-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
65 lines (54 loc) · 1.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from test import test
from model import ActorCritic
import torch
import torch.optim as optim
import gym
def train():
# Defaults parameters:
# gamma = 0.99
# lr = 0.02
# betas = (0.9, 0.999)
# random_seed = 543
render = False
gamma = 0.99
lr = 0.02
betas = (0.9, 0.999)
random_seed = 543
torch.manual_seed(random_seed)
env = gym.make('LunarLander-v2')
env.seed(random_seed)
policy = ActorCritic()
optimizer = optim.Adam(policy.parameters(), lr=lr, betas=betas)
print(lr,betas)
running_reward = 0
for i_episode in range(0, 10000):
state = env.reset()
for t in range(10000):
action = policy(state)
state, reward, done, _ = env.step(action)
policy.rewards.append(reward)
running_reward += reward
if render and i_episode > 1000:
env.render()
if done:
break
# Updating the policy :
optimizer.zero_grad()
loss = policy.calculateLoss(gamma)
loss.backward()
optimizer.step()
policy.clearMemory()
# saving the model if episodes > 999 OR avg reward > 200
#if i_episode > 999:
# torch.save(policy.state_dict(), './preTrained/LunarLander_{}_{}_{}.pth'.format(lr, betas[0], betas[1]))
if running_reward > 4000:
torch.save(policy.state_dict(), './preTrained/LunarLander_{}_{}_{}.pth'.format(lr, betas[0], betas[1]))
print("########## Solved! ##########")
test(name='LunarLander_{}_{}_{}.pth'.format(lr, betas[0], betas[1]))
break
if i_episode % 20 == 0:
running_reward = running_reward/20
print('Episode {}\tlength: {}\treward: {}'.format(i_episode, t, running_reward))
running_reward = 0
if __name__ == '__main__':
train()