-
Notifications
You must be signed in to change notification settings - Fork 2
/
api_encoding_train_test.py
335 lines (300 loc) · 19 KB
/
api_encoding_train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""
An example script for using PyPEF as an API for encoding sequences
to train and test ML models and the hybrid model MERGE.
Encoding of sequences is not parallelized in this script.
"""
import os
import pandas as pd
import numpy as np
from scipy.stats import spearmanr
from tqdm import tqdm
import matplotlib.pyplot as plt
import urllib.request
from hashlib import sha256
from sklearn.model_selection import KFold, train_test_split
from pypef.utils.variant_data import remove_nan_encoded_positions, get_seqs_from_var_name
from pypef.ml.regression import (
OneHotEncoding, AAIndexEncoding, get_regressor_performances,
path_aaindex_dir, full_aaidx_txt_path
)
from pypef.dca.hybrid_model import DCAHybridModel, remove_gap_pos, get_delta_e_statistical_model
from pypef.dca.plmc_encoding import PLMC
from pypef.dca.gremlin_inference import GREMLIN
use_gremlin = True # if False uses plmc (requires plmc-generated .params file)
n_aaindices_to_test = 10 # all would be 566 AAindex indices, only testing 10 here for shorter run time
# avGFP wild type sequence
wt_sequence = 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTL' \
'VTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLV' \
'NRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLAD' \
'HYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'
if not os.path.isdir('AVGFP'):
os.mkdir('AVGFP')
# 1st example: A. DCA-based encoding
# -------------------------------------------------------------------------------
# 1st example, since this approach reduces the amount of data (variant-fitness pairs),
# as not all variants can necessarily be encoded using the DCA approach. To compare
# the test performance with the other encoding techniques to be tested, we start with
# DCA and split the variant fitness data so that sizes of the data sets are same for
# all encoding techniques tested.
print(f'\nRunning script... which takes ~ 2 h (GREMLIN) - 4 h in total (PLMC) when using all 566 AAindex-indices '
f'for encoding and model testing (only {n_aaindices_to_test} AAindinces will be tested)...'
f'\n\n(1/4) Testing DCA-based sequence encoding...\n' + "=" * 50)
if not use_gremlin: # PLMC params file-based encoding
try:
dca_encoder = PLMC(
params_file='AVGFP/uref100_avgfp_jhmmer_119_plmc_42.6.params',
verbose=False
)
except (ValueError, FileNotFoundError):
print('Did not find required files for DCA-based encoding. Downloading required files...')
# Single substituted encoded variants: CSV files including variant name and true fitness
url = 'https://github.com/niklases/PyPEF/raw/main/datasets/AVGFP/avGFP.csv'
urllib.request.urlretrieve(url, 'AVGFP/avGFP.csv')
with open('AVGFP/avGFP.csv', 'rb') as f:
sha256_hash = sha256(f.read()).hexdigest()
if not sha256_hash == 'be4623f35a5ba05d33a29ae6e69dc3c2e994e3c9092cd5880a8d0bbc12f187b1':
raise SystemError("Hash of downloaded CSV file not correct, terminating further running.")
# Getting plmc parameter file
url = 'https://github.com/niklases/PyPEF/raw/main/datases/' \
'AVGFP/uref100_avgfp_jhmmer_119_plmc_42.6.params'
urllib.request.urlretrieve(
url, 'AVGFP/uref100_avgfp_jhmmer_119_plmc_42.6.params'
) # 71.2 MB file size
with open('AVGFP/uref100_avgfp_jhmmer_119_plmc_42.6.params', 'rb') as f:
sha256_hash = sha256(f.read()).hexdigest()
if not sha256_hash == '8baa30bc7d568906d4b587d4c6babd025041bf2f967f303fa38070d2df339830':
raise SystemError("Hash of downloaded DCA parameter file not correct, terminating further running.")
print('Successfully downloaded all required files!')
else:
url = 'https://github.com/niklases/PyPEF/raw/main/datasets/AVGFP/uref100_avgfp_jhmmer_119.a2m'
urllib.request.urlretrieve(url, 'AVGFP/uref100_avgfp_jhmmer_119.a2m')
with open('AVGFP/uref100_avgfp_jhmmer_119.a2m', 'rb') as f:
sha256_hash = sha256(f.read()).hexdigest()
if not sha256_hash == 'a7be875cd6b8c81c14abae0efb3d307aa0fa8956d15ebc67c4cab492d4443777':
raise SystemError("Hash of downloaded CSV file not correct, terminating further running.")
url = 'https://github.com/niklases/PyPEF/raw/main/datasets/AVGFP/avGFP.csv'
urllib.request.urlretrieve(url, 'AVGFP/avGFP.csv')
with open('AVGFP/avGFP.csv', 'rb') as f:
sha256_hash = sha256(f.read()).hexdigest()
if not sha256_hash == '34ba042830f1297463bb0bac155a043cd87c9e6fd0bbbd45312eb833b170ab0f':
raise SystemError("Hash of downloaded CSV file not correct, terminating further running.")
variant_fitness_data = pd.read_csv('AVGFP/avGFP.csv', sep=';') # loading the avGFP dataset
variants = variant_fitness_data.iloc[:2000, 0].values # "just" using 2000 variants for faster processing
fitnesses = variant_fitness_data.iloc[:2000, 1].values
variants_split = []
for variant in variants:
variants_split.append(variant.split('/'))
variants, fitnesses, sequences = get_seqs_from_var_name(wt_sequence, variants_split, fitnesses)
# Splitting in sets for training (fitting and hyperparameter validation) and testing
# Change number of applied splits for training and testing here, default: n_splits = 5
n_splits = 5
kf = KFold(n_splits=n_splits, random_state=42, shuffle=True)
train_val_splits_indices, test_splits_indices = [], []
if use_gremlin:
dca_encoder = GREMLIN(
alignment='AVGFP/uref100_avgfp_jhmmer_119.a2m',
wt_seq=wt_sequence,
opt_iter=100,
optimize=True
)
dca_encoder.plot_correlation_matrix(matrix_type='apc')
gaps = dca_encoder.gaps
variants, sequences, fitnesses = remove_gap_pos(gaps, variants, sequences, fitnesses)
x_dca = dca_encoder.collect_encoded_sequences(sequences)
x_wt = dca_encoder.x_wt
else: # plmc
dca_encoder = PLMC(
params_file='AVGFP/uref100_avgfp_jhmmer_119_plmc_42.6.params',
verbose=False
)
x_dca = dca_encoder.collect_encoded_sequences(variants)
# removing not DCA-encodable positions (and also fitnesses, variants, and sequences)
# from the 2000 initial variants, 1427 remain
x_dca, fitnesses, variants, sequences = remove_nan_encoded_positions(x_dca, fitnesses, variants, sequences)
x_wt = dca_encoder.x_wt
# Statistical model performance
y_pred = get_delta_e_statistical_model(x_dca, x_wt)
print(f'Statistical DCA model performance on all (2000) datapoints: {spearmanr(fitnesses, y_pred)[0]:.3f}')
# Split double and higher substituted variants to multiple single substitutions separated by '/'
print(f'N Variants remaining after excluding non-DCA-encodable positions: {len(x_dca)}')
assert len(x_dca) == len(fitnesses) == len(variants) == len(sequences)
for train_val_indices, test_indices in kf.split(variants): # several variants are not included in the data anymore
train_val_splits_indices.append(train_val_indices)
test_splits_indices.append(test_indices)
print(f'Total number of variant-fitness data for training and '
f'validation-based hyperparameter tuning: {len(train_val_indices)}' # indices only vary by +- 1 for the splits
f'\nVariants for testing: {len(test_indices)}\n')
ten_split_performance_ml, ten_split_performance_hybrid = [], []
for i, indices in enumerate(train_val_splits_indices):
x_train_val = np.array(x_dca)[indices]
y_train_val = np.array(fitnesses)[indices]
x_test = np.array(x_dca)[test_splits_indices[i]]
y_test = np.array(fitnesses)[test_splits_indices[i]]
# get_regressor_performances() already splits train_val data in data for fitting (training) and validation
# and after each CV-round shifts to the next hyperparameter of the regressor hyperparameter grid
performances = get_regressor_performances(x_train_val, x_test, y_train_val, y_test, regressor='ridge')
# performances[4] is Spearmans correlation between y_true and y_pred
ten_split_performance_ml.append(performances[4])
print(f'Split {i + 1}/{len(train_val_splits_indices)}:\nSpearmans rho (ML) = {performances[4]:.3f}')
# B. Hybrid modeling
# -------------------------------------------------------------------------------
hybrid_model = DCAHybridModel(x_train=x_train_val, y_train=y_train_val, x_wt=x_wt)
beta_1, beta_2, regressor = hybrid_model.settings(x_train=x_train_val, y_train=y_train_val)
y_test_pred = hybrid_model.hybrid_prediction(x=x_test, reg=regressor, beta_1=beta_1, beta_2=beta_2)
ten_split_performance_hybrid.append(spearmanr(y_test, y_test_pred)[0])
print(f'Spearmans rho (Hybrid) = {spearmanr(y_test, y_test_pred)[0]:.3f}')
print('-'*80 + f'\n{n_splits}-fold mean Spearmans rho (ML)= {np.mean(ten_split_performance_ml):.3f} '
f'+- {np.std(ten_split_performance_ml, ddof=1):.3f}\n'
f'{n_splits}-fold mean Spearmans rho (Hybrid)= {np.mean(ten_split_performance_hybrid):.3f} '
f'+- {np.std(ten_split_performance_ml, ddof=1):.3f}')
# 2nd example: AAindex encoding over all 566 amino acid descriptor sets
# -------------------------------------------------------------------------------
print(f'\n\n(2/4) Testing AAindex-based sequence encoding (using {n_aaindices_to_test} indices)...\n' + "=" * 75)
spearmans_rhos_aaidx, aa_index = [], []
# e.g., looping over the 566 AAindex entries, encode with each AAindex and test performance
# which can be seen as a AAindex hyperparameter search on the test set, i.e.,
# not totally fair comparison to onehot- and DCA-based encoding techniques.
# Limiting indices for testing to N = n_aaindices_to_test...
aa_indices = sorted([file for file in os.listdir(path_aaindex_dir()) if file.endswith('.txt')])[:n_aaindices_to_test]
mean_performances, ten_split_performance_std_dev, aa_indices_collected = [], [], []
for index, aaindex in enumerate(aa_indices):
aaidx_encoder = AAIndexEncoding(full_aaidx_txt_path(aaindex), sequences)
# two encoding options possible, FFT-ed and 'raw' encoded sequences (here we keep using 'raw' encoded sequences)
x_aaidx_fft, x_aaidx_no_fft = aaidx_encoder.collect_encoded_sequences()
ten_split_performance = []
if x_aaidx_no_fft == 'skip':
print(f'Skipped AAindex {aaindex}')
continue
for i, indices in enumerate(train_val_splits_indices):
print(f'\rSplit {i+1}/{len(train_val_splits_indices)}', end='')
x_train_val = np.array(x_aaidx_no_fft)[indices]
y_train_val = np.array(fitnesses)[indices]
x_test = np.array(x_aaidx_no_fft)[test_splits_indices[i]]
y_test = np.array(fitnesses)[test_splits_indices[i]]
performances = get_regressor_performances(x_train_val, x_test, y_train_val, y_test, regressor='ridge')
ten_split_performance.append(performances[4])
print(f'\r{index + 1}/{len(aa_indices)}: AAindex {aaindex}, '
f'{n_splits}-fold mean Spearmans rho = {np.mean(ten_split_performance):.3f} '
f'+- {np.std(ten_split_performance, ddof=1):.3f}')
mean_performances.append(np.mean(ten_split_performance))
ten_split_performance_std_dev.append(np.std(ten_split_performance, ddof=1))
aa_indices_collected.append(aaindex)
max_value = max(mean_performances)
max_idx = mean_performances.index(max_value)
max_value_std = ten_split_performance_std_dev[max_idx]
max_value_aaidx = aa_indices_collected[max_idx]
print('-'*80 + f'\nBest {n_splits}-fold mean Spearmans rho = {max_value:.3f} '
f'+- {max_value_std:.3f}, AAindex descriptor set = {max_value_aaidx}\n')
# 3rd example: OneHot encoding
# -------------------------------------------------------------------------------
print('\n(3/4) Testing OneHot sequence encoding...\n' + "=" * 50)
onehot_encoder = OneHotEncoding(sequences)
x_onehot = onehot_encoder.collect_encoded_sequences()
ten_split_performance = []
for i, indices in enumerate(train_val_splits_indices):
x_train_val = np.array(x_onehot)[indices]
y_train_val = np.array(fitnesses)[indices]
x_test = np.array(x_onehot)[test_splits_indices[i]]
y_test = np.array(fitnesses)[test_splits_indices[i]]
performances = get_regressor_performances(x_train_val, x_test, y_train_val, y_test, regressor='ridge')
ten_split_performance.append(performances[4])
print(f'Split {i + 1}/{len(train_val_splits_indices)}: Spearmans rho = {performances[4]:.3f}')
print('-'*80 + f'\n{n_splits}-fold mean Spearmans rho = {np.mean(ten_split_performance):.3f} '
f'+- {np.std(ten_split_performance, ddof=1):.3f}\n')
# 4th example: Low-N and plotting using all encoding techniques and all data
# -------------------------------------------------------------------------------
print('Lastly, encoding all variants and performing "low-N" protein engineering task.\n'
'This could require some time... < 1 (GREMLIN DCA encoding) to ~ 2 hours (PLMC '
'single core DCA encoding) left...')
variants = variant_fitness_data.iloc[:, 0]
fitnesses = variant_fitness_data.iloc[:, 1].tolist()
variants_split = []
for variant in variants:
variants_split.append(variant.split('/'))
variants, fitnesses, sequences = get_seqs_from_var_name(wt_sequence, variants_split, fitnesses)
print(f'N Total variants = {len(variants)}.\nEncoding sequences...')
if use_gremlin:
variants, sequences, fitnesses = remove_gap_pos(dca_encoder.gaps, variants, sequences, fitnesses)
x_dca = dca_encoder.get_score(sequences, encode=True)
else:
x_dca = dca_encoder.collect_encoded_sequences(variants)
# removing not DCA-encodable positions (and also reduce fitnesses, variants, and sequences accordingly)
x_dca, fitnesses, variants, sequences = remove_nan_encoded_positions(x_dca, fitnesses, variants, sequences)
print(f'N Variants remaining after excluding non-DCA-encodable positions = {len(x_dca)}')
# using the best identified index, i.e., AURR980106 for 10 tested indices or QIAN880130 for all 566 indices
print(f'AAIndex-based encoding of the {len(x_dca)} variants (using index {max_value_aaidx})...')
x_aaindex_fft, x_aaindex_no_fft = AAIndexEncoding(
full_aaidx_txt_path(max_value_aaidx), sequences).collect_encoded_sequences()
print(f'One-hot encoding of the {len(x_dca)} variants...')
x_onehot = OneHotEncoding(sequences).collect_encoded_sequences()
assert len(x_dca) == len(x_aaindex_no_fft) == len(x_onehot) == len(fitnesses) == len(variants) == len(sequences)
all_mean_performances_dca_statistical, all_mean_performances_dca_ml, all_mean_performances_hybrid, \
all_mean_performances_aaidx, all_mean_performances_onehot = [], [], [], [], []
all_stddevs_dca_statistical, all_stddevs_dca_ml, all_stddevs_hybrid, all_stddevs_aaidx, all_stddevs_onehot = [], [], [], [], []
low_n_train = np.arange(50, 1001, 50)
print(f'\n(4/4) Testing low N performance (with N_train = {list(low_n_train)})...\n' + "=" * 50)
pbar = tqdm(low_n_train)
for n_train in pbar:
pbar.set_description(f'N_train = {n_train}, N_test = {len(variants) - n_train}')
performances_dca_statistical, performances_dca_ml, performances_hybrid, performances_aaidx, performances_onehot = [], [], [], [], []
for rnd_state in [42, 213, 573, 917, 823]:
x_dca_train, x_dca_test, y_train, y_test = train_test_split(
x_dca, fitnesses, train_size=n_train, random_state=rnd_state)
# Delta E is just the sum of the encoding (embedding) relative to the WT sum
performances_dca_statistical.append(spearmanr(y_test, np.sum(x_dca_test, axis=1) - np.sum(x_wt))[0])
performances_dca_ml.append(get_regressor_performances(
x_dca_train, x_dca_test, y_train, y_test, regressor='ridge')[4]) # [4] defines spearmanr correlation
hybrid_model = DCAHybridModel(x_train=x_dca_train, y_train=y_train, x_wt=x_wt)
beta_1, beta_2, hybrid_regressor = hybrid_model.settings(x_train=x_dca_train, y_train=y_train)
y_hybrid_pred = hybrid_model.hybrid_prediction(x=x_dca_test, reg=hybrid_regressor, beta_1=beta_1, beta_2=beta_2)
performances_hybrid.append(spearmanr(y_test, y_hybrid_pred)[0])
x_aaidx_train, x_aaidx_test, y_train, y_test = train_test_split(
x_aaindex_no_fft, fitnesses, train_size=n_train, random_state=rnd_state)
performances_aaidx.append(get_regressor_performances(
x_aaidx_train, x_aaidx_test, y_train, y_test, regressor='ridge')[4])
x_onehot_train, x_onehot_test, y_train, y_test = train_test_split(
x_onehot, fitnesses, train_size=n_train, random_state=rnd_state)
performances_onehot.append(get_regressor_performances(
x_onehot_train, x_onehot_test, y_train, y_test, regressor='ridge')[4])
all_mean_performances_dca_statistical.append(np.mean(performances_dca_statistical))
all_stddevs_dca_statistical.append(np.std(performances_dca_statistical, ddof=1))
all_mean_performances_dca_ml.append(np.mean(performances_dca_ml))
all_stddevs_dca_ml.append(np.std(performances_dca_ml, ddof=1))
all_mean_performances_hybrid.append(np.mean(performances_hybrid))
all_stddevs_hybrid.append(np.std(performances_hybrid, ddof=1))
all_mean_performances_aaidx.append(np.mean(performances_aaidx))
all_stddevs_aaidx.append(np.std(performances_aaidx, ddof=1))
all_mean_performances_onehot.append(np.mean(performances_onehot))
all_stddevs_onehot.append(np.std(performances_onehot, ddof=1))
# Plotting all the achieved "low-N" performances
plt.plot(low_n_train, all_mean_performances_dca_statistical, 'o--', color='tab:cyan', label='DCA (statistical model)')
plt.fill_between(low_n_train,
np.array(all_mean_performances_dca_statistical) - np.array(all_stddevs_dca_statistical),
np.array(all_mean_performances_dca_statistical) + np.array(all_stddevs_dca_statistical),
color='tab:cyan', alpha=0.2)
plt.plot(low_n_train, all_mean_performances_dca_ml, 'o--', color='tab:orange', label='DCA encoding (pure ML)')
plt.fill_between(low_n_train,
np.array(all_mean_performances_dca_ml) - np.array(all_stddevs_dca_ml),
np.array(all_mean_performances_dca_ml) + np.array(all_stddevs_dca_ml),
color='tab:orange', alpha=0.2)
plt.plot(low_n_train, all_mean_performances_hybrid, 'o--', color='tab:blue', label='Hybrid DCA model (MERGE)')
plt.fill_between(low_n_train,
np.array(all_mean_performances_hybrid) - np.array(all_stddevs_hybrid),
np.array(all_mean_performances_hybrid) + np.array(all_stddevs_hybrid),
color='tab:blue', alpha=0.2)
plt.plot(low_n_train, all_mean_performances_aaidx, 'o--', color='tab:green',
label=f"AAindex ({max_value_aaidx.split('.')[0]})")
plt.fill_between(low_n_train,
np.array(all_mean_performances_aaidx) - np.array(all_stddevs_aaidx),
np.array(all_mean_performances_aaidx) + np.array(all_stddevs_aaidx),
color='tab:green', alpha=0.2)
plt.plot(low_n_train, all_mean_performances_onehot, 'o--', color='tab:grey', label='One-hot')
plt.fill_between(low_n_train,
np.array(all_mean_performances_onehot) - np.array(all_stddevs_onehot),
np.array(all_mean_performances_onehot) + np.array(all_stddevs_onehot),
color='tab:grey', alpha=0.2)
plt.legend()
plt.xlabel(r'$N_\mathrm{Train}$')
plt.ylabel(r'$\rho$')
plt.savefig('AVGFP/low_N_avGFP_extrapolation.png', dpi=500)
print('\nDone! Created figure \'AVGFP/low_N_avGFP_extrapolation.png\'.')