-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
43 lines (41 loc) · 1.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import matplotlib.pyplot as plt
import sys
import itertools
import numpy as np
from sklearn.metrics import confusion_matrix
from keras import backend as K
import keras
# function to plot the confusion matrix
def plot_confusion_matrix(Y_true, Y_predicted, classes, normalize=False):
cm = confusion_matrix(Y_true, Y_predicted, labels = classes)
plt.figure()
plt.imshow(cm, interpolation = 'nearest', cmap = plt.get_cmap('gray_r'))
plt.title('Confusion matrix')
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j], horizontalalignment = "center", color = "white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
# function to visualize 2D CNN filters
def visualize_filter(model, input_X, input_Y, layer_num):
if type(model.layers[layer_num]) != keras.layers.convolutional.Conv2D:
sys.exit('The selected layer is not a 2D CNN filter')
get_filter_output = K.function([model.layers[0].input], [model.layers[layer_num].output])
for k in range(0,10):
X_layer = np.mean(input_X[np.where(input_Y == k)], axis=0)
X_layer = np.expand_dims(X_layer, axis=0)
X_layer = np.expand_dims(X_layer, axis=4)
layer_output = get_filter_output([X_layer])[0]
plt.figure(figsize=(20,20))
for i in range(0, model.layers[layer_num].get_config()['filters']):
plt.subplot(1, 5, i+1)
plt.title('Output of filter {0}, input = {1}'.format(i+1, k))
plt.imshow(layer_output[0][:,:,i], cmap = plt.get_cmap('gray_r'))