)\n", + "Collecting prompt-toolkit==3.0.43 (from -r ../../requirements.txt (line 57))\n", + " Using cached prompt_toolkit-3.0.43-py3-none-any.whl.metadata (6.5 kB)\n", + "Requirement already satisfied: psutil==5.9.8 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 58)) (5.9.8)\n", + "Requirement already satisfied: pure-eval==0.2.2 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 59)) (0.2.2)\n", + "Requirement already satisfied: Pygments==2.17.2 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 60)) (2.17.2)\n", + "Collecting pyparsing==3.1.2 (from -r ../../requirements.txt (line 61))\n", + " Using cached pyparsing-3.1.2-py3-none-any.whl.metadata (5.1 kB)\n", + "Collecting python-dateutil==2.9.0.post0 (from -r ../../requirements.txt (line 62))\n", + " Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)\n", + "Collecting pytz==2024.1 (from -r ../../requirements.txt (line 63))\n", + " Using cached pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB)\n", + "\u001b[31mERROR: Ignored the following versions that require a different python version: 0.1.3 Requires-Python >=3.6,<3.9; 0.1.3.dev0 Requires-Python >=3.6,<3.9; 0.1.3.dev1 Requires-Python >=3.6,<3.9; 0.1.4 Requires-Python >=3.6,<3.9; 0.1.4.dev0 Requires-Python >=3.6,<3.9; 0.2.0 Requires-Python >=3.6,<3.9; 0.2.0.dev0 Requires-Python >=3.6,<3.9; 0.2.1 Requires-Python >=3.6,<3.9; 0.2.1.dev0 Requires-Python >=3.6,<3.9; 0.2.2 Requires-Python >=3.6,<3.9; 0.2.2.dev0 Requires-Python >=3.6,<3.9; 0.2.2.dev1 Requires-Python >=3.5,<3.9; 0.2.2.dev2 Requires-Python >=3.6,<3.9; 0.2.2.dev3 Requires-Python >=3.6,<3.9; 0.3.0 Requires-Python >=3.6,<3.10; 0.3.0 Requires-Python >=3.6,<3.9; 0.3.0.dev0 Requires-Python >=3.5,<3.9; 0.3.0.dev0 Requires-Python >=3.6,<3.10; 0.3.0.dev1 Requires-Python >=3.6,<3.9; 0.3.0.post1 Requires-Python >=3.6,<3.10; 0.3.1 Requires-Python >=3.5,<3.8; 0.3.1 Requires-Python >=3.6,<3.9; 0.3.1.dev0 Requires-Python >=3.5,<3.8; 0.3.1.dev0 Requires-Python >=3.6,<3.9; 0.3.1.dev1 Requires-Python >=3.6,<3.9; 0.3.1.dev2 Requires-Python >=3.6,<3.9; 0.3.2 Requires-Python >=3.5,<3.9; 0.3.2.dev0 Requires-Python >=3.5,<3.8; 0.3.2.dev0 Requires-Python >=3.6,<3.9; 0.3.2.dev1 Requires-Python >=3.5,<3.9; 0.3.3 Requires-Python >=3.5,<3.9; 0.3.3.dev0 Requires-Python >=3.5,<3.9; 0.4.0 Requires-Python >=3.5,<3.9; 0.4.0 Requires-Python >=3.6,<3.9; 0.4.0.dev0 Requires-Python >=3.5,<3.9; 0.4.0.dev0 Requires-Python >=3.6,<3.9; 0.4.0.dev1 Requires-Python >=3.6,<3.9; 0.4.1 Requires-Python >=3.6,<3.9; 0.4.1.dev0 Requires-Python >=3.6,<3.9; 0.4.1.dev1 Requires-Python >=3.6,<3.9; 0.4.2 Requires-Python >=3.6,<3.9; 0.4.2.dev0 Requires-Python >=3.6,<3.9; 0.4.3 Requires-Python >=3.6,<3.9; 0.4.3.dev0 Requires-Python >=3.6,<3.9; 0.4.3.dev1 Requires-Python >=3.6,<3.9; 0.4.4.dev0 Requires-Python >=3.6,<3.9; 0.5.0 Requires-Python >=3.6,<3.10; 0.5.0 Requires-Python >=3.6,<3.9; 0.5.0.dev0 Requires-Python >=3.6,<3.9; 0.5.0.dev1 Requires-Python >=3.6,<3.10; 0.5.0.dev1 Requires-Python >=3.6,<3.9; 0.5.1 Requires-Python >=3.6,<3.10; 0.5.1 Requires-Python >=3.6,<3.9; 0.5.1.dev0 Requires-Python >=3.6,<3.10; 0.5.1.dev0 Requires-Python >=3.6,<3.9; 0.5.1.dev1 Requires-Python >=3.6,<3.10; 0.5.1.dev1 Requires-Python >=3.6,<3.9; 0.5.1.dev2 Requires-Python >=3.6,<3.10; 0.5.1.dev3 Requires-Python >=3.6,<3.10; 0.5.2 Requires-Python >=3.6,<3.10; 0.5.2.dev0 Requires-Python >=3.6,<3.10; 0.5.2.dev0 Requires-Python >=3.6,<3.9; 0.5.2.dev1 Requires-Python >=3.6,<3.10; 0.5.3.dev0 Requires-Python >=3.6,<3.10; 0.6.0 Requires-Python >=3.6,<3.10; 0.6.0.dev0 Requires-Python >=3.6,<3.10; 0.6.1 Requires-Python >=3.6,<3.10; 0.6.1.dev0 Requires-Python >=3.6,<3.10; 0.7.0 Requires-Python >=3.6,<3.10; 0.7.0.dev0 Requires-Python >=3.6,<3.10\u001b[0m\u001b[31m\n", + "\u001b[0m\u001b[31mERROR: Could not find a version that satisfies the requirement pywin32==306 (from versions: none)\u001b[0m\u001b[31m\n", + "\u001b[0m\u001b[31mERROR: No matching distribution found for pywin32==306\u001b[0m\u001b[31m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install -r ../../requirements.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, "outputs": [], "source": [ "import pandas as pd\n", @@ -12,14 +138,16 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, + "execution_count": 3, + "metadata": { + "tags": [] + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\n" + "/home/ec2-user/SageMaker/PETsARD\n" ] } ], @@ -36,14 +164,24 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, + "execution_count": 4, + "metadata": { + "tags": [] + }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loader - Benchmarker : Success download the benchmark dataset from https://petsard-benchmark.s3.amazonaws.com/adult-income.csv.\n" + "ename": "ModuleNotFoundError", + "evalue": "No module named 'sdv'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 2\u001b[0m Loader,\n\u001b[1;32m 3\u001b[0m Processor,\n\u001b[1;32m 4\u001b[0m Synthesizer\n\u001b[1;32m 5\u001b[0m )\n\u001b[1;32m 8\u001b[0m load \u001b[38;5;241m=\u001b[39m Loader(\n\u001b[1;32m 9\u001b[0m filepath\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbenchmark://adult-income\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 10\u001b[0m na_values\u001b[38;5;241m=\u001b[39m{k: \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m?\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m [\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 14\u001b[0m ]}\n\u001b[1;32m 15\u001b[0m )\n\u001b[1;32m 16\u001b[0m load\u001b[38;5;241m.\u001b[39mload()\n", + "File \u001b[0;32m~/SageMaker/PETsARD/PETsARD/__init__.py:23\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mloader\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Loader, Metadata, Splitter\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprocessor\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Processor\n\u001b[0;32m---> 23\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msynthesizer\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Synthesizer\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mevaluator\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Evaluator, Describer\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mreporter\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Reporter\n", + "File \u001b[0;32m~/SageMaker/PETsARD/PETsARD/synthesizer/__init__.py:1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msynthesizer\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msynthesizer\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Synthesizer\n\u001b[1;32m 3\u001b[0m __all__ \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 4\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSynthesizer\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 5\u001b[0m ]\n", + "File \u001b[0;32m~/SageMaker/PETsARD/PETsARD/synthesizer/synthesizer.py:6\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Loader\n\u001b[0;32m----> 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msynthesizer\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msdv\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SDVFactory\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msynthesizer\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msmartnoise\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SmartNoiseFactory\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01merror\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ConfigError, UnsupportedMethodError\n", + "File \u001b[0;32m~/SageMaker/PETsARD/PETsARD/synthesizer/sdv.py:5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtime\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msdv\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmetadata\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SingleTableMetadata\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msdv\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msingle_table\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 7\u001b[0m CopulaGANSynthesizer,\n\u001b[1;32m 8\u001b[0m CTGANSynthesizer,\n\u001b[1;32m 9\u001b[0m GaussianCopulaSynthesizer,\n\u001b[1;32m 10\u001b[0m TVAESynthesizer\n\u001b[1;32m 11\u001b[0m )\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPETsARD\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01merror\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m UnfittedError, UnsupportedMethodError\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'sdv'" ] } ], @@ -68,7 +206,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -77,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -138,7 +276,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -212,61 +350,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 1 0.0 4 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 3 2 1 0.0 0.0 \n", - "\n", - " hours-per-week native-country income \n", - "0 0.0 25 0 \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\mbi\\__init__.py:15: UserWarning: MixtureInference disabled, please install jax and jaxlib\n", - " warnings.warn('MixtureInference disabled, please install jax and jaxlib')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesizer (SmartNoise): Fitting aim.\n", - "15\n", - "Initial Sigma 11.056041228448832\n", - "Synthesizer (SmartNoise): Fitting aim spent 270.8398 sec.\n", - "Synthesizer (SmartNoise): Sampling aim # 558 rows (same as raw) in 0.5135 sec.\n", - "Sync data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 4 0.0 2 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 0 4 1 0.0 0.0 \n", - "\n", - " hours-per-week native-country income \n", - "0 0.0 25 1 \n", - " age workclass fnlwgt education educational-num \\\n", - "0 371.264583 Private 8.479563e+09 5th-6th 16.57591 \n", - "\n", - " marital-status occupation relationship race gender \\\n", - "0 Married-civ-spouse Machine-op-inspct Husband White Male \n", - "\n", - " capital-gain capital-loss hours-per-week native-country income \n", - "0 9.268677e+07 96578.239577 172.18284 United-States >50K \n" - ] - } - ], + "outputs": [], "source": [ "issue332(\n", " load=load,\n", @@ -283,233 +369,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 1 0.0 4 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 3 2 1 0.0 0.0 \n", - "\n", - " hours-per-week native-country income \n", - "0 0.0 25 0 \n", - "Synthesizer (SmartNoise): Fitting mst.\n", - "Synthesizer (SmartNoise): Fitting mst spent 113.5179 sec.\n", - "Synthesizer (SmartNoise): Sampling mst # 558 rows (same as raw) in 0.4945 sec.\n", - "Sync data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 0 0.0 9 0.0 2 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 11 0 4 1 0.0 0.0 \n", - "\n", - " hours-per-week native-country income \n", - "0 0.0 25 0 \n", - " age workclass fnlwgt education educational-num \\\n", - "0 371.264583 Federal-gov 8.479563e+09 Bachelors 16.57591 \n", - "\n", - " marital-status occupation relationship race gender capital-gain \\\n", - "0 Married-civ-spouse Sales Husband White Male 9.268677e+07 \n", - "\n", - " capital-loss hours-per-week native-country income \n", - "0 96578.239577 172.18284 United-States <=50K \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 2 2 0 1 2 2 2 1 2 1 2 2 2 0 2 2 2 2 1 2 2 2 2 2 4 2 2 2 0 2 3 2 4 2 2 4\n", - " 2 2 2 2 3 2 2 2 2 2 5 2 2 2 2 2 2 2 2 5 2 2 2 2 2 3 4 2 2 2 2 2 2 2 2 5 5\n", - " 2 2 2 2 3 2 4 0 2 2 2 2 3 2 2 2 2 4 2 2 0 2 0 2 2 2 2 1 1 2 2 5 2 2 2 2 1\n", - " 2 1 2 2 2 2 2 2 4 3 2 2 5 5 2 2 2 2 1 2 2 2 4 2 5 2 2 2 2 2 2 2 2 2 2 5 2\n", - " 2 5 2 3 5 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 0 4 2 2 2 2 3 2 1\n", - " 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 4 2 5 2 1 2 2 2 1 2 2 2 2 2 1\n", - " 2 1 3 2 2 0 3 5 4 2 2 2 1 2 2 2 2 2 2 2 2 2 2 3 2 2 0 4 2 0 2 2 2 2 1 2 1\n", - " 2 2 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2 2 5 2 2 4 2 2 5 2 2 2 2 2 2 2 2 2 3 2 5\n", - " 2 2 2 2 2 4 1 2 1 2 3 2 2 5 2 1 2 2 2 2 2 2 2 0 1 2 2 5 2 2 2 5 2 5 2 0 2\n", - " 2 0 5 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 5 2 2 2 2 2 2 2 5 2\n", - " 2 4 2 1 2 4 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 1 2 2 5 2 2 2 2 2 2 2 2 2 3\n", - " 4 2 2 4 2 1 2 2 4 2 5 2 2 2 2 2 4 2 2 2 5 2 2 2 3 2 2 2 1 2 4 2 1 2 2 2 2\n", - " 2 1 2 2 2 2 2 2 2 2 2 4 4 3 4 0 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 1 2 2 2 1\n", - " 4 2 1 2 3 2 1 2 2 2 2 0 4 2 2 4 2 2 1 2 2 2 2 2 1 0 2 2 2 2 0 2 2 4 1 2 1\n", - " 2 2 2 3 2 2 2 2 2 4 1 2 2 2 2 2 2 1 0 2 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2\n", - " 2 0 2]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[ 9 12 5 12 9 3 3 4 3 5 5 5 3 2 4 12 3 5 2 3 12 9 2 9\n", - " 5 12 12 9 9 5 5 12 12 12 2 2 9 12 12]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[5 2 2 2 5 5 2 2 2 2 5 2 5 2 5 5]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[1 8 1 1 1 1 1 4 1 4 1 1 8 1 1 8]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 1 0 5 2 0 1 0 3 0 0 0 0 2 0 4 3 0 1 1 4 1 4 0 0 0 5 0 0 0 3\n", - " 1 0 4 1 1 3 0 1 4 1 0 3 1 3 1 0 0 0 1 3 0 2 4 0 1 3 0 0 0 1 1 0 0 0 4 1 1\n", - " 3 4 1 5 1 2 1 0 1 3 1 4 3 4 0 3 0 1 5 0 0 0 1 1 4 0 0 0 1 1 1 1 5 5 0 0 1\n", - " 3 4 0 2 0 0 1 2 4 5 1 0 3 0 1 1 0 0 0 1 0 5 0 0 1 5 0 1 5 1 1 3 0 0 4 0 0\n", - " 0 1 0 1 2 5 1 3 1 0 0 3 4 4 3 0 0 0 4 4 1 5 0 0 0 0 1 1 4 0 0 0 1 0 0 0 1\n", - " 0 4 0 3 1 1 4 3 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 3 2 0 1 0 0 0 0 1 0 0 1 0\n", - " 4 3 3 1 0 4 0 3 1 0 3 3 0 3 0 0 1 0 3 1 0 0 0 3 0 4 4 1 0 0 1 1 4 0 0 5 3\n", - " 0 1 3 3 4 1 0 3 1 1 5 0 0 2 4 0 0 1 0 0 0 4 3 5 3 0 3 1 3 0 0 3 3 1 0 0 0\n", - " 3 3 0 3 1 0 1 0 1 4 0 0 0 1 0 0 1 1 0 1 0 3 0 0 4 1 0 0 1 0 1 3 0 3 3 1 1\n", - " 2 1 3 1 0 0 4 4 0 0 1 1 0 1 0 0 0 0 4 0 3 1 0 2 5 0 0 1 0 3 2 1 1 0 0 0 5\n", - " 4 1 4 1 0 3 1 3 4 0 3 0 0 1 0 1 0 3 0 3 1 3 0 3 2 0 3 1 4 1 0 0 2 3 1 1 0\n", - " 0 0 1 0 1 0 0 0 1 0 4 1 1 0 1 3 0 4 1 0 5 1 1 4 0 1 0 0 0 1 1 4 1 0 1 1 3\n", - " 4 3 3 0 0 2 0 0 0 1 0 4 0 2 0 4 1 3 0 0 3 1 1 0 3 1 0 0 3 3 0 0 1 1 0 1 1\n", - " 4 0 3 1 0 0 1 5 0 0 3 3 3 4 4 4 3 1 1 0 1 4 4 1 1 0 1 0 3 5 1 0 0 0 4 0 0\n", - " 0 1 4 4 0 0 3 4 0 2 1 1 0 1 0 1 3 0 0 1 4 1 5 0 3 1 1 1 3 0 0 3 1 1 0 4 0\n", - " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[3 1 0 3 3 1 3 1 0 0 1 0 1 1 3 3 1 0 0 3 3 0 3 3]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1\n", - " 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1\n", - " 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1\n", - " 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1\n", - " 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0\n", - " 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1\n", - " 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1\n", - " 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1\n", - " 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0\n", - " 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0\n", - " 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1\n", - " 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0\n", - " 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0\n", - " 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1\n", - " 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1\n", - " 1 1 1]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:240: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[13 16 8 20 11 10 11 6 15 9 17 9 10 20 4 3 15 1 17 14 16 15 18 18\n", - " 7 3 20 18 7 16 11 4 0 20 15 14 12 20 14 14 18 12 1 12 9]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[mask, col] = np.random.choice(extra, mask.sum())\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\snsynth\\mst\\mst.py:241: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0\n", - " 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0\n", - " 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1\n", - " 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0\n", - " 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1\n", - " 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1\n", - " 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0\n", - " 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0\n", - " 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0\n", - " 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0\n", - " 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0\n", - " 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n", - " 0 1 0]' has dtype incompatible with int32, please explicitly cast to a compatible dtype first.\n", - " df.loc[~mask, col] = idx[df.loc[~mask, col]]\n" - ] - } - ], + "outputs": [], "source": [ "issue332(\n", " load=load,\n", @@ -519,56 +381,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2 0.0 1 0.0 4 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6 3 2 1 0.0 0.0 \n", - "\n", - " hours-per-week native-country income \n", - "0 0.0 25 0 \n", - "Synthesizer (SmartNoise): Fitting pacsynth.\n", - "Synthesizer (SmartNoise): Fitting pacsynth spent 0.2158 sec.\n", - "Synthesizer (SmartNoise): Sampling pacsynth # 558 rows (same as raw) in 1.6921 sec.\n", - "Sync data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.0 2.0 0.0 11.0 0.0 2.0 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 6.0 0.0 4.0 1.0 0.0 0.0 \n", - "\n", - " hours-per-week native-country income \n", - "0 0.0 25.0 0.0 \n" - ] - }, - { - "ename": "ValueError", - "evalue": "Input contains NaN.", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[10], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43missue332\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43mload\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msynthesizing_method\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msmartnoise-pacsynth\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\n\u001b[0;32m 4\u001b[0m \u001b[43m)\u001b[49m\n", - "Cell \u001b[1;32mIn[5], line 50\u001b[0m, in \u001b[0;36missue332\u001b[1;34m(load, synthesizing_method, scaler_inhibit)\u001b[0m\n\u001b[0;32m 48\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSync data as ...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 49\u001b[0m \u001b[38;5;28mprint\u001b[39m(syn\u001b[38;5;241m.\u001b[39mdata_syn\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m---> 50\u001b[0m postproc_discretizing_data \u001b[38;5;241m=\u001b[39m \u001b[43mproc_discretizing\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 51\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msyn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata_syn\u001b[49m\n\u001b[0;32m 52\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 53\u001b[0m \u001b[38;5;28mprint\u001b[39m(postproc_discretizing_data\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m1\u001b[39m))\n", - "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\base.py:483\u001b[0m, in \u001b[0;36mProcessor.inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 480\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m obj \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 481\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m--> 483\u001b[0m transformed[col] \u001b[38;5;241m=\u001b[39m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtransformed\u001b[49m\u001b[43m[\u001b[49m\u001b[43mcol\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 485\u001b[0m logging\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mprocessor\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m inverse transformation done.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 486\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 487\u001b[0m \u001b[38;5;66;03m# if the processor is not a string,\u001b[39;00m\n\u001b[0;32m 488\u001b[0m \u001b[38;5;66;03m# it should be a mediator, which transforms the data directly.\u001b[39;00m\n", - "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\discretizing.py:81\u001b[0m, in \u001b[0;36mDiscretizingHandler.inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 78\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_fitted:\n\u001b[0;32m 79\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnfittedError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe object is not fitted. Use .fit() first.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 81\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\PETsARD\\processor\\discretizing.py:152\u001b[0m, in \u001b[0;36mDiscretizingKBins._inverse_transform\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_inverse_transform\u001b[39m(\u001b[38;5;28mself\u001b[39m, data: pd\u001b[38;5;241m.\u001b[39mSeries) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m np\u001b[38;5;241m.\u001b[39mndarray:\n\u001b[0;32m 141\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 142\u001b[0m \u001b[38;5;124;03m Inverse the transformed data to the numerical data.\u001b[39;00m\n\u001b[0;32m 143\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;124;03m (np.ndarray): The inverse transformed data.\u001b[39;00m\n\u001b[0;32m 150\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minverse_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreshape\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mravel()\n", - "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\preprocessing\\_discretization.py:430\u001b[0m, in \u001b[0;36mKBinsDiscretizer.inverse_transform\u001b[1;34m(self, Xt)\u001b[0m\n\u001b[0;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monehot\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mencode:\n\u001b[0;32m 428\u001b[0m Xt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_encoder\u001b[38;5;241m.\u001b[39minverse_transform(Xt)\n\u001b[1;32m--> 430\u001b[0m Xinv \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mXt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat64\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat32\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 431\u001b[0m n_features \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_bins_\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 432\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m Xinv\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m!=\u001b[39m n_features:\n", - "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:1049\u001b[0m, in \u001b[0;36mcheck_array\u001b[1;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[0;32m 1043\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 1044\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFound array with dim \u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m expected <= 2.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1045\u001b[0m \u001b[38;5;241m%\u001b[39m (array\u001b[38;5;241m.\u001b[39mndim, estimator_name)\n\u001b[0;32m 1046\u001b[0m )\n\u001b[0;32m 1048\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m force_all_finite:\n\u001b[1;32m-> 1049\u001b[0m \u001b[43m_assert_all_finite\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1050\u001b[0m \u001b[43m \u001b[49m\u001b[43marray\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1051\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1052\u001b[0m \u001b[43m \u001b[49m\u001b[43mestimator_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mestimator_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1053\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_all_finite\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mallow-nan\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1054\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1056\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m copy:\n\u001b[0;32m 1057\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _is_numpy_namespace(xp):\n\u001b[0;32m 1058\u001b[0m \u001b[38;5;66;03m# only make a copy if `array` and `array_orig` may share memory`\u001b[39;00m\n", - "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:126\u001b[0m, in \u001b[0;36m_assert_all_finite\u001b[1;34m(X, allow_nan, msg_dtype, estimator_name, input_name)\u001b[0m\n\u001b[0;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m first_pass_isfinite:\n\u001b[0;32m 124\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m--> 126\u001b[0m \u001b[43m_assert_all_finite_element_wise\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 127\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 128\u001b[0m \u001b[43m \u001b[49m\u001b[43mxp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mxp\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 129\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_nan\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 130\u001b[0m \u001b[43m \u001b[49m\u001b[43mmsg_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmsg_dtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 131\u001b[0m \u001b[43m \u001b[49m\u001b[43mestimator_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mestimator_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 132\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 133\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\sklearn\\utils\\validation.py:175\u001b[0m, in \u001b[0;36m_assert_all_finite_element_wise\u001b[1;34m(X, xp, allow_nan, msg_dtype, estimator_name, input_name)\u001b[0m\n\u001b[0;32m 158\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m estimator_name \u001b[38;5;129;01mand\u001b[39;00m input_name \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mX\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m has_nan_error:\n\u001b[0;32m 159\u001b[0m \u001b[38;5;66;03m# Improve the error message on how to handle missing values in\u001b[39;00m\n\u001b[0;32m 160\u001b[0m \u001b[38;5;66;03m# scikit-learn.\u001b[39;00m\n\u001b[0;32m 161\u001b[0m msg_err \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 162\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mestimator_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m does not accept missing values\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 163\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m encoded as NaN natively. For supervised learning, you might want\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 173\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m#estimators-that-handle-nan-values\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 174\u001b[0m )\n\u001b[1;32m--> 175\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg_err)\n", - "\u001b[1;31mValueError\u001b[0m: Input contains NaN." - ] - } - ], + "outputs": [], "source": [ "issue332(\n", " load=load,\n", @@ -578,423 +393,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preproc config of Outlier before update as ...\n", - "{'age': ,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'education': None,\n", - " 'educational-num': ,\n", - " 'fnlwgt': ,\n", - " 'gender': None,\n", - " 'hours-per-week': ,\n", - " 'income': None,\n", - " 'marital-status': None,\n", - " 'native-country': None,\n", - " 'occupation': None,\n", - " 'race': None,\n", - " 'relationship': None,\n", - " 'workclass': None}\n", - "Preproc config of Outlier before after as ...\n", - "{'age': ,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'education': None,\n", - " 'educational-num': ,\n", - " 'fnlwgt': ,\n", - " 'gender': None,\n", - " 'hours-per-week': ,\n", - " 'income': None,\n", - " 'marital-status': None,\n", - " 'native-country': None,\n", - " 'occupation': None,\n", - " 'race': None,\n", - " 'relationship': None,\n", - " 'workclass': None}\n", - "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 -0.953119 0.366136 0.409053 0.776959 -1.152735 0.810663 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 0.74892 0.757864 0.955584 0.48598 -0.159918 -0.219043 \n", - "\n", - " hours-per-week native-country income \n", - "0 -0.044504 0.216869 0.212391 \n", - "Synthesizer (SmartNoise): Fitting dpctgan.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\opacus\\privacy_engine.py:638: UserWarning: The sample rate will be defined from ``batch_size`` and ``sample_size``.The returned privacy budget will be incorrect.\n", - " warnings.warn(\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\opacus\\privacy_engine.py:229: UserWarning: Secure RNG turned off. This is perfectly fine for experimentation as it allows for much faster training performance, but remember to turn it on and retrain one last time before production with ``secure_rng`` turned on.\n", - " warnings.warn(\n", - "d:\\Dropbox\\89_other_application\\GitHub\\PETsARD\\.venv\\lib\\site-packages\\torch\\nn\\modules\\module.py:1352: UserWarning: Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior.\n", - " warnings.warn(\"Using a non-full backward hook when the forward contains multiple autograd Nodes \"\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1, Loss G: 0.7107, Loss D: 1.3900\n", - "epsilon is 0.08246410416899833, alpha is 63.0\n", - "Epoch 2, Loss G: 0.7097, Loss D: 1.3898\n", - "epsilon is 0.6154321240229542, alpha is 21.0\n", - "Epoch 3, Loss G: 0.7048, Loss D: 1.3908\n", - "epsilon is 0.8717652885709554, alpha is 16.0\n", - "Epoch 4, Loss G: 0.7016, Loss D: 1.3897\n", - "epsilon is 1.0734433928301887, alpha is 14.0\n", - "Epoch 5, Loss G: 0.7059, Loss D: 1.3874\n", - "epsilon is 1.2474424384805656, alpha is 12.0\n", - "Epoch 6, Loss G: 0.7015, Loss D: 1.3895\n", - "epsilon is 1.403078289939324, alpha is 10.9\n", - "Epoch 7, Loss G: 0.6987, Loss D: 1.3876\n", - "epsilon is 1.5430774752709655, alpha is 10.6\n", - "Epoch 8, Loss G: 0.6922, Loss D: 1.3928\n", - "epsilon is 1.6748565545536702, alpha is 10.0\n", - "Epoch 9, Loss G: 0.6947, Loss D: 1.3898\n", - "epsilon is 1.7986930762464894, alpha is 9.4\n", - "Epoch 10, Loss G: 0.6898, Loss D: 1.3850\n", - "epsilon is 1.9160035051686128, alpha is 9.0\n", - "Epoch 11, Loss G: 0.6888, Loss D: 1.3885\n", - "epsilon is 2.027907968415127, alpha is 8.7\n", - "Epoch 12, Loss G: 0.6854, Loss D: 1.3891\n", - "epsilon is 2.135121781113915, alpha is 8.3\n", - "Epoch 13, Loss G: 0.6822, Loss D: 1.3884\n", - "epsilon is 2.2382637160168204, alpha is 8.1\n", - "Epoch 14, Loss G: 0.6828, Loss D: 1.3872\n", - "epsilon is 2.337827882631375, alpha is 7.8\n", - "Epoch 15, Loss G: 0.6835, Loss D: 1.3950\n", - "epsilon is 2.434237194672732, alpha is 7.6\n", - "Epoch 16, Loss G: 0.6794, Loss D: 1.3912\n", - "epsilon is 2.5278163462034815, alpha is 7.4\n", - "Epoch 17, Loss G: 0.6722, Loss D: 1.3944\n", - "epsilon is 2.6188388524326234, alpha is 7.2\n", - "Epoch 18, Loss G: 0.6723, Loss D: 1.3989\n", - "epsilon is 2.7076108306108346, alpha is 7.0\n", - "Epoch 19, Loss G: 0.6683, Loss D: 1.3920\n", - "epsilon is 2.7940664707675626, alpha is 6.9\n", - "Epoch 20, Loss G: 0.6670, Loss D: 1.3951\n", - "epsilon is 2.878763468386405, alpha is 6.8\n", - "Epoch 21, Loss G: 0.6687, Loss D: 1.3902\n", - "epsilon is 2.961464297854409, alpha is 6.6\n", - "Epoch 22, Loss G: 0.6657, Loss D: 1.3872\n", - "epsilon is 3.0425452652856495, alpha is 6.5\n", - "Epoch 23, Loss G: 0.6616, Loss D: 1.3926\n", - "epsilon is 3.122103446988952, alpha is 6.4\n", - "Epoch 24, Loss G: 0.6631, Loss D: 1.3951\n", - "epsilon is 3.200208539731727, alpha is 6.3\n", - "Epoch 25, Loss G: 0.6614, Loss D: 1.3910\n", - "epsilon is 3.2769350559807005, alpha is 6.2\n", - "Epoch 26, Loss G: 0.6637, Loss D: 1.3855\n", - "epsilon is 3.3523628060835255, alpha is 6.1\n", - "Epoch 27, Loss G: 0.6664, Loss D: 1.3881\n", - "epsilon is 3.4265774389666657, alpha is 6.0\n", - "Epoch 28, Loss G: 0.6632, Loss D: 1.3884\n", - "epsilon is 3.4996710497868895, alpha is 5.9\n", - "Epoch 29, Loss G: 0.6609, Loss D: 1.3892\n", - "epsilon is 3.5717428643995515, alpha is 5.8\n", - "Epoch 30, Loss G: 0.6594, Loss D: 1.3910\n", - "epsilon is 3.6428935706241528, alpha is 5.8\n", - "Epoch 31, Loss G: 0.6567, Loss D: 1.3863\n", - "epsilon is 3.712751905883079, alpha is 5.7\n", - "Epoch 32, Loss G: 0.6577, Loss D: 1.3827\n", - "epsilon is 3.7818141415719784, alpha is 5.6\n", - "Epoch 33, Loss G: 0.6609, Loss D: 1.3858\n", - "epsilon is 3.850205948937656, alpha is 5.5\n", - "Epoch 34, Loss G: 0.6532, Loss D: 1.3819\n", - "epsilon is 3.917468189518828, alpha is 5.5\n", - "Epoch 35, Loss G: 0.6551, Loss D: 1.3896\n", - "epsilon is 3.9840352850839897, alpha is 5.4\n", - "Epoch 36, Loss G: 0.6527, Loss D: 1.3815\n", - "epsilon is 4.050006670613625, alpha is 5.4\n", - "Epoch 37, Loss G: 0.6516, Loss D: 1.3873\n", - "epsilon is 4.114903091238218, alpha is 5.3\n", - "Epoch 38, Loss G: 0.6477, Loss D: 1.3901\n", - "epsilon is 4.179582102216282, alpha is 5.2\n", - "Epoch 39, Loss G: 0.6504, Loss D: 1.3830\n", - "epsilon is 4.242979684763249, alpha is 5.2\n", - "Epoch 40, Loss G: 0.6503, Loss D: 1.3904\n", - "epsilon is 4.306336090935168, alpha is 5.1\n", - "Epoch 41, Loss G: 0.6467, Loss D: 1.3944\n", - "epsilon is 4.368450711228463, alpha is 5.1\n", - "Epoch 42, Loss G: 0.6481, Loss D: 1.3939\n", - "epsilon is 4.430565331521756, alpha is 5.1\n", - "Epoch 43, Loss G: 0.6474, Loss D: 1.3883\n", - "epsilon is 4.491519093988257, alpha is 5.0\n", - "Epoch 44, Loss G: 0.6422, Loss D: 1.3922\n", - "epsilon is 4.552353368662634, alpha is 5.0\n", - "Epoch 45, Loss G: 0.6401, Loss D: 1.3860\n", - "epsilon is 4.612407286797646, alpha is 4.9\n", - "Epoch 46, Loss G: 0.6392, Loss D: 1.3932\n", - "epsilon is 4.671963825364106, alpha is 4.9\n", - "Epoch 47, Loss G: 0.6358, Loss D: 1.3937\n", - "epsilon is 4.731359885691218, alpha is 4.8\n", - "Epoch 48, Loss G: 0.6367, Loss D: 1.3966\n", - "epsilon is 4.789641290552096, alpha is 4.8\n", - "Epoch 49, Loss G: 0.6344, Loss D: 1.4051\n", - "epsilon is 4.847922695412973, alpha is 4.8\n", - "Epoch 50, Loss G: 0.6350, Loss D: 1.4007\n", - "epsilon is 4.905655535140821, alpha is 4.7\n", - "Epoch 51, Loss G: 0.6294, Loss D: 1.4034\n", - "epsilon is 4.9626644016048695, alpha is 4.7\n", - "Epoch 52, Loss G: 0.6293, Loss D: 1.3913\n", - "epsilon is 5.0196732680689164, alpha is 4.7\n", - "Epoch 53, Loss G: 0.6228, Loss D: 1.4126\n", - "epsilon is 5.0760439796888255, alpha is 4.6\n", - "Epoch 54, Loss G: 0.6300, Loss D: 1.4028\n", - "epsilon is 5.131782895986607, alpha is 4.6\n", - "Epoch 55, Loss G: 0.6118, Loss D: 1.4130\n", - "epsilon is 5.1875218122843885, alpha is 4.6\n", - "Epoch 56, Loss G: 0.6162, Loss D: 1.4176\n", - "epsilon is 5.242864373609633, alpha is 4.5\n", - "Epoch 57, Loss G: 0.6124, Loss D: 1.4177\n", - "epsilon is 5.297335920908565, alpha is 4.5\n", - "Epoch 58, Loss G: 0.6036, Loss D: 1.4231\n", - "epsilon is 5.351807468207497, alpha is 4.5\n", - "Epoch 59, Loss G: 0.6017, Loss D: 1.4224\n", - "epsilon is 5.406279015506429, alpha is 4.5\n", - "Epoch 60, Loss G: 0.6025, Loss D: 1.4320\n", - "epsilon is 5.4597004033036685, alpha is 4.4\n", - "Epoch 61, Loss G: 0.5997, Loss D: 1.4292\n", - "epsilon is 5.512907155723584, alpha is 4.4\n", - "Epoch 62, Loss G: 0.5974, Loss D: 1.4378\n", - "epsilon is 5.566113908143499, alpha is 4.4\n", - "Epoch 63, Loss G: 0.5980, Loss D: 1.4396\n", - "epsilon is 5.619296859313559, alpha is 4.3\n", - "Epoch 64, Loss G: 0.5923, Loss D: 1.4463\n", - "epsilon is 5.671241383942272, alpha is 4.3\n", - "Epoch 65, Loss G: 0.5817, Loss D: 1.4429\n", - "epsilon is 5.723185908570986, alpha is 4.3\n", - "Epoch 66, Loss G: 0.5879, Loss D: 1.4591\n", - "epsilon is 5.775130433199701, alpha is 4.3\n", - "Epoch 67, Loss G: 0.5835, Loss D: 1.4501\n", - "epsilon is 5.827074957828414, alpha is 4.3\n", - "Epoch 68, Loss G: 0.5829, Loss D: 1.4513\n", - "epsilon is 5.877966017103227, alpha is 4.2\n", - "Epoch 69, Loss G: 0.5753, Loss D: 1.4468\n", - "epsilon is 5.928650874011896, alpha is 4.2\n", - "Epoch 70, Loss G: 0.5799, Loss D: 1.4541\n", - "epsilon is 5.979335730920565, alpha is 4.2\n", - "Epoch 71, Loss G: 0.5725, Loss D: 1.4617\n", - "epsilon is 6.030020587829234, alpha is 4.2\n", - "Epoch 72, Loss G: 0.5712, Loss D: 1.4637\n", - "epsilon is 6.080411733176044, alpha is 4.1\n", - "Epoch 73, Loss G: 0.5642, Loss D: 1.4602\n", - "epsilon is 6.129839475434501, alpha is 4.1\n", - "Epoch 74, Loss G: 0.5707, Loss D: 1.4774\n", - "epsilon is 6.17926721769296, alpha is 4.1\n", - "Epoch 75, Loss G: 0.5642, Loss D: 1.4687\n", - "epsilon is 6.228694959951418, alpha is 4.1\n", - "Epoch 76, Loss G: 0.5691, Loss D: 1.4757\n", - "epsilon is 6.278122702209876, alpha is 4.1\n", - "Epoch 77, Loss G: 0.5707, Loss D: 1.4758\n", - "epsilon is 6.327357790594008, alpha is 4.0\n", - "Epoch 78, Loss G: 0.5639, Loss D: 1.4835\n", - "epsilon is 6.375530964286589, alpha is 4.0\n", - "Epoch 79, Loss G: 0.5652, Loss D: 1.4719\n", - "epsilon is 6.42370413797917, alpha is 4.0\n", - "Epoch 80, Loss G: 0.5628, Loss D: 1.4748\n", - "epsilon is 6.471877311671752, alpha is 4.0\n", - "Epoch 81, Loss G: 0.5608, Loss D: 1.4772\n", - "epsilon is 6.520050485364332, alpha is 4.0\n", - "Epoch 82, Loss G: 0.5557, Loss D: 1.4777\n", - "epsilon is 6.568223659056913, alpha is 4.0\n", - "Epoch 83, Loss G: 0.5670, Loss D: 1.4892\n", - "epsilon is 6.615734837571576, alpha is 3.9\n", - "Epoch 84, Loss G: 0.5594, Loss D: 1.4800\n", - "epsilon is 6.662655981812787, alpha is 3.9\n", - "Epoch 85, Loss G: 0.5555, Loss D: 1.4830\n", - "epsilon is 6.709577126053995, alpha is 3.9\n", - "Epoch 86, Loss G: 0.5576, Loss D: 1.4863\n", - "epsilon is 6.7564982702952046, alpha is 3.9\n", - "Epoch 87, Loss G: 0.5547, Loss D: 1.4850\n", - "epsilon is 6.803419414536414, alpha is 3.9\n", - "Epoch 88, Loss G: 0.5603, Loss D: 1.4947\n", - "epsilon is 6.850340558777624, alpha is 3.9\n", - "Epoch 89, Loss G: 0.5570, Loss D: 1.4874\n", - "epsilon is 6.896912311217361, alpha is 3.8\n", - "Epoch 90, Loss G: 0.5555, Loss D: 1.4854\n", - "epsilon is 6.942583958167586, alpha is 3.8\n", - "Epoch 91, Loss G: 0.5516, Loss D: 1.4906\n", - "epsilon is 6.98825560511781, alpha is 3.8\n", - "Epoch 92, Loss G: 0.5562, Loss D: 1.4936\n", - "epsilon is 7.033927252068035, alpha is 3.8\n", - "Epoch 93, Loss G: 0.5531, Loss D: 1.4931\n", - "epsilon is 7.079598899018261, alpha is 3.8\n", - "Epoch 94, Loss G: 0.5540, Loss D: 1.4899\n", - "epsilon is 7.125270545968486, alpha is 3.8\n", - "Epoch 95, Loss G: 0.5474, Loss D: 1.4922\n", - "epsilon is 7.170942192918711, alpha is 3.8\n", - "Epoch 96, Loss G: 0.5483, Loss D: 1.4962\n", - "epsilon is 7.216225114747892, alpha is 3.7\n", - "Epoch 97, Loss G: 0.5495, Loss D: 1.4945\n", - "epsilon is 7.260649789629172, alpha is 3.7\n", - "Epoch 98, Loss G: 0.5478, Loss D: 1.4869\n", - "epsilon is 7.305074464510453, alpha is 3.7\n", - "Epoch 99, Loss G: 0.5472, Loss D: 1.4911\n", - "epsilon is 7.349499139391733, alpha is 3.7\n", - "Epoch 100, Loss G: 0.5532, Loss D: 1.4938\n", - "epsilon is 7.3939238142730135, alpha is 3.7\n", - "Epoch 101, Loss G: 0.5451, Loss D: 1.4891\n", - "epsilon is 7.4383484891542935, alpha is 3.7\n", - "Epoch 102, Loss G: 0.5529, Loss D: 1.4897\n", - "epsilon is 7.482773164035574, alpha is 3.7\n", - "Epoch 103, Loss G: 0.5484, Loss D: 1.4863\n", - "epsilon is 7.527197838916854, alpha is 3.7\n", - "Epoch 104, Loss G: 0.5478, Loss D: 1.4795\n", - "epsilon is 7.570985182837946, alpha is 3.6\n", - "Epoch 105, Loss G: 0.5577, Loss D: 1.4863\n", - "epsilon is 7.614165403949305, alpha is 3.6\n", - "Epoch 106, Loss G: 0.5572, Loss D: 1.4800\n", - "epsilon is 7.657345625060665, alpha is 3.6\n", - "Epoch 107, Loss G: 0.5546, Loss D: 1.4823\n", - "epsilon is 7.700525846172025, alpha is 3.6\n", - "Epoch 108, Loss G: 0.5574, Loss D: 1.4715\n", - "epsilon is 7.743706067283383, alpha is 3.6\n", - "Epoch 109, Loss G: 0.5554, Loss D: 1.4778\n", - "epsilon is 7.786886288394741, alpha is 3.6\n", - "Epoch 110, Loss G: 0.5621, Loss D: 1.4794\n", - "epsilon is 7.830066509506101, alpha is 3.6\n", - "Epoch 111, Loss G: 0.5558, Loss D: 1.4784\n", - "epsilon is 7.873246730617461, alpha is 3.6\n", - "Epoch 112, Loss G: 0.5632, Loss D: 1.4766\n", - "epsilon is 7.916426951728819, alpha is 3.6\n", - "Epoch 113, Loss G: 0.5602, Loss D: 1.4731\n", - "epsilon is 7.95868193355541, alpha is 3.5\n", - "Epoch 114, Loss G: 0.5532, Loss D: 1.4708\n", - "epsilon is 8.000620212289654, alpha is 3.5\n", - "Epoch 115, Loss G: 0.5629, Loss D: 1.4671\n", - "epsilon is 8.042558491023897, alpha is 3.5\n", - "Epoch 116, Loss G: 0.5605, Loss D: 1.4703\n", - "epsilon is 8.084496769758141, alpha is 3.5\n", - "Epoch 117, Loss G: 0.5661, Loss D: 1.4603\n", - "epsilon is 8.126435048492386, alpha is 3.5\n", - "Epoch 118, Loss G: 0.5667, Loss D: 1.4750\n", - "epsilon is 8.168373327226629, alpha is 3.5\n", - "Epoch 119, Loss G: 0.5659, Loss D: 1.4663\n", - "epsilon is 8.210311605960872, alpha is 3.5\n", - "Epoch 120, Loss G: 0.5597, Loss D: 1.4697\n", - "epsilon is 8.252249884695114, alpha is 3.5\n", - "Epoch 121, Loss G: 0.5606, Loss D: 1.4597\n", - "epsilon is 8.294188163429357, alpha is 3.5\n", - "Epoch 122, Loss G: 0.5615, Loss D: 1.4584\n", - "epsilon is 8.336126442163602, alpha is 3.5\n", - "Epoch 123, Loss G: 0.5618, Loss D: 1.4627\n", - "epsilon is 8.377016439122203, alpha is 3.4\n", - "Epoch 124, Loss G: 0.5616, Loss D: 1.4609\n", - "epsilon is 8.417715279980845, alpha is 3.4\n", - "Epoch 125, Loss G: 0.5624, Loss D: 1.4777\n", - "epsilon is 8.458414120839487, alpha is 3.4\n", - "Epoch 126, Loss G: 0.5613, Loss D: 1.4678\n", - "epsilon is 8.49911296169813, alpha is 3.4\n", - "Epoch 127, Loss G: 0.5576, Loss D: 1.4605\n", - "epsilon is 8.539811802556772, alpha is 3.4\n", - "Epoch 128, Loss G: 0.5654, Loss D: 1.4663\n", - "epsilon is 8.580510643415414, alpha is 3.4\n", - "Epoch 129, Loss G: 0.5651, Loss D: 1.4615\n", - "epsilon is 8.621209484274056, alpha is 3.4\n", - "Epoch 130, Loss G: 0.5654, Loss D: 1.4641\n", - "epsilon is 8.661908325132698, alpha is 3.4\n", - "Epoch 131, Loss G: 0.5639, Loss D: 1.4569\n", - "epsilon is 8.702607165991338, alpha is 3.4\n", - "Epoch 132, Loss G: 0.5672, Loss D: 1.4536\n", - "epsilon is 8.74330600684998, alpha is 3.4\n", - "Epoch 133, Loss G: 0.5713, Loss D: 1.4582\n", - "epsilon is 8.784004847708623, alpha is 3.4\n", - "Epoch 134, Loss G: 0.5650, Loss D: 1.4524\n", - "epsilon is 8.823944600709858, alpha is 3.3\n", - "Epoch 135, Loss G: 0.5589, Loss D: 1.4599\n", - "epsilon is 8.863406501319506, alpha is 3.3\n", - "Epoch 136, Loss G: 0.5631, Loss D: 1.4620\n", - "epsilon is 8.902868401929158, alpha is 3.3\n", - "Epoch 137, Loss G: 0.5668, Loss D: 1.4641\n", - "epsilon is 8.94233030253881, alpha is 3.3\n", - "Epoch 138, Loss G: 0.5698, Loss D: 1.4604\n", - "epsilon is 8.98179220314846, alpha is 3.3\n", - "Epoch 139, Loss G: 0.5650, Loss D: 1.4606\n", - "epsilon is 9.02125410375811, alpha is 3.3\n", - "Epoch 140, Loss G: 0.5700, Loss D: 1.4558\n", - "epsilon is 9.060716004367762, alpha is 3.3\n", - "Epoch 141, Loss G: 0.5640, Loss D: 1.4623\n", - "epsilon is 9.100177904977413, alpha is 3.3\n", - "Epoch 142, Loss G: 0.5664, Loss D: 1.4496\n", - "epsilon is 9.139639805587063, alpha is 3.3\n", - "Epoch 143, Loss G: 0.5707, Loss D: 1.4586\n", - "epsilon is 9.179101706196715, alpha is 3.3\n", - "Epoch 144, Loss G: 0.5654, Loss D: 1.4485\n", - "epsilon is 9.218563606806365, alpha is 3.3\n", - "Epoch 145, Loss G: 0.5691, Loss D: 1.4478\n", - "epsilon is 9.258025507416015, alpha is 3.3\n", - "Epoch 146, Loss G: 0.5750, Loss D: 1.4537\n", - "epsilon is 9.297487408025667, alpha is 3.3\n", - "Epoch 147, Loss G: 0.5737, Loss D: 1.4539\n", - "epsilon is 9.33595966014038, alpha is 3.2\n", - "Epoch 148, Loss G: 0.5714, Loss D: 1.4532\n", - "epsilon is 9.374187111269075, alpha is 3.2\n", - "Epoch 149, Loss G: 0.5723, Loss D: 1.4538\n", - "epsilon is 9.41241456239777, alpha is 3.2\n", - "Epoch 150, Loss G: 0.5719, Loss D: 1.4523\n", - "epsilon is 9.450642013526464, alpha is 3.2\n", - "Epoch 151, Loss G: 0.5674, Loss D: 1.4542\n", - "epsilon is 9.48886946465516, alpha is 3.2\n", - "Epoch 152, Loss G: 0.5661, Loss D: 1.4573\n", - "epsilon is 9.527096915783854, alpha is 3.2\n", - "Epoch 153, Loss G: 0.5722, Loss D: 1.4540\n", - "epsilon is 9.56532436691255, alpha is 3.2\n", - "Epoch 154, Loss G: 0.5742, Loss D: 1.4563\n", - "epsilon is 9.603551818041245, alpha is 3.2\n", - "Epoch 155, Loss G: 0.5725, Loss D: 1.4476\n", - "epsilon is 9.64177926916994, alpha is 3.2\n", - "Epoch 156, Loss G: 0.5703, Loss D: 1.4535\n", - "epsilon is 9.680006720298634, alpha is 3.2\n", - "Epoch 157, Loss G: 0.5690, Loss D: 1.4478\n", - "epsilon is 9.71823417142733, alpha is 3.2\n", - "Epoch 158, Loss G: 0.5698, Loss D: 1.4475\n", - "epsilon is 9.756461622556024, alpha is 3.2\n", - "Epoch 159, Loss G: 0.5766, Loss D: 1.4464\n", - "epsilon is 9.79468907368472, alpha is 3.2\n", - "Epoch 160, Loss G: 0.5784, Loss D: 1.4552\n", - "epsilon is 9.832916524813415, alpha is 3.2\n", - "Epoch 161, Loss G: 0.5751, Loss D: 1.4438\n", - "epsilon is 9.871016847131145, alpha is 3.1\n", - "Epoch 162, Loss G: 0.5799, Loss D: 1.4512\n", - "epsilon is 9.908012332703517, alpha is 3.1\n", - "Epoch 163, Loss G: 0.5725, Loss D: 1.4488\n", - "epsilon is 9.94500781827589, alpha is 3.1\n", - "Epoch 164, Loss G: 0.5762, Loss D: 1.4466\n", - "epsilon is 9.982003303848263, alpha is 3.1\n", - "Synthesizer (SmartNoise): Fitting dpctgan spent 115.4473 sec.\n", - "Synthesizer (SmartNoise): Sampling dpctgan # 927 rows (same as raw) in 0.4688 sec.\n", - "Sync data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 3.663019 0.997224 4.606915 0.747578 2.269901 0.984679 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 0.990903 0.95497 0.806221 0.997782 -0.159918 -0.219043 \n", - "\n", - " hours-per-week native-country income \n", - "0 2.634771 0.88122 0.993726 \n", - " age workclass fnlwgt education educational-num \\\n", - "0 88.295354 Federal-gov 647932.096102 Masters 15.972689 \n", - "\n", - " marital-status occupation relationship race gender capital-gain \\\n", - "0 Widowed Protective-serv Wife White Female 0.0 \n", - "\n", - " capital-loss hours-per-week native-country income \n", - "0 0.0 72.657481 United-States >50K \n" - ] - } - ], + "outputs": [], "source": [ "issue332_gan(\n", " load = load,\n", @@ -1005,408 +406,11 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preproc config of Outlier before update as ...\n", - "{'age': ,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'education': None,\n", - " 'educational-num': ,\n", - " 'fnlwgt': ,\n", - " 'gender': None,\n", - " 'hours-per-week': ,\n", - " 'income': None,\n", - " 'marital-status': None,\n", - " 'native-country': None,\n", - " 'occupation': None,\n", - " 'race': None,\n", - " 'relationship': None,\n", - " 'workclass': None}\n", - "Preproc config of Outlier before after as ...\n", - "{'age': ,\n", - " 'capital-gain': ,\n", - " 'capital-loss': ,\n", - " 'education': None,\n", - " 'educational-num': ,\n", - " 'fnlwgt': ,\n", - " 'gender': None,\n", - " 'hours-per-week': ,\n", - " 'income': None,\n", - " 'marital-status': None,\n", - " 'native-country': None,\n", - " 'occupation': None,\n", - " 'race': None,\n", - " 'relationship': None,\n", - " 'workclass': None}\n", - "Preproc data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 -0.953119 0.006814 0.409053 0.780317 -1.152735 0.507641 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 0.750354 0.787001 0.864054 0.199314 -0.159918 -0.219043 \n", - "\n", - " hours-per-week native-country income \n", - "0 -0.044504 0.099702 0.61332 \n", - "Synthesizer (SmartNoise): Fitting patectgan.\n", - "using loss cross_entropy and regularization None\n", - "eps: 0.102479 \t G: 0.713781 \t D: 0.716145\n", - "eps: 0.457732 \t G: 0.713048 \t D: 0.712165\n", - "eps: 0.650248 \t G: 0.689282 \t D: 0.698435\n", - "eps: 0.799151 \t G: 0.698342 \t D: 0.710174\n", - "eps: 0.925562 \t G: 0.716226 \t D: 0.704634\n", - "eps: 1.037397 \t G: 0.750504 \t D: 0.704282\n", - "eps: 1.139329 \t G: 0.733702 \t D: 0.708267\n", - "eps: 1.232819 \t G: 0.742357 \t D: 0.711618\n", - "eps: 1.320496 \t G: 0.698668 \t D: 0.703252\n", - "eps: 1.403195 \t G: 0.737517 \t D: 0.699576\n", - "eps: 1.481995 \t G: 0.681477 \t D: 0.705583\n", - "eps: 1.556995 \t G: 0.672663 \t D: 0.702600\n", - "eps: 1.628302 \t G: 0.745140 \t D: 0.694179\n", - "eps: 1.698302 \t G: 0.690847 \t D: 0.712576\n", - "eps: 1.763994 \t G: 0.727325 \t D: 0.703433\n", - "eps: 1.828994 \t G: 0.709237 \t D: 0.703511\n", - "eps: 1.891630 \t G: 0.708808 \t D: 0.702042\n", - "eps: 1.951630 \t G: 0.691537 \t D: 0.697599\n", - "eps: 2.011630 \t G: 0.701870 \t D: 0.706488\n", - "eps: 2.069793 \t G: 0.688349 \t D: 0.699278\n", - "eps: 2.124793 \t G: 0.709717 \t D: 0.701455\n", - "eps: 2.179793 \t G: 0.694322 \t D: 0.691404\n", - "eps: 2.234793 \t G: 0.686912 \t D: 0.701100\n", - "eps: 2.288659 \t G: 0.705043 \t D: 0.700311\n", - "eps: 2.338659 \t G: 0.707292 \t D: 0.703666\n", - "eps: 2.388659 \t G: 0.694569 \t D: 0.690330\n", - "eps: 2.438659 \t G: 0.684587 \t D: 0.698427\n", - "eps: 2.488659 \t G: 0.697387 \t D: 0.699607\n", - "eps: 2.538659 \t G: 0.687134 \t D: 0.700899\n", - "eps: 2.585991 \t G: 0.693586 \t D: 0.695336\n", - "eps: 2.630991 \t G: 0.739123 \t D: 0.693745\n", - "eps: 2.675991 \t G: 0.700363 \t D: 0.697010\n", - "eps: 2.720991 \t G: 0.689431 \t D: 0.697749\n", - "eps: 2.765991 \t G: 0.693986 \t D: 0.690283\n", - "eps: 2.810991 \t G: 0.673590 \t D: 0.695922\n", - "eps: 2.855991 \t G: 0.671324 \t D: 0.701141\n", - "eps: 2.900991 \t G: 0.677591 \t D: 0.695007\n", - "eps: 2.943990 \t G: 0.656642 \t D: 0.694972\n", - "eps: 2.983990 \t G: 0.723366 \t D: 0.697270\n", - "eps: 3.023990 \t G: 0.700119 \t D: 0.699537\n", - "eps: 3.063990 \t G: 0.674124 \t D: 0.694819\n", - "eps: 3.103990 \t G: 0.686734 \t D: 0.694975\n", - "eps: 3.143990 \t G: 0.687309 \t D: 0.695707\n", - "eps: 3.183990 \t G: 0.692782 \t D: 0.692781\n", - "eps: 3.223990 \t G: 0.714057 \t D: 0.697382\n", - "eps: 3.263990 \t G: 0.664547 \t D: 0.689004\n", - "eps: 3.303990 \t G: 0.700300 \t D: 0.702808\n", - "eps: 3.343990 \t G: 0.707063 \t D: 0.694165\n", - "eps: 3.383990 \t G: 0.705744 \t D: 0.693704\n", - "eps: 3.422988 \t G: 0.704281 \t D: 0.697706\n", - "eps: 3.457988 \t G: 0.691522 \t D: 0.698151\n", - "eps: 3.492988 \t G: 0.698668 \t D: 0.692005\n", - "eps: 3.527988 \t G: 0.686467 \t D: 0.699543\n", - "eps: 3.562988 \t G: 0.684231 \t D: 0.689239\n", - "eps: 3.597988 \t G: 0.698439 \t D: 0.695944\n", - "eps: 3.632988 \t G: 0.679470 \t D: 0.694834\n", - "eps: 3.667988 \t G: 0.685383 \t D: 0.690702\n", - "eps: 3.702988 \t G: 0.681760 \t D: 0.700023\n", - "eps: 3.737988 \t G: 0.678823 \t D: 0.693228\n", - "eps: 3.772988 \t G: 0.688883 \t D: 0.694677\n", - "eps: 3.807988 \t G: 0.707548 \t D: 0.695333\n", - "eps: 3.842988 \t G: 0.696041 \t D: 0.689088\n", - "eps: 3.877988 \t G: 0.679329 \t D: 0.698854\n", - "eps: 3.912988 \t G: 0.711865 \t D: 0.694357\n", - "eps: 3.947988 \t G: 0.690228 \t D: 0.692709\n", - "eps: 3.982988 \t G: 0.698592 \t D: 0.694288\n", - "eps: 4.017988 \t G: 0.689543 \t D: 0.688812\n", - "eps: 4.052988 \t G: 0.705020 \t D: 0.691620\n", - "eps: 4.087988 \t G: 0.688093 \t D: 0.697707\n", - "eps: 4.119586 \t G: 0.690063 \t D: 0.694527\n", - "eps: 4.149586 \t G: 0.695651 \t D: 0.690567\n", - "eps: 4.179586 \t G: 0.705636 \t D: 0.696383\n", - "eps: 4.209586 \t G: 0.700525 \t D: 0.691312\n", - "eps: 4.239586 \t G: 0.676271 \t D: 0.694654\n", - "eps: 4.269586 \t G: 0.688563 \t D: 0.698388\n", - "eps: 4.299586 \t G: 0.681526 \t D: 0.698504\n", - "eps: 4.329586 \t G: 0.693433 \t D: 0.692396\n", - "eps: 4.359586 \t G: 0.678946 \t D: 0.693821\n", - "eps: 4.389586 \t G: 0.704079 \t D: 0.695138\n", - "eps: 4.419586 \t G: 0.711130 \t D: 0.693717\n", - "eps: 4.449586 \t G: 0.692445 \t D: 0.697196\n", - "eps: 4.479586 \t G: 0.684903 \t D: 0.697392\n", - "eps: 4.509586 \t G: 0.697194 \t D: 0.697828\n", - "eps: 4.539586 \t G: 0.687639 \t D: 0.695808\n", - "eps: 4.569586 \t G: 0.702698 \t D: 0.688421\n", - "eps: 4.599586 \t G: 0.677394 \t D: 0.691671\n", - "eps: 4.629586 \t G: 0.676998 \t D: 0.694079\n", - "eps: 4.659586 \t G: 0.692468 \t D: 0.697231\n", - "eps: 4.689586 \t G: 0.705954 \t D: 0.693673\n", - "eps: 4.719586 \t G: 0.714168 \t D: 0.694783\n", - "eps: 4.749586 \t G: 0.692832 \t D: 0.694862\n", - "eps: 4.779586 \t G: 0.684127 \t D: 0.696356\n", - "eps: 4.809586 \t G: 0.697125 \t D: 0.699097\n", - "eps: 4.839586 \t G: 0.690293 \t D: 0.694361\n", - "eps: 4.869586 \t G: 0.696844 \t D: 0.697206\n", - "eps: 4.899586 \t G: 0.696491 \t D: 0.692738\n", - "eps: 4.929586 \t G: 0.705306 \t D: 0.693927\n", - "eps: 4.959586 \t G: 0.701349 \t D: 0.694641\n", - "eps: 4.989586 \t G: 0.716760 \t D: 0.692627\n", - "eps: 5.019586 \t G: 0.706580 \t D: 0.697327\n", - "eps: 5.049586 \t G: 0.694923 \t D: 0.694328\n", - "eps: 5.079586 \t G: 0.683924 \t D: 0.692442\n", - "eps: 5.109586 \t G: 0.687853 \t D: 0.697842\n", - "eps: 5.136983 \t G: 0.678175 \t D: 0.694115\n", - "eps: 5.161983 \t G: 0.687122 \t D: 0.695188\n", - "eps: 5.186983 \t G: 0.710870 \t D: 0.692395\n", - "eps: 5.211983 \t G: 0.706316 \t D: 0.697591\n", - "eps: 5.236983 \t G: 0.694138 \t D: 0.693994\n", - "eps: 5.261983 \t G: 0.682083 \t D: 0.691040\n", - "eps: 5.286983 \t G: 0.687905 \t D: 0.694451\n", - "eps: 5.311983 \t G: 0.673862 \t D: 0.696650\n", - "eps: 5.336983 \t G: 0.692831 \t D: 0.694289\n", - "eps: 5.361983 \t G: 0.704120 \t D: 0.693669\n", - "eps: 5.386983 \t G: 0.704646 \t D: 0.701262\n", - "eps: 5.411983 \t G: 0.691776 \t D: 0.698044\n", - "eps: 5.436983 \t G: 0.704596 \t D: 0.698575\n", - "eps: 5.461983 \t G: 0.692580 \t D: 0.692944\n", - "eps: 5.486983 \t G: 0.682725 \t D: 0.692538\n", - "eps: 5.511983 \t G: 0.697214 \t D: 0.694453\n", - "eps: 5.536983 \t G: 0.710158 \t D: 0.695539\n", - "eps: 5.561983 \t G: 0.701455 \t D: 0.692305\n", - "eps: 5.586983 \t G: 0.691797 \t D: 0.697904\n", - "eps: 5.611983 \t G: 0.690916 \t D: 0.692865\n", - "eps: 5.636983 \t G: 0.690258 \t D: 0.694387\n", - "eps: 5.661983 \t G: 0.688663 \t D: 0.691113\n", - "eps: 5.686983 \t G: 0.662851 \t D: 0.692329\n", - "eps: 5.711983 \t G: 0.688278 \t D: 0.694166\n", - "eps: 5.736983 \t G: 0.686217 \t D: 0.695744\n", - "eps: 5.761983 \t G: 0.691149 \t D: 0.697361\n", - "eps: 5.786983 \t G: 0.688824 \t D: 0.698891\n", - "eps: 5.811983 \t G: 0.693033 \t D: 0.696105\n", - "eps: 5.836983 \t G: 0.696277 \t D: 0.693473\n", - "eps: 5.861983 \t G: 0.693802 \t D: 0.693498\n", - "eps: 5.886983 \t G: 0.714150 \t D: 0.696003\n", - "eps: 5.911983 \t G: 0.721983 \t D: 0.694278\n", - "eps: 5.936983 \t G: 0.725168 \t D: 0.690415\n", - "eps: 5.961983 \t G: 0.726327 \t D: 0.691595\n", - "eps: 5.986983 \t G: 0.721982 \t D: 0.697985\n", - "eps: 6.011982 \t G: 0.689813 \t D: 0.698034\n", - "eps: 6.036982 \t G: 0.670720 \t D: 0.697906\n", - "eps: 6.061982 \t G: 0.676116 \t D: 0.692406\n", - "eps: 6.086982 \t G: 0.668123 \t D: 0.695680\n", - "eps: 6.111982 \t G: 0.690715 \t D: 0.698138\n", - "eps: 6.136982 \t G: 0.698641 \t D: 0.700861\n", - "eps: 6.161982 \t G: 0.694157 \t D: 0.697574\n", - "eps: 6.186982 \t G: 0.711598 \t D: 0.694706\n", - "eps: 6.211982 \t G: 0.706662 \t D: 0.698498\n", - "eps: 6.236982 \t G: 0.695758 \t D: 0.695270\n", - "eps: 6.261982 \t G: 0.712754 \t D: 0.695887\n", - "eps: 6.286982 \t G: 0.710169 \t D: 0.694539\n", - "eps: 6.311982 \t G: 0.707389 \t D: 0.691145\n", - "eps: 6.336982 \t G: 0.697499 \t D: 0.699215\n", - "eps: 6.361982 \t G: 0.688263 \t D: 0.693412\n", - "eps: 6.386982 \t G: 0.692656 \t D: 0.692965\n", - "eps: 6.411982 \t G: 0.677513 \t D: 0.692228\n", - "eps: 6.436982 \t G: 0.690053 \t D: 0.696777\n", - "eps: 6.461982 \t G: 0.684045 \t D: 0.694823\n", - "eps: 6.486982 \t G: 0.693844 \t D: 0.696127\n", - "eps: 6.511982 \t G: 0.717999 \t D: 0.698269\n", - "eps: 6.536982 \t G: 0.701669 \t D: 0.697028\n", - "eps: 6.561982 \t G: 0.706614 \t D: 0.693551\n", - "eps: 6.586982 \t G: 0.690939 \t D: 0.692773\n", - "eps: 6.611982 \t G: 0.678489 \t D: 0.697274\n", - "eps: 6.636982 \t G: 0.696240 \t D: 0.693872\n", - "eps: 6.661982 \t G: 0.691522 \t D: 0.693280\n", - "eps: 6.686982 \t G: 0.700351 \t D: 0.691683\n", - "eps: 6.711982 \t G: 0.702936 \t D: 0.694047\n", - "eps: 6.736982 \t G: 0.701172 \t D: 0.696587\n", - "eps: 6.761982 \t G: 0.709572 \t D: 0.694403\n", - "eps: 6.786982 \t G: 0.693866 \t D: 0.697633\n", - "eps: 6.811982 \t G: 0.689262 \t D: 0.695713\n", - "eps: 6.835977 \t G: 0.706019 \t D: 0.693791\n", - "eps: 6.855977 \t G: 0.713628 \t D: 0.694795\n", - "eps: 6.875977 \t G: 0.686985 \t D: 0.694983\n", - "eps: 6.895977 \t G: 0.678707 \t D: 0.696975\n", - "eps: 6.915977 \t G: 0.688420 \t D: 0.691135\n", - "eps: 6.935977 \t G: 0.691864 \t D: 0.696182\n", - "eps: 6.955977 \t G: 0.713413 \t D: 0.698038\n", - "eps: 6.975977 \t G: 0.708330 \t D: 0.694529\n", - "eps: 6.995977 \t G: 0.701740 \t D: 0.700547\n", - "eps: 7.015977 \t G: 0.696532 \t D: 0.694873\n", - "eps: 7.035977 \t G: 0.721527 \t D: 0.693872\n", - "eps: 7.055977 \t G: 0.711696 \t D: 0.694538\n", - "eps: 7.075977 \t G: 0.701369 \t D: 0.694573\n", - "eps: 7.095977 \t G: 0.710693 \t D: 0.690452\n", - "eps: 7.115977 \t G: 0.714807 \t D: 0.695867\n", - "eps: 7.135977 \t G: 0.703928 \t D: 0.697142\n", - "eps: 7.155977 \t G: 0.697978 \t D: 0.697099\n", - "eps: 7.175977 \t G: 0.711146 \t D: 0.691293\n", - "eps: 7.195977 \t G: 0.689744 \t D: 0.693730\n", - "eps: 7.215977 \t G: 0.679122 \t D: 0.697585\n", - "eps: 7.235977 \t G: 0.665163 \t D: 0.687304\n", - "eps: 7.255977 \t G: 0.688261 \t D: 0.694644\n", - "eps: 7.275977 \t G: 0.700061 \t D: 0.698768\n", - "eps: 7.295977 \t G: 0.722397 \t D: 0.694110\n", - "eps: 7.315977 \t G: 0.706579 \t D: 0.697697\n", - "eps: 7.335977 \t G: 0.698369 \t D: 0.693160\n", - "eps: 7.355977 \t G: 0.707676 \t D: 0.699921\n", - "eps: 7.375977 \t G: 0.699110 \t D: 0.693009\n", - "eps: 7.395977 \t G: 0.693671 \t D: 0.700002\n", - "eps: 7.415977 \t G: 0.702207 \t D: 0.699121\n", - "eps: 7.435977 \t G: 0.690763 \t D: 0.697587\n", - "eps: 7.455977 \t G: 0.693543 \t D: 0.693346\n", - "eps: 7.475977 \t G: 0.690964 \t D: 0.698946\n", - "eps: 7.495977 \t G: 0.691772 \t D: 0.694487\n", - "eps: 7.515977 \t G: 0.696903 \t D: 0.696523\n", - "eps: 7.535977 \t G: 0.714085 \t D: 0.693842\n", - "eps: 7.555977 \t G: 0.705241 \t D: 0.693571\n", - "eps: 7.575977 \t G: 0.710959 \t D: 0.693134\n", - "eps: 7.595977 \t G: 0.695932 \t D: 0.693888\n", - "eps: 7.615977 \t G: 0.688465 \t D: 0.691797\n", - "eps: 7.635977 \t G: 0.687585 \t D: 0.696887\n", - "eps: 7.655977 \t G: 0.692846 \t D: 0.695367\n", - "eps: 7.675977 \t G: 0.689350 \t D: 0.694941\n", - "eps: 7.695977 \t G: 0.695852 \t D: 0.697276\n", - "eps: 7.715977 \t G: 0.702350 \t D: 0.693447\n", - "eps: 7.735977 \t G: 0.695321 \t D: 0.690365\n", - "eps: 7.755977 \t G: 0.680467 \t D: 0.698033\n", - "eps: 7.775977 \t G: 0.687057 \t D: 0.692665\n", - "eps: 7.795977 \t G: 0.700203 \t D: 0.695803\n", - "eps: 7.815977 \t G: 0.715794 \t D: 0.696600\n", - "eps: 7.835977 \t G: 0.703528 \t D: 0.698830\n", - "eps: 7.855977 \t G: 0.725885 \t D: 0.697341\n", - "eps: 7.875977 \t G: 0.682234 \t D: 0.698131\n", - "eps: 7.895977 \t G: 0.677728 \t D: 0.693323\n", - "eps: 7.915977 \t G: 0.681669 \t D: 0.698836\n", - "eps: 7.935977 \t G: 0.692163 \t D: 0.699217\n", - "eps: 7.955977 \t G: 0.683420 \t D: 0.693969\n", - "eps: 7.975977 \t G: 0.692033 \t D: 0.694492\n", - "eps: 7.995977 \t G: 0.728577 \t D: 0.700214\n", - "eps: 8.015977 \t G: 0.728052 \t D: 0.693331\n", - "eps: 8.035977 \t G: 0.730739 \t D: 0.694320\n", - "eps: 8.055977 \t G: 0.719204 \t D: 0.696886\n", - "eps: 8.075977 \t G: 0.708894 \t D: 0.694114\n", - "eps: 8.095977 \t G: 0.697646 \t D: 0.696363\n", - "eps: 8.115977 \t G: 0.692623 \t D: 0.691135\n", - "eps: 8.135977 \t G: 0.677301 \t D: 0.695693\n", - "eps: 8.155977 \t G: 0.690436 \t D: 0.695203\n", - "eps: 8.175977 \t G: 0.716764 \t D: 0.693985\n", - "eps: 8.195977 \t G: 0.708261 \t D: 0.691021\n", - "eps: 8.215977 \t G: 0.697452 \t D: 0.693978\n", - "eps: 8.235977 \t G: 0.693953 \t D: 0.697357\n", - "eps: 8.255977 \t G: 0.701943 \t D: 0.694999\n", - "eps: 8.275977 \t G: 0.701976 \t D: 0.696045\n", - "eps: 8.295977 \t G: 0.679231 \t D: 0.692849\n", - "eps: 8.315977 \t G: 0.687471 \t D: 0.695532\n", - "eps: 8.335977 \t G: 0.688215 \t D: 0.695305\n", - "eps: 8.355977 \t G: 0.684386 \t D: 0.697067\n", - "eps: 8.375977 \t G: 0.682844 \t D: 0.694733\n", - "eps: 8.395977 \t G: 0.706065 \t D: 0.696155\n", - "eps: 8.415977 \t G: 0.699171 \t D: 0.698522\n", - "eps: 8.435977 \t G: 0.694558 \t D: 0.695058\n", - "eps: 8.455977 \t G: 0.698595 \t D: 0.695299\n", - "eps: 8.475977 \t G: 0.702856 \t D: 0.694437\n", - "eps: 8.495977 \t G: 0.693910 \t D: 0.699749\n", - "eps: 8.515977 \t G: 0.688224 \t D: 0.694186\n", - "eps: 8.535977 \t G: 0.688795 \t D: 0.695863\n", - "eps: 8.555977 \t G: 0.705883 \t D: 0.694558\n", - "eps: 8.575977 \t G: 0.724274 \t D: 0.696720\n", - "eps: 8.595977 \t G: 0.718322 \t D: 0.692502\n", - "eps: 8.615977 \t G: 0.709645 \t D: 0.694721\n", - "eps: 8.635977 \t G: 0.708987 \t D: 0.696772\n", - "eps: 8.655977 \t G: 0.701214 \t D: 0.692546\n", - "eps: 8.675977 \t G: 0.711924 \t D: 0.696422\n", - "eps: 8.695977 \t G: 0.707368 \t D: 0.692554\n", - "eps: 8.715977 \t G: 0.709598 \t D: 0.695780\n", - "eps: 8.735977 \t G: 0.680445 \t D: 0.699557\n", - "eps: 8.755977 \t G: 0.675816 \t D: 0.692951\n", - "eps: 8.775977 \t G: 0.682221 \t D: 0.692445\n", - "eps: 8.795977 \t G: 0.707273 \t D: 0.695885\n", - "eps: 8.815977 \t G: 0.693460 \t D: 0.694252\n", - "eps: 8.835977 \t G: 0.680995 \t D: 0.695839\n", - "eps: 8.855977 \t G: 0.670298 \t D: 0.693365\n", - "eps: 8.875977 \t G: 0.681427 \t D: 0.694136\n", - "eps: 8.895977 \t G: 0.698069 \t D: 0.697778\n", - "eps: 8.915977 \t G: 0.701808 \t D: 0.696195\n", - "eps: 8.935977 \t G: 0.709960 \t D: 0.697699\n", - "eps: 8.955977 \t G: 0.713283 \t D: 0.696481\n", - "eps: 8.975977 \t G: 0.702262 \t D: 0.691180\n", - "eps: 8.995977 \t G: 0.699221 \t D: 0.693380\n", - "eps: 9.015977 \t G: 0.714084 \t D: 0.695818\n", - "eps: 9.035977 \t G: 0.699903 \t D: 0.696171\n", - "eps: 9.055977 \t G: 0.697011 \t D: 0.696874\n", - "eps: 9.075977 \t G: 0.708921 \t D: 0.691218\n", - "eps: 9.095977 \t G: 0.714847 \t D: 0.692894\n", - "eps: 9.115977 \t G: 0.700553 \t D: 0.697870\n", - "eps: 9.135977 \t G: 0.704466 \t D: 0.692195\n", - "eps: 9.155977 \t G: 0.716214 \t D: 0.693401\n", - "eps: 9.175977 \t G: 0.706705 \t D: 0.694446\n", - "eps: 9.195977 \t G: 0.690804 \t D: 0.692994\n", - "eps: 9.215977 \t G: 0.701547 \t D: 0.694552\n", - "eps: 9.235977 \t G: 0.715766 \t D: 0.697340\n", - "eps: 9.255977 \t G: 0.694500 \t D: 0.699202\n", - "eps: 9.275977 \t G: 0.686139 \t D: 0.694071\n", - "eps: 9.295977 \t G: 0.715559 \t D: 0.691591\n", - "eps: 9.315977 \t G: 0.721473 \t D: 0.694705\n", - "eps: 9.335977 \t G: 0.699836 \t D: 0.700774\n", - "eps: 9.355977 \t G: 0.689537 \t D: 0.690166\n", - "eps: 9.375977 \t G: 0.693082 \t D: 0.695173\n", - "eps: 9.395977 \t G: 0.694534 \t D: 0.695173\n", - "eps: 9.415977 \t G: 0.700059 \t D: 0.698420\n", - "eps: 9.435977 \t G: 0.698749 \t D: 0.692723\n", - "eps: 9.455977 \t G: 0.691733 \t D: 0.695272\n", - "eps: 9.475977 \t G: 0.711630 \t D: 0.693643\n", - "eps: 9.495977 \t G: 0.706853 \t D: 0.691853\n", - "eps: 9.515977 \t G: 0.696636 \t D: 0.691733\n", - "eps: 9.535977 \t G: 0.696215 \t D: 0.696250\n", - "eps: 9.555977 \t G: 0.702907 \t D: 0.691832\n", - "eps: 9.575977 \t G: 0.714041 \t D: 0.695757\n", - "eps: 9.595977 \t G: 0.697746 \t D: 0.694564\n", - "eps: 9.615977 \t G: 0.702878 \t D: 0.693213\n", - "eps: 9.635977 \t G: 0.731086 \t D: 0.699579\n", - "eps: 9.655977 \t G: 0.707542 \t D: 0.695599\n", - "eps: 9.675977 \t G: 0.690351 \t D: 0.696782\n", - "eps: 9.695977 \t G: 0.712726 \t D: 0.693319\n", - "eps: 9.715977 \t G: 0.713519 \t D: 0.690887\n", - "eps: 9.735977 \t G: 0.709094 \t D: 0.701579\n", - "eps: 9.755977 \t G: 0.694409 \t D: 0.693226\n", - "eps: 9.775977 \t G: 0.703121 \t D: 0.693624\n", - "eps: 9.795977 \t G: 0.684308 \t D: 0.692475\n", - "eps: 9.815977 \t G: 0.684525 \t D: 0.695275\n", - "eps: 9.835977 \t G: 0.681902 \t D: 0.697289\n", - "eps: 9.855977 \t G: 0.686178 \t D: 0.692194\n", - "eps: 9.875977 \t G: 0.687372 \t D: 0.696504\n", - "eps: 9.895977 \t G: 0.690510 \t D: 0.691553\n", - "eps: 9.915977 \t G: 0.699482 \t D: 0.692439\n", - "eps: 9.935977 \t G: 0.695582 \t D: 0.696715\n", - "eps: 9.955977 \t G: 0.701558 \t D: 0.694982\n", - "eps: 9.975977 \t G: 0.731646 \t D: 0.697401\n", - "eps: 9.995977 \t G: 0.709171 \t D: 0.694371\n", - "Synthesizer (SmartNoise): Fitting patectgan spent 93.3619 sec.\n", - "Synthesizer (SmartNoise): Sampling patectgan # 927 rows (same as raw) in 0.1432 sec.\n", - "Sync data as ...\n", - " age workclass fnlwgt education educational-num marital-status \\\n", - "0 0.24186 0.103012 1.088126 0.554129 0.519998 0.581233 \n", - "\n", - " occupation relationship race gender capital-gain capital-loss \\\n", - "0 0.236864 0.475109 0.705326 0.676615 0.890221 -0.115185 \n", - "\n", - " hours-per-week native-country income \n", - "0 1.13638 0.654151 0.748044 \n", - " age workclass fnlwgt education educational-num \\\n", - "0 41.385254 Private 294926.71711 Bachelors 11.385191 \n", - "\n", - " marital-status occupation relationship race gender capital-gain \\\n", - "0 Never-married Prof-specialty Not-in-family White Male 9733.339667 \n", - "\n", - " capital-loss hours-per-week native-country income \n", - "0 41.004116 54.393705 United-States <=50K \n" - ] - } - ], + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], "source": [ "issue332_gan(\n", " load = load,\n", @@ -1418,9 +422,9 @@ ], "metadata": { "kernelspec": { - "display_name": "dev310", + "display_name": "conda_pytorch_p310", "language": "python", - "name": "python3" + "name": "conda_pytorch_p310" }, "language_info": { "codemirror_mode": { @@ -1432,9 +436,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.11" + "version": "3.10.13" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/requirements.txt b/requirements.txt index e4ff6b2d8963f37b4ae5374150765a814a83e832..82b25d7b5e196d40cf8186e260aa85ed7861b11d 100644 GIT binary patch literal 1587 zcmY*Z%dXov4BhK1x*u5A@*|G{478hB6fMv}SF#XB22wwA=NtbQxs<7sZcWo6Hm(8q)q2ov1GMRGrH|^3eG`!=2oqYB! zy=^<*AIeer2>+iJrDHaefq&g}yx|Q~7a5bzmGg0y*1S{hmbY|c{W1olZWaOHiulS~ zALT5Ep+>$P&ht$F+nvjPiD9K|4X`U87At|R23Um4XX&;B?p9?fQ_Tgv9rbBBZ!Zt! z2-GrrIP_c;gAQ6MeY+0@v%TQ;_*Wg%Iwm zKUs4sOwz*zk#zi_tkDjs4}1rxzpRDx9&HiqW*#Pad*3t#Suktwvo#r{fNZ=eMOY&Kg%<3lupATosfkpE;d!CDZDZ0a>^&w*2t%_C}Qv z+0G}th9dc%xn({THTBeLoSyR8fg2yBT8ex`hf5!{8^LQ0JT=2zg*22IbHWc~xXJTI zG^sa8HAbMzS&SclnnV1un^5%W?hBz{Ndw= zv&ny4at`UwmlynBmJ`Pyyu?*HA)2;7y!^+X!{cLrI*Ml39D5~1ecE?I_g%9a$I~=* z;;5z2yISuLs3Q6~v@I@O0{B7#jjLw zX$C}H45YhiL=ju029atWe9EY9%@A|h2m*(PaV^QP-XZWmpT2$}`H}>~`aZwHk!G@C zaRfe5Mmy@)1;m&9E#%5lo1=7TdX6}4vZM?us;rg~`WLjWN_s&z8|zpF@EfrJqfrQk zoTRBV-su6@!oPux@K3r*vy9n!lXR6{(F>ZB_J7t*ADjLA-(NmibOdVc6Pq)Av>xPh5U%gFyp3r%u>t# E1=ca%KmY&$ literal 3354 zcmZveOK;m&6ol`(K>tJbg&gbUM}Yvzri-EhT4dE#ptosBv_sNK>>uBDzB9bKRB8xJ zYn}I;IYa&X&mz_7LCX{}-xAO1gzgPY`wNYUrJAUKvS;~sX^i+Ks)_J-)v#;dSC`<0~+-nv6 zcd1HSJ@`yC#UwIOZxXpy>V2Ust-L$+4+4#PUueQAy+jUTr!hf^I>_%Stu=p@R+{C| z_uKXB*_lidAcs` zWUEj4vE|rjbxz;jGLd7&<@#$`mdd?5t9^53_XZZxrL)Y#KFqOE{6>}FNS+@rcd-_J zZMv7OifKpvCbH+XJZCZMCVf{HvawUJ*{O5Td5pZUv><~wRiDBeUozUByZcSZz{1RO zx?<0+2Wvow{jp)ZnFrV49cffXMu?5e#)%R_Wg1Z><&_2wvkk4KEs=6;x z%^SIn>9KG0siUXv)D1qqtV(RGl_U3QepSl(+)r7@G}x~cH5pu`z49I7!Ja39mzi|0 zSayZYeZeF%^>=+=YljQ@=jv?3ecg-Qo0uP-+=WM06vwmurRJ*iFY%7e9KMeYqcUvj zvvz?eNEih=Wgg@BfA69Z>=!<{>RwsC>1kE{Ak+&Fe4q2c{SdZe)TDzv|17X^&5xSA z5ymj_lm36(`}vkGk~4Atojl+Z`kAMNQ_NtrUh^8sm%a0E=>U|x*x}g;6A;_$e)2AhCZLWeWsaqa`B`iFqxM%cZa%mGTVZ03oW#z2 zX%Fgu5w}`2Y#bWt39z$o)RuVo2V%B57TsXB%rJcH$DP_|uPVDhF{=Uno8Nd)A?qkJ zm$|X>jwlLNHpUwOmOKbKPe)y1bAPCF7h1uag)1T#z9_}Hr@3LAtffV<9~D=Lsbt&4 zyLYF2Z_;}`%+;k|bYG~^qw@cn-sOI`Uu%}Jx|-|1*w^|jHS;#Uzm;VX_A8;Xk@t;0-V7QJgJCFd zJFb!2JlD8ce;-U{O+N&JU<5)r8}CZ6*#u7Z$@}o8|J3Z@W(DycylJ!{v*9^7!=AW0 z^98nWb;Tzu<|vrMR))Qi)!VyJHZG?-aRNQF%9mdy)+Me4U8*&4*3--W(&_#0^dWsr zf5h~@-K=OtzG$*9VVh_d!+sm}XiS-bzB~tbeNo?5iGs&8W;KUf_0kDhIMar{`JD-} zf$x;q3WDRd`f?5Pal+xUq2hgdqQ74 z_?xxx0{z>oIts*JAVF<5oa^(u{700yA$Z4|AMCrn2Kq!D$HG(gyik6a$c?S!>p4NO zAju6j(J?)cgU6e)jaqAYVW&T Date: Fri, 8 Mar 2024 06:34:39 +0000 Subject: [PATCH 17/17] 20240308, remove pywin32 --- demo/dev/executable_smartnoise.ipynb | 63 +++++++++++++++++++++++++--- requirements.txt | 1 - 2 files changed, 58 insertions(+), 6 deletions(-) diff --git a/demo/dev/executable_smartnoise.ipynb b/demo/dev/executable_smartnoise.ipynb index 76d5f0e8..6ed7401c 100644 --- a/demo/dev/executable_smartnoise.ipynb +++ b/demo/dev/executable_smartnoise.ipynb @@ -12,8 +12,8 @@ "output_type": "stream", "text": [ "Collecting private-pgm@ git+https://github.com/ryan112358/private-pgm.git@5b9126295c110b741e5426ddbff419ea1e60e788 (from -r ../../requirements.txt (line 56))\n", - " Cloning https://github.com/ryan112358/private-pgm.git (to revision 5b9126295c110b741e5426ddbff419ea1e60e788) to /tmp/pip-install-vn8m0m34/private-pgm_80e5de69f17543b59c34dff626211cba\n", - " Running command git clone --filter=blob:none --quiet https://github.com/ryan112358/private-pgm.git /tmp/pip-install-vn8m0m34/private-pgm_80e5de69f17543b59c34dff626211cba\n", + " Cloning https://github.com/ryan112358/private-pgm.git (to revision 5b9126295c110b741e5426ddbff419ea1e60e788) to /tmp/pip-install-hpexqwll/private-pgm_aa8d511759a64cca9e4e4574d5df15e1\n", + " Running command git clone --filter=blob:none --quiet https://github.com/ryan112358/private-pgm.git /tmp/pip-install-hpexqwll/private-pgm_aa8d511759a64cca9e4e4574d5df15e1\n", " Running command git rev-parse -q --verify 'sha^5b9126295c110b741e5426ddbff419ea1e60e788'\n", " Running command git fetch -q https://github.com/ryan112358/private-pgm.git 5b9126295c110b741e5426ddbff419ea1e60e788\n", " Resolved https://github.com/ryan112358/private-pgm.git to commit 5b9126295c110b741e5426ddbff419ea1e60e788\n", @@ -113,9 +113,62 @@ " Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)\n", "Collecting pytz==2024.1 (from -r ../../requirements.txt (line 63))\n", " Using cached pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB)\n", - "\u001b[31mERROR: Ignored the following versions that require a different python version: 0.1.3 Requires-Python >=3.6,<3.9; 0.1.3.dev0 Requires-Python >=3.6,<3.9; 0.1.3.dev1 Requires-Python >=3.6,<3.9; 0.1.4 Requires-Python >=3.6,<3.9; 0.1.4.dev0 Requires-Python >=3.6,<3.9; 0.2.0 Requires-Python >=3.6,<3.9; 0.2.0.dev0 Requires-Python >=3.6,<3.9; 0.2.1 Requires-Python >=3.6,<3.9; 0.2.1.dev0 Requires-Python >=3.6,<3.9; 0.2.2 Requires-Python >=3.6,<3.9; 0.2.2.dev0 Requires-Python >=3.6,<3.9; 0.2.2.dev1 Requires-Python >=3.5,<3.9; 0.2.2.dev2 Requires-Python >=3.6,<3.9; 0.2.2.dev3 Requires-Python >=3.6,<3.9; 0.3.0 Requires-Python >=3.6,<3.10; 0.3.0 Requires-Python >=3.6,<3.9; 0.3.0.dev0 Requires-Python >=3.5,<3.9; 0.3.0.dev0 Requires-Python >=3.6,<3.10; 0.3.0.dev1 Requires-Python >=3.6,<3.9; 0.3.0.post1 Requires-Python >=3.6,<3.10; 0.3.1 Requires-Python >=3.5,<3.8; 0.3.1 Requires-Python >=3.6,<3.9; 0.3.1.dev0 Requires-Python >=3.5,<3.8; 0.3.1.dev0 Requires-Python >=3.6,<3.9; 0.3.1.dev1 Requires-Python >=3.6,<3.9; 0.3.1.dev2 Requires-Python >=3.6,<3.9; 0.3.2 Requires-Python >=3.5,<3.9; 0.3.2.dev0 Requires-Python >=3.5,<3.8; 0.3.2.dev0 Requires-Python >=3.6,<3.9; 0.3.2.dev1 Requires-Python >=3.5,<3.9; 0.3.3 Requires-Python >=3.5,<3.9; 0.3.3.dev0 Requires-Python >=3.5,<3.9; 0.4.0 Requires-Python >=3.5,<3.9; 0.4.0 Requires-Python >=3.6,<3.9; 0.4.0.dev0 Requires-Python >=3.5,<3.9; 0.4.0.dev0 Requires-Python >=3.6,<3.9; 0.4.0.dev1 Requires-Python >=3.6,<3.9; 0.4.1 Requires-Python >=3.6,<3.9; 0.4.1.dev0 Requires-Python >=3.6,<3.9; 0.4.1.dev1 Requires-Python >=3.6,<3.9; 0.4.2 Requires-Python >=3.6,<3.9; 0.4.2.dev0 Requires-Python >=3.6,<3.9; 0.4.3 Requires-Python >=3.6,<3.9; 0.4.3.dev0 Requires-Python >=3.6,<3.9; 0.4.3.dev1 Requires-Python >=3.6,<3.9; 0.4.4.dev0 Requires-Python >=3.6,<3.9; 0.5.0 Requires-Python >=3.6,<3.10; 0.5.0 Requires-Python >=3.6,<3.9; 0.5.0.dev0 Requires-Python >=3.6,<3.9; 0.5.0.dev1 Requires-Python >=3.6,<3.10; 0.5.0.dev1 Requires-Python >=3.6,<3.9; 0.5.1 Requires-Python >=3.6,<3.10; 0.5.1 Requires-Python >=3.6,<3.9; 0.5.1.dev0 Requires-Python >=3.6,<3.10; 0.5.1.dev0 Requires-Python >=3.6,<3.9; 0.5.1.dev1 Requires-Python >=3.6,<3.10; 0.5.1.dev1 Requires-Python >=3.6,<3.9; 0.5.1.dev2 Requires-Python >=3.6,<3.10; 0.5.1.dev3 Requires-Python >=3.6,<3.10; 0.5.2 Requires-Python >=3.6,<3.10; 0.5.2.dev0 Requires-Python >=3.6,<3.10; 0.5.2.dev0 Requires-Python >=3.6,<3.9; 0.5.2.dev1 Requires-Python >=3.6,<3.10; 0.5.3.dev0 Requires-Python >=3.6,<3.10; 0.6.0 Requires-Python >=3.6,<3.10; 0.6.0.dev0 Requires-Python >=3.6,<3.10; 0.6.1 Requires-Python >=3.6,<3.10; 0.6.1.dev0 Requires-Python >=3.6,<3.10; 0.7.0 Requires-Python >=3.6,<3.10; 0.7.0.dev0 Requires-Python >=3.6,<3.10\u001b[0m\u001b[31m\n", - "\u001b[0m\u001b[31mERROR: Could not find a version that satisfies the requirement pywin32==306 (from versions: none)\u001b[0m\u001b[31m\n", - "\u001b[0m\u001b[31mERROR: No matching distribution found for pywin32==306\u001b[0m\u001b[31m\n", + "Requirement already satisfied: PyYAML==6.0.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 64)) (6.0.1)\n", + "Requirement already satisfied: pyzmq==25.1.2 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 65)) (25.1.2)\n", + "Collecting rdt==1.9.2 (from -r ../../requirements.txt (line 66))\n", + " Downloading rdt-1.9.2-py2.py3-none-any.whl.metadata (65 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m65.5/65.5 kB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: requests==2.31.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 67)) (2.31.0)\n", + "Requirement already satisfied: s3transfer==0.10.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 68)) (0.10.0)\n", + "Collecting scikit-learn==1.4.1.post1 (from -r ../../requirements.txt (line 69))\n", + " Downloading scikit_learn-1.4.1.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)\n", + "Requirement already satisfied: scipy==1.12.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 70)) (1.12.0)\n", + "Collecting sdmetrics==0.13.0 (from -r ../../requirements.txt (line 71))\n", + " Downloading sdmetrics-0.13.0-py2.py3-none-any.whl.metadata (43 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.2/43.2 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting sdv==1.10.0 (from -r ../../requirements.txt (line 72))\n", + " Downloading sdv-1.10.0-py2.py3-none-any.whl.metadata (104 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.3/104.3 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: six==1.16.0 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 73)) (1.16.0)\n", + "Collecting smartnoise-sql==1.0.3 (from -r ../../requirements.txt (line 74))\n", + " Downloading smartnoise_sql-1.0.3-py3-none-any.whl.metadata (9.5 kB)\n", + "Collecting smartnoise-synth==1.0.3 (from -r ../../requirements.txt (line 75))\n", + " Downloading smartnoise_synth-1.0.3-py3-none-any.whl.metadata (2.7 kB)\n", + "Collecting SQLAlchemy==2.0.28 (from -r ../../requirements.txt (line 76))\n", + " Downloading SQLAlchemy-2.0.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.6 kB)\n", + "Collecting stack-data==0.6.3 (from -r ../../requirements.txt (line 77))\n", + " Using cached stack_data-0.6.3-py3-none-any.whl.metadata (18 kB)\n", + "Requirement already satisfied: sympy==1.12 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 78)) (1.12)\n", + "Requirement already satisfied: tenacity==8.2.3 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 79)) (8.2.3)\n", + "Collecting threadpoolctl==3.3.0 (from -r ../../requirements.txt (line 80))\n", + " Downloading threadpoolctl-3.3.0-py3-none-any.whl.metadata (13 kB)\n", + "Collecting torch==2.2.1 (from -r ../../requirements.txt (line 81))\n", + " Downloading torch-2.2.1-cp310-cp310-manylinux1_x86_64.whl.metadata (26 kB)\n", + "Collecting tornado==6.4 (from -r ../../requirements.txt (line 82))\n", + " Using cached tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.5 kB)\n", + "Collecting tqdm==4.66.2 (from -r ../../requirements.txt (line 83))\n", + " Using cached tqdm-4.66.2-py3-none-any.whl.metadata (57 kB)\n", + "Requirement already satisfied: traitlets==5.14.1 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 84)) (5.14.1)\n", + "Collecting typing_extensions==4.10.0 (from -r ../../requirements.txt (line 85))\n", + " Using cached typing_extensions-4.10.0-py3-none-any.whl.metadata (3.0 kB)\n", + "Collecting tzdata==2024.1 (from -r ../../requirements.txt (line 86))\n", + " Using cached tzdata-2024.1-py2.py3-none-any.whl.metadata (1.4 kB)\n", + "Collecting urllib3==2.0.7 (from -r ../../requirements.txt (line 87))\n", + " Using cached urllib3-2.0.7-py3-none-any.whl.metadata (6.6 kB)\n", + "Requirement already satisfied: wcwidth==0.2.13 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from -r ../../requirements.txt (line 88)) (0.2.13)\n", + "Requirement already satisfied: pexpect>4.3 in /home/ec2-user/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages (from ipython==8.22.2->-r ../../requirements.txt (line 29)) (4.9.0)\n", + "INFO: pip is looking at multiple versions of rdt to determine which version is compatible with other requirements. This could take a while.\n", + "\u001b[31mERROR: Cannot install -r ../../requirements.txt (line 66) and Faker==15.3.4 because these package versions have conflicting dependencies.\u001b[0m\u001b[31m\n", + "\u001b[0m\n", + "The conflict is caused by:\n", + " The user requested Faker==15.3.4\n", + " rdt 1.9.2 depends on Faker<20 and >=17\n", + "\n", + "To fix this you could try to:\n", + "1. loosen the range of package versions you've specified\n", + "2. remove package versions to allow pip attempt to solve the dependency conflict\n", + "\n", + "\u001b[31mERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts\u001b[0m\u001b[31m\n", "\u001b[0m" ] } diff --git a/requirements.txt b/requirements.txt index 82b25d7b..78f3cac1 100644 --- a/requirements.txt +++ b/requirements.txt @@ -61,7 +61,6 @@ Pygments==2.17.2 pyparsing==3.1.2 python-dateutil==2.9.0.post0 pytz==2024.1 -pywin32==306 PyYAML==6.0.1 pyzmq==25.1.2 rdt==1.9.2