diff --git a/docs/notebooks/dwi_gp_estimation.ipynb b/docs/notebooks/dwi_gp_estimation.ipynb new file mode 100644 index 00000000..263511a5 --- /dev/null +++ b/docs/notebooks/dwi_gp_estimation.ipynb @@ -0,0 +1,3423 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d11e5969ed6af8a5", + "metadata": {}, + "source": [ + "Estimate a DWI signal using the eddymotion Gaussian Process (GP) regressor estimator." + ] + }, + { + "cell_type": "markdown", + "id": "3476a8e9cfefd4b8", + "metadata": {}, + "source": [ + "Download the \"Sherbrooke 3-shell\" dataset using DIPY and select the b=1000 s/mm^2 shell data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "69a3bc6b4fbe7036", + "metadata": {}, + "outputs": [], + "source": [ + "import dipy.data as dpd\n", + "import nibabel as nib\n", + "import numpy as np\n", + "from dipy.core.gradients import get_bval_indices\n", + "from dipy.io import read_bvals_bvecs\n", + "from dipy.segment.mask import median_otsu\n", + "\n", + "seed = 1234\n", + "rng = np.random.default_rng(seed)\n", + "\n", + "name = \"sherbrooke_3shell\"\n", + "\n", + "dwi_fname, bval_fname, bvec_fname = dpd.get_fnames(name=name)\n", + "dwi_data = nib.load(dwi_fname).get_fdata()\n", + "bvals, bvecs = read_bvals_bvecs(bval_fname, bvec_fname)\n", + "\n", + "_, brain_mask = median_otsu(dwi_data, vol_idx=[0])\n", + "\n", + "bval = 1000\n", + "indices = get_bval_indices(bvals, bval, tol=20)\n", + "\n", + "bvecs_shell = bvecs[indices]\n", + "shell_data = dwi_data[..., indices]" + ] + }, + { + "cell_type": "markdown", + "id": "9bd417117afaad49", + "metadata": {}, + "source": [ + "Visualize a slice of the data for a given DWI volume." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d8547475686958f3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0mElEQVR4nOz92XPkZ3beiT+573smkNiBQu3FYnFrkk2yW6StVrtljyTP5rnw2BPjifDd/BUT4Ttfzjh84Qh7xhEOeVodkjxSy93qzeyFbC5Fsoq1Yd8yAeSCzEQmEkhk5lxgPqdelBSjon+tLv5G+UYwSFYBuXy/7/c9z3nOc57jGQ6HQ43WaI3WaI3WaI3W39jlfdYfYLRGa7RGa7RGa7Se7RqBgdEardEardEarb/hawQGRmu0Rmu0Rmu0/oavERgYrdEardEardH6G75GYGC0Rmu0Rmu0Rutv+BqBgdEardEardEarb/hawQGRmu0Rmu0Rmu0/oavERgYrdEardEardH6G778z/oDjNZojdZojdZfvgKBgPL5vAaDgTwej3w+n/r9vur1ugKBgNLptLrdrrrdrrxer0KhkAKBgE5OThQIBBQKhVQulxWNRjUYDDQcDuXxeDQYDNTtdpVMJuXz+XR4eGg/L0ndbld+v19+v1+1Wk2FQkHHx8cKBoPyer2qVqv2u/1+XycnJ4rH4/YZI5GIOp2Ojo+PVa/XNRgMFI/H5fP5dHJyouPjY3m9Z7loPB5Xu92W3+9XIBCQ1+vVcDhUIBBQtVpVKpXS0dGR4vG4er2eut2uTk9P7bvMz8+rXC7bNTs5OdFgMFAymVS325UkHR0dKZVKKRQKyev16vT0VN1uV4PBQNlsVvv7+5Ikr9crv9+vYDCoQCCgbrcrn8+ndrutk5MTRaNR+f1+9ft9HR0dqdfrKRKJKB6P6+joyD7DcDi0f/r9vhKJhBqNhrxer8LhsAKBgE5PT+X1enV8fCyfz2fvE4lEFIlEdHJyIq/Xq263q36/r2g0quFwaN/P4/HYe52enioej2t6elp7e3s6OjqyvVEul/U03oIjMDBaozVao/UlXT6fTwcHBxakCCSRSEStVkunp6cKBALyeDw6PT2Vz+dTMBiUx+NROBxWvV5XPB7XcDiU1+vVYDDQ6empBcFwOCyPx6Pj42P1ej0NBgMFAgEFg0F1Oh31+32FQiELQI1GQ5IUjUbV6/WUSCRUrVYVj8d1enoqj8ejk5MTNZtNpVIpdTodXb16VRsbG0okEhoMBur3+5Jkn93v9xsA8Pv9Gg6HarVaGg6HGgwGGgwGikajOjg4kM/nk8fjUSgU0vj4uAENwJDX61U0GlUgEFClUlEsFtPR0ZGGw6GBpkgkomAwqOPjY4XDYdVqNQ2HQ/l8Pg0GA52cnNg/fr9fsVhM0WjUPjPXyePxKBgM2msDwILBoAaDgTqdjuLxuCQpHA7b7w8GA0lSIpFQrVZTJpOxn5ekdrutTqcjn8+nUCikdrttIIRr7PF47Ppks1mVy2X1ej0dHx8bODg8PJTP53vqvTYCA6M1WqM1Wl/SlUwm1Ww2LVgS0IbDoQWabrdr7MHJyYna7bYFfZ/Pp1arpXA4rMFgYFn7YDAwJqHVaikej+v4+FiSFAwG5ff7NRgM1G635fV61ev1NBwOlUwmFYlE1Ov1VKvVdHR0ZJmydBb0fD6fms2mqtWqvWYkErGsltcKBoPGWJAJkwUPh0NjF2AtYCr6/b4Fu5OTE7VaLQUCAUmy7xQMBhUOhw2kcD3I1gE3gACy/GAwqFAoZJk613c4HCocDts96PV6BmIkqdfryePx2Pc8PT1VLBZTp9OR1+s1xoPPCWjis/D+gAYAQ6/XM7an2+0aewPogCHKZDIaDocGbHgdAMbTrBEYGK3RGq3R+hIvslCv12tZYb/ft4BOkCLr7vf7CgaDlgXzd+7y+Xw6Pj5WLBZTt9tVIpFQv9+3gOsGQILeYDBQKBSS3+/X8fGxstmsgYXhcGhZKQEbqr7ZbKrT6SgUCsnj8Vj2z+t1u13FYjFJsoBNII5EIur3+8Z4EMCh19PptAEOrhMgKBqNWtCH9nfZEQIyTAqMQyAQUL/ft0B/enqqfr9vZRKuCb9DiaTT6RgdD5jw+Xzy+/2WtfP9KdUMh0P1ej2dnp7aawOG/H6/Go2G/H6/lWPYA6enp+p0Ojo5ObF/h8Nh9Xo9e09e52nXCAyM1miN1mh9SRc1aYIIgbTf79vfkYlSQ+cfN3hSn4ZmBwxQv6eUcHp6quPjY6vpQ0dDoZO5e71eJRIJHR0dWTbe6XTU6XQUCASs5h8Oh9VsNi2An56eSjpjH3q93rkyBEEY1kCS1cUBHAAgmAufz2f1dzfr53vyPQACbhB2gz1lFQIt4IlAfHJycu7aoj0AlABECPiS7PMBGLhuvDaf09UA8D34rDAJgAGCPeDQ5/MZS8GfsfjsT7tG3QSjNVqjNVpf0tXv95VMJo2657AnYBDwXbBAUCFT5HXcQOMGZ7J4sslOp2MBjd9HuNdqtdRuty3ARaNRy5TdgMTnhTGIRqMWuE5PT43KPz09VTQaVavVkqRzWbvH41Gv17NA6goHyXiPjo4MfLh6CJepAFhQ7+dnADEE9VAopMFgYGUMgi6lEcoyABafz2d/dnR0ZO/P37sBHtYlGAwasOr3++cAhFsmGQwGdt2kMzDEveH6pdNpRSIRBQIBJRKJv7B3uIZPu0ZgYLRGa7RG60u6CNAwAK7QL5FI6OTkRLFYzERxsAYEWoKtG4i63a7q9boFZP4M9Tr1ZgJtMpm0rJbsfX9/X+VyWX6/X6FQSLVaTYFAQPF4XKFQyIIsIrjBYGCCx2g0qlgspuPjYyWTSUlngkQybN6b/49EIvZ7sADtdts6DAaDgWKxmAVvMmJ+HzGgJIVCIUWjUStZBAIBpVIpxWIxeb1eRSIR+7tgMKjDw0NJMjofoDAYDHR4eKh0Om2vQcCPxWJKJpPWveDz+QyYob+gWwNgwveACQAA+Xy+v8BUcG8rlYqJHOmMaLfbpq84ODgwLcdT7bVfzZYdrdEardEarV/1Oj09PRe4/X6/BbdMJiNJarVaBgD8fr8ikYhisZgqlYoSiYT9viv0I3jNz89rd3dX4XDYSgaSLJAjbItGoyZSbLValjFXq1UlEgmFw2EdHR2ZgJAOCK/Xq0KhoFqtZhlyt9u1oF2pVCzQRSIRSTIAEYvFNBgMVC6Xz7ENMA6NRsPaFwOBgNXo+/2+BUUo/V6vp0AgYGCKgJ5Op3VycmJljng8Lr/fr3a7rXa7rVQqZZoGANHp6anV6h88eGBtigRuSjJ8DtidWCxmIsVoNGpMBYAsn89bBwdsRqPRMLbi6OhIwWDQShZoDPb29gwkeDwetdvtc+/xtGsEBkZrtEZrtL6ki0z/6OhInU5H0WjU+vVPT0+VSCSUz+e1v79vAY4seDAYqFarKZfLWebI33e7XRUKBe3s7CibzRrNLckAwXA4VDqdliTLbhuNhrrdrsbGxpRIJFQul3XlyhVtbGyYZoEgyH/H43HLjDudjokTQ6GQjo6OzonwXLBDySEajZ5T7VOLxx8hl8tpOByq2WxaVn94eGi/f3x8rEgkYgABBgXAhHgP9b90pmmIRCKqVqvK5/M6PDw8p+ynrIDGgjILYs7Dw0MrGyBeBDQguqSzA0EmTAxiQ3QRgUBAnU7HGAG+F9cwkUicayMEPEgy34inWaMywWiN1miN1pd0ISRDIX58fKxWq6VUKqV4PG4ivVQqZRmmJB0cHGgwGGh6etqyaUx9oOnJcKenp5XP502Yx+sCHGibI0uFVdje3lY+nzdK3225o1xwdHSkzc1NAyiwBYPBQM1m04JbIBCw96TmXqvVVKvVdHx8rH6/r4ODA52cnFhbIUwHmXw2mzVmIBqNWtDPZrP23Wjjc8se8XhcmUzGXptrzedtNpvWfokJEIJHdAO0SMIKwJAAgBAuUnaBJRgMBqrX60qlUue8BriXsDyJROJcqcTv91tpBdaHjgt0FXRoPO0aMQOjNVqjNVpf4kXWCUvg1vzHx8et354gB51+dHRkARfKHPEdAjVEdpFIxChwj8ejaDSqRCKhZrOpo6MjHR4eKplMnjMBks58BUqlkmW0R0dHJvRD5yA9duTjs2H6A20fCoXUbDbt84fDYR0fHxv7gdcAbAPdDGgHEBvyXcPhsAEGtBaunkA6K6+EQiHrQIBBQA+A0I/PnM1mVa/XjY7H3wAARNcHosFut2v6i8PDQ2v7hJ3g/yljhMNhYxvoMACIsQ8ASpRNAFHSYxEjYAsG5mnXCAyM1miN1mh9SRfiQTJqAjoZKH3oiNtcy+JIJKJoNKpGo3FOmc7fNZtNTU5OqtVqmRAwHA4rGAxagEWYBy1OsB8MBgqHwyZuw3CH9jcobknnfA5gASgb0CGRSqUswBLsaBvErpf3owcf1sLtbkB0R0B2xYBk4oAqScYCuB0KAC5KFJKsrx+RIe8HG0Dt320dxD4YVgBQBwPBvYTZoCTT7XYNvABqECK6rZGuAZL0uFXRbSf9IgLCUZlgtEZrtEbrS7rcnnNoYDJVBH5kg1DLBIF0Om1ZMLQ3r0fdm0yTNjdeg7o1SnnAiM/nO+fgRxuca2pE2xtBimyez8z7ARwQy/G9mHWAkPD09NT+nM8Ope62Ibo1c0ABtXV0Fvyca+FMDR51P5/bNXSSzsR8fF7KAAgUAUV8L7crg6DPctsK6bzgsxwdHeno6MgYDkSUgDWCu8uQsAd4b16be/y0awQGRmu0Rmu0vqSLVjSyWoIB/e3UoWkvlGQtggzP6ff7poanvY0Au7+/f86xzg2EeBMgYCPIuC54ZMLQ9Kj2ASKAFDJdfg71Pd+r1WrZzwyHQ/Pm5z2Gw6ENAnIdDgEH4XDY6ulkxrAaMAToJvhZqHoYFUCJ60HA+yFEdH0OUOonEgm7Hi77AOhxvRMAHW7dn3kTh4eHarfbZixES2gsFjNxJa/D93LnOrAohyB2fOq99v/LRh2t0Rqt0Rqtv75FsEWxDjuQyWSslp/P5xWNRs8FNoRvZIrSY1vdwWBgdD/BiOBPwIvFYvJ4POp2uzo6OlIkErGsXpKxEpIUi8XOCRShr3O5nGXIzEyAIj85OVE6nVY4HLb2QEoTrniPtklADIE6nU4rmUxaS6PLCpBxM4/h6OjI5gDwc1gtu7Mc/H6/eQ64nRmpVMqGGjFDoVqtWrmEgOza/1LvR/zI50omk1YqAIDwGRAvEsRPT09t4BMlGEAM36FWq9mfYYzkghqEm0+zRpqB0Rqt0RqtL+miF56ASFsaZjNer1cPHjw4Z6MLhVytVi2wAQxcy9tMJqNsNqu9vT0L9FDWzBLgdZie5/P5bI4BwY6ADOjodDpqNBrnMlO3gwGq3WU53BkCvD5MAS1//DwCPF671WqZAJAAC3Dgekkydz9JJpKkXADw4fUxdMJ1Ebc/d4Qy78/7JpNJE2RKjxkayiN0ZLA6nY6JLpPJ5DnvAVgZShBoFfh7QF86nValUjFNBdeYa5nJZMw46a9aIzAwWqM1WqP1JV300zcajXNq+GAwqHa7rWKxaPQymS+T7VqtlgV1WtncqYWdTketVsva5mhdJOhTokArwL/Jtt1ZA4lEwmYTYIWcyWQUj8fV7XbV6XSspMFr4I0AOMGgJxaLWaC9dOmSSqWS1d8TiYRlxLFYTHNzc6rVasYuIAYkAMbj8XN9/bQCUiJhvgJ9/PycdOZpkMlkLIBjv0ypg/sD6wADwT2C0k8kEtrZ2bEuBOmxHiGdTtuI5X6/r2azaaUBSapUKgZUECO6ugbcF/l3o9EwwFOtVr/QXhuBgdEardEarS/pikQiqlQqFkie9Lwnw87lcqY8Pz4+1vj4uBqNhlHGxWJR1WpVjUbDDH5Q2EuyCYJk86FQSHt7e+e6GGgDDIfDymaz1i4HxU1rHFlwqVRSMpm0GjcZr6RzIjcEeY1Gw+rnuAQeHBwoHo9bSx+TAXHae/jwoTwej/2cpHO9/xsbG+aISGcCLX+uuM5tvXSHE5XLZRUKBcvUXTDR7/eVSqW0vr6uTCZz7jX5Wa4No5Hd+j5ajZOTEys/UGpw9RFca4ZAUS5CFxCPx9VoNMyHAAEi1/xp1wgMjNZojdZofUkXQZNhQDje7e/vKx6Pa39//9xAol6vp1arpdXVVQsWh4eH2tnZOTd8xw3MTOtzbW8TiYTGx8e1vr4u6bFXPv/AQLiCuVardW6ioNtm1+12DRjQDpdKpdRutyXJNA/tdludTsfq89Dd7ohmmBGYCyh7gj2gBREiZRXGFQOgMD4aDodKpVLGdjASOJVKnbNwDofDyuVyOjw81MHBgRKJhAqFgjECXDdAC6UIvo/rquiOLqYcARDhunGtGUddKBSMIYpEIgqHwyY4DIfDqtfrxijAuLhdHn/VGoGB0Rqt0RqtL+minox3AEHWnY7n2gAz2AdGoNfraWxszLz0qS27WWsoFDo3sphADwBBFEjtGgofoR6fjcBJyxuTCqGw4/G41f7RJjC+GEYDAR1OfwgMx8fH1Wq1bK4BZQ60DmTb9Pa77YloIdwywnA4VD6fNy0F2grMgvBiAECEQiF1u11Vq1UrjXS7Xe3u7ioSiVjA73a7xpjwvrgVum2AfC5KCZLsvbiXkowxgQ1iASa63a6VaAB/6C8kWRfE06xRN8FojdZojdaXdJEtYkTDIByCC38nyfr9obsJAgRzgj2Bhho+LXRu6yBdBPwdf07N3x0DjKERLY6JRMJAB5+JujZMgiQbgHR8fGx1+VgsZqI5OhZOTk5sjDCMABk1gQ+bZdoG3XHDBGa3997j8SiVSimdTltQBgjQIYApEsOacPWTHjMZ6A24NnRFYIiEXfBwODS9AdeTz8fn574BxtA4ANQQaXL9AoGAsSeSjPFgz4x8BkZrtEZrtP4/sqLR6DkBHstV6mNxK8koe+j+dDptdsVk1ACL4XB4LuhIj4PU0dGR9vf3JT0eluT6C7ijlKXHpQZq2GTgZNGu8Y4LStxBTARzgjIUu8fjsbZDNAVubR/aHA2E6zxIOQQw8CQNTxDGdtk1R2q32/Y9YCEkmVeBOyyJn3OdFmEvcCvk/fEYkPSXmiZxjVwvARf0SbKujlQqZSJRyiZ/mfPj06wRGBit0Rqt0fqSLmyDCVAo0Okhbzabkh73tdOKF4vFFI1GNTU1pePjYyUSiXPmN1DSroUvAYVA02w2bTCRJBO2Qd8TeGZnZyXp3CAguh2CwaC13OVyOWUyGSUSCRPcVSoVMwQi2+52u+eGEAWDQa2vr5sfACwA4jrKKJVKRZVKxUoOLpuRzWb/grVwuVxWrVZTOp22Fklel2tVrVY1NzdnpYJOp6Nms2n9+81m00oMjG0m0ANQWq2WtYXS2QGYCwQCymQy1ukBu8DAIkCEdAYAYrGYsSMAEK4LRkvch9FsgtEardEarf+PrMPDQzv8XfEeWV8mk7F2wHA4bBk6YrjNzU0FAgGb/ifJKPZwOKzx8XFrbaPvHZo8Ho+rWCzK4/GoUqmYPTHZOUOEVldX7c/pKJBkCn5a5QAGmOlA1TO6lwAYi8WsFIBuIR6PW6DjOsRiMR0fHyuVSqlarRptfnx8rHK5fE61z1RD2vIQMkYiETP0wdiJyYL5fF7b29va3d21ORB0VQAeGPLERMVMJmP6BMoYAC+XJcHmGYOmk5MThUIh0xNwvwn4CBoBIcFgUIPBQHt7e4pGo9bSiA4E50fAwtMsz/CLQIfRGq3RGq3R+rUtGAECBf3pkUjEMm/ocbf/fWJiQoFAQJubm2q1Wjb5j9LAcDjUtWvXFAgEdOfOHQMR6BLwHEgkElZWwBSHVjgy6GQyqb29PVPSd7td0wAkk0n7N0DDFTMeHR2dex0X+BweHlotn9IDgdNtuSPzr9VqknRu/kG1WlU4HNZLL70kv9+vRqOhg4MD00NMTk7q448/towcQBOJRJRIJLS7u6sLFy6o3W5b+16n09HR0ZF5KWxsbJgxFPcJ7cHY2Ji2trYMFDGKGIAQDoetHEMphS6ERCKhg4MDSTpX5sFzAW+EfD6vSqVi4ARAQBsiHhR/1RqBgdEardEarS/pSqfT5+rv9Kzn83nt7e3ZEB430FMGyGQyJvDjz7AD9vl8SqfTyufz2t3dNQti6vfYGSNQo63t8PDQQAnAhNID8wZgJugkSCaTpninLIHR0MLCgsrlsonrEOtRHsBvAFodQV29XtdwOFQymVS/39f09LSazaZpGbxer8bGxszY6ODgwKYCwoTk83lJZ/X5SqVyDpDAEORyOVWrVe3v76tQKJigsNvtWgshXQSAMayOyeS3t7eVTCbNRpnvj90yToVoGBBn4vsAo0DrJvep0+kolUoZyGIf0JURj8cVj8e1srLyVGBgVCYYrdEardH6ki4y2EQiYT73LIRwAAREg2T2CPEQ2GHZiyDN5/NpbW3NZh+4QkQyUYR9kizwo24ngPP+rilRLpdTs9nUxMSECekAJa7RkOv3T5Dmz46Pj00PAICRZGUMhiH1ej0DRmT0x8fH2t7eViqVUrlcPnf9GNPcarVMJ4G7oOu6iM6iWq0aSKJDgOufzWYlnWkH4vG4WTP3ej2dnJzo4OBAuVzOGJtarWbsB86IAAEye0R/Pp/PWjEJ7nQr8P+wCJgwuWLKYDBompKnWSMwMFqjNVqj9SVdDAzCcY5aeqvVMmqfvvZEIqF4PG5g4PDw0ALo8fGxjQhG1U7pANqZljgAAVm4677H6yE05O/J3mEqCKSRSESNRkPtdttoa2YTYFXsdhmgB4AOp8ZPWQT3xEKhoFKpZK2MOzs7SqfT1moYj8cVCoVUr9eVz+et7OFaBfPZETQS6GE6yMqHw6Gy2axarZb18tPjT/YN88H/u22KAA86KFxNAO2Y0Px+v9/YGDoe0um0Go2GvTd/TimE8gZmRjAUgLOnXSMwMFqjNVqj9SVdBCU3ABDMoevdscOUFOiTJ7M+ODj4C8FEkgVdWuDITFH4Y9wDCOG9XeGb613Az/IPwjjMidxpfYFAwDJu11+AQTypVErhcNjq9nzPfD6vTCajzz//XIFAQDs7O+fMj1zTodnZWXuNXC5nFL/rpzA1NaX9/X3TQrijoLnG+DZEIpFzLXxk3u6AIQIzDIILgCKRiAkCKekAtABC6AsQEEL/u0OrYFooqXAf3U4MLI2fdo3AwGiN1miN1pd09Xo9m9pHcILmp7+d4MokQbQFBG63p12SBaN6vW4OhzAHmNS41rhk9Pw+1Dz1cdftkEBETV2SstmssQtkxu7IZViKeDxuLXgej0cLCwummXjxxRfNeAjgcOXKFXU6HX300UcqlUra2dmxoEip4e2331a73VY0GtXi4qJ2d3e1ubmpw8NDm/BXLBZVr9ft2gIGpMeqfYSKrgUzOoZWq2WsA9fJBVySjMqHDSGbh2GA1sf/gfsAowEIpDSEhoQuAxfgoNuA4XH9Cf7f1ggMjNZojdZofUkXGTkDeshKa7WaBWwyTlzvEPNR86d1j+yWAFytVjUYDEz5jwMhinTXGpeAAnNATR0QAe0O+PB4PCoWi5LOO+MBUPido6MjXb16VcFgUOl02syVpqamdPXqVbVaLc3MzGhyclLFYtECtcfj0eXLl3VycqLf+73f03e+8x3963/9r3VwcKB8Pq+XXnpJL774oorFoo6Pj/XCCy9oampKvV5Pv/jFL/Thhx/qwoULGhsb087OjuLxuD7++GO77mTkiURCgUBA29vbRv+jmUgkElpYWND6+vq5KY+tVssAAWWJhYUFra2t2XV0NR04BWYyGXW7XWNcvF6v4vG4dnZ2JMlmOQAEAAnuzIpoNGoMBWWbp10jMDBaozVao/UlXYj7MAhiBDFBH+U/LnY479XrdSWTSYVCIROtQYF3u10zwGE4EFkqXgLRaNQ896G0yTQJQIPBwEYot1otZbNZMyhqtVo6ODiQz+dTtVpVOp1WvV6XdNZmODExoWQyqStXrlgW3Gq1VKvVVCgU9Oqrr+rk5ESFQkGFQkEff/yxDg8PlUwmdXR0pEajoeeee04LCwu6fv26stmsPv30U927d083b97U17/+deXzedNXUHs/PT3V2NiYZmdndfHiRU1MTGh6elqSTPh39epVFQoF3bt3T6VSSf1+X+Pj4xboAVqHh4fa39+X3+9XrVbT/Py8+TlgEEUJ5tq1a1pfXzcNAm6KaC0Afc1m0+4nZkI+n0/ZbNZYAtgfmBf0F64TIj/zRRwIR62FozVaozVaX9I1PT1tgR+xGJPsUJUzdY+ATpshFDf1c4b4IPKrVqvm4U8/ujttEOtcAAiAA71Ao9HQwsKCdnd3dXx8rLm5OWWzWVPRwzB0Oh1zTbxw4YKuXr2qYrGobDarr3zlK6pWq/r5z3+uyclJNZtNcwX8xje+IUlaWVkxoFKtVrW+vq5qtarFxUW98847ikajSqVS+j/+j/9D1WpV8/PzunTpktrttnZ2drSysqI33nhDly5d0ubmppaWlnR6eqobN27o4OBACwsLCgaD+vTTT3V6eqpCoaDx8XHTNfzv//v/rj/6oz86J9BsNBrWQUC9P5FI2LREWvwAL5lMxtoJKa/4/X7V63WNjY0pGAxqf3/fQB+WygCzRqOh4+NjKzNwr3CcdGdPUP44ODhQKBRSq9UatRaO1miN1mj9//OiPIDFbzabVTgcVqlUUi6XU6PRODe33uv1Wltet9s18xkcAGkvxO3v+PhYsVjM7HCp69Oq6PV6FQqFdHBwYN0Ig8HASg+lUknJZNJcAxnaAyigI8Dv9+vixYt6++23NTExoa2trXPDjJaWlhSNRlUsFjU1NWUDjGAffvKTn6jX66nRaCgej+vGjRsKBoP6D//hP+i5557T9evXFYlE9Oqrr+ratWvq9/v6wQ9+oPX1dXk8Hj18+FDdbldXr15VIpHQ2tqams2mer2e1tbWNDs7q6tXrxpYOjo6Uq1W0/PPP6/f+Z3fUTAY1Pe+9z1VKhUlk0lFo1Ht7e1ZKaRer6tUKhkwkKREImE6gUqlYnoK3AFpz4QRQPAH8EJs2Ww2zWCIlkLMnZiuGAgEjBng3uL2+LRrBAZGa7RGa7S+pCsWi6nVap1T3sMGMLeA+jICstPTU6P+oaHJHoPBoGKxmJrNpgkH6/W6md3AApCNBoNBHR4eWpbqtv8lEgmj1jOZjNrttpkB+f1+C5TUst944w2l02nt7u7q8PDQbH7Hx8fPiRJd4dsHH3ygqakpDYdDra+v20TCer2ucDisWCymvb096yoYDAbK5/NKpVLnRg8vLS0pk8mYDXIwGFS1WpXf79f169fPWSKjfSgWi0a5T05O6sqVK/rss8/s96jP7+/v6+joSKlUylwC3SFG8XjcDIe4N1w3bKDz+bwBIBgYWB3MkAB47AWcGBOJhLa2tgyU0ZaIv8PTrtGgotEardEarS/pIkihxsfBL5lMqlqtSpL11GMRjOc/mSgCRAbmwAAcHh4qlUrZsBxeBy8BtwUOwR+6hEAgoIWFBcXjccto0SuQ/TabTR0eHiqTyejw8FCFQkFer9eCZzab1ebmptbX15XP560u3ul0VK/XLdtutVqKxWJKp9Pq9Xoql8taX1+3IUdzc3NmwUtdv9PpaHJyUmNjY/J4PBobG1M0GtXh4aF5KxSLRWu7jMfjmpiY0MnJiTY3N7Wzs6N+v6979+7p8PBQr776qp5//nlzMRwOh2a/nMvlrMuBYUNcL3cE8cHBgV1DGBeGC6HdYNExIMnmMMTjcWWzWWvZRLRYqVTM7RGfBCyfGXL0NGvEDIzWaI3WaH1JF6140mPHQQCCJJtbwAAbScYGuFa+GArx94FAwCbbofZH6S/JatLMBUBLACsBfZ1MJk1MB+0tyQJgpVKxIUYELLLVXC6ntbU1HR4eamxsTO122yY0xmIxnZycKJFISDoDRTARtVpN4XBYN27csO4F2IxKpaJ79+5pampKiURCY2NjqlQqVrPf3t42h0S8GOr1ugqFgtX5Ed7t7OyY0ZDf79fMzIzm5ubUarWsDk9Zxe/3mz4AANbr9TQ+Pm4zEwjWrgATpgU2AiZCejwGmXKJe6+4X16v11wiaYEEAAyHw3Njkf+qNWIGRmu0Rmu0vqSLLJCJfBj3MCiH7JEggnoc9zt+z+1NR5zm9/vVarVsqp9LUWOYQ0BBxOi2tDWbTSs7dDodG20cj8ctQPKa09PT1jKH0x7K+Ugkokwmc44J4DNA1R8cHNhrxmIxjY+P69KlSyoWi2o2m4pGo4rFYqrX61pZWdHGxoYODw+VzWZN2FepVLSxsWGMCiJJSiVLS0vqdrtKpVIKhULa3983QHR8fKxMJqOJiQnFYjF1u121Wi2j/Hkt2AICfT6ftxZNDJ9c0OV6E7heEZQHAHRk+7QtYkzklm9oVaQD5AvvtV/Fhh2t0Rqt0RqtX/1yXelCoZD56lMTpm89HA5bACHQMq2QLBIWARc9Xpf6Nq9JJk+w4e9OTk6sjdDr9WpmZkaHh4eWsUYiEQtI0P2JREIvvPCCvv71rxvgKBaLSqVSun37tvr9viny3fflc0CvDwYD7e7uyu/368qVK3rppZeUSCTMm0CSDV/CqAhdQzgcVq1WU7lcVqPRMF1AIBBQoVCQJJXLZe3u7qrb7SoajdooYumsDDM3N2e0PoALIEbp4PDwUJLsOvFnOCKih8B7IBqNKhwOq1AoWJnANSwCAIRCIRv/jKgwFospFouZbsI1hXJB21+LgJC+SMwj8MoGadKGggqSfkrckNxaEnUtl+7gQ2P9SN0FxHtycqKxsTH7feZFIxKp1+v2mtRrUMO6GwuU7c4Gj0QiJugYGxuTdIas+X1+h4lVIDWEIthocqOg5qDGmH/N5gJpo/JFvIPSF8TPDQVxswHpc+UfrD/da8h346HAaISaFZmCO/PbrWe5tSb3/xErcT0lndu8uIjhlsZDzuu2Wq2n3py/qoVPOocb+4TrnkqlVKlUDHGzd6LRqEKhkI1SnZ6eVqvVUqPRsL3BPWQ/gO75/jwvmUzG9geHK+5ytVrNbErd54X7ur+/r3w+b+prMgfU4fV6XdeuXVOlUrGsgxGwnU5HhUJBkUjErr3bnhaPxy1w5HI5y1CoFzP2lYOQ3mb2WiKRMPHTlStX9Pnnn2t9fd2ETh6PR61WyxTQ7nMqyVrbotGotra27IBDKY39qt/vV6lUsj1FAGm1Wiaky+fz1l/t+vhLsvuJ9S2ULAGQoTVkbtxLDtrNzc0vZODyq1qM1uUs4BzGk//k5ETtdtvuJ98pk8mYcI9MGPMgvsfY2JidDW7b4WAwsD2Nfe/p6akSiYSdZ6jw2+22isWiOQc2m02FQiG71sFgUDdv3tTs7KwCgYDa7bYF3JmZGfV6PT169Ej5fN6AAW12BwcHmp6etiy6Uqkom81qfn5eU1NTkqTd3V21222j8q9du2bPezqdtr1eKBTU7XZVLpe1t7enUCiksbExZTIZ+f1+jY2N6eDgwDoMGEBEXGBIUKlUUjgc1tWrV7W3t2ejk9EeUKdHB7C2tqZEImGKf0yg0AwwT8HtNHCnVNLyKT3WEXDGYFE8NjameDyuTqejWq1mZ38oFFIqlXpqEeEX0gwgiOBDgngIuNSJJJ2rLXHIuqYVfGlAg6RzE5xAuaAikCkXir/nM4EmXWpFknlCh8Nh85Z2qTXXKQogghCHwxTVKO5Yrj83n4sWGdpGeHgJ/Gzyg4MDqw8BmgigBA8MQbgmbCaGffBA8llYDKhwg6/7967hhfR4VrrrSU6A4f05tN1NyL3kHgMiAIs+n8/aYKQzAAFAehaLDAGHNq4zB6gkGw1KexToH5r16OjIhonwWrQRcS8ikYjVbwEL/X7/nPUqe9Hj8ajRaBgYzuVy9qxQ3+Vzkp2RObhgZXFx0VqXoF15XybIsb/5nUwmY77q+LG7RiZQxLzvxMSECaqYHS/JQESz2VShUDCqOB6PK5VKKZFIKJfL6eOPP7Zn78KFC2o2m5ZNxmIxO4SxvQX88p0BSblcTp1Ox7LPUCikfD5vdXRMeGi3QmDFc+gq5Xn+SCoymYwd5NSqsZr9z6Fcf1WL68TzzGTCbDarUqmkdDpttftOp2PdBtDv9PvTysb3TafTCgQCdg8LhYI9y2gD2NPU+d1zEn/8YrFoVrpukPN4PCoUCnrppZf0T//pP9Unn3yiTqejUCikarWq5eVlmzxYq9XUbDYttjSbTTUaDSWTSTUaDR0dHVk//vz8vCRpbW1NL730ku1hj8ejfD6vRCJhJYzT01N98MEH2tvb09zcnOr1uk0B5Ozs9/sqFova2trS/v6+JQP09edyOW1vb+sP/uAPNDMzo5mZGbVarXMdBKVSSdls1kA7zwYTGElom82mMTvSWWzCC8BNbEkgAMq4TQJM3QFI3FdABkCZePjX4kDIg4rnMQFZepxVSjr35gQjDj8+nMsEgIg4tMjAJVkLCKISMiJuIq8HCHG9u10AQRByJzgRCDkQADEcuHxGDnu+G5+RAEqm5/bkupkP78OBRXaHZSj1Jvf68Ppu0CLw8t2kx57T3I8nr717j7i+qJElWcBzgYObybuZgguC+D5sWj4DGRnsgQu2+P9nschoYC/4zpIsC+UhI2gwLQ6fdK4lP8v+4zU4kCXZdYE1cIESQIrPQkbDQQkjJcmuPyAOdzcOY9d8hGCKRSxMFMCMHmR33jpKaOhRshBAhM/nU7fbNSUzlCf1Y/Z7OBxWpVLR0dHRuclxkixIF4tF7e3tWabPOjg4OPfzbs2bPXN0dCS/369cLidJ55hHQIzLZFAPJ1kIh8MKhUKW0XKWkTjwnPP7vK/LcD2rVSwWzcSHvUnyw/dJpVLnJvAFAgHt7+8bKGJcLs8wyQRM0tTUlIEs2vs4W5LJpOLxuNrttjkA4rOfTqfVbreNnSEhZO8Nh0P93b/7dzUcDi3gJ5NJpVIpzc/P6+DgQDs7O3adT09PFY1GLavlnh0eHurOnTu6fv269eM3Gg2VSiVVKhV985vf1MHBgWZnZ83pEJD68ccfK5PJaH9/X+vr6xobG1Mul7MA+ujRI92/f1+Li4uanp42DwZaCz/88EONjY3pK1/5ilZXVxUMBrW4uKjZ2VktLS3p0aNHBqYBSJgTofIH0HNtGWTEz/p8Ppt6CCDF8AjQC/PAOQ1AY58SG1zmgc/0tOupwQBZvPQ40DypipRkByeLL+YeoBzELqVJgPH7/XaxOHAIwJIsI5N07jCg9MDhx+9J52lsSUbZ8OeuytY9pPnsp6enxigARjhMULJyLQAe/B7Xi2zRrYnxHQESkixb5fX5HowjdQGIK0Lh87vWpO494jUpM8AIcA14bYIYi8DDtebvOEglnfsz9oYL+KAvv0j96le5GKPKfnCHedACBR1L6xUUM4idfYUTGsjcLZmwj2BCYL+47lxjaFe3jnhycmJAzb1/1HhTqdS5djLpbK/s7e1JOrvG0WjUaqQuaEFJjeKb4Ai1z+HdaDRUrVbt+0BL44mez+ft0HbFS8lkUjs7OxZkuNY8Hy4wQuDEvjo4OLCAxf3gmvFckK0D2p/cg4BPd2IefwczEwqFjDlhH3J9pLParmu7y2uGw+Fnygy0222lUikdHBxYItbr9bS9va1AIKBarWYgiXMyHo+rXC4rGAya8Q0Bg2vEOUqw4cweDM4G/aCCJ2iRIHQ6HTUaDXuNfr+vbDarRqNhwrt+v2+tgvfu3TNAx34l4eAc2t/f187OjoLBoObm5lQoFIxSr1arisViunXrlqampjQxMWGAiHtLp8HBwYHK5bLu37+vpaUlXb58Wd/85jdVr9dVLBZtuiFGP5ubm/L7/ZqcnNTc3Jw2NjYMkKTTaRtt3O+f+TuUy2UVCgXduHFD8Xhcjx490r//9/9eS0tLdm7T2uj1ns0VqNVqikajtm85C0iSCP6wVthFu7GQoA/L4MaZo6MjTU9P6+TkRHt7e+cSaRJTJiv+VeupwQC1OjJFt82EOrerJ5AeZzYuLQ8YcN2s3BYNED6CGUnWrsKmwsuZWhpZKT9HdgradTUNkiwzJ+N3BTT8v6uBoHWDLMNlDQADqVTKam1kYNBdHCYwBq7gBfcvvgegwaXbPR6P0X0EDTYL9wYK3wVCT5ZjOEw46Lj+ACCuAZuToMT9JnPg0OY7wYzAtBDI2CM8+M8qwzo6OlKn01EsFrM/4/ugvE0kEudoVFdnMhgMrL3K1bGwDyVZ+5Z7/U5PT1Wv140KZ/8Bil2gi3YAgxLubygUUqFQsPeqVCq2p1xmJ5PJ2B4guFKfn5iYUDwe1/LysrLZrB1aBItEIqH5+XmtrKyY0hxzlHw+r4WFBe3s7OjChQtW1+eZczNy2rRc1m9ubk7r6+sqlUp67rnntLm5ad8Zloz9wV7nz6mLonc4ODhQLBZTJBKxawjoRmsAre9qltAvnJ6eKpPJWCBxa7QwQOxtziCCzLNaZMbu2cRzRvbHeeHqmGCRUqmUqtWqotGoPYN8R8Du4eGhEomE9cn3+32rPXM2Iw5k34yPj+vw8PCc3oSSzuTkpG7duqXx8XGtr69rcXFRsVhMd+/eNXDKfslms9YuCIDw+XzqdDqWZFFilaT9/X3F43FjJWABpqam7J6zj0qlkl577TV1Oh2lUim99dZbarVaKpfLqtfrmp2dNeDa6/W0t7eno6Ojc+wB9f9Wq2UOkOl02oB0LpfT3t6e4vG42QkDXgEAmUzGgFswGDQGwNUbcc4eHh6e06q59wxgzbnAWQRzjlXx0dGRned/LWUCt7bOmxDEyPS5YWw2NhYblr9za9UEI6huDlfMIWKxmI3ZdAORmx0Q+BCvcBNdVy3Q2eHhoRqNhh0ekowWghYGhICS3ayP4ReUE8jcAB9kP2R1BPtwOGxTwqDsQYNQw/wZP0P9zAVd1PHc4MzfhUIhZTIZo4nIpsjwoKJ5yLlGPJguoHuyNOJuKhdESbIgKD3uheYz0wblgrFf9zo8PLQHmL3IIdfpdJTL5azGCKIOh8MmvuJ+lMtlDQYDy8A7nY79HINhCDDsJZTV/D/1PB74eDyuRqNhg2GSyaS9x/z8vDY2NrS8vGxAplgsKplMqlwuq91um4CpVqupWCzagYjwC6OXo6Mj3bx5U51Ox7KzdDqtcrks6awGu7q6qsFgYHQrpjGPHj3SN77xDbsOsCMHBweW+YyPj6vRaGhiYsKo41arpY2NDQWDQTUaDS0vL6vf71sPea/X0/T0tKm85+fnVa/XDfByWFIioY3L1SxwBuXzee3s7Bi97ZYLuU/hcFiNRsOeaQC91+s1ehp2g+ew1Wo90zIBwIZkgWfR1Wq5AJxzyC11uIycy3ChD4Cl4WzGXQ9autvtKpFIWOscZRjpTACKKyBmPpOTk1pYWFA+n1etVlO73TbqH0H0YHDmqpdMJu28IdD2+30Df+w5SVYWOzk5MdHiycmJarWalV2z2aw9SwwoSqVS6vf7mp2d1ebmppkVeTweJRIJ7e7u6uOPPz7nzQCTNhwOVSwW1Wq17Bw7PDw08DU+Pq7PP//cwBBMN9c2EAiY6yIMo5sU8x1Imth7JKGDwcA0Stwr9156PB5Vq1XTGwDkOcej0eivXkBIRulmj3wwxkpysfigkv4CDS89Bhb8A43J+0CJnJ6eWkbFRcO3mXoltVOv98wPO5PJWFZOZuDWwqDpAScIPtyaj6RzJg7UdHu9nra2tuzzpVIps/ZE4LK6uqpQKGSZptd7ZrcJowEwAbzUajWjik9Pz4ZkoC+A+QB0UBuE7uWaQv3BiHCwUf/kMAOFc6jw2rwGiNN1ruJak0m59Vb2AcCCg8T9O+43dOSzWNRMEfJxsGIPmkwm1e12lcvlbDY5B1Q6nTbxXD6ft/vIoQBQ5YElk2Cf9ft9awkiG4YZIyAtLi5qf39fsVhMmUxGw+FQjUZDH330kVH6+/v7Gg6HdkBRiuDzu/PosW9dW1tToVDQ1taWwuGwFhYWFAgEtLm5qb29PaNgt7e3NTMzY+xWJBIx8d/k5KQNkpmYmLBuCulxaaLb7VrPOdQr93p3d1c+n8+6HXBr49pBYyaTyXP/JkngQIQpy+Vy5xTTBLWtra1z2RjnjxsICZDMpud5PDw81NTUlAVS6THAJQN7VsvVDRGoeCYRK6Pr4HpAK/O7rqCas4JEjPMW73t+hmDqgnrpTH9DgKGEkUgk7JpeunRJN2/etDM9m82q1WopHA6bEyGdTYhm+e9cLqdUKmUiyaOjIxNzA4rY/3T5SLJsP5FIKJlMqlAoKBwOG3BIJpMqlUp2zrndNel02toNX375ZUuOEBoiTKzVaqpWq8Zg5PP5cyCVM9o9DyXZs1mr1ZTNZo0p5+9dcAcTwrnQbret7EdJxi2BoT2i3EAC7pbLYrGYKpXKU+21L1QmeFJUxsYhsLq0G4jVtWZk8/LloQO5qKi2QTbuzyAyRKyBgYXH49HMzIyuXLmitbU1bW5untMOSI9BCCiUzJkHgTaTSqViGwVhR7vdtg2QTqft946OjqzHtlgsmkI5kUgY8j0+PtbR0ZHZSFIvpsULAdfR0ZHa7bZllmT00KAuGzIcDu06kf2415iaL8GIgxFKzQVTXBs2EbQyDygb1uv1nhtnyvXlH+497AYHjUu7wsw8i0ULHwBLkrEumUxGe3t7xmAkk0kTZ4G4ud5kVBxSuVzOWuDcGjldKLFYTLlczrpFqLGzx6H1dnZ2LNstl8tWr+TvAGG5XO5cmYJAt7u7q6mpKT333HOm6j88PNQLL7xge4H7n8lkrC/60qVLevvtt+X1evWHf/iH9l2fe+45a/Xb2NjQ4uKiLly4YDQo34fugEqlol/+8pfqdDqanZ1VtVo1mpcDcmlpSel0Wg8fPtTc3JxdYwABgikCfTwet2edM6bXOzOOSafTNoQFQMP74QLH4UxZpFqtKpVKmQIcI5pms6np6WkdHBxY1w+tipQHI5GIucj9uhfPpquBoKOFpGRvb8/OB6h/AnYul9POzo6dvZKsx55FcgFji5qeZzYWi1nAYz/xOmTrlUpF+Xxer732mr72ta9pe3tby8vLxsaR2MEMpVIpZbNZ1et17ezsKJ1OK5PJKJfLGWvEPiWuUAZDXT8cDm0a4v3795XL5eTz+TQ2NnaubS+RSKhUKunRo0fGPrg6kHQ6bcp99/tTckCEzp9HIhFNTk7aORkIBEzLQzJMybZYLOr+/fvntHEksdJZ0ul2tXAe8w9nBOJAkjf+PRye2SLTaYY2g6TDFc3/VeupwQBo5kk6iQ3LwUTWS9bptvW4tTo3eyBLrlar574Ih4T0OLsEEQESaIXa3NzUxMSEUTrUs1ArP6l3QCEdCAQsYwT1grQIfvxZq9WyA4WbLZ0BpbGxMVPe8v6UHCKRiMbHx88JgPgs3W5X9Xpd1WpVu7u7Ru0UCgULWJQdqJ9BAZHdswkBIQARt/wChYSNpivqlB6Xb/h99z67P4uS2AWA/Lcb7Ll/7BmygWex6Dvmu7O/UqmUASQyRr4zByb7FkDq9q/XajV7SGlBBLlzbwGAbo2Wa9poNOT3+/Xyyy+rVCrZ+1PH5L4Fg0Hbd+4hRm311q1bunr1qu7cuaO1tTWzTY3FYtrZ2dH8/LyZvPR6Pd24ccOy4r29Pb311lv6jd/4Df0v/8v/om984xvy+/1aXV3V6uqqvva1r+nChQvq9XqmCK/Vaup2u0qn05qbm9OlS5f04osvamtry9TbLugMBAK6e/eusQeVSsW+XywW08WLFzUzM6Of/exn1uJHCYfviSiSZ67RaNj1jUajVq9GIU89HXc6XguqmvNsOBxav3in01Gz2TTPCYDXFxn28qteZO/RaPSchwVMEAERcaQkC5xQ25wBgHjY1EKhYEOQ2LO0vqKN2tvbMy0UZyLCymQyaazw3Nyc8vm8ecHs7+9by3W9Xtfu7q4lW2NjY0qn0wbW+G80VBjszM/P6/DwUL/85S+tb1+SlYvYe0tLSzo+Ptb+/r4uX76sRCKhZrOpO3fuqNPp6Fvf+pby+bw+/PBDE7MeHx+bO2A2m9X4+Pg5ESVl11AopA8++ED5fF6Li4vmMEiHx4ULF/R3/s7f0U9+8hP5/X4TUw4GAy0sLFipBQEjpUjY6Wq1akkFInGAgN9/NuKYM1eSxQ60AWgnXIAG84Pm5mnXFwID0uNuAbeG7Aoc+LDQ+NAbrvDF/V1qJbTdua1XIGE3wwclZjIZmxLlqlt5GAAr0D5QXdQLydIk2WQpV4TDA+cK+TjQEWzw0GACQo2VPwPRI0SjdYzs3q1PE4zc60ephPfnWtKqwudkUAjZJywBD48r7GQe95PlAV4zGAyq3W5bRsIGIxC6rSocIJLOBXr+jPvMIfWsaq+wLHwf7p0rYk2lUucU/hwaCIfok3f3GNcfNTZCNd4HEMAwF0olbj1PkvVUp9NpHRwcmNEJZSPq89yDTCZjwTGVSimfz2tiYkLr6+vyer2anp7W+Pi4tre3tb+/r7GxMTWbTY2NjWl8fNw+G1n30tKSNjY27LP4/X5NTU3p6OhI29vbGg6HWlxctCl2ANF4PK6rV69qc3NTiURCV65c0Y0bN/T5559raWnJwBItVDBYCOLQMuTzeevpBmRIMsbMbVVzzxjAZqfTsUMU9oa9TaYHcAY0u22k7n519z2g91lqBlxRtdvFwT5C8+GqyPn8wWDQmBaYS0CY3++3vRaPx8+VSOLx+DlBXDwet8zXbf0GaMAQRCIR7e/vm0jz8uXLyufzeu+99xSJRHTz5k0Dz5ubm1ae8vv9KpfLVrNnb1SrVTUaDW1vb+vy5csqFosaGxvT2tqatre3lUqlNDk5qdu3b0s6u3/T09NKJpP65S9/qZ/85CeqVCr68z//c33jG98wwEFZ79GjR0omk1YCpyRNcri3t6cbN24om81aGYTgyrmZTqf1jW98Q16vVx988IFWV1fVbDbNF2Z/f9+uO7MVYG3pKkLvQmsy+5i9zOdzO1uIRSQQvBZCQo/H84U9Mp4aDLgdAqAUtyXN/TNuJgcm1NaTgILDjSAHzepS1VCE7nu5Cn5ejwMbkSHBjvcFSfNQ8DMEBjfQok8AeHBgkNWhpqaey3clmxkfHzePbuqU7jV0Oxn481QqpdnZWaOdXYEOr/+kwITf5fuRcbpCTFCi28fLQ8FBw311hYXucsWBLiBzgz26Alcr8CQYePJ1f12Lh4t95Yom+R7uPiSwANqg6QDBXGe0KAQc9jXXi7o0KF2SHXaRSERjY2MaDAY2o53r5eoaEL21223bV9ls1qaXnZ6eKpfLKRQKaWpqyuamp1IpHR4enmvbGhsbM7ACK4dpC3PtyZKOj4+1urqq3d1dU3/TlRKPx5XL5Uyw2Gg0TJSLXqFQKBh9fOfOHcuQELNKj7NenNskGViHmXIV81xz7gVnC+AfYSLXG0CAqJcODN6fZAGNAn8GI0MQflb7ltVut01AyjXB3AllPe1jnDG0t9Hyx74HCJGgZLPZc3MJAGzD4VDJZNLKMuVyWdFo1JhfOghgAdCTrK6uWiY7GAx0+/ZtVatVSwzL5bJ6vZ5mZmY0NTVlnQDj4+M6PT21pFCSfvzjH6vb7drEQUna2tpSs9lULBbTj3/8Yx0cHFhw3d/f19LSkuLxuC5cuKDPP/9cR0dH+s3f/E31ej01Gg01m00Dp9PT0yYox4mz3+9rZmbGtCkffvihXnrpJe3u7ioSiaherysUCmlmZkaTk5OqVCp67rnn9PDhQ/30pz+Vx+Oxcu/y8rLq9brm5+dVKpXsmYbBBZhsbm4aiKnX63aPOK93d3etfEJMJJFhuBLMERMfAb9u4v1XrS/M27IZ3aAgPW4jdAUvBCKW+4ATZNnYoHAXqXNoQYGBxlC0crCS6UIjurSX235HEMSNEFoslUppd3fXQIfLCIDq2EypVErxeNxaotwuCN6X2iOBF1EPGgpoOgILTAeH1vHxsSml3UwlkUiYeMvtSSebh41wOzzc6w+goT2LYMa9QrDl3lcW95yf47X5h9d3Ad+Th+izOlRRpdPOwz0jYBBwKLlwzWmpoqbKteE13GtELdQtRfHAPuljQbblApBGo2GWuPwZWTQKeqj/eDyuTCZjmQafY2ZmxkxTTk7O7Ltpjctms6bOdnUDR0dHmp2dPUfPplKpc5kehjLZbNaCKR0VlUpFW1tb9pxNT0+rWCzq+vXrCgaDWllZkdfr1cOHD9Xtdq0WDbDAkQ7WCsEVe4zSC8+Ky1Bx1vDcuecK9wTAwZ+x/10hHvVaF0C4IttnpXWRHivG+fycmXQJnZycqFKpnHO25Lo0Go1zrZQwX7weSRF7F9EaVDNJ3NLSkmXL3H/EhWgy9vb2NDk5qX6/byxWr3dmUYwzIq+ZzWZVLBatLJzL5bS+vq75+Xkr2yDKBmjMz8+bJXQ+n1cqlVIulzN/CPZpuVzW2tqaMpmM3nzzTa2vr5uAG2CBtTBxJpVKaXV1VYFAwD7Dzs6OpqamjCEALGSzWY2NjSmVSpnxkcfj0auvvqo/+qM/stiAqNbv91vLsCQrFcLMuSwyTBplSpI85ktwD9GxcL40Gg3rbsK9E+bhixgPPTUY4EB7Mqt0N4irXGfDIWo5PDw815ISiUSsTQlESgB3s1PXj5v6GLWedrutarVqGzgQCNhACYReZNJQ7mRB7uHjCr/IEripkmweAe0eCJxSqZSVCMjoQeNoBaTH2QaIFLUvGSatPFCXiJdccVo+nz/n8uX2phI4KJXwfjz80KE8+K7IT5J9BuqRHDju4ci9ls77R7gdAy6Ny2ewjfZEieHXuQgAlFy4BpFI5Jw1NKUXvlsoFNLBwYEBQpchcO83B5+rnZFkLXhunTKbzVpGVSqVVKvVNDExYXsMqtLv99teDIVCeu2110xY6AYGRq9Sf5XO7sXu7q4SiYReffVVra6uWrBDJU3bI2JE7lmlUlGtVtPY2JguXbqk7e1tK0eMj49rbm5O3/3ud7WysmI91Jubm7px44ZldmSxoVBICwsLOj4+1ttvv60f/OAHun//vr2n232CYKzT6SidTptngPS4JIPnAIvAz0FJ1sYzwDngimo5l2ARCfboMVDS83xRVntWC4tst/ccVtHtinJFwQh2OXcBP9JjwM652+/3rQPLBcoo8QeDgaampsw9kp9lPsfBwYF14oTDYaXTaU1MTJgwcHJy8pwwNBqNmoU0e+2TTz4x4MpZjFj8+vXrks5YAr4n7druGToxMWH/vb+/b+WTXC5ngN9NkE5PT7W/vy+Px6PZ2Vl7pilj4OvCnrp06ZIODw9NvMgeqdVqJla8dOmS1tfXTVhOmRCh+P7+viW+7uhn7gWlCFgs96zhu7l6MUo7/X7fgIdbzqb8+SvvJuBi8iYuAnepZtfNykXYBGQeVjY1D6FbY3dr0QSibrdrNCk1H1qfqH+BQl2xFvRnvV7X+Pi41cI4QLjQqDZ54NwyAupWN4DCBLgtkAcHB0ZHV6tV9Xo9TUxMmHoV8RLWoolEwhTR6XTaOiJgB9w+aHQTwWBQmUzGDnOyF1qDcCpzf2cwGFhLHAcEwYnsF0ADrQqY4kB0hW0uGOQf9ofbruQChWdNtR4eHiqTyRhiR7uCyQlDVlKplAKBgInJQO6SbOiH22YlnVHtHo/nXCB3a7v4E6RSKc3MzKjT6VgmQxmi2+2aIOvJ+xKLxfTKK6/o0qVLxhptbm5qaWnJyg1zc3N2UGKW1W63dXBwoEQiYX3Z2WxW1WpVh4eHKhaLymaz+tM//VO122195Stf0aVLl1SpVLS0tKSdnR3t7+/r9u3beu6557S8vKxgMKhr167p5ORsQNK9e/c0Pj5+jqL0eDzmFxCLxTQxMaF+v6//6X/6n/Txxx/r29/+tl3rYDB4zkLW9TEgYGM0A6BMJpMWwBl32+v1tLi4qJWVFfPxYC+6rbKJREL1et0YRJIInvFMJmPJiaQvlFn9dSxKT9LjOSGAALfsQRZJaUqSdQBxhnDu8howg+6Z7S7Obte3BKEmrc6UfzhvOT9OT09VqVSsM4vZCfF43Do5pLNOmGq1qtnZWRNxAyYODg40NjamcrmsjY0NFQoF8xWgHRiWjFHFBH/Xo4bSAyAZTRQMFMF3fn5ewWDQtBCtVku7u7uKxWKKRqN23sNEZDIZjY2NKZvNWsB1BxulUilreYT1g8V2y1ec03wmQA6gzfWXABiiYYId51pQRoAx/iKi7S+kGXCRuJtB8cZ8GbeGfnp6akpsaAuocTYVgffk5ORc66Eko0Sok0xPT9uXJuPyeDyam5vT6uqqOp2OKpWKer2eEomErl+/br2um5ub1q/tmg51u13t7e2p1zubWkgdlCFF9CBDUdKh0O12bboWZQH3vd3sDzU4AzBA8dCtPp/P6mvxeFzz8/PGMnQ6Hc3Nzdl70O5Iz3e5XLYHFvMJKH9YjtPTU7VaLROQUXrJZrMKhUKq1Wp2uOAXAfAjE3FVqm49ivvPoeqyO+yRv6z08OtcoVBIe3t7FoAJQgDAZrOpxcVFBYNBMyDis2Mywp9LOid0JehIj301COjNZlPHx8e6dOmSlaNghjqdjtUJJyYmbF9NTExocnLS9k+73dba2pppZbhvV69eVTabVa/X087OjrXMkYmVSiXF43EVCgV973vfUywW09WrV60nfXl5WT/60Y/0wgsvaHt7Wx988IHS6bReeuklDYeP26qy2aw+/fRTFYtFlctlE5tiBPbee+/J5/Npbm5OCwsLJsrKZrO6cOGCbt++bULEfD6vf/SP/pHee+89/fSnP9Xp6akuX76sdrutSCSivb09Y9by+bxmZ2f14MED6wxotVrm+dHv941hzGaz2tzcNGc8MkcOZspukqx3HbDtTvajRZHyDM/9s1pkgJy7PGtusuICBrpaCDgEehe0u6Jh6PInO4hcHRCmbMPh0PxbYKLQJpDRk2RhRIUWBmMv3oeSKa9FkGOQlt/v197e3l/Qc9HRAgiQpPHxcWWzWSWTSYs1mIyRHGEORgspDBPn5P7+vp577jk7M2FhyeIHg4EmJias64RuFs7E/f19y/wpS2JUBsvHuGQE31wnALAkAwJuOyn3g3OYBFDSXxqTXTb4r0Uz4G5At97Gm7P5UOW7PZMgc+qU0PowB8Ph0PpmySJd0RxqaW467XnubG16nOfn5/XgwQOb5U19knGW0tkUqL29PbXbbU1MTBhF6fF4TOASCASs57hSqdjULnfqFKpokCWDPEC/TAajrWZ3d1der9cOcQIrngVuyQBEx4HM7/JZpDMgkc1mNTMzo1qtZoHGNeZw66yYg3Df3Pa3bDZrDE2v17MMD/bH6/UaaIE6Z/FAuKAQ4Mfmdg+sX/fC6pfsgBoyterj47MZ6wxj4SGfmJgwuh32gDZLl+obDAZGq8Jw8V0x8qF1qFarGbtCwPV4PObkVywW9frrr2tiYkIbGxv65je/qY2NDd27d8+0HtSH8Wr3er366KOP1Ov1tL6+bqU1zKd+9rOfWfvW9va2XnnlFaXTaS0vL5thzyeffKJgMKhLly6p1zvzvu/1erp586bR8x999JGuXr2qsbExA0iXL1+2bN0VKALS0Wncv39f8/PzBnqmp6f11ltv6f3339fKyorR2hg7cZjW63W9+uqrWltbs55x6H0ORAR0k5OTZo0uyUo5nU5Hk5OT1kbH8wq7FQye9/Cnlsv97ff72t3dfSZ7l+ApPdacEKxcy16YR8q4AB3KkpwBBF5KnaenZ1bO9NUjxKRtlSCKtwbthWgRuD65XE4zMzMGphOJhFKplLxer2XpPp/PnGUptyI8hHHgPCfrhpkkyA8GA9VqNZXLZb388stmfjQ9PW1nH5+Ze4yuAPBA9s6+xYcD22mv12tn+O7urrXihsNh63hpNBp6//33FY/HNTMzY9cLMIVegtIjk2dJBIfDoXUWIBJ2O1xcvRE6Adg+zls0dm5ZAFAB4HP9JP6q9dRgwN2QXDD+IbC4FIhLibjUH5ubjU19CIrQRbjpdFrZbFanp6em0IS2cR3EXHo+GAxqYWFB9Xrdgj+bE/obiouDm6xDktXE+KxsRqhJ16ecwA2S5YF0M2u8DhBL5XK5c/7blB/IJFkEV1ogARbuzwBMer2e8vm8CoWCyuWyUdxkUnxW6bFlNLVS6oNQeIjWnqznwlJwAAAIXeU2DxgAj/d0y0jPYmE0g/cDIIf2HWhNqFb+Gy98aqTsaR54GACQPHsU4ShGNVevXrU6JMwXWpPDw0NNT09LOrs3r776qi5cuGAHyN7enm7evKnr16/r3r17RgXDSty5c8dU0LlczhT9sVjMeq+LxaLZ9GIe1Gq1ND09rZdfflk3btzQCy+8oN///d83NzuEYaHQ2WCXWCymzz77zASBgJJWq6Xnn39ex8fHKhQKVkd2W6J6vZ6mpqY0MzOjtbU1+Xw+vfbaa0qlUnrllVf0+7//+9rc3NTU1JQBWQ7sTCajlZUV1Wo1E0PiRErWCfBEzMXsAg71drttXgIuo8Ue59qwp93MFcOpZ7UIEE8mSR7PmU8GPgp8L3RSfBcoap/PZ7oUBvEgEI1Go9Ztxbpy5Yq2t7ftDO90Ombvi3aK0iwDfV588UV1Oh0tLy9rdnZW9+7d08bGhm7duqWNjQ1LkILBoMrlsrLZrN5++239+Mc/ViQSUalU0vHxsQV/BKgAdrqu8vm89vf3NRgMDKgMBgNtbm6ayv/o6Eh37txRtVrV+vq6otGoZmZmDCgATACQMzMzWlxctDHZ+L7s7+9rb2/PvCooMW5vbxtzzFl37do1/fznP7cyeqvVMnfRZrOpiYkJC/IwIaVSSRcuXLBzhwSYhNfttKMUB/vKv9PptJV0AeLSeffNp1lfqEwAGpEeC1aebCVD+OC273g8Ho2Njcnn8xmN7iq2ORQl/YW2PXyxJycnbeIZGxQUH4vFlE6n7ZBDUCc9niBHSYEbQQsTLmPY1eIm5dYtYRhA226XAt+TQ8+lxBF0AHbcdkgQMoc+s6oplwAeCFi0QEGXBYOPfa5dNEi3A5tFemyi4YqM3HtGpkDPqkt58ztkwNxfXoNAyGeGsuJ3AIoulf7rXmTiLojhgZNkKlyuNS1sBBPqfZhPAYxdetVVnbuaAjz6XS8NKFcABhbI8/PzBiIDgbNpgKurq3bQXLx40fbI4eGhqZzJEAluMByxWEyXLl1SqVSyLLlWq2lyctLKYWQPDCXa2dnR3t6elVHQ+iSTSS0uLqpcLmt3d9cErQAi9hHPGuWm9fV1Yw2YsIg6GvU0w4wAz+7MEEAWTntucCS4sefIvJ6k9hGFPekDAdCF7Tk9PbPPhdZttVpG0z6rxTWFcaOFjA4CzgnKsIBTwAJZMW2InGn1el0bGxsaDAba29sz4EaWubm5qU6nY77/bikgk8mYuVs4HNbly5etHY9WxUwmo3feeUcff/zxuSRxcnJSxWJRkrS5ual8Pq9//I//sf78z/9c29vb1jK7vr5urX3/+B//Y73zzjtaWVnRu+++q2azqfHxcZtrAXOK1XWtVrOpjmhzLl26dA5E12o1VSoVDYdDvfnmm5b4uMzw1NSUJicn9fDhQ2M6YBNmZ2clySzp9/f3Lb4wzwKNGPNNUqmUtra2zLtkODwb6nRycqLJyUmbNEnnQbfbNRCCrfdwONTY2JgJ3vm+09PT2tvbM3adOPRFgOwXGlREQCAASI+pK1AJQcYtIdC7SsBw1ezUraAVUfO6jkqBQMAGjGCFyntKjy2RGYhBzYSMD9EVBz5sBOUFzGCodXKh2+22vQ91Jg591M38HJ/X1QJwncjs2QBYe/LZecjd68af8170cvPwAxo4qLh+iKdcT3WClRu02PzcVzYaoAWF/JO1fze759B3tQCu8pm/B0CxZ57Fou7KQemCG7JQt40NsIXoCkDGn1H3x6rVFZa6rW3sR9TRXHtsXBmvnM/nTU1NcGUtLS2ZvTGW2jjl0eqEJS1tTScnJ2YFixBxc3NT5XLZrL9dILm7u2vtsmQ/AGUOH5dGZy90u91zmhioS+h4gg/GYHTZ0G4WiUT01a9+Vfv7++d6zN2EglG6xWLRNBhkTQQ9xLTUmF1dEuCLYMdnp9xAEgDQjkQi9jzCej2rRcCDPiaw0imRTCYNtFCSwlZ7d3fXmA7OT7et89KlS1pbWzM2MxaL2TUH+LoJzMnJiYFbqHVKRfF4XKFQyLLfVqtlc1xeeOEFC9pY805MTGhmZkalUsm6FKDiodljsZj+7t/9u0omk1pfXzevjcPDQxMYfv/739c/+Af/QDdv3tRHH32k73//+5aAHRwcqFQq6e/9vb+nK1euWAxw98zc3JxyuZw+/vhjExFOTU0pFAppZ2dHuVxO6XRa9+/ft0R2fHxckUhExWJRW1tbKpVKikQimpqakt/vN1aa7hhE7cQAEk03hrE/YaTREuzu7iqZTCoYDJqOAZtoROv9fl8PHz60UjfAnGT0addTgwEod4IUhymbjQedhw+qGHTTaDTOjVZ029yenDboBhdU2nfu3NHCwoLVfQjobP56va5Op2O1eDJRWhDJvmAcmMLl8/m0ublpm5lBFxzWZBSHh4fW0ghYqNVqhryox3FgUqd7kmrFpjMejxsF7WYeTzqFSTLqr9frGXA5PDw0VsWdIw4ypM3HNbDgs7p1Jg5EghW96G59kvvA7/L/7s/xd/wOv+eKDPmzX/dC6wIj4DIVBDaAgus/QakAQSggy23vgUYGBPAedF+QrbjtXpLs0GPi2/Xr161sxQEinYmjNjc3dfv2bQWDQU1OTtrhDdDGFIZA67IzGxsb5ljY75/1TK+srJinP54deAwsLCxoc3NTW1tbqtfrtu+Pjo5UqVTskAEUtFotK+OhR+H7RiIRG1jTaDR06dIlK8cNh2ftWTMzM7afP/roI3W73XPdNsPhUNvb28rn87px44bRt5QGpLNhY7QFU2fmH7esg34GBbZ0HkQzapoDlyE0z9KOmP1BiQ5VP4K2arVq5VX3WT04OFAymbQyKoI06Gjq9jMzMybu5Bqx79PptDEQvD5gq9FoKJvNan19Xe+88442Nzf16NEjdTod5fN5bW1taXl52TpXBoOB6QxgahA1U/7l2Wg2m2q32/r617+usbEx/fCHP5R0Vm5jPsft27fNIZB4Q8YPe9xqtfTmm28qEomoWq3aOQgVf+nSJc3Pz2t3d1flclmXLl3SwsKCvN4zX4wPP/zQQCYujXt7e2ZAdP36dV24cEF37961WQWUN2DT9vf3DcjRjRMKhUyPQVmOAM/7IYLlnkWjUTNbQsQJg35wcKDZ2Vnt7e1Z6d3t5Hra9dRggABFfZuHDaRNRuAKtCTZQcQX4DDhIYRSpa6byWTM3tLtIe52u1pZWTGzFcR9mBJBAUL9uXUzRlYWi8VzkxWPj49N5IGGAABD3RSE6/V6jQqCMmKoTTabtUMmkUioWq1qb2/PhDYoUAOBgMbGxiTJDFyogVKT4wDkmgNYCoWCPeD0m7o0KYpWxE+0XfZ6PZXLZcvQeD0OSbecwnWhbOCyAZjsoFtA6+ACCzbgkyYwgLsvglJ/lQt9AC2AANepqSnzC0eYxGFFdk2p4EmmxJ1qOTY2Zq5fgFPEtB6Px8ShDB0Kh88muGEb/Oabb2pnZ8c6DBiKxB5MpVIqlUrGiOEbsLi4qHA4rFqtpps3b9rES56hvb095fN5PXjwQFtbW/rv/rv/Tu+//752dnaMZarVarp06ZIuXbqkeDwun8+n3d1dzc3NqVgs2p6q1Wo2X2NlZUUbGxsqFouWJVHPRDfg8/k0Pj6uxcVFVSoVU/QTzBCwRaNRG79848YNE/dyz05PTzU1NaXBYKBPP/1UqVTKBMGADBgRDkLcSN0WYcR1MIX0hkPrStL169f18OFDE3lyOD9LZmB7e9uSCp5Jv99vwjkYAlewzT6hrRqmT3psVsYznclkLIOHGSDhAORBwbvPEnR2LBbT7u6utXmWy2V7XQx+EPZNTU2pWCxa8KcNFPq8WCxqbW1Nu7u71vu/sbGhCxcuqFQqaWVlRZcvX9bzzz8vj8ejDz/8UMFgUFtbW5qcnNTa2pqxSOFwWC+99JJeffVVY0CeNB2jRLWysmIlgOXlZXuus9msbt++rcXFxXPXF7HfYDDQlStXLPPP5XLmIivJ2oNrtZoCgbNpoSSclAdJGng92AK3k4DSkJs0E+QZm0wscNlaktanXV9ohDGHIYcpD5JLw7mBlv+HDgXNUwtEHMcFgCZC0U22TX3y7t27Rqliw0m7BoOCdnd3jepnjY2NmSkGim9ar3jYGPpAsHXrk3i0x2IxXbt2zaZcgbBrtZqNzZTOWpcuXrxongIcdicnJ9ZfjcK8UqmYsxaZGwFAkrU30aqFYIh6FPQTjnHUgQFQblkAoRAPNayAz3c2GpYaus/nM3AF0GOjumwBJQyYBR4wBD/uz6DQfxYLZghAw8NUKpUsM+Hwk84LM2OxmPL5vFZWViyQ88DxYK6trZkaHQBL0On3+1pYWNC9e/c0MTFhQAmNxuuvv65+v2+iv52dHc3Ozmp6elqbm5t6//33lc/n1e/3NT09rcFgYAYtjMxOJpNmrcooX0nmZ0Ad/t/8m3+j2dlZXbt2Tfl8XtFoVHt7e/rZz36mt99+W6FQSJubm6YvYHBKv983oPHgwQNtbm5akPF4zobZ/NZv/ZZu375tLm3tdltLS0t22O3t7dnvFYtFdToda1M8OTnR2tqafuM3fkP9/pmDHWCaxGFjY8N61gFklCg8nrMxyLlcTqVSSRMTE3Yvx8fHzUMCE6mJiQlTm2OYs7S0pF/84hcmWna9HmBrnsVy2T7Kb7SYxmIxq0+7ZRH3d91pmzCvJGwI8Th72bfsbe5ltVrVwcHBufJJu91Wu93W4uKibt++bS3SgEJKQTdu3NDu7q5NfgXgjY+PmxgOB0LOfUnWiVKr1TQ1NaVMJqOlpSVjqmZnZ234lSStrKzYc4lI0mXR6FDgLKPMurGxoaWlJZ2ePp74yrOVy+XU6/U0NzennZ0dAzokAwR+jJH8fr9efPFFDQYDra6u6vT0zNERfwTKYpLOadiebO90RYDQ/gjfpcf28E8m1ejtXEM0tEpPs/6zRhhDXSC0cD8gm40PS00VIQeZl1sqQLgWDodVKBSUSqVUq9UM1VAjwhBE0rmSw3A41L1793Tjxg0LRICX3d1dy/owR1ldXZUkyw4wzqB9g/cdDAY2+vTNN980YRUCm9PTU+vtfvTokaanp82IhrpUNBq1rBHEzXtAPxWLRavhYs/a75/1ynq9Xu3s7Ghra0vZbNa0DpQdTk9Pzx2K9IKz4cLhsC5cuKCbN2+q2Wzqo48+Mp0EGo7h8MxpC9oZ0Rj32mUSqLFSbwfIcVi6egQ3+D9LERb7CeUvrEYoFFImkzHkTuulOyq02+3aIeD1etVutyXJaNfFxUXLLAGyZHKBQECzs7NG4U9PT6ter1s//H/1X/1Xks72cqlU0tramlqtli5evKjLly8b8F5cXNTR0ZFWV1eNWiyVSrp3755efvllhcNhfec737ESmc935mIJMOAzUJLDiY/M8aWXXjLVNOZXrVbLWkjxOJDO9vXf+lt/S8Ph0NrtPB6P/sW/+Bd6/vnnrasHP/z19XXbt1//+td19+5dG4oUDofNt/7mzZsKh8MaGxvTjRs3FAwGrSXXtVWl7MV5QxkCa1pqqTCDaImg/Cm1AWr7/b5KpZIWFhYkSfv7+xbUeBa4589iEegBJ1DAAHVXBEpAAewikKZ0SYmTf/v9fqOxYRjQVUE/A4gJZJRmyWZv3LhhGgVax2EI6vW65ubmzCK7UqnI5/PZVNarV6+aCI4xw6enpzbVELCAFoyzHQo9FArZhElG17MANzs7O9ZNNj4+rkqlYrX/QCCge/fuaW1tzVqD0QJkMhmbjPjk7Id4PK58Pq+ZmRnt7OxobGzMzJDm5uZUKpUsweM1Wq2WjXnmO7nnBKwWSRRlBne/E9hdcbYkY8JokYXZ8Hq9X4iN/UJgAJTq2gqTXfJh+aDQ+AQeMkSCNOiUWjUPd7PZ1M7Ojh1E0IJsbmqRhULB5o5Xq1VNTU0Z5Y5OABMhWkCoJbkXfXx8XLOzs6ao5ntRL2UoBYcHo2ahyUBmUPLQd7AKrpPgzMyMqtWqyuXyOQqdjQeNzyGEkG1sbMy0BijQCdhQ0ScnJ/Ywgix5X3QbvV5PhUJBjx49MgBGrQogEAgEDKlyL0GZrs7AFVaBxPk59+9B6q5Y7de9cHrkoXIzJFqZqMm5pRDAJv4CZN9kpjs7O9rc3LR2JGhb7s/JyYnVoA8PD008NT4+rosXL0p63FVCvzEiot3dXctcb9++rXw+r1dffVWtVsteZ3p62oR3MFUPHz7U8fGxaV/QBWB+cv/+fd29e1dTU1NGf164cEHBYFDvvvuu/sE/+AfmqwBN/vzzz6tQKBhjhXiLALKxsaHr169rZmZGKysr1tN9fHw27Oju3bt6+eWXrTwRCARUKBSUSCSsFHN8fKyPPvpI6XRaN27cODfn3hVC4pwIs0dJAoEVAYvnH4qVfzhLeN5gIClBnpycqFqt2jmBnuFZLYyp3PMCIIp4jADNIlBQ7kJfwvnLNahUKpbMsac5f4LBoJVwMpmMPTc8065w+fnnnzfAQKBjXgXPHRqCQqFgrrETExNKJpPa2NgwLxAYsEuXLhnrQWsj7qCNRsP2Pc9jOp02IE5wBcgXCgUbq811Gw6HunLlij799FMTRiKupTMCJpfzHEYOsOvz+TQ2NqaDgwOz7R4fH7cEsV6v2x4imYJhazQaloRSwuGacp/Gx8e1t7d3LvHFSRa2ajgc2rPP37l74YucuV+oTOAGUVCpq17kwCeDarfbttnoAiA4kHlBrRNcJyYmNDU1ZXUwHlrXIIM+fYa7UDscHx+3QIp4pt1um4sftTMCHoCEFsZYLGYHAZ+p1+tZtkCmjwMVWTMHBtoIgimvE4/HLcNxSxHUbCuViqnEeS86G1yhouutQA0bxE/PMQDBBVsAMOnxoAyyZDL7TCZjGa6rFyDT537B6rgAgc/CQcReIOj+52zMX+VC+EbdFUrz4ODASicYfyAs5QCQHrenVioV08skk0ldvnzZrEkXFhaMFkcnwndmb+VyOTuIPB6PmaeQiUhnQG5iYkKJREK1Ws3mBGQyGT148EDD4dDsuDl4sdg+Pj7Wq6++qkajobW1Na2trVlvNeI7j8djbWOI0z799FN97Wtf0ze/+U2zCB4fHz8nzNvc3NSnn35qLAZtrgTjWCymra0tU74zHY5D/O7du+r1erp165Y9t/1+3wR/iPYo1125csWeDxi4eDxubARgO5FImIkZbW9cY3QE7HfEwMPh8FymjX4Ba/F+v29lM77ns1rsU1eQ3ev17Kzc2tpSr9czzZUk28+AfUqjXGeYXUnWRcD5wnUmGSMRYo7AYDAw0SnltxdffFG1Wk3Ly8vyeDxaWFhQoVDQz372M/3pn/6pWQqjdoeFGg6HGh8f1w9+8ANNTk6qUChobW3NSj7SWdxZXFzUw4cPJcnO/8FgoJ2dHSs9TE1NaWlpyb5Tq9VSoVDQxMSETdnc3t4275BEImHlhkqlYmDEZaE5C7D9vnbtmpkbtdtts1K+d++eGo2GLl68aM9nPB7X7du3zeiLhBlrbdo+6d4KhUJmcMaZy7lL4sJzxt/DRPJzjCx2f/eLrC/EDEiPh+7wRi4V4aIcDjx+10WUBAyyXxykcGkCVLhOY36/34SDZHhQgJIsmOF05VKLbtufx+MxShzNAnUcRBhkK9DhXq/XTE+4BtTO+F6wIhh8gNTwH3AROH7zbm+w2yvMIUu2SPcDNWi3xQjgIT0W6D0pRAFUDQYDdTod0xvAtqAfgGEADBDsoSVdHwW3S+DJdjBXwc1ndbOJX/diQJAk01EQ6KmnocXgO1N/4yGkpIIamKyLckutVjMVPWNF6f0nU4UpA1j7fD4ziwoEHk9WRDw4HA61vr5uboOIC1OplKamppRKpbS5uWktfQSysbExa6cFGP/kJz/R5cuXlclktLOzo3q9rlKpZL7qXq9XCwsLdm1cES4ljDt37mh2dlZjY2MG2Dc3N5VMJg2sYMySTqdtSMrs7KwSiYR+8YtfaHV19ZyXw+rqqrWkuW2JhUJBhULBHDc57Fw/BfYWyYcrlOMswqwmFAppf39fXq/XMm1KW5Qs6dBxS0mIbL/owfqrWpydrk075y+BHPaD55dnjzOYxIDXgc3EwGdra0uXL1/W7u6u0fZ+/5kd8OHhoeLxuFHsJF/BYFDdblfFYlGVSkWrq6tGe5Opp1Ip/eAHP9CVK1csmA6HQ/PtQNALAzE7O2sGdbdv31ahUND8/LxWVlb0B3/wB7p27Zo2NjbsbL5165aZHAEaOcN7vZ7W1tb05ptv6t1339WtW7csMUIHRNCHGZTOmOJCoaBisahYLCa/329lJK/Xq+3tbY2NjWl+fl7r6+v6wz/8Q4XDYb3yyitmV7y7u2tlXr4vCe3W1pbFHYAsmhfuH+zF+vq63Qt8R4gf0hl7jcU9gDccDpte74uupz6d3frxkwIyKEW/32+b0aWYqU8SyPg7Xgv1JyYnZCPUVXgQ8V0nYHo8HqOAfT6fBWKsgTmQ+ZywFi5F6H4uKEPoRIIcGaUk+37U63Fc4/BxLSX5eUmWrXPzYShgMFwKkENIetxRQKAHwVNjcql9emfJ8MkAACS8D6ZELkvD5wYEcCjyMwyYepIJopvhyf3h6kL4LM9KQOgegNwjKGRAAQ6M+Aq4oJXv4iJ2ScYeMHCETJSaJmZYXLtqtWpZWiqVMjoRpbBb9yWQMf+CfmcMewaDgQmTaOmSZGZDhULB6rz1el3r6+uanZ01arnb7WppaUmTk5P2e3iBNJtNm7lBkETrcPHiRfOBhx0qlUp/wRDINXGamJhQoVDQZ599pnq9blMJh8OhPaezs7NmxoKID+qXZ7bf7yufz9t5MRgMzLODTggYBwKCe18on3D2YORDKykHMmp9etKfpT/Gkx4s/DfXuNFo2CA0QOTx8bEFiXA4rCtXrmhzc9OYRZ5FSjb8DmcpzEM8Hjfhn9tVQfLz3/63/61eeOEF3blzR1NTUwYwCUxTU1N69OiRxsbGND09bd0JTOnsdrv6oz/6I/s+7mcie3706JEajYYxSOVyWaenp5qcnFQ8Htfm5qZKpZJu3bpliSXtoHt7e5qfn7frwRwQWtGHw6FmZmY0Pz+v+/fvW8s32qHPP/9cXq9XN27c0P7+vn7605/a9QBM+HxnY5yXl5ftmVhfX9fGxoaq1ar9Gcw3moFyuWwDl7gHe3t7dj7QkgyrQOySZFoKd6AS7yM9jhlowZ52faFUjUyT5QYD11uADQMtDIrkMHZrI6enp7YJecA5ZHAG4+ehuMmSJVltEnoStsDNxqEQmdZHhsZhF4vFzPQCgRy91Ij+2Mz0fAJSeCB9Pp/V1kDsBA8Utqenp8pkMtrf37cHg5vOoUX/OdeXh4YeU4/HY7QSDEUgcOaaiJDE7SDgutHSBeDy+89c1hACcQhyQHJ/AF1kGYAegj7/SLIDiZ9zGSE+x7NYBDlKLHw39ge1NoRKBCkCBopg2jMBjTjw0WLqZk0IPbn2tEmFw2EtLi7aTHZEQrS5AgrpBCD4LS0t6caNG5qamtLW1pa1uQaDQas/xuNxeb1ea+MtFotqNBpaXV3V9evXVavVzNGQkpjP51M6ndb6+rqxELu7u1pbW7Oa/MWLF5VMJnXx4kVdu3bNarbQxR9//LFKpZJNFZWkra0tSTLRLqJBZsTDhk1NTVmgIQm4fv26zbtHj4KLG0Cea0fQnpmZUavVskFknDUwY1xbv/9s/nu/3zeNAeZKlINc4yZe51mtZDJpXUs8n4PBwASaLnBxzb7Y5+12W/V63QI+z0EmkzH7Zua9UEKTpOXlZWPH6F+HZaV2HQwGlc/nraRAIuLxeGxM99/+239bxWJRly9f1ueff26say6X0+rqqlqtlubm5rSxsWHzEXCupD0aYNjvn80yKJVKWl1dNRH1b/zGb+hrX/uafv/3f9+MmDKZjNLptLa3t1UsFvXDH/5Qw+HQusoYKkTp88MPP7RnDx0Ps0loWbx27ZqVJ5aXlzUcnnllTExMmA5gcXHRnEFh6CjhBoNB1et1m8MwNTUln+9sRgrPCc/0YDAwJgyQgiZJejzQiDMGgToseiQSsdd6WpbgqcGA6+rl1p5oc6NdEJof330yLKjSRCJhikcGVID66ecnODGshIERpVLJMqlYLGbiObIlRC/r6+uW4SGay+VyWl5ePjdMAgomn88b8mw0GpJkJiSuetUdOYtYEI+DXC5nUwQROpH1/GU90aib79y5Y77ZZPSutoE6kds6BGCgdu92K3CwITrh/pyenlm94nS3sbFhhwMKX2hhqCpJdgC5XRy0HgHmaDXlAHLZHFgOAMKzWGRIXBM+L4JM7qvrQEiJiQ4YHkpoTLIP0DmAL5lMWisskzJphYUaJDul/7rf79uBEYlETEBLy+D8/Lw++eQTra+vWxaLwjmZTFqpLBwOa3t7+5zWJpPJ6L/4L/4Lra6u6ic/+Yny+bzGx8etw2ZyclKHh4fa3t62VtipqSklk0nt7e1penraQNA//If/0IDp2NiYIpGIfv7znyudTpuV8ZUrVyTJDuNaraY///M/19TUlDY3N22PzczMaHx83EoWx8fH2tjY0OHhoWZmZjQ7O6vZ2VlduHBB7733nu2vRqNh5k0ESa/Xa94LgHC3TMDz2Ov1zGc+EAiYQBNWAPHoYDCwZ+xZGg5JMuaDZAuQzeC0brerer1u+xStFZ1SlOzq9bqxk2TaMHe0UsLsAnilxwCfCZW8NoPNGJBGkJJkrcqIZZeWlrSysmLZ9/z8vObm5izhI+CTAdNiiIHR8vKyyuWyYrGYJUF4s2SzWTOIovza6XQMjH73u9/VlStXjL1Db4MQ9vj4WFNTU/ra175mQb/dbhuQANhvb2/bDI7d3V0DAsViUTMzM9Yu7vf7ValU7J5Q7kbnQOmOvwOElUoldTodjY2NmXaF84XkGFM/klTObkrj3BNKml+Ujf1CUwv5QAR5HhxqNS5lSsYBQ0A2DgiQZLVoaD7EQwgNCZyNRsNoQFA/WQDtSKlUSq1WSysrK3aQ+/1+FQoFe01cmjCJQJGPCp/gvre3Z0ZEoLlGo6Hp6WmFw2EzqsGqE5vYvb097e/vG406MzNjQr1yuazhcGjDavBpB7ktLS0ZUGIKFpTn3Nyc1tbWrFsCUARYod7mTiwDQPBAIzSkzAJD4qpUsSvlEHI9A7jvkuzP/zKBIQcx95c6p8sg/LrX4uKiIXlKQHw+n8+nhYUFa0FCn5FIJNRoNKyvuV6vn8vyATgXLlzQ+vr6ub5hSTo4ONDOzo498Bwgt27dsj78UChkA4DefvttPXr0yMBCIpEw4HX37l29++67unHjhg01wviHfV4sFjU7O2ssHNTjysqK/uRP/kQTExO6du2aHj16pK2tLcvuW62WjejudDr65JNPtLy8rGKxqHg8rkePHun09FT/8//8P6vf72tpaclo952dHUWjUb311ltmvJTP51WpVAyQEKj9fr/efPNNe55RYJPN3rx5U8vLy1a2WFlZsevX7/eNQXGzITQSiLHI0KBGXXErLBcGUlCxfr9fGxsbmpqa0v7+vmWnbmstDMSzWJTeYC4o9yGCpCQCIwNbCwhA8MqzDtNHJwGlRBIDSgloJWBGeD0SsUwmo2AwqB/96EeqVCqanp62vn70WLTwra2tWQcVdDat0PF4XOVyWbOzs9aCCANarVatNRKXVYAKuoFisSiPx6NSqaRLly6dy/rdDh1JBpwCgYAJuSuViqQzd0OodcrNm5ub1rFGGblcLhtTODc3p9PTU927d0+vvvqqfD6fMRy0AcLW5vN5c0fElpg4FAwGbYS2x+OxQM/9h4EeDodmjuRq2tCNue2mks6dxU+znhoMwAa4lDIb0uv1amxszDJz1PugzEQiYQ8y7myDwZlvAfVBNkUikdCNGzcUCAR0cHCgVqtlpQd6sCVpY2PDNAWbm5va3NzU/Py8bt26ZaYlbtsW7AVKUB6Mo6Mjo9l8vjOnPzJrRFiIU3q9nvm2s2EZdrG+vm7oDEEH9SlXH0CJgKlhILnx8XH5/X5TkHMAoBpPpVI2zIKDLZvNWn/18vKyZaNkO2wEMoZQKKSHDx+eC9Bk/IASRI/SY6tWMib+ccEWDAEUO/vkydIC7NCzWK4egHuOqGowGJgTGocN14rAjrW0Kwr0+/3WJYIKm1nrsE/JZNIUygzReffdd/W7v/u7eumll/TRRx8pGAxqfn5eS0tLWlxc1Pb2tra3txWNRpVMJq2t7h/+w3+oWq2md99995yZysrKih0EuBzigTEzM6OrV69qYmJC9Xpdjx49Mt8PHNoODg70ox/9SGNjY+r1enrppZfsQK/Vatrf39fv/u7vmsASpTlsFg6Df/zHf6wXXnhBDx8+1N7enp5//nm9/vrrpvgngyHAA6RPT8/cAe/evWudB+xhWhgnJiZULpf13HPPmckZivk33njDLG8JSmSwZGqwBYBlmDK3d353d1fFYlHb29uSHgdhWsme1eIZflKjA9DhHOYZJ4Hi3KRUl8vlVK1W7ZllRPlgMLA/d9u3SRzoqOCZQSkPg4tjZKVSMftpmLOdnR1JMmHm4uLiOdMdzkLKGJS4KCMwUZGATzud13s2Xty1367X6zbkCKfM09OzkdjHx8e2R9D5UPZjn/T7Z8ZazWbT9DO9Xs/aW9PptDnL+nw+LS4u6vr163r33Xe1sbGhr3zlK2aVPRwOlclktLy8bEyie7byXQCpiJLJ+DmDYKfcAI94ELaIfUxsJWFDt0Yp9GnWFx5hDDXtZoLBYNCCHrSIu5kRpLg93q4wq9VqKR6Pa35+XsFg0Or/ZCvU6IPBoEqlkrUszszMqNc780dHLY5vdCqV0vHx2YAUPMcLhYKNUT09PZtQhlELSIsHjBsHJYagJhAIWCaFnoB+2LGxMQ0GA01PT9thhlANSjOVSll7C7QO5Yv5+XmNj4+fe1BpP3E7H8g26/W69fMiIuIBhuKm3ahardpENoyXENZA+6OTQMmORgLmQJKBOjfwSzJGgcwF9Arwg7Z6Fot6pzvqlQeNlj682NGtwGDR6kONjsBLCcfjOTMvajQampmZsUxMktXuMSxBi0Jp7LnnnpPf79fDhw914cIF26vz8/NKJpNG8weDQb3//vvy+/1mjtNut3X16lUVCgUtLS1ZsEa7cHJyYm2FGLz89m//th49eqTV1VVzAvzFL36hV155RQsLC0Y3sncCgYBeeeUVjY+P2xhh9hnK50qlYiwX5kQcnl6vV/V6XYlEQlevXtUPf/hDA/xkq9PT09rd3dWbb76pQqFgE0MJWlCjbkstNDG1V1rRoHNxR4TqTiQSVsJ49OiRvSb7At3F8vKy1eJdY6IvMvntV714JsmQOQdc4yxXEA3bCXCgrErNWZIBY6x7q9WqMpmMBXhJllW75QJXA4bm6vLly6pWq7p//76q1apyuZySyaSkx+2fAFt0BIDp733ve2o0Grpw4YK2trZM4IeAsF6vm1cGAJTSNGXd9fV1zc3Nmf8AnSmJROLcuGHA0d7enhqNhsrlsjY3N5VOp210NiwopcNUKqX79+/r0qVLymQyJvBLJpPWdUCiEY1GzbwIwyBJFvDRq7nAEtY8EAiY0yOJB/sOl1MSFxJx6bEWjNki7Fk0Za4Q/an22tP+INSU9Bilgqhc9TMfArEfGSKtFTzAgIhCoWCbk4ecL0sGyp8lEgk7KAjGXAza/5rNpv1+t3s2YIggD1DZ2dmx9jFKDiBngtmTQjyybWjIo6Mj62/mWrAZeX8O1MHgzKyIWhAPHSh4enraXgNqCTrUpej4TC4dH4/HjZEpl8tWevF6vef0G/gPoE1YWVmxzwg65poguiKz52BBbPVkV4mrXnWFeW47qctU/LoXg6dA0hykBAHuGVkUWWwmkzln7MF951p1u11zwOOBd1trqRWiRcHY6qOPPtLBwYEWFhaUTqf13e9+16a4ra6uajgc6sKFC7p27Zq2t7c1Nzen7e1txeNxXbhwwVqWsPzl/rVaLZsH4PF4ND8/r/fff19jY2N6++239eGHHyoUCll77trammUlm5ubarfbeuGFFwxwInjNZrPa39/XRx99pEuXLtlepJ2SYVnpdFo7OztqtVr66KOP1Gw2NT8/r5deekmPHj1SLpczCjQSiSiZTJrwdWdnx7K1breriYkJTUxMmDLb7/eb5qBQKNgZAPCBysUACs0SZxHBy62rcr+ZOgm7QumM0k8sFjPG4FntXUqikqx8yLkpybwIjo+P1Wq1lEqlTCvTaDRMpyLJaOV8Pq9Wq2VMFkCYM3BsbEz3799XMBg0kzLY0mw2e47xbbVaWl1dVSAQ0Ouvv65vfvOb5oGxsrIij8dj1scIAqvVqur1ui5fvmzxAKMuScZYBAIBlctl5fN5o8VPT88sjRuNhiqVirVCMu4acXWz2VSpVNL09LROTs5GHbdaLRWLRfPDGBsb09zcnH7+85+bUynU/vz8vOLxuF555RV9+9vftlL3+vq6+v2+nnvuOdMeSTIGWpKV/GjdJTGDYUcozFlNW6ZL98NgLyws6PDwUBsbGwYg0FBQLiJJgxFANP606wszA9Jj/QCZo6te5cu6feg8kDxg1JRSqZQJQHZ2dox+J7MFUDCzgIDMA4HfAHUh0Kv7ELsOZB6PR9vb28YCeDweQ9xukHXpGoIZNWN6y3kfxICIBdlgBH2cqjqdjgEi6bGdLZu93+9bnZ/3dlsOmXDIjeag44YDCHhNAhbXgdofal1XlwHS534BPlxqkvuGgEl67CUBQ8ABC83Oz/CZnhXdCk3Jg8WDRikLMMPfu+2DoG06XlwPBfYmZSV6fPneCAapX56entnm4iuwurqqhYUFvfXWW5bdHhwcWIdNOBzW6uqq7t27p/n5eV24cMFMsFxb6sFgoJmZGcvicNIrl8umnCdjxlSGuQwvvviiGo2GPvzwQy0sLJgBF9clHo/bXmS+Bt0TfMd8Pq/h8Gw2OzoWFOsAidXVVc3NzandbtvgLOnx9EZoT8YUSzKWCmqZ4AZQIQt2Pe0RE/PZ3NbBarWqfD5v1rMsEgpEpSQ4X7Tm+texCCZoSGBF0+m09vb2FIlEjLEEsJOpuknJ2tqaJJ1zx8xmszaplHKp9LhO7ff77f3RglSrVaPpj4+P9Qd/8AfKZrN6/vnnVa1W1Wq17NzpdDqampoysx8GW3m9XhvNiyFRNps1PUIymdTU1JTu3btnZTXK02gnDg8PtbOzY1M2P//8c/2tv/W3rNMMweHU1JQuX76sP/3TP9W1a9c0Nzcn6Wzfzc/Pq91ua3l5WY1GQ7u7u6rX65YcLCws6L/5b/4bfe9739Mvf/lL+Xw+TU1NmSEX34FzhAT11q1beu211/THf/zHevjwoY6OjswIC10L/08s7ff75tlAGZuy9cbGhnULIRgmwcYkLxwOW2fdk2Z06CL+qvXUYIDgxoFOEHBFfWxIgAOZNMEEW1fUqZh/EDwI7AANSdYGRybGqGHegzoZDzFggrYTaFlQNRuKDIAyBMpMAA56B9aT9Rj6f136C20A/vaYXOB2ValUjKrmOkiP1fcucCDQkFVTH3P7+l1wAu06HA5NUcuhSAYBqqVNi39gLwAKbFLp8QhiKFWX+mcPcH85YEGu7Bd+5lmVCejhf1KA1m63zWiIzw0bJT32aUD5T70ZGhZjHkSi7HeCiPu63NvLly9rcXFRw+FQKysrikaj+q3f+i09evRIgcDZtLfhcGieApL08OFDfetb39KVK1f04x//WKurq8pkMpqfnzcHtsnJSX3++ecGFqnlMs9jb2/PGANEYpQSEomE1tfX9frrr6tcLpsOBuqdzOX55583J02uEeAIweH8/LyBZOrLDx8+NO0N4IjkgcMNWh8Quru7a7Vo6HCCFQcvYIDnjsmfABm3zZXviwGMC2QpG0DJS49BLEnCs1qVSuWcCDsej2s4PHMinJycNN8SEiHOUxTxa2tryufzkmTsFYH+4OBAqVTKVPkkEZxHZNAMW4OJ7HbPLLInJib02muvKZfLmdNfrVZTq9XSn/3Zn2kwGGhra0sLCwsKh8MWRAFbf+/v/T3du3dPhUJB7XZbn3zyiZWOPB6PvvrVr6rb7Wp9fd0sqr1er+bn53V6eqpf/OIXplEjo0fIyjTRTz/9VMfHx/qN3/gNnZycqFgsmhDQ5/OZ98bOzo6KxaKVAOk2+OEPf6iZmRk9evTI2ipJYn0+n37+85/r5ZdfNkBG6TWRSGhqakrf//73LVjDmLrCTK/3bBouSQhlSYI57b5o3ThDOY+Zi8CsGwCVJGPvnnZ9IQEhFAQZu/swuoYjfGGEPq5zXS6XUzabtfokKAdUQ/ZFwITWg4bh0GUMJBea9jrqimRvHDqgX1rsJFk2AC3JpgLhSbLsPJ/Pa2Njw9pgGO3q9Xqt3uwq7AnS0EDS2dhivLTd4Em2xvXjoeOzezweM7uQZNeMh5bN8+TkxYODAxO0cV1cMSFAyb1ffCaXKUEZCwPwpKiJ10N0w+I+wMK44OrXubCaRSUMMD05OZuYhkbDzfyh/qm3bm1tWYsqD2ev1zODkm63a2JCylZ4WxwdHVkL0vPPP2/3+Td/8zdVrVa1srJiLJTXe2a8gmbF5/PpnXfeUa93Nor66OjIbGHn5+dNCwPlOD09beOJOVx4vz/5kz9RsVi0ctvp6ak+//xzLSws6MaNG/bdJVlWmM1mTbDYbDY1NTWl999/X9VqVWNjY9YW9eKLL+r+/ftmguKaDUHdf/zxx3r99dd16dIl2ze1Ws2YB0Rl7OWNjQ19/vnn1jd+cHBgtVcCNWVB3NywXAagSY9BHda+nAuAVTeQus6gPAscrs9iAdI5V2EHGfcLM8kQNTz4Dw8PbdIg526/3z/XrgbbGYvFTORKQoD+aGNjw4J4qVQysR9uli+99JLK5bKazaa++tWvKpFIaHt7Wz/96U91+/ZtJZNJ3bp1SwsLC1Yu5fXHx8f1Z3/2Z+fYCb/fr93dXe3u7uqNN95Qr9fTw4cPdeXKFd29e9e8B9Bo+f1+ra6uanZ21tp4p6ambBosCeS3vvUt/af/9J/OzY0hWcxmsxoOh1pdXdX8/LzNmVlbW9Mvf/lLZbNZlctlvfbaa3bOw25jW728vKwHDx5Y4kVJEWvvWq12LimLx+PKZDK6e/euMcOAHVcHEI/HLY6SiBHbgsGgJSh07rglbp6Rp11fyI4Yutfv958LuDx0PHCS/oK5CxePQ4oDGmVru91WqVQyRSqvSQ2IcaYo7NvttgW7dDptdplMGTw+PjYDEpzMTk7OBqggWsSli2w8m82agI8OAwJCOBzW5OSkTb2i3SkQCNjfSWdTzwArZDDMlSeoSDIR4fT0tN18etfp7aa00Gg0VCqVNDMzo5mZmXPsg6RzPfPcBxgV6r90cQAIUP1KZ5kWqnWCGACDDArgx8+7AsJ+v28BgD1CdwEAwc0mf92LAEGwJ8PCK4IaNvcS4NJut23UKn3p9OP7/X4DkAQPapoAPdgj6Uxcd/v2bRN0VatV3bx5U88995z+03/6T6ZhYL5EIHA2//zw8FDf/e53FYlE9L/9b/+bJiYmtLOzY/Vt3NPm5+cVCAT0wQcfWElhZWVFk5OTmp+f17e//W199atfNcaM5+DTTz/VG2+8oYmJCfX7fb3wwgs2aIbrtrKyor29PS0sLOj+/fs2zMXn8+kHP/iBNjc3NTMzY5NBM5mMZVeLi4uq1Wp68cUXFQqF9POf/1yLi4taXFxUv9/XgwcP9Du/8zva29vT0tKSXnzxRUkyLcf6+ro9BycnJ+YNT8211+spnU6b6BdfEgIomhn+jPHGKMtJRFznPs40RHRPS7P+dSw6k/ANoEQIcHNdA6ndI8Lje2B4RvJDBivJuq1o+aNDixZMki4ShUgkotnZWV29etWMs5aXl41VoKPq6tWrpgkpl8s2SI5zPBwO67333rNs9+joSOPj4wZGYB/oatjY2LAzB7fLfD5vreIAOte05/DwUNPT0/L5fPr888/tvMvlcpqZmdFwONTOzo75LCAGb7fbVsKAFdvY2FAul7OyGW294+PjOjw81MLCgrFMsM4zMzOampoyjQXxkWSNc4UZCJw90lkZIxKJ2PhtSjuwsvjH7O/vK5lMKpVK2TVwtWVfJAF7ajDgggCXwifbQhAEzQr642Z2Oh2bWBWNRm2AkHRWl7127ZpmZmZsEAlBBvMVvihZGIh4dnZW/X5f1WrVFPpQLL1eT+vr67p7965mZmZ0cnJm3eqOAiZLhKbZ3t42tXOhUND09LQBld3dXavH4qGwurqqsbExbW9va2try+h6t9Y/NTVlGTtAZnZ21gIvG2hnZ0fz8/PmY8D7c31w7IJKAmWGw2EtLCwomUxqd3dXx8fHZoWL1oI2zcnJSfNVoB+bDebS/NwDVwPAoeMiVMoW0LgwLWgECMDsoWex3Do+mVKpVJIkq8VygFA2GAwGJq7EOyKfz9uDSesrD/rly5fPUejsz93dXU1MTFjHSzgc1uzsrM0E+OCDD7S7u6tXXnlF//7f/3vNzs5qYmJCwWBQs7OzWllZ0eXLl/W7v/u7+vTTT8+Nfm21WopGo8pkMjbjgBq83+/XhQsX5PV69Yd/+IcaHx83T/Zer2f+6ZcvX1Y4HNbv/M7v6Pd+7/f0e7/3exaAZ2dn7f5WKhW99957JgLkeX755ZeNnr906ZL1UlOqWl9fVzAY1Ntvv63f+Z3f0f/5f/6f2traMgOlGzduaGdnR9VqVel0Wpubmzo4ONDk5KS+9rWvaW5uTt/5zncsSFM2mJycVCQS0d7enkqlko2JRtCJ10I8HtfGxobZzO7s7FjZjSwK5o2OJwyoYMYQkj6Lxbk3GAyMoYC5RHDHZ0QwjY6j3+/boCU6hqTH+i/0S1wLGCQ6QobDoQlfx8bGtLi4aFl1pVJRJpMx9kc66+TCWG5mZsZKjQ8fPrS9BDBDFEimDdh2RdulUklzc3P2+a9cuWJndS6X03A41J/92Z8pm82qWCzaoCAEiEzZRHvi8/msnJBOp/XZZ59pZ2dH3/zmN/Xpp5/abByo+MnJSZsDAusXDAbVarXMnTOfz1sySks41zeRSJgejiFNJGh+v99Mxi5evKi1tTVj30i0KQVQFnfPWhIzro3rvcDyeM6M+/b3959qrz316Qz1TbcAGRDOboPBwNqbJFlNGfQejUZVqVR08eJFO1Dq9bptAOlxCQCKDqRZrVY1OTlp2UqhULBg7z7QHo9HBwcHZmpCa0k2m9XExIRSqZQWFhZ0cHCgra0tq6ecnp7N0D49PbVsj04Bj8ejxcVFq70CTtAIeDwebW1tGY2DraQrruTwIVuenJy0uh//4C+9s7OjVCqlXC6nVCpl7wM1uLW1da72hCWodMZKYOCBAlmSbZTp6WkzLsKRjYBNtkHNCVRJXYuH1AUIbl2cPcB7sWfYC2zcZ7GKxaK5pAFqMBeiRET/OrVRv99vQKtYLMrv95tx1HA4PDcutVgsanl5WePj49Y90Ov1zC0PChRR39jY2Lm5CMlkUu+++65u3ryper2uTz/9VDMzM/rGN74hn+/MvOtb3/qWarWafvSjH9mo1V6vp5WVFV29elXValVLS0tWuzw6OtLq6qo2Nzf16quv6tKlS8rlckYn8xlR4mM7C/0Pq5HL5fT++++rUCjo+vXr+uCDD4z9Q4z7T/7JP9G3v/1t/eAHP9A/+Sf/xKh2spelpSV9+9vf1mAw0P/1f/1funbtmi5evGiiSoIBdW7A6cbGhu7fv6+DgwNtbm4aZUpmS+LBAZlOp02xjq6j0WhY5p9MJs3WF7EnGTY0M2DWXZTSnsWCsSJDDAYfz0nheYMx5Xkm4KAN4hq5IlrKMgR9nmXOFhK8SqVipdjZ2VljUQmIDN7p9Xq2z9F+ca6vra1pdXVV09PTxljAUMCC4p7KGQTjkUqlrHUSNkqSzUI4OTnR2NiYLl++rHw+b2VZkkI3W0YvhbBub2/PPnO1WlWxWDQmRJIxvkxUhBEul8tmpMWoYjxtKD+5LaE8Y7AnUPp+v98m7RJTEacDymA7YAX4XAhpXZ8YNHNuefmLJGBfaFARAkG3BOD1eg0QoKzmIOXiQB33+33t7e3J6/UamqJOQk2a1waF4QAIxc/cARZ9rKCyer1uNBLvQ513bW3NAiybcjAY2MHKAdHr9ZTL5ZTJZIxBAPVCLXMAgcjJCGlh5HWgd7a3t5XJZHTx4kUb/EG9lNcj4GILCz0I5dVsNlWpVEyjgFEH45QDgYDNy5YeWwlz7REw0m+LPoIDkdIC5REAHweK1+s19sf1DQCIoWx3Fdkc3m7Hwq971Wo1m0/u1u1w9XIf3lwuZ/fv2rVr2tnZMQoR8Af7w36BCSuVSmaJ6rJOTEFbX1+XJI2NjZkrZiaT0dramtGeWHCzJ1utlqanp/XBBx/o2rVrev311/XZZ5+pUqmYfoDabzabVbfb1cOHD42d8Hq9NnWNPmjKU5cvX5bP57O2Pg5LWLF8Pq/19XVjuJaXl7W7u2suijs7OyqXy/rOd76jubk5vfXWW2Y1TtljfHxcp6enJpa8du2arly5Iq/Xq0qlYlbGUKV3795VJpPR5uambt++rZ2dHW1vb1uAd/UpBDU+O1oK7hXPJFkmzE+32zVWknsViUTs2YAhY19QU38Wy+2u4rlib1HyIlDQGeT1eo155Wymbc3thsG10f17vn+r1TrXkYXgGyp/eXlZ7XZb/+E//AfNz88bQES8iCXw7u6uDg4OjEEFpHm9Xk1NTenixYv6yU9+ooODAwvePCMA22g0qlKppP39faVSKWP3ut2ubty4YQO/cDycmJiwtkM6GTY2Nuz3yuWyndNoHCRZOYQYhJcH+wzWam9vT3t7ewb8S6WSNjY2TAdDfKLsAsCknMs+TafTGhsb087OjsU/WEzOXO4H5zsAC1AhncXmYrFoJk/Et7+21kLAgNuL7WaKfHh3+hk/67Y6kJlEo1HrUZZk9BHKXg7ZbrdrrUUcyoi0XBMehCHQORy40H0cmARexk3SxsdEucFgYCpoWp42NjYUi8U0NzdnQ4io3zUaDctaAAB8Pnd1u2fzC8bGxiSdZfG0U6bTaUPgPt+ZwQ8T1AikriGN2zM/HA5Nd1EoFJTNZs1Zjc0IZc/DTu2O++gaWvAPbABZiNs1wv+7rYduxkYZgY0JwHlWZQIWTA/fG4ZAktGt7t6u1WrKZDK2d9LptNU4YcpA7YVCQYeHh0bh8dACKD0ej77yla/owoULOjo6MvVvKBTS5cuXtbW1Zd7p7C0A4cbGhq5evWrMQiAQMOth+u5xVYvFYtarjbHRxsaGbt++rVwuZz3z3W7XAnCz2VQmk1EymdT8/Lw9O5J079493b9/39wKKYFFo1FduXJFs7Oz+rM/+zONj49rcnJStVrNfADws5idndUf/MEf6K233tLf+Tt/R5ubm3ZwhUIhazc7Pj7W5OSkMVxkXCi8qeXm83mFw2FzSKS9y/WyIJFgn9OWRymA/ckeBzhwgLKnAf3ParVaLZvz0O127Zkn4GCug6AVur/RaJhVOjomZhPAag2HQ2tNg+bmdQ8ODnR8fDZkB30MSZHP57Oy07/8l/9SXq9X77zzjlH47BECMUZVlHJoF8XMhy6z4XBoVtaLi4vKZrPa3NzU9evXVa1W9dlnn+m1116Tx+PRL37xC/V6PRWLRQN4H330kYrFoorFoj1/p6dnsxjW1tb0/PPPm5vlvXv35PV67Xmkw4xZM4lEQq1WSzs7OyqVSubjcPD/2Mlfv35dfr9fOzs7liA9//zzOjo60u3bt01wjIcMLAueDrCrkswdEbCGno6zlDIHexw9EgksIOr4+FilUsmYaJJVSu9/1frCI4wJFPybAxS0CShAyQjN7VLGoPJUKmViIw5ZN1vjNbjY9ICSoaEGrdfrqlQqxhIkEglzDeQ1oVDo0+WCSzJaicwVJ0Gy5k6nYxPZAC1QoYhthsOh8vm8DU7hu7sdFvF43MSMkUjEemI9nsez1NFYwKi414FWRjaTi/IJ+Lwnhxq11mAwaMYW0MSSzgVHN7jDFFC7IpBzb9kTLkBwwQOv7W78Z3WoApig4CQZcobORsyD+BJVPBoCwAKgiADi9Z657BE4XH8CBFcInN566y2Nj49Letyq6tKf9OXTocK8hGazqWKxqEePHlmWjE01IITOCA59sjFow1KpZPTx6empWR7fuHFDxWJRX/3qV60kIckAI58zGo1qYWFB9XrdBFC5XE7z8/Py+XxaXl42sRj6GDoCMHipVqvnWnwp2XDtYVW63e65DJADD/ZRkjFT6JZo3yR7IoGgVZZaMJMlKWdCH3NGuS2O7P1n1RIryercaBk4K2lpJWlwQXev17MOE84+SjC0DMJ4UJp09z2ZsKRzjGShULAJhr/5m79pNfylpaVzLbXYaOPeirp+e3tbuVxOHs/Z4CQmU3Le9ft9G+izvLxsoGVnZ0e3bt3Sz372My0tLanT6Wh5edlaEAGByWTS2lhffvllDYdnk0IHg4EWFhZMwzA+Pm7TP7e3ty2o4yJKTPJ4zoySvvvd7+ratWu6deuW7t27p3g8rlu3bikcDuv73/++nn/+ebMARyh+fHys//gf/6O63a5KpZLeeustlctlE6rDKkhnYAA/BvYlIBZ2CtE91wm2Zm9vz8zrWB6Px3Q9X6Qt9gu1FlIjRaXKpiFDiUQi5x4it9UOuhv0Re3d4/HYhSGD5wa7rWy0giFUozyB4xb9toVCwQ4FMjB67cPhsD1IbAzETiAoDiXez23zg8VA10AwjsViZhqTTqetS4HPThYI4AmFQpqcnFQikVC1WrXaPgE5Go0qGo1aGyBBB1tOAATZOGyGS/EjtKSGh5gQ2nFra8sCN/cIZAp4gTZz7yV/BxCCvZAetyM+2YII2HhWhypBA5qO++a2G7rBwaVbcXsju+Tg5VmA1nNFl/QE49YmPa7z8ZzgckbZbHx8XFeuXDEARw1yb2/Pgje2vyiqj4+PzQ4W90EESNLZ/cO9r1AoaDgcnvP239zc1K1bt6x8Va/XLWMnqGSzWV2/fl2xWEy5XE7FYtGeo2q1queee04vv/yy7t69q3q9rt3dXTvscrmc1tfXtbq6qldffVUbGxu6e/eule/oQmFa4eXLl9Xtdk1strW1paWlJQtqUNt0CWHOxP8DHNz7zn1C53NwcGB/xp7kmSTTIktlHz/LBRiLxWLnwL/b+RIKhbS7u2t+JuzPra2tc61n1WrV+t/dVrTp6Wk7A7HYbTab1pKZyWTMQ+D09NTawD/77DMrobz77rvWQQLDMDs7qz/5kz/RlStXFAgENDc3p9nZWU1NTZnj6w9/+EPdu3fPhILj4+NWQuO8xECICYhbW1uKRCK6ceOG7WPc+CYmJkwIXiwWzdRofHxcu7u7ajQaphmYmZnR559/rvX1dX3961+3uTSUSdj/77zzjrzes3kJFy5cUC6Xsym4odDZQKY7d+7o5ZdfNnEwGo8PPvhAkUhEv/zlL42JkM5iyNTUlFqtlsbGxsxUiMSFmCfJEg66PtwkDD0HZRAYMNoO6V57mvWFphaSnUJdkNnQhiKdBQTa2GjXcX0DaHPxeDxqNpt6+PChTfmDXiIAUu9AIZ3L5SzT5bCEdpqbm9Pu7q7W19e1uLhowRTK1u3t5KEfDoeWgXS7XWsBbDQaOj4+ttotboeuDSyft9PpWEtjvV7XwsKCTZbioYIxKZVK9n0x8qBMwFS2Xq+narVqU6ywLUZ0iBqWg8oV7BCo8LimtREQRlblDmrCzQwHMpAof8+BQZCjruoeksPh8JwTF2DRLTkQWJ/FSqVS2tzcNLaDAEA2Ua/XNTU1pVqtdo5S5iBFLCk9ZlLYjxsbG5Yhsbel82UUFPwIU1Frp1Ipvffee7p//76+9a1v6d69e3r//feVTqc1OTlpWeHx8bHZovK52AtHR0d67bXX9P3vf1+lUsm+Tzwe10svvWSZb6fT0YMHD/TgwQPTyUSjUd2/f1/1el0ffPCBMpmMxsfHdfXqVRv24vV6TSDZbrf1e7/3e+p2u1peXtbKyoqVN6amplQoFOw7xONx3bx5U16vV5999pl++7d/W5lMRs1m0wCW6wXy0Ucf6e7du3rttdcknZVXMIjB7IXr6PP5TKfDM8zhjWCM38EvgUxVOuuiQY3v8/ksYQCIYfHKmQXL8CxWLBZTq9U6J3ikjk7pFbYSIR4sIeclgRcWha4ffv7q1avnHAjJKhHI+f1+zczMaH5+Xvfu3dODBw+s/AMT1Ww2rQbP+dFut/X2229re3tb6XTaBhXRBhkIBPThhx/q1q1bGh8fN2MfhrbBOG1vb1trIuZLeLPQYUOpFnOx/f19zc/P67nnntO/+3f/Tvfv37cS78nJiVZXV+XxeAzIfvOb35TX69Xnn39uTAw+HO+88461VkajUQPNAAu/36+rV69qYWHByg3Xrl0zcfv6+rpmZ2dtJg5AlhIEYL3ZbJ7rsiNJ41lFQErrNpbIxF/iLmCWZ/9p11ODATYZmZP0mGqFEj86OjJbSTebBGGirHcDRLPZtB5ixsUipCKoEABxy2o2m6pWq/aZisWiFhYWTFjVarWsl3wwGOjhw4eanp624SnQLgRLlwZ/+PChHULRaNTKA8ViURcuXFClUtHa2prdyP39fcXjcWMztra2tLq6qitXrujNN9+07/j888+bfeXa2pqVWprNpj7//HNzMcQQRJIFFroI6LN2xSQocPkejKXFTATr2263ayyE2/qIlwBsA/eN6+HqEpgA5o6AJugBuILBoG1Kt+wgPfae+HUv2A2EZlwzSkhHR0emJCeIEDDxg2DvQ2MTpCORiD777DM7BBkqxWHlvl+j0dDXv/51c007Pj7W7Oysbt++rX/9r/+1FhcXTSvDwfPf//f/vcrlsj799FP7PlevXlWv19Pdu3f1b//tv9Xf//t/X1euXNHrr79ugj+o+e9+97tqtVp65ZVXdO/ePTWbTXPNDAbPBiAB6Dc2NrS/v687d+5ocnJSU1NTWltb0wsvvKB33nlHuVxOv/zlL9VsNjU9Pa0XXnhBDx480L179+Tz+YwNgQ2Ynp7W3NycxsbG9K/+1b/S3//7f1+rq6v68MMP1ev1TJtw584dc2a8c+eOAbD9/X1rB0Sg1mw2tbi4aJlquVxWNBo1ehshMSJDGMB8Pm8tea5PBmfSycmJ/QytfJw/z2ougaRzNWYYKp5NQCp/Jz3WdiHwZC/zzJOIoefCFptyE88FSczJyYlefPFFczJMpVIKh8M26XN3d9dq7I1G45wtNJ1O+/v7evDggaampswwaGNjQxsbG5qYmND169e1tbWl6elpU9d3Oh3ThwD87t69a4lHNBrV1taWdZXV63Xt7+9beaTRaOiDDz7Q3bt35fF4dPXqVRPrUvdvt9taXV1VOHw29rjT6VgrJdn59PS0/uN//I8mkoQdZk5A+v+Zujs3N6fj42OtrKwYk0U3wubmpmq1moEk7h/jspvNpmnYMItD20YbIucpplkIIGGIEBO65WJYMldw//+2vrBmwM2QWAhuJFkwg0ZHEAhA4IMSJFKplB2u0OPoCqiPcECTfZXLZaOrpqamLIgxUxvxFJlfOp3W6uqq3SRMSqgHktXOzc0pHo+r1WqZvSYbzO/368c//rEN/pBkdVHEOm6Q+fzzz5VIJPQ//A//g77xjW/on/2zf6Z4PK4HDx5of3/fDqtwOKznnntOlUrFXhfbYK7pycmJzSaoVCrmmEX2TSlDkj300KIwC2ggvF6vUc+8B1Qjm8sVV7EwJ0EIyO+595rOCUnn+mJ5PQ7mX/dCtHpwcGAPSTgctv8neKBtoFVrMBhocnJSy8vLBogAQmQhlJlcHQkK7JWVFcuchsOh3n//fXU6HU1OThole/36dc3MzCgej2ttbc3U17RAwaasrKyoUqno5s2bWllZ0cnJid58801rj8zlclpdXdXS0pLC4bANeXnttdf0/PPP66c//ammp6fNQwBwef/+ffl8Z57rw+GZRfLCwoJOTk708ccfq9Vq6X/8H/9H/fznP9dXvvIVvfbaa6pUKueMTXw+n7XDBgJnkw77/b45eq6ururSpUv6zne+o1u3bulrX/uaZfqxWEybm5v6r//r/9rMiwKBgH72s5+pVqtpcnJSxWJRq6urNvNjY2NDkqzGT2kCps7NjLhX9+7dswybHnXOo5OTE83OzqparVq3BYkOeptnNbnQFasCXmAvKCOSaQIUEAZitMT3Jmvl2lHihGIHoJKRSmc6J9ruGo2GvF7vuZLT4eGhxsfHDXRQWmT0cL1eN9dZTNpOTk4smcMLY3Jy0gJcs9k08ejU1JRSqZQ2NjZ0cnJizy7Mrsfjsdo4pVlm1dRqNXNLpMsF9hVzKjpM7ty5Y6wzwJ4E786dO1pbW9PMzIwuX75s9spLS0taXl42gEBSuLOzo8PDQ83NzZnoGBMzpt9yLziDaPWG9aC7iQ4D4i/aF9heXgOmxS1numf506ynBgO8MB/QDegEklAoZK1bbicBNSwQCheZAO/z+RSPx+1mMFYWUQs1+kAgYDXH8fFxa79yTTI8Ho/NSYf2y+VyWlhYMJU9/tpsnHA4rGazabawHo9H7XbbrC+hePv9vj7//HOl02kTV3GxKVewEXlYfv/3f1//6//6vxqSpseZaYq5XM7oodPTU0Ot4XD4nPgRzQD9t/TAkzFRt0dkBNPC96FcgpjIfRgAcAAvrk2/3zfQwKFJ/d3NSNgL3FvKIrAPrhjzWaxMJmPeFvg/dLtd06rQpRIKhVSr1QwkYtQEk8SB6vf7rQbLDAFEfK6WYnZ2VrVaTYFAwMo8iO+gtb1er1H4Xq9X5XJZuVxOV69eVavV0ve//3195Stf0csvv6zvfe97ymQyeuONN2waHJM6KSPMz89rZWVFu7u7KhaL5o++s7Oj733ve5ZJo0N59dVX9aMf/UjXrl3T+vq6fTeU3z6fT//qX/0r/dN/+k9VKpV0eHhodsJ4AMzPz+uFF14w17VYLGYDWR48eKDZ2VlTffMaXMdYLKaXXnpJ6+vrikQimpycNP1NLpfTRx99ZOU6po2yxw8PD1Uqlaz7AiEVDBuBiz0/OTmpUqlkQYPzAq0SfgvHx8dWJoTteVaL54qzlr3JYY8Ik/vJWYsYj2QAkIBIkD1PUsf9cLsUjo6OFI/Htbe3p1u3blkQisViWlhYsLo+A394PjDYSSQS1oePKJSaPNk8pWaM2yj/VqtV06/QfYCQlwAO8wn9z2RFzkeCbzgcVrlctmeFZ50yaTab1f37963rYnZ21oznsBjudDra2NhQNpvV1NSU4vG4Ll68qOXl5XMt5f1+X+vr62q329a6CxPFf8M8SbL74WqO0Ni5Z6d7712m1fWdkB7PV0GI/tciIORDuF0B/JsNRV80F4egAVCAJuEBpF+bYDsYDAxV0Tvq8ZyNfz08PLSaNHaSMzMz55AkrS2ukQnMAKpsqCBq6OHw2bx3jHeg5UBbbm98IpHQxMSEer2exsfHTQBFy+HS0pK9dzQaNStT3O6q1aopTXELk87sMaUzBoDBIO77UveEOeD/QflsrtXVVXNaQ4jIA+SatCA6dBEn9wXrV0ASf4f4jk3oshKwACwXLLrUprtpf50L6phM0ev1miqbrAq6EQEZ+5zALsmuFw8ZwlkMeoLBoGU4ANtcLmfz02/cuGE+BvTzY/RTLBZtxOn29raprDFTqVQqunTpkqampqxWTvdKpVLR3bt3dfPmTa2trWllZUUXLlzQb/3Wb2lra0t/+Id/qEqlYm6W4XDYhFaffPKJpqen9dlnnymXy+nmzZtaXV09Z8i1v79vI69xudzf39fW1pbt3enpaf35n/+5isWiLl++LOnMbAah4MnJia5evaq9vT299957FqxmZmbMSOzo6Ehra2tqNpt68OCB7t+/r3K5rEwmo4WFBeVyOS0tLVmLYyqVMmGYdBYwcQzlHOBnmaOQSqXOHcQkJQcHB8buIB7mEGeQzrNYfFY0W26nVb/fVyaTMXaO0sdgMLASFQuFOQLwZrNp37XZbBq9znemtk5ZBYAPgB0fHzd2iM6WyclJJZNJa23sdrt644039Nlnn+nRo0d2rXGr3d7etlp/MBjU6uqqIpGIBcJgMKj9/X1VKhW98cYb2tjYMFEh7enT09Pa2dnR3t7euU4unhGAervdNtfNQqFgsQmAcnp6ahqccDisxcVFhcNhPXjwQC+++KI6nY5WV1fV7Xa1s7NjezKTyVgnG6I/mF2SSrRKtIcCWJ701iEWUusHmFO25X7QastZxr1ytVDu3J2nXV/YZ4CD0UUnZIuwBtxMlNao3AnArnKdDQzCcS8WA1fYGB6PR1NTUwYqoKzdQTxPqt1pK6L/9UlBWK1W09bWlmXm0C2uQt7v91u/LAHY7ZyAqsNLOp1Oa35+3mrD0uOAjfgDlIcLFjSR23Lm+gx0Op1z4ktET65yvF6vKxqN2nXguvEAueiVuhWZFveQjg02qFsOcNtG+V3oND4X95vP4Kqyn6XPAPvK7cQA4LrqXffauZ0wkkx4xbVJJpNqtVrGavX7fWOz+HkEP/itb29vGyDD1zyTyRiYg4Hg2bh48aIODg7MBhu6lffALvn69ev69NNP7cBjctyHH36ocrmscrmscDhsDAKB8sKFC5qYmNDq6qrRkND8zWbTRErvvfeelUkQmwEYsZZlRLBL1zMjYX9/3+qbsAe5XE6JREIfffSRlpaWrBbMvUC3MxgMVK/X7fnlHAKEuU6ajUbDDlgAviQ7TNn/JCeAXUYfo9mQHu/vZ8VosXh/SoWAdbLAZDJ57nMD8OmUAXi5563rGktplDOIgBoIBFQqlTQ+Pm7nC4wiQs58Pq+dnR1j3VyjuNXVVSsDEIBhA/L5vMbHx3X37l19+umnWl5e1qNHj3Tz5k1duHDBgPFwODRwyt5PJpOSZH4bKysr9qzu7e1ZWRXW9NGjR3rnnXeUSCS0tramUqmk09NTXbx4UZcuXbJnEgBFMpPJZPTaa69ZNxq2+Bi/4UeDM+m1a9cUCoU0Pz9v8adcLtu9oO8fFrvVaplr73B45rHAjBtKO7DX/Jv44/f7bZbCwcGBstmsDSXD9XA4HH4hs6wvZEdMRvmkQhH6iYAAcuXvpMdWtGxGNjJBwu1jB9Xx0KdSKbOJpJWjXq/L5/MpmUzaw+JSYS77wEPN4UX22263ValUtLW1ZeCAMoIr3MBZEdQMACEDdMdEYotKvyyMhntgAVII/i7FR5mATclhxXUB/QKmCOIEYJAgWTz3C8EhWTr3S3qskIfNAeTwZy4QcAWBfGbu95Nsgbs/niUYgGIErPA93aAryWhSdAHsd/4e4OuyBf1+32rK0NEAV0ojPMBoAVAPj42NaX5+XqFQSGtra0bdMkSJEhFBFEttlOM8B+l0WtFoVI8ePbJ6crfb1SeffKLPPvvM9iKH8tjYmHU13LhxQwcHB1pZWTETr2vXrimRSJjwqdFoaHl52SxeW62WYrGYjX9lgBf7tFqtGjiOx+O6cOGClpeXdf/+fc3NzdkwI0zIdnZ27Nq5fvLD4dDaYemU8Hg8dn1gaobD4TnPB7euyt/jZcAelR57FUiPRylDsZIUADqe1YrFYvbskAABcnAqpeWUZ5HPXq/XNTExIUlWQqFuf3x8fG6Caq1W0+zsrJLJpPb393V6eqq9vT299tprarVaunbtmrkPwpqcnp4ql8upUqnYwDhKUIC/d999V3Nzc+p0Otrf31ez2VSpVNJwONSbb76pfv/MlRbd1qeffqpSqaRCoWDs609/+lM9ePBAb775pgHCsbEx+Xw+vffee4pEInr99dftHG42m9rd3VUkEtELL7ygUqmkP/7jP7aSwWAw0MrKitbX1zU+Pq5IJKKFhQW7hhgkFQoFcyutVCp2LxgmFo1G9e677+r4+Nh0E8lkUhcuXFCj0dBnn31mhlzHx8dmYnZwcKBut2uvB3NJsOcMhu1BqEkJ2j2nOO/Zt7A0Jydnc4Gy2aztj79qfaFBRQQnHjL+G5EgARWaw+1NJ4Pg/91aNEHVzSITiYQNiiCzh84hG4BCoW7mdi9QZyJQEvz5nLi0YReJ8ALXQg5w6GAOPHpgqT+51MzBwYHpIKCUsIt1hZFusODAh4Z37YMJyqhpuTbQ2C4tiPUoYAJqFh+HeDxuIALNBF4EsCK0BmGdyeFCpuwqYd1DVZIxQ9Jj8yEXtPD7z2LB9CACg9KDyaE0RLBxfSxoN0THQamKzIwWKq4XgBRgzH2Qzp4LFMToEf7RP/pH8ng81gFDXZz22fX1dd26dUubm5t64YUXLHshQLfbbb3yyiu6f/++MUAM86EzhyFeU1NTBgyvXLmiF198UfF4XN/97ne1urqqW7duWVssDAptZtJZOQsqFfOiRqOhiYkJAzJ+v9/2YiAQUK1W03PPPader6c7d+4olUqZg2C3ezZX3u/326AnnqNqtWo1/EwmY6JBMiLp8ewLSpEwHq6IFVEWLnNYNHNger1nngd0NIVCIQMxsCPPqgtGkgE/6GYAeTKZVLlc1uTkpE0qBOTGYjGlUik1Gg3zsdjb21P6/xmuRjJEhrq/v28+JKlUyp6JGzdu6N69e8rn8/rBD36g3/qt37J7TaZOSaDT6ZhHTLPZ1MbGhgG5P/qjP9LFixft+oZCIZXLZf385z9Xu922c2JmZsbuxcOHD9VqtTQ7O6v/8r/8L80RsNPpaGxszIDahQsXFIvFdOnSJWs53djY0CeffKJ79+5pa2tLyWRSxWLRhOeYIPX7ff3zf/7P9cYbb5gOgrLTgwcPTDyaTqf13nvvqVQqWcsglvexWEy//du/rStXrvzf7b3Zj+T3Vf7/VHVXV9e+dXVV79MzPfvYHsfGsSGKAgpXkXIBEhcIwR0SEvf8E1wisQghcRHgJoBQLpAIgZgkjmOP7bHHs/Q2vXdVdde+dvVS34vmdfpdA/pl/NP36xnI50ijODO9VH3q83mfc57zPM8xpVkikTBDpfn5edtpkMvlVKvVdHJyYiRCnGXZXQP6C7HdRXgoxFylFny5kZERU3bQkPE5P298IWTAhYilC1KLm9ghBTEmICExPnA7TrfC5M1hHEEXJMmS9snJiW2P4zXB5Dw5ObHkjKQCKIwDmBWzHG5TU1O6efOm9vf3DQ7lIKbTSKVStmXR3bvNhxUKhUz+MjExoQcPHqharRpblgTIDFmSyWZASPA5YBOci5y4xQwzLh44DjN0x8D/jERg3HKAcvO683J37gS5BsImBR3FBV8LyuFyAiRZ98L8iuDmdIuHLzOosHE0A2o+OzszR8p2u20Hk9sVcr+46AGHrctxWVhYUL1et41sfJ4QCyFW4YsPOXRlZUWHh4ean59XKBQyfb87cvvbv/1b3b59W/fv39fly5c1PT09lABXV1e1u7tr95W7P4Lku7Ozo0KhoFgsprW1NTUaDc3MzKhcLuutt95SLBbTo0eP7GcxmqKAIpFCGms0GjZf/elPf6pms6lXXnlF3/zmN3VwcGCWx5FIRPfv31e73dbS0pLu3r1rMDUa96tXr+rg4EBTU1Pq9/v693//d3322Wf2vO/t7Wl8fNwUHxQQjC1wYuSzBBqXZOcKqBx26W7B5vo/SBeuexRDFB0vIijeSHS8FwieKIxQYnFGj42NKZ/PG1nTHbn0+/0hu3W+D2khhW2hUNDExITi8bj29/dNDYJMb319XZcuXVI2m7VFWZFIxM4GrmUymbStsc1mU/1+39CfV199VXt7e2YcR4MDSnX16lXbNIldfafT0b179+zn3rt3zxQM9Xpd3W7Xttl+8sknisfjunLliprNpjVj09PTOjo6X3PPOYAD4ezsrEqlkg4PDzU5OWmF1OTkpCYmJuw6YoAlndvLn56er3yORCKKRqOanZ01ibfrWHt6emrPFiO1Wq2mubk5MynDRp9ClgbYvb9djxlUTaBieG58kXvXN3hOuiH7rqk0XEkWFTgHPqQhDicefOQ+kowJC+IgnXceBwcHNotCAriwsKB0Oq379++bxSuHXjQaNfXAgwcPhmw13cSVy+WsC3e7h/HxcWPMfvDBBxoMBrZ5kK/J5/O2kAjGON0zBQKQTbVaVb1et8PKhZYhk7nXinA7SBIRRRZdLaMLt8ACRmKmB4uahAdSQtcEd8Od65N0ms2mBoOB0un00PyQbtktTnjN3AtuQccD/eyB7H7+X2ZQHNK1sxMDMymIWJBzQF74PCF1QnKj+AKSB+Zz2djRaNQgVJCFWq1mxjknJyeamZmxPRccLKBPzHHZtZFIJPTLv/zLkmTcgMnJSfX7fV2/fl1ra2uWJHGhw2Y2k8moWq3qD//wDzUxMaG1tTWz2OaefvTokY3k8PRotVr6h3/4Byt2JdlMH+QkGAxqd3dXN2/e1Pr6un73d3/Xig+KHFdfvbOzY6u+0+m0stms3n77bX3961/XH//xH+uHP/yhHjx4oEDgfM875jeFQkHpdNoKfj5PCncUNDybSLgYPzATpgjksAQRKpfLVvy7c1bGFUDqX3Ykk0nr4Gu1mt2/jAwk2XlJgmA0xT1EweSindFoVDMzMyoWizo+PlYymVQ+n1e329Xh4aGdy1ht8zninopREGz7SqVic25yAgjko0ePNDU1ZcQ6oPp79+7pG9/4hrrdru7fv28SXPw7bt68qTt37uhnP/uZFhcXlc1mzfY6+Z+L2q5du6ZSqaRMJmMw/djYmCkScrmc/uIv/kLhcNi2eEajUc3Pz6vf79sOgVu3bml7e1vpdNpGqryeN998U91u11w/6/W6gsGg7t69a2Ngmiaei8HgXKb7N3/zN0OKJHcfD2gPMtBwOGzFEigNe3OwCef85vtpXBghQDR1cxXjtJ8XX8h0yJ0lU1nzoUejUass2dOMxISvZa4hXYwdQA9SqZT5XlONB4NBzc7OmkRufn7ebGNJUv1+35iq2WzWCCo88Ky/hLGMaQyQlXTuSLa9va3T04sVkMgSe72earWa8vm8stmsyfHoniuViqEWrlKAD8lld+7t7dkH5874QUcWFhbUaDSs43aVG4xKWq2WotGodUn8DFchwWGAKyHFD+gFUC6HCd0RN3OpVLKCiuQ4MjJis2D4BoxISITIZ1wzlGeRpBcRzOHpCv1+v13nmZkZHRwc2AMOEYskLcnmoS7y4T5w8D/efvttlctl83Fg7MQ9gZEORfDu7q5CoZCePHmi6elp7e7u2ljJRYvwsPi7v/s7O6zQNNPxM/ZotVra3t4261IKXb/fr+9+97smAeSQYCNoLpfTj3/8Y83NzWl8fFyPHj1SvV7XpUuX1Gg0bBxQLBZ17do1jY+Pa3d314rUUqmkP/iDP7AZ8Pr6uh4/fqyVlRX9xm/8hv78z/9c1WpVv/3bv61f//Vft9cWi8U0Pj6u733ve1pZWbERIfc1iQmPeyBVzK8o9lutlrLZ7NCoCoIhDHaSIJ8hxjgUwXSuzLhrtZoV7C9qayFNFQigJOvuacg4j1yC8fj4uJL/udIZ8yyeZ9AFF4HCXpprh9vo1NSUtre3rXBGXdLv9/XNb37T5NRshsXllQYil8uZURzjDSSPzOITiYRGRs7dNilSmLMjCfX7/caXymazSiaT5gS4s7Oj8fFxG/txXYrFomZnZ/X666/bGc04mTMMXwl2bUBaB/VttVpaWloy22PXXRcL588++8y8TGhSW62WHj9+bPmOvRCovPAZKJVKNnZ3lXBcP1fOiRyZBpGRF/cEhHrUY3BunrcB+0JjAuliNODeUFT9jAlI0sywJJlxEAmS74eJDWzN7BESx+npqV577TWDFvHorlQq6vUuNhpCzuChAVZBpjgzM2Pkk1KpZLA9DFfWXyK94TDC6jMcDqtcLmt/f98Ym7wvkBFYqZFIZIjpDwqCgx9kM25KOnPcGN2ECsLBw89hyIFwenruDUA3H4lErDvgcxkMBpqfn7e1ngcHB0NjCN6z693vcg7czxAYnZ/roguuGoS5FveHyyn5sgNfBw58NLgk3Xa7bQYtLjcG/4lAIGCEKExJuBYYnnBoSrKEw4gKYhosbJdky64O7nWSFt2Bz+fT1atXDTWCPQwK0ev1NDs7a1IxDjA+V9YMX758Wa1WS59++qnJpnZ3dxWLxTQ/P693333XUBKSP+jQ/v6+Qf6JRELFYtGWbsHQr9freu+999RoNFSpVHR4eGjujn/2Z39m8+2PP/5YvV5PU1NTVtg/fvxYH3744RCqBlEulUqp0+noV37lV8ydsFQqmWzMhc+bzaZ8Pp9JrTgcp6entbOzY6Mw13sDpQIFUafT0fb2tn0+PCcvKjj86Ty5N1wNuStpg1NFEQFxmqLI5R00m82hRIS9O4mXEQKFLc9Ov9/XgwcPFA6HtbS0ZM1AJpNRNpu1RVk7Ozuan5/XxMTEf+HruITp7e1te0ZyuZxmZ2eVyWS0vb2t4+NjGwHt7e2ZjA9TodXVVe3v7xvbX5IVmpFIRIeHh5qZmZEk2/mBcuL09FT5fN5Q1FwuZ8ZTyf9crc2z7Pf7NTk5adcMJ0bOUBdFhZPAhkeQcgoAzm5QLYLilgKCZ8v93OCS8blxpsK5o2D774jcPy++cDEAkYFgRkXyeZZtDjTisqpBC3jQSMokcbdqPTw81Pvvv6+JiQlNTU0Z5Ed1BpzLw8HNhtkG0q3JyUmTCMIZoOPlwsbjcU1NTRmZw63k6M75Hm4S5qe9Xs8qMJYGufJHrhGkFDdRknjgJYRCIfMF4INFzeCy/t0kzu/goQXqArbiZmMmyMyQzwn+BogJ19P9fCGLuioEUA84IjD0pQslA9f3RRGxXCUHoxufz2eJZmJiwmZu7miFosnv9xsBkwcR1Mjn8w05iUHwSSaTZn/MbgnQGfe6kJi4jhx00nkRyepSLHldmSjbDPv9vsGj2HFLMuczTIB2dna0v79v9xusZjbX+f3+ocUmyGD9fr8uXbqkarVqhDtJ9p7r9bpu3bqlR48eqVQqmZSy3W5bElhaWtLOzo695wcPHgzNNXk/fFbc7/V63Q7Rw8NDGxHC8gY1ZITmngc0BFzzWq1m9yf3K94S4XDYiiiSL7PZF4VoSf+Vq8X5yn3R6/WUSqVM1w8i6RIiOZulC1MaRo/wDmgA3D/M0UEk8IUYGxvTysqKPvroI2PEgw5PTEwoEAhoc3NT6+vrZgFP00ZH3u12NTExIZ/Pp+XlZWUyGWuY0um0/Teo8tjYmMrlsjY3N60QrFarNhorFAra29uzrbUTExOam5sz1Gxubk5ra2s2oz86OlIsFtPS0pKhT4znmP1jD0wjcO3aNRuHcE7D3YCc+6ztNUTejY0NK1Kw0yfXsUeHotZVbjGOJu+5JGVXJs09yu/kbP9/4jPgwr1uR+t2hS5xxP0+t7oleNNUiFQ5bhIimUIKoZJCZohkSLroWqkOmeNMTk4qn88b7OoqEFxLSxK8q+H+72SPJHQSNhwASVbUuPN4fobf77eH79liCbQEja77Pfwc91DiayXZgeqSAWEG24c8OmoscIoUDkqg08nJSXU6HTWbzaHxAQmQQ5Tf5f4+t1Ll97mSRBcxehEBXMy9xQNCFx4MBg0G5lpzv4PMcIi5IxL+nYMWIpYkK2Qha1FAcBAjV3VfHz/f9Yqg63B3VnCIgEIxBuAz5nkDacjlcsZ1cAsXnr+Tk4uVv+wugPAEGudyhAieIaDOZw8mCnMO336/bw6AqHeOj49tFOg+axTMQPg7Ozs2e+V68/ygXiD58UxzHwIvu/s3pIv7m9/HeJLOjd/B7PtFBDsDGHdituPyJvCgcJMF40y4EG4BL10YLnHO4E9BgcGZnMlkjMh97do1ffWrX9Xk5KQePnyoTz75xBa0/eqv/uqQsqbb7arb7erhw4cGw5+dnSmbzWpsbEyVSkXXr19Xs9m0tcHlcnnofaXTae3s7KjRaJj0jyVG7XZbW1tbikajev311zU2NqZHjx7p0qVLCgQC2traMotlkNRYLGbM+9HRUWuIKCqnpqZsh00qldLJyYkmJydtxM0cn9d4enpqCrK7d+9qeXnZGgwQAp4Rd/QFatXtdu39YJ3sNtQuMb9ardq5QUPOSADJPBbmFHzkU+7lnxdfuBjgZuJB4uEFznCTK8WCC324Gm3pwuaYBOTKC/mdsCV3dnZslwEkDAiF/X5f7XZb2WzWpI3JZFKZTEajo6PWMXG4UY1xSPIa6ESoZjkcmKOx1IUPlA+ew4jXzoyYAoG/IyEBubmQP1W2Kx/hWlH183pciAhIlZsbvarbEcA8ZXWuz+ezbop1s4eHh/bZcriQMChaSDTcpG7ipBjkIHcLSA7mFxFcKxI5ageuLbM5iiOXBOiuDIWRTQDHUpxxjejuy+WyzTK5f1AzuMWAS8DleeI+4OdCxOX/k3AZq42NjdliGgqYSCSidDqt8fHxobmqW7y4zxGHkiS7N+iiy+WyMpmMcVf8fr/NqX2+873vMK15DmA2Hx0daW9vz8iW0oUUlXsCiRVFJwchh+/KyooVlBQIfKbuXJ/nD/SM2SuFK40MzxaNx+npqRVkPO/SxerpFxVIG11yHF4PqEUoFPAQ6Ha7KhaL1jxls1lzMGWOjFICLgYoCMnpwYMHikajthp5bGxMt27d0t27d5XNZo1bsrS0pI8++sjQhZ/85Ceq1+uanp7Wr/3ar2l5eVmnp6dDzpCBQECvvvqqnj59qidPnhgSfPXqVU1PT9t9WalUtL6+rs8//1w/+MEP9Prrr2tmZsY6a8ZUkNsp7jHZ6vV6unTpkpEaL126ZF07RTGkQHhXOGriannjxg35/X69++67psyRzs+Mzc1Nc/yUZLwC7j/uI56H/f19Gzmn02lJF4g7ZyVnlHR+vnQ6HRszJJNJ7e3tmToJ6TMNKmMwlBju8/U88dzFAN0yiY0O0e0KOYQIF+KBGewmXy4CP5NDACieQxN5RbPZtBsEgiLubSxeaTQa5jHNXgE6l+PjY7uI/M7j42ODh3d2doz0NTExMTTWAKXo9/u2P/3ZMQcFCYcgEDLcBa4Rla1LvuPQpKgiYVHdcS043IC8gQslGaO4Wq3aZwAfAWIkDx5Vrmv57Eow2ZfADUXlyvvhhuV38LP5NxKjNOwG+SICrgjXzJ1J0znyeZJs6caxe8XkhXuThNhsNm2/O4t0+MxAeorFot566y27vtJ58mPlNd0sPvosaaGj8Pl8ymazxhUAIgRGX1pasoPh9PTcBIlCIJlM6t69e0MFBxbcqVTKSFHIWuEw4KI5Onrud4B6gYII5GN3d1eRSMQWix0cHNi2uZOT86VCJCxJBuNyYFK0sobYfRZg+o+Ojmp9fV2ZTMaKDz4PUC44N1wbfg7PqIvIsd+D+SpzcUl2nhGccy8qeB+gQa4lO88ahZRrSxuLxUyJwn3nojqnp6ean5+3Obx0vsOD+w2CGqvWORPD4bA2NzeN9ErB+OTJE5OGcsYjbRwfP9+qNzU1ZQ0YOn+ao4WFBd25c8dkkLVazZAp9maUSiW98cYbCgaD+t73vqeRkRF9+9vfVjAYtO2Dp6cXC7K2trZMjsiZffXqVSPPTkxMqFQqmckRoyTMkUAY3nnnHctZjDhQuS0vL5tRE98LB61SqSiTycjn82lqakrxeFyLi4va3t624pb3j7z52QaSswoEjLzCvY+kklEH+QXk3b2Xf+699kVuSpd8Il108a6ulxvNhc6Z49FBuYkOOJTFGJBkOBBglAIzuU56+LK3Wi3zKqfyjcViymazyufzpukHCuMgA6ZMp9OanJzUYDDQ4uKiqtWqJWogwvn5eXMbrFQq1kkhyZPOuQLMkd0O0iXcsUKYh4b3BgGHBxA2KHAeJJp6vW58Bem8OEskEnZYkIQk2cOPaRHud6gRJA2RN1kSwqYtZssuhI2TmXuzwjEABkPe6JINIWu9iAAKhCDJIcRsFUiZa4G0DqKRy8Z1ZZ3uNWe5Dl4NEDnT6fSQ+50rIR0MBioWi0OkXLT7bKHs9/va29vT0tKS3dt0tZDl0P67G+TwMKhWq3rrrbe0vLyspaUlPX782DpA5I/pdFq7u7uGiFFIIKfa29tTPp+3FbJ42mPJGgwGFYvFbA8AHTeHGt0nHT3PSa1Ws/vw8ePHunHjhhGKJycnFYvFtL+/r42NDUtmyDo5ELlneeY5k9x7lFENjYpbsHENkSym02l7HvhDgfQigs2pFLMU90j+QEbZu0LjArEY6TFKIM6GTqejUqlkygCSncvjoCGCB/Kzn/3MuAEkTD4X5vNHR0daWFjQlStXtLm5qUuXLqnZbOqjjz7SrVu3dOvWLXU6Ha2urqparerb3/62fvSjH+mdd94x1QHd8z/90z9pcXFRS0tLeu+99wz9HBsb07Vr13R6eqq7d+9qbW1Ns7Ozlgj9/nNJ+dTUlN58802trq6qUCjoxo0bmpyc1OHhoT777DN99tlnkqTr16/b/bu1taVyuWzyyI2NDV29elWBQMB2yyBlPzo60htvvKHXX39d5XJZhUJBzWZTBwcHdo6CPrz66qvq9XpmXz47O6uDgwMbybBl9ln3U6SGzWbTRkQgy67pGZyHcrlsP+vg4OALjWafuxhwxwAuqxU4mG6Kjt/taGEp83PcyoeDFpcl13PblQSNjIzYQ8qFgskN1N5oNHT//n3rPoAxi8WifD6f8vm8SqWSEomEEZJ2d3eHDnW6QVAGDrXt7W2z1KTz5gHy+/3GLh0MBkY+BDEJBoO6ceOGNjY2huZQHFx84DzwbEUEUqYz4v2QaF0OAzwBCjVcDjl0SXLRaFR37twxK9nV1VXrDrHVhZXNZ0gCgmHMgcLnR4IF4uYz4/1J5xAuSMGXHb1eT3Nzc6a7ly46PuysGeFQtGHq1O/3bc7IQYSklMIOkx7myiQoiopyuaz79+/L5zvfrQHbuN/v2/x+cXFRgUDAXCEpiEF0VlZWFA6HVSwWTW44NzenlZUVJRIJLS8v68qVK6bQwd2PhUSDwUD7+/v61re+ZSjD1taWzs7O9NFHH+mNN97Qp59+qq997WsKhULa2trSkydP1G63zTGQXQokU3gFHJRvv/22Njc3TaLGttBSqWTJOpFIaGdnx4qEdrtt5jU7OztaWloyBQPkX6SE8/Pz+vGPf2wjCkhu8CkoPGdnZ4dGgujf4RbQ9Umy+x61B2NMRkcUkC8qXEmcOx6iachkMqYCIIFJF7bvfr/fiJ9uMwdhmZEnNupA77FYzIoMeCfsUbl69aru3r2rlZUVVSoVc4mdnZ2VJPtccNlbW1vTa6+9pqOjIxUKBeXzeb3zzjv67ne/q3Q6rW984xvW3VMEk1i//vWva2JiQrdv31a/3zceQbPZtPHVp59+aquFuU6JREKzs7PWROXzeTWbTSuKXP8G0A0KIRpBn89n/jMk/0KhYOdfq9XSW2+9pXA4rE8//VTf+ta39MEHH0iS2XPDReB+xACNcevY2JgV0Jwh5EYQFnwzaKRptBnZcX+QG7hHQMueN567GHAZ/i5ZcDAYGJmOMYGrkXcX6rgzL4KECTzlzsiAbf47kh3QMw8Ga02BS46Pj1UoFAxKTafTev/999XpdJTP540pyqx8b2/PyIOuppiD4OTkRNvb29YZkTji8bjeeOMNXbt2TcvLy3r//feHOj+Kl/X1dbt+hULh/OL/Z1HERrRisWgFFPwE1AzIc5gR042hcIDg4krO6Myz2ayy2awlmWKxqPX1devggcJ5HXT5FB1UnyAerjqA+4CDBqKkSyIDynpREi1meUDkIFl08cfHx2a163IJIP/A6MVtjG157rXmswaS5rD+4IMPzG8DMxRkRnj9Ly4uqlgsqlgsmpUpZDsOccxK0NKHQiHbOcA8f3JyUgcHB8agxlsBzXSlUtG//Mu/6O7du3r99detQP393/99JZNJfe9739ONGze0ubmpk5NzU6SZmRn94Ac/ULfbNSgVpCObzQ6hLu+//76xscvlsnX+jDCYtzKDR/GDjvzy5cuq1Wpmb5tIJBSJRAzRWl1dHVJsUPC615dCAo4MSEKhUDBEDjiZZM9nmMvldHh4qLOzM5u/M454UYGroksEA/kB/ZBknCOfz2fnF40aZ7drU+4qnWhoXD4N5xJcpbOzM21tbWllZUU3btzQ3NyceXIwdhkfH9fCwoJJnZeXlxUKhTQzM2MjLDxfCoWCGo2Gav+5AntnZ8cQnlKppOXlZV2/fl3z8/MKBM7ts58+fWqIB40dnhvxeNzcW2nICoWC9vf3rSBeXl62kRQrzaXz8eq7774rv99vG3FBJ3Z2drS6uqrr169bgc84jWsIgnp8fGzGUJFIxPbn4EXDmmj3/IQQSFNFjmMkwXkvaUj1QXDuuiN60EtywvN6ZDx3MQDMSffqFgRAytxQHKYUAcDEVDHcpCQP/P6BSDmsXQmdJJtz86C7kjYgFWD71dXVITe38fFxGwWgUaX7bzQampiYsMOeBwQZE3MlHjjpQlLZbDb16NEjFQqFIb1yNpu1sUClUrHX6d4krtrArfIg2/Eg43fANXb/t9Fo2DWu1Wq6deuW7RdnriSdz2pBUoDz+d2uhJIbieT2rFLBJVpxD/BAQpKkq3XZ2q6l75cdkO+kiy2UmLLApOfBcRUHcAimpqZszunyCVhBOjU1ZRa2VP0+n0+ZTMY+B1QEdLWSjATG66HwAMny+88tYemwfD6f+WGwbvfOnTs2umLFKxwSkhnPF+uCHzx4oLW1NfMNePz4saanp7W1taWHDx8aUtXv9/X5558rnU5rampKu7u7lrAp8lutlq1YhhQF8RE0yefzmbSXAp1EhpOjS6rFFwQrXBoBNOYc7nAdOEDdQku60F7zPPNMk+iAx/lfFyWgy3pWSv1lB2Qwl8jscn9chQvdJq+X8xUeBPeU+36A/Bk5uEUVY72zszMbl62srOjBgwd655137Dzm/OI6Q2BmwRwdOQTCer2ura0t4znQYNJUkrxu3bplElKeYaSxk5OT1shQXLpbW0GLQP5c9Q+bAzc2NtRqtTQ/P2+mdFevXrXnMJfLKRKJqFarGfFwcXFRV65cUbfbNYQCX469vT09ffpU9XrdRuMgMPC0KK44N0G18RigeXxWoUchyP0LGuvmR1AEuEFusfg88YVWGHNzcTO5UiIeqGc5BW7XyNdxI3PjwcznEKUyIlHxu12trKQhaIyuORaLGYuW+ZPP51OlUlEgELAd8JCHXFZ/r9ezCo4PhJ9L1w08BbSDZW2xWLT34Er7qNRxguID52HlA6Y7oUonccDs5wEA9udnw9ng/dDBAY9ycCNrZIYKHAghye0SnlV88DtGR0fts6FI4GCCocvNzOfk3jMu6fDLDDgpzFdhrLvjGUZTvHdmyaenp0OIDYcuY4N+/9w9M5PJ2BISHkQOVMizR0dHQwqCQCAwVKggewX9YuzC7+GgHwzOJbUUqFxbDiF3QdfZ2ZlSqZQkWTfHe9/f3zf/gJWVFfs9JHLey+joqEqlkqampoyvAk9hZGTEzG1clzVePxBnMplUoVCwAoouiTEE/8Zzw3NPMtnd3R16foB03WeUsQqfI9clGAwql8sZ05vCijGXu9XSJUBzH7woFYwkuxc4G6WLTZnua+QMcYsFd7TAH1e6x1kDWkDX7ZqPMQqF27S9va3333/fxl2xWMzWIENEZqvfjRs3FA6H9fHHH1vhCFpzdnampaUle27YuVIqldRut43cvLu7O6TW4Szz+Xy6dOmSLVY7OTnR6urqkHafMSvOr9J5woRPxtiNYmF2dlY3btywRUupVMoWQa2vr5upG0iq3++3zbeVSkXvv/++tra2rHkCMQO9PTs7G0J6+DxdKSB5js8JBIKi1kW1XKdezgfuD+lC2vu88YWKAaoUSUNVM90U/9+FWl0iGVpmF8Im0XMBqX75/8wBOTypGl3CGp0crw8Yn4vL64ddiRcBLFtMLrLZrB1kaKuBLWHS023wXnntJETMS+r1ut0EyPmkc8g6lUrZgUbgGkhhw7XjQ+UmcdUbXBsORfZ38yDzWXW7XSO4pdPp/wIJchByTV15l0sS5ZpyyLjXgK89OTkZWh7lkgZfFDIAAsJr5u/oIqnWOUj5Wg6QUqlk9wMBGkOyHRsbs3EUM27u80AgYJJYDmVJluwhZXKA8e+u9TascKBz1AskMA50pJB0IjhnzszMWLcLyx75I5yJsbExG01xDShqms2mMZ5dr3u6GsYFboNAAZpOpw22dJFFzgTXHGl2dlaFQsEMgBgL8Hrd73eRqcHgQmHBNWEG66I+OHy68kXeL8/EszDsiyK+ShpyZuX8cotW5sLo20kqFN6czxTqnKu8t+3tbSMM8wxz/5XLZUvKuD5Wq1Xdv39f2WxWX/nKV5ROp1UsFq3I4poPBgPbAJhMJhWLxfTZZ5/ZPRAOhzU3N2efczKZNHRHOj+zCoWCoZndblfXrl1Ts9nU48ePVa1WlU6nh4iRhULB9mHcuXNHe3t7+uEPf6j5+XlD3sgPyWRSV69eNTJjIBDQ7du3lU6ndXJyYohCp9PRwsKC/Z7l5WV7zYlEQoVCQeFwWLVaTQ8fPhwaq5DLKHBJ3BDjQRHhU/G8k8tA9MhdNJQ0JtwTnM+cB9LFTg2XyP7z4rnLBjdZ88b4pS5s7UJQvEi6nXg8PuSnLF0Y6FD5UaXzsLpzaaoibli81YG8XXexcDg81O3z9fv7+2aswaGWSCSMEUtX71pCQiaTZOxprgkHD0kgk8nYjcw6YfYBcFBiKewqLTiEOXghm7gPN9u9uAFgrXNtMVeq1+sqFArms+12lel0WuFwWNVqVbVaza4bWvXBYGBjFV4zCZ8b1YVQueHdTvhZ9Ij7hWv6ZQfMcxAUXMS4T3j4KIpcVAoGu9/vH7JvhWgpyYqf4+NjTUxMKJFI2PgLGR2zc7o3kmO9Xrefm06nzWsCoiYIDktTAoGAybySyaStkaVgcA8YkJCNjQ2dnZ1pe3vbvDTa7bZ5Y0QiESuQIT2ReHnffr9fjx490u7uru3/oGAgCZXLZSMYVqtV7e/v23VtNptWfIHEcLDt7u6q3z/fPMiSpdPTUxv3uf4OdKAu6sj9CiQLcsPfodzh7KGT5GzC+RCiMwUARceLKmIlDY3zuC95NkdHR21tLU6RjJQgyU1NTdn9T2GWTqeNx5NKpYYKzL29Pe3u7tqz4PP5tLu7K0l2TnQ6HT169EiHh4dKpVJaWlrS2dnZ0H1xdHSkjz/+WE+ePFE2m9Xs7KyCwaBxYkAUXMI4jcTk5KTdC3w+oJzo7WOxmD744AN9//vf17Vr1+xZvX79umZnZ3V4eKhHjx5Zg/fTn/5Ux8fHpjp4+PChPvjgA/t88/m8SagHg4ESiYTd1+vr66rX68rlcjo7O9Pm5qaePn1qaO3JyYkRW7EEB4FkhEoDKclWZNNggZLxHlD1YJ8MkgUKXa1WTVkRCASGzjKX3C1pqLD9efGFFhX9d50qUIk7V+YhdWFsoB1IG1Q7QJLS+UEEpAkc5LLyWRwCEsDfn56emmEJ3uNAMb1eTwcHB/Y7GAMAdwMrSrK5EO8X+JzNhC4BxJUnAe9jEoFMpd/va3JyUsfH56tmgXHZN08HD7FHGpZiSrIiiUICdIWDLhaLaXZ2dkh3yusDPmWuzRYzbHZBVoBC6eyAmpmP0+WSwOA/8DlyHbiGjGE4bHntXwSy+r8Z3CN4mHMfxmIx43MAg0KKoosA2p+cnLTCxu1Yscjudrt65513lEql9OTJE21vbysYDKpWq9l2OIoRrjFkJsZb2JySmP1+v5aWlvTgwQO7T+jgp6endfPmTb377rs6PT0d8gjg3ul2uzo4OND8/Lw2NzdNjwycTlFBgecm0bGx80VXi4uL+v73v698Pq+zszNlMhmlUik1Gg2b4YOCobrgGeS6rq2t2aiOggdlzNbWlqampiwxfPrpp8b6RyPearW0s7NjnRX8F5bpwOHI5XLa29uz8wGSJvwHjHh8Pp+RKmk6WFgTi8Xk9/vN3le6IDy+iLh8+bKq1ao9Zy6vyOVXMdencABB4Lmk6wYlOTk50f7+vsH0QN+uj8HIyIjm5ub0ySefDEk62W9SLpf1z//8z2o2m7YGu1wua3d3V+12W1evXlUqldL+/r7K5bJB77lcThMTE3r69Kn6/b5eeeWVoQIWEh7jBEiw1WrVRrY3b940mSMIxOnphSNgJpPRzZs3FY/H9cEHH+iDDz5QIpFQIpHQ7u6u1tfXjTBdqVT0+uuv23PnEsoXFxctkUNmfPLkiRVMv/d7v2f+At1u1woryIQoAhhfs6pZuiCCTk5OWoI/PDwc4sKFw2GTlHPmcybH43GlUikFAgGtra0ZJ4YRNgjz88ZzFwMk7WehcemCXMiB5epVXdIE0CwsYOli0Q9EHj5MPgBgfWZmGITwgFMhjY+P21Yntzri4Yes5BYsdNb37t1TOp02hrgk22FAF4jzFe8FOBKDoWq1avwAEi3zJGZTwHEuiYRkmUgkjG3rznt5qIHhAoFzv/p8Pq/FxUWlUinTfBeLRZM94i1A51StVm1GzuHhdmB8VkdHFzu+XVjR5VHw/dLF7JGuCjQGWN39rF5UMOfG4xuvBR4q7HqlC1iY4ozPdXNz09APPrfB4HzZC3sILl++bJ3RYDAwfTaGPaFQSIeHh7aMB/azJN2+fVsff/yx6exrtZqZ+dTrdd24ccP4NJ1Ox9Z5Y/TSbrfttTJCkqSVlRVjeT958sSQt3g8rlwuZwUvn0+n01G9XrcxwMjIiKkUGJ9RtFy/fl0bGxu6c+eO2u22rcvFzx6Wf6vV0pUrV2wcApeg3+8bGofl+MHBgWZmZnRycmI2yxgrsXUS4iVnR6/Xs62Pp6enlshA2ShQuBfoXF19fSKRsGckn8/b53J2dmauiS8ikAXS4HDecNZJsuSOs6rffy65i0QiWl9f12AwMOUR5zdLszCLcs+Jg4MDQ3BWV1ft30F+eJ7/+q//WiMjI/qjP/ojI2JzL25tbeng4ECxWMyItDdv3tTR0ZFWV1dNOtdsNpXL5ayQ3Nvbs+K6VCqZ/TFnCcREVDTsKFhbWzNr+GKxqOnpac3Nzenw8FCNRkNf/epXNT8/b8833iwPHz7UpUuXdOPGDe3v72tyclLz8/PmTYNvwtnZ+a6St99+2xCmhYUFNZtN/dVf/ZUVw5BaKTIhu4K0wOfhdbgqMEaJnNHkXLgZ3Ac0IxAUt7e3lUgkLD8xgqOAet547mLgi1YZXnjxsoS7fMcLL/4nBSQ0OkSaAtj3FOeRSMQaCGb2cEgomAjQr5OTE9PhHx8f22K3UCikhYUF9Xo9tVot4wVga4xB09TUlHq9nq5evWqeFJBip6entbi4aEUJhFMakEajocnJSUnnnfji4qLJnbH9RZIKtwV7b5A1EqHf79fa2prGx8dtvTZJORwOa2FhQd1u14y1QDh5PfF43BAIkC+aWFDNp0+fWiOaSqV0/fp1hUIh/cmf/Ik+/fTTIZKg29y2223NzMyYjTDvH+TDnfUzGnDlhZCFKRRckit+JYlEwu4NSLw0pDTUzxPPXQx44YUXXnjx5QZkY0atJHLGjIxi6dZdxQDorCRDS2HBkzAhbrpeMYzIWq2WKUZAEplTY5l97do17e3tGQQP5wQCK3tPWGs8OjqqfD6vfD6vXC6n/f19HR0daWNjw5Cncrms09NTzc3NWQJ3Xw+FEKTDp0+fKpvNKpfLGccH3w22fboKGcindNulUklLS0u25AjeC9eNUUyn09Ha2pqNix8/fqwf/vCHBt0jrQWRdoncc3NzevLkiXX1oAI4zYIGuARXSTbGoaBjdMLv4HW53jCgYl9UvfVihrheeOGFF1783ACu5mB3x0CuAyokSYoFoGiXZ0BiQkpNJ8r4a3T0fNshts7wfiAiQ7yWZDJtv99vS4HccSwjMAyy7ty5o1wuZzyOxcVFIzDCxKdTd5Mj5GhJZs7jWi/PzMwoFosplUppYWHBfGawdGfci5MlnBhGy/DGcMdkVM1rwZr+lVdeMXOlo6MjHR4e6pNPPrHRCEozuFsUQ1z/XC43pKBDUeASf/lsKRIYAzEaHBsbMw4IBY2rNIELBfHcVfU9T3jIgBdeeOHFSxrM1iVZEYDPh6tBd+WGJB1IzSQs/j8JhCIB6SYENdffAl6Bz3dh0UyHHQgEbBnQ1atXJV2ohiDEgl4kk0kzjMtkMmb6Ayer0+kYIgELH8LqycmJKbMglIOEpFIp5fP5IYdMHCzL5bJxekKhkHFNIpGIWXbH43HNz89rZGRExWLRSJhstd3Z2VE8HtfS0pK9zmKxqM3NTW1ubhqpF+4CJFx8Slz5OKRs1CzPcjngFbiFG5yOXq9nJE/GB3yPK1OHdC9d7BN63vCKAS+88MKLlzRwbESW5hoKuSRtRgkkFEYFJA46UhINKiOX/Au5GhXC1NSU9vf3LWmBFqDegOhXqVQ0PT2tyclJKzB4nSTV+/fv6/j4WPl83giikJ5ZrgWDP5lMKhA433pYLpe1vLxs1tYQmc/OzrS7u2voQK1WM/Lt7Oys/Xen01Eul9NgMNDu7q5xIGZnZxWPx3Xp0iWl02kVCgXt7OyYPBzSeqFQMFlwIBDQ6uqqVlZWDLqXZMgFJlZI6SHn9no97ezsGPJAsQEqA6kT10QCt0ZJQ3sJXLdS1yGT0QQF2xfhC0jemMALL7zw4qUNJN2QAjEQwj+BxCDJ5JJ8LR28K/emi8SsCSka5lFsDtzY2ND+/r6uX78un8+niYkJ84fw+Xyanp7Wm2++ads0Hz58qM3NTZOQNxoNra2t6eTkRJVKRR9//LFyuZxu3bqlYDCoJ0+eaGtry6Bu4Htkp3i3YPwGkS+VSimbzZoZUrFYVCQSMVMtCqeRkRHzXhkbG1M6nTanWBAC3DFR7iwsLAyNEyqVil2nVqulWq2mcrmser2ucrms9fV1W+RULpdNfQYC4yIcLOuqVqsqlUrmASLJCgHXbC8SiSiTydhOEopB/ptCsFqt2j2Amst1nWTx0/OEVwx44YUXXrykgScK83bcRMfHz1eCQzbDalySyUfdLp25eDgctm2aR0dHNnuPx+OmRkARsLGxoXq9rm984xvmUzA6OmpJulAoaG1tTTMzM7p3754++eQTS6xTU1OampqyPRiQ+0qlklZXV21xVSKR0HvvvadoNGpGRGNjY3rzzTdtB8edO3fMW2NmZsYIhfl83taGI8MdDAY6PDzUe++9p+3tbS0tLaler+vzzz/Xe++9p17vfB395OSkSqWSpPMdIeFwWLdu3dJgMNDq6qrW19cVDAaVSqU0MzOjXC6n5eVl29zI6OXg4MDk4xMTE/L5zrfjvvbaa8pms2b9LslWCuNFwIiGAgAeh3Th3NtoNMwkDc6Gu5cgFAqp1Wqp2Wya2RnFEJyJ5w1vTOCFF1548ZKGu06ceTRmTDiwJpNJ21sCdIxzHdwCdo8A8UuymXa1WtXp6ak5E7rktkqlYou4wuGwIQm8Nky2nrXf7na7KhaLts11enraDMmOjo5sZt9sNnXr1i1dvnxZ7XbblsWdnZ3p9u3b+o//+A8Vi0WNj49rf39fBwcHymQy5ivBXoOHDx8qHA4rmUwqlUpZAbS7u6tOp2OkxcuXLysWiykQCNgipB/96Ed6+vSpLl26ZOZU6+vrunXrlq3U/su//Ev927/9m1qtlhVVcDTi8bhJQCcmJgxt2Nzc1Pj4uB48eCC/329bO+F0uBbDLqeDWX+73dbc3NyQ2RKkTIo2dqQwnnCXUzGueF6fDK8Y8MILL7x4SYN5NIc9DPhGo2EOltFodGg3AfB3Op1WpVIxK2eMiuhA4Qa4fAMMxphvn56emnEVGnqKEpzxUqmUTk5O9ODBAzP0euutt/TKK69YEsSIh62cjx8/1ujoqG7fvq1r166ZXwK7J548eWKs/mQyqV6vp42NDXOCvXXrlr0/DKiY9UOOPDo60tLSkkkR+/2+FhcXlc/ndXx8rEqlooODA9P/l8tlRaNRXb161bgJn3/+uT766CMdHx9rZmbG7O+xt8bGGSM21oZDRgRlaTQa6na79vmQrCnq3M28mEhxzarVqilAsC5nbABZEBUEhE0s1J93fbHkFQNeeOGFFy9tQMTDIhv4V5LNtv1+v836kZm5uxaQqTFGcMcLkUjEiGwkNFxc2bOSSqXMRZW9FsfHx4YU8PrYzsnoIJ1O68mTJ5qcnNTExITZBeMKGQwGVSwWdfv2bbXbbUMY0Os/fPhQrVZLk5OTevjwocbGxrS0tKTp6WnbvyLJOmN2eVCwYGOM5C+RSBgnoFqt2kbE2dlZTU1N6fT0fOXx7Oyspqen1Wq19J3vfEeFQsF2ALC6G5QlFotpb2/PdtO4G3RHRkbsvXJ9I5HIkESTAgm/CP6ez/3w8NA2rmLqBKrgbixFzQBiAGcA4uHzhFcMeOGFF168xIExjbukDWtqdgW4u0lY9YvtuZtskA3y/7H4BQVAiUDyci3VkalRZKB7b7fbphyo1+u6d++eTk9P9frrryuRSOjKlSsqFos6ODhQtVrVyMiIFhcXbVdLNBq1TZW47+XzefV6PX300Uf23qenp5XP5xWJRLSzs6P19XXbeFgulw2VgCeB1z8JH2fBUqlky4dee+01JZNJBYNBFQoFRSIRJRIJjY6OqlAoaG9vT71eT/V63TgYkkw+yfXO5/MqFApDyT2ZTA6pBaQLf4BnvSDwJXCNinAynJmZ0c7OztAmVXchHIWJJFszz+fI5/084RUDXnjhhRcvaeAuSDcIQczdmOpCwWyAJangdsd8Gfc6EoWri3dXeKNEYPQAcRDWOt0tP4sxAvp+7H6/8pWvGI+AJJhMJrWwsKCVlRVLaBsbGzo5OTH2PJteP/nkEx0cHCgYDJomXzpfONdoNDQ9PW1e/Jj84MLYarW0tbWleDxumwPb7bYpAliZnc/nbTMiUPz29rZ+9KMfGWeDZVwkV36fJMViMeXzeW1sbNgqcVwegfzZvYEDIq+Rzwa0JhQKDY1i0um0ksmk9vf3zUUSlMct7PBhoDiRZAvrnje8YsALL7zw4iUN4HQgX3eJm4sS4IXPCAFjInd1cyAQGFppTpfZ7XZtps7vabValvhTqZRarZY6nY4mJycVj8e1tbVl2x7ZaAmMjerhJz/5iT7++GM1m0197WtfsxXriURC09PTxh9YXV3VZ599ZjbCrVbLOn2XI7G9va2TkxN7DeFwWJlMxuyQWSoFwgFZMhwOG/IwNjamcDispaUlpdNpcxPc3t62omhtbU0ffvihHj16pG63awgA14yigLXGXDfXDhhyJ5LH0dFRdbtds3MmmTPWocDK5XJqt9u2nGh8fFy1Ws22xVJAEO7yuGAwKOnCDjkQCNj98DzhFQNeeOGFFy9pBAIBW4Xd6XQMbp6cnFQymbQESaeLj0AymVShUNDExIStsQbORxfPjJy5POQ0xgmNRkPhcFiLi4t69OiRdcL9fl/RaNT08KenpzafdzfTbm1tKZ1O60//9E9VLpf1rW99S7dv39bp6anNtzc2NlQul5VMJlUsFm3r5e7urrLZrDkO/uxnP1MmkzF4ngVDOzs7tjr+4cOHikajtuRobm7O5IPHx8fa2trS3NycLl++rEwmo2AwqAcPHuj999/X8vKy8vm8/H6/Hj9+rKdPn2p+fl6NRsMQCa4zFsmNRkO3b9/WP/7jP6pUKhmCQhGD6dHm5qYVEBgYUaD5/X7t7+/bXgdkov1+X5VKxdQi7sZbisDBYKBQKGTujSBHoElfdDeBVwx44YUXXrykAXRPh4uJzNnZmXZ2dtTpdBSNRm2RDbI1NuE1Gg2dnp6qUqkY6QwVQTKZVLPZHOpQmT0HAgHV63XdvHlTn332mXWkjUbDWP5vvfWWOp2OVlZWbAzAEp9Go6H5+XkbIXznO9/RxsaGZmdnlc1mtbS0pNnZWb355pv68MMPdenSJd29e1d7e3va3t7W/v6+LTy6du2aXnvtNcXjcaVSKR0fH1siHBkZ0fb2tgKBwBDRLpVKKZVK2arhK1eu2AKiRqNh3fmtW7e0tram1dVVPXr0yAqmaDSqRqNhdsDz8/OW1I+OjlQqlUzpMT4+rlgsZsma14e749TUlDY3N2104Y5s6vW60um0mRC1Wi1DNlKplBE0Nzc3lUgk/suiI7gBuEpSCLEw6osgA74BXoZeeOGFF168VLG4uGjJd3x8fMiOt9fr6ejoSKFQyObRrg1tPB5XJBLR1taWeQrQmVIETE1NaWNjQ8fHx5qcnLQlOZlMRgcHB8rlcorH46pUKlYogE5kMhljtz9+/FipVErSOcEwGAwqn89rZ2dHrVZLwWBQU1NTxtzPZrNKJpNmpTs/P2++/6FQSDMzM/roo4/UaDT0O7/zO9rb21OhUDCIvFQq6Qc/+IHGx8f1m7/5mzo4OLDxBEqIZrOpBw8eaGpqyiD36elpjY6Oam1tTf/6r/+qw8NDRaNR1et1lUolm+fzGs7OzlStVhUIBBSJRFSr1ZTNZpXNZrW+vq69vT2lUim1223bqAg5MBaLGXnxyZMnhsJQLLjkP1QGrnwU5Kbb7doqY9YkM46p1+t2L/BvcAsYB/H7fl54xYAXXnjhxUsa77zzjh4/fmwkuWg0qlAoZBI9yGJsLoQ/gP99rVYzd7vBYKBgMGgkPIxy0NeTeFqtlnXdrVZLkUjEOn9kalgTX7lyRYFAQOVyWeVy2fYHIK0jee/u7mpkZES5XM7sfVEGTE1N6Zd+6ZdMVjc/P68bN25oe3tbhUJBjUbDiI1A+v1+3/YG/NZv/Zai0aghJ/AAKFpeffVVzczMqFKpyO/3a3d3Vz/5yU/0+eefK5/Pa3V11V5ns9mU3++34qHX62l/f99QgGg0qlwup7OzMz18+FCBQEDZbFY7OzuKxWKmOGDUgvICC2GIgvgExONxDQYDlctlK9iA+4H8+QNqgS011sQgAOFw2JAkSbbGmNHCzwtvTOCFF1548ZIGOvVwOGzdJwuD3K4SAhne9J1OR5KMBIiEEN8B5HOVSsX+HuIaXxOJRExOyN9DMGQ5Et4BWCYDT3e7XU1NTalYLJobIBv+cEns9XrqdDqm9z89PdXc3JxSqZQeP36s3d1dpVIpVatV8wbA9KfT6RhK8uMf/1gzMzMaHx/XrVu3zO6X0cnq6qr8fr8+/PBD7e7uam9vTzs7O2o2m5JkiRsPAXefAIuV4vG4vf52u23Fjru8CQSEZI/xD505iVySIThci3Q6PSQBxZSI5UWRSGTIhTIQCFiBhtMgngNwF4LBoOLxuPb29p7rXvOKAS+88MKLlzQ42FnfC0MeGR6IAXI2EoXP5zMimiSzs6Vbb7fbRs4jEcOmh4mPpBE42zUt6vV6xiuoVqu2RMiV3J2dnanZbJqsj9eF6gF2f6PR0L179+Tz+VSpVGxDYa1W01e+8hX1+309fPhQ+/v7ks7lk6xTPj09VbFYVLlc1tTUlCQZryIYDGpra0udTkfLy8uGMrTbbfn9fiNSDgYD6/xJsqyO7na76vf7plZglED3TeGFcyLXBWmmW0AxZsFHQJIVNag5MH5y0QEQGciJjBjgf2DvDCoACZT74XnDKwa88MILL17SgGEOH4BEA4TMgqJnO38S+9nZmXWl/HFRAJIHlr6413U6HZu/o92XNNR9xmIxI7wBg4+Pjysej5tV7/j4uCWwWCxmsHa9XrflOuFwWHt7e1a8oKkfHR1VNpvV1taWPv/8c7MmHh0d1cnJibrdrr1/tgd2Oh2bp0syyeDq6qrN8UEp+v2+yuXykN8/1xwSIfJJiImNRsPGLXw98kPshl0PAWb2FAtcfz7L4+NjS+juWIDPmN9FMYeqod/vq9PpDPlIsPAI8iLIwvOGVwx44YUXXrykgbsgBz06+dHRUR0cHJim/eTkxJbn9Ho9hcNhMwySZNIzd02ua3MM057OmM6TRTyVSsXMiEiCqBeQ84FCwFGYnp42vT27A5hjDwYDVatVtdttTUxMWALv9/tqNBo6OztTLBbT6uqqPvzwQyUSCWUyGUvKdOzA46lUSvV63fY1+Hw+bWxsyO/3K5/P27ZHNjqisuCasiaZpUHJZFKzs7Oq1WoKBAI6PDw022bMmKSLuTyjEFQZXAe2EFIUUJzFYjElEgnV63WTjIKgQPKEvMh1g5zoojeQSnkvvB4+K283gRdeeOHF/4JoNBqamZkxUt9gMFClUrFNeaFQyCRmvV5PoVDIdPjdbtdga7pETIzoqvv9vlKplCUplhkReAjwMxhJNBoNg+Pj8bgODw/tdTAq+PjjjzU3N6darWZ/4CCMjo4qk8nY30ciESNDYiV8dHSknZ0dXbp0ych17Xbbul7IfgsLC6pUKvYakFeCehweHkqSoQUkfHYsuAVNqVSSz+fT7Oysbty4ob//+7/Xa6+9pv39fVUqFUMXRkdHVavVNDIyokQioXK5bAURKA3jhmw2q16vZ8iA3+9XMplULpeTJK2urhoyw3uSZBwCFBuSTHHA39VqNUWjUVMSUBS4BlTPG56awAsvvPDiJQ1IYEDkJHIgdmRnoAE4DwI9QzKj0yRJUQxEIhHzAiARRqNR+/5er2erdyEtUljw84PBoHw+nxkPoZdn/8CNGze0s7NjHv/I4EiqsN0DgYB9TbvdVjabNUb/wsKCdnd3bQtjNptVo9FQMpk010GUE9I54RF0AlOecrlsq5xDoZDtIwAtWFhYsBHE2NiYEomE1tfXFQqFtLe3p/Hxcbsu8ABczgbLmxgPAO8nk0n7PkYUjFqy2azK5bLJBlkqFQwGbQPi2NiY2u22ms2m0um0ITuRSESSVCwWlU6nh0Y/IANcF09N4IUXXnjxPzgymYzq9fpQdwj5bXJyUuVyWQcHB/b3kMbwuQcyBhVgjs+8HCb87Oyskegk2cjAnYVDYmMFMva3oAGhUEi9Xs8SMf4IhULBklMikVAgEDDHPklDEDme/v1+397X9PS0VlZWjEwJDwF2vyRzCsSCl99FMQPTH7UF5MZ0Om0rlsvlshUorVZLjUZDe3t7evvttzU6Oqr9/X0j50Hig92PVXS73bb9EHhA7O7u2muuVCoKBAK2QXF9fV3z8/MmhcQa2u32z87OlMlkjECIOoQREggIhQ6mQ+12W7FY7LnvNQ8Z8MILL7x4SSObzSoUCpmDoAs/h0IhW67T7XZtlgzJ7+zsTBMTExoMBjYyGB8fVzAYNHc/xgR0lHAGAoGAOfU1m02Nj4/bnByuAc55rgPeYDBQOBy2n8nmPZ/Pp4mJCY2MjNjSnqWlJdXrdT19+nRowQ+d7djYmA4PD5VIJKwQgIQImsAiId4X3XCv11Oz2VQ2mzU3Qex5mbuHw2HjFNRqNUM+IOiFQiHb5+D3+1WtVq0gYiyDQgOSJjN6WPzYEvM1sVjMkAGuJ94IR0dH5iWARJFrAuLBeml3V0KlUjHvCHwM+Fpek4cMeOGFF178Dw66PZYKoRKQZAkOsh9kOhIwXTKksmAwaN0mhENXJeAu3Gk2m0PreuEX8DXu16M6wDWPogSIO51O28y/VCqp3+8rl8uZd0Iul9Pu7q6t/JUuVvFKMpMitvn1+331ej3r4iH2oYaIxWLG6Gd8AqESpUOv19Ph4aGmp6c1GAwUjUZVq9WG0A8Ie5JsFMFOBr6OAoo9DtI5NyEej5tMkM/m6OhIlUrFdhMwXmk0Gpa4GdvwvYxt2BLprjx2ORr9ft88JZCCovB43vCKAS+88MKLlzRIsJKsCKALpeOEwe5qylladHR0ZF0mP4M/qAQgGZKEQBUkmSkORDs6bxIQ7HdXoSDJyGtA1rVabSjBN5tNGxWEQiGFw2Gbh6OOaDabtvQoFosNFTaY/NC9Q2ZEbpdMJhUOh81KOBaLWcJ29ydIUqFQMISD18u2x3a7beoE4HtQDEYwvK5Op2NoC2OJXq9nvA4KND6HWCxmxMKzszP72XwtaML4+Liq1ap97ngQsKmSa4oElWLti64w9v//uD+98MILL7z4EoLkK8m6dg595vDA1nw9y2yQsiFVo5t3LWslmTaebhKdut/vt6SO2kCSjSL4O6SIruQN7T0bBQ8ODmyz4sTEhM7OzrS9vW3LfYDE6Y7Hx8ftPUmybhruBMULNsSxWMwcCdHgS+eoRigUMgfBfr+ver1u0DkyRUh2QPBcc4iBcA1AJkApgPalC/a/uzcCdj9JGXTG5/NZUROPx40QyLUNBoNKpVKGYlCc8fmAHDDCAPHh30FPvkgx4CEDXnjhhRcvabiENXdD3enpqWKxmHXW7LxnjICNLfp2EAb+29Xau5CzJCsyQBwgCtK1ShezazphXievmdfH9kRY7dFoVJOTkzo5OdH6+voQktBsNpVKpZTJZGzlLwRBkjMIAMS5WCymvb099Xo9ZTIZRSIRVatVFYtFnZ6eKpFIKBgMmokS0snT01OD3oH0cRBkZs+1cMchcBQIDJfcmfyzRksu6Y8RDsjE0dGRZmdnjSsAugLawTiDQsS95hRqFGaQOilEJBk/4XnCKwa88MILL17SAFaGxIe8rdVqWYInGQGh06EnEgmVSiWTIZIsSBATExO2WjeRSKjZbBoBELg8Ho9rZGTECgdJRthz+QbIDWOxmPkWsEcgHo9bAu31eioWi6pWq0omk7bXgAKkUCioWCzaoiCQj3q9PoQMUCBRZIyMjJgkstPpGJmxXq8rGo3q4ODA1BjhcNgMhhqNhlqtlpEJ6/W6oSuw8SE9MkagUIDPAcIAuZPXxQ6HWq2mWCw2lMTdscDTp081NzdnrowUfux5cF0JkUHCrSDpI590V1C7tsfPE14x4IUXXnjxkkY4HNbh4aEx3AOBgMbHx804BztbnAFJGnjes9aX+TjJy+fz2YwbyJ2uEp1/JpNRq9VSv99Xt9s1K2Rm5qAQkBPxNEDP7zrmgUhIMngcwl2z2VQmk5Hf7zeoHx8AoG68FJBCDgYDTUxM2O4DSSb9Y6cAIwI4EVwziplsNqtisai5uTnt7OyY9bJ77enq2S0AYY/XMzExoUajoXQ6bVJKpIZ+v1/7+/s2KsC0CLUHfgbj4+M6PDwcWlDk+ibkcjlbWEXhQ0FAUcYoIZvNmjtjOBz+Qg6EHmfACy+88OIlDQ76SCRijP52u61QKKRsNmvOdfF43EyHSKq1Wk3xeFzZbFYTExO2lpjkXKlUNDk5OUQe5Hvp2vEzQC3g7kWAl5BOp4e6ZXT+Y2NjSiaTJoP0+Xy22Mj16L99+7b9bIiDIAGtVkudTkfRaNTGBicnJ4pGo0omk9rf3ze3RXgCiURCMzMzyuVyOjo6UqlUMonf6Oio4vG4gsGgGTm1Wq2hHQIUU0D6IACgK41GQ91uVxMTEzo6OtLNmzetY392/0MoFFImk1GhUFA8HjdTJlCEUChkCZ3dA6AeGEV1u1373XgRuIgAqADvF4InRd/zhocMeOGFF168pAGZDLkbyRIdvEtWk2Q6eZJCoVBQOBy2bvrZxTasx3XJbhjy+Hw+m2UzCnA3+p2dnZneHWtfDI8Gg4EikYhJ3trttsn1ID9Cnut0Ospms9rZ2bH3OzIyokKhYOt9QRVI1FgPBwIB1Wo1695JgkD6iURCtVrNFAORSMRm/xRHnU5HmUzG1kPTrUsyNQLkPJ/PZ6ZCLHTqdDoqlUo2m6e7h9WPLJF/hywIMgICEI1GjdBI0YUkEoQlFosZd2NkZESZTMa+nt/jelF4YwIvvPDCi/8FgbwO1jhM9nA4bB2y63kPSQ0IOZPJqNfrWdfM3JzvabVaZmvL7wHmZuzA72bWzex7bGxMqVTKmPnPJmNJttmQOT0MfL6fwgJiHxwBVAGnp6e2JInxQq/Xs1EFxj/I9xgZkBjhBvAz6f6TyaSNTlBYoHygs8bFEcMlFii5RMujoyNtb28PJXOKAH4vMk9GF7xPPAbwSqhWq0MmTe5mQqynIQryeSPXPDo6spEPqATF3/OGVwx44YUXXryk4WrGXV0/3aELt6MeoCt0Nwzy3/wsungS/bPrkYPBoEkTmf0j93ONeUhEsNxd9zs6aF4DkLskg/xJzpLs6ygCUAGk02lDO+iqkTSSPPEFIEFGIhEjTlKs8P7cYgU1Bqt+kVi6On84CyAhrmoC4qRbPP130stIJKJ2u20FjVtUwZNgc6RrLEVx5XIMQHRcTwhXAQLR84sUApLHGfDCCy+8eGmDpOAmB8h1rsMdSYNZPQmERIjbHfsJ4vG4JTYsb0mC/CxGCyQvvPEZBUBCpFNljEBB4K5BpvvmNVKI0CW7hjlu4SPJOnoSKMuR3HEHFsaQDOmuuQ6ubTLESxYN4XHACmbepztzpxOH28BrdFUNMPndHRHuyIIijZ/JCCYWiykejw+pMygkQFt43/9fPgK8Lrco8ZABL7zwwov/JUFycpMua4MhGEajUUvCbpcoyXbeM2NPJpPy+Xzmaud6GfDfcBGwxyVh87P5d0hy7A5wk6fLQ+h2u9bF0p0jB2THAoWGu8IXoh+QvnTR8XY6HSsG6Mxdb/9wOKxGo2HoCoUNBRPXiIRKAUBnzRjG9WEgYTOm4Oe6RD1+Pp+VC+Hjj+D3+9Vut43Q6EoDXRtktyCggHI5Cagb4A24qAVoz3PfZ1/wvvTCCy+88OJLCpKsC7+zOphu2e/3q1armd3tYDBQIpHQwcGBFQAkGqyBkQpSALTbbYPO3REAyR8EgI6UpINnAUoHGPsY7yBZ7HQ6Jo1kyx4oBV4EsVjMjIBIcHAcZmdnVSwWTS7IXF+SeQrQTfPfGP6QtHE+dO2DQ6GQYrGYKQsgQlKsQACkg6fj5/rjx8C4AuTD5RyUSiUrXEAiQDJGR0dVKBSGChZIiiAqgUBA5XLZ+AHj4+Om0uB72TPBHxfFeN7wxgReeOGFFy9p4Nvv9/vN556EjilQLBYzohvcgcFgYNBzLBZTvV5Xp9Ox4gFWfT6fN8gbKP3s7Mzm1zD1SWTBYNDWEAcCAfV6PY2NjanT6SiVStkaZAqMVquldrs9ZFjE/D8YDOro6EidTsdMfhh5UDT0ej2Vy2XVajUjIcJzKJfLZhJEcQCTnsKlVCrZqACSIR2+6wUAofD4+FjRaFTZbFbZbNbWHlNMtdvtIQkjSRfkALMfiIhuh8+1hUDpugpSnJD8GXmASvj9fpNEUvSwK4Hrwe8BmWCB0vOGt8LYCy+88MILL37Bw0MGvPDCCy+88OIXPLxiwAsvvPDCCy9+wcMrBrzwwgsvvPDiFzy8YsALL7zwwgsvfsHDKwa88MILL7zw4hc8vGLACy+88MILL37BwysGvPDCCy+88OIXPLxiwAsvvPDCCy9+wcMrBrzwwgsvvPDiFzz+D1KdEqBQES3VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot a slice\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "import numpy as np\n", + "\n", + "dwi_vol_idx = len(indices) // 2\n", + "slice_idx = list(map(int, np.divide(dwi_data.shape[:-1], 2)))\n", + "\n", + "x_slice = dwi_data[slice_idx[0], :, :, dwi_vol_idx]\n", + "y_slice = dwi_data[:, slice_idx[1], :, dwi_vol_idx]\n", + "z_slice = dwi_data[:, :, slice_idx[2], dwi_vol_idx]\n", + "slices = [x_slice, y_slice, z_slice]\n", + "\n", + "fig, axes = plt.subplots(1, len(slices))\n", + "for i, _slice in enumerate(slices):\n", + " axes[i].imshow(_slice.T, cmap=\"gray\", origin=\"lower\", aspect='equal')\n", + " axes[i].set_axis_off()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9dcab811fe667617", + "metadata": {}, + "source": [ + "Define the EddyMotionGPR instance." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7d5d9562339bc849", + "metadata": {}, + "outputs": [], + "source": [ + "from eddymotion.model.gpr import EddyMotionGPR, SphericalKriging\n", + "\n", + "beta_a = 1.38\n", + "beta_l = 1 / 2.1\n", + "kernel = SphericalKriging(beta_a=beta_a, beta_l=beta_l)\n", + "\n", + "alpha = 0.1\n", + "disp = True\n", + "optimizer = None\n", + "gpr = EddyMotionGPR(kernel=kernel, alpha=alpha, disp=disp, optimizer=optimizer)\n" + ] + }, + { + "cell_type": "markdown", + "id": "ea5cc8036fa0ab48", + "metadata": {}, + "source": [ + "Do not optimize the parameters in the fitting. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "7e93b99c3b072d99", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
EddyMotionGPR(alpha=0.1, disp=True,\n",
+       "              kernel=SphericalKriging (a=1.38, λ=0.47619047619047616),\n",
+       "              optimizer=None)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "EddyMotionGPR(alpha=0.1, disp=True,\n", + " kernel=SphericalKriging (a=1.38, λ=0.47619047619047616),\n", + " optimizer=None)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train = bvecs_shell\n", + "# Consider only brain voxels\n", + "dwi_mask = np.repeat(brain_mask[..., np.newaxis], shell_data.shape[-1], axis=-1)\n", + "y_train = shell_data[dwi_mask].reshape((X_train.shape[0], -1))\n", + "gpr.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "id": "dfdd82afbdb22790", + "metadata": {}, + "source": [ + "Predict on a randomly picked diffusion-encoding gradient direction." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ae3407b31b14928d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 20.177777097314834\n", + "Number of RMSE values above 10: 97093 (61.20%)\n" + ] + } + ], + "source": [ + "# Pick a direction to predict\n", + "idx = rng.integers(0, len(indices))\n", + "X_test = bvecs_shell[idx][np.newaxis, :]\n", + "y_pred = gpr.predict(X_test)\n", + "\n", + "rmse = np.sqrt(np.mean(np.square(y_train[idx, ...] - y_pred.squeeze())))\n", + "_rmse_element = np.sqrt(np.square(y_train[idx, ...] - y_pred.squeeze()))\n", + "\n", + "print(f\"RMSE: {rmse}\")\n", + "threshold = 10\n", + "n_error_thr = len(_rmse_element[_rmse_element > threshold])\n", + "ratio = n_error_thr / len(_rmse_element) * 100\n", + "print(f\"Number of RMSE values above {threshold}: {n_error_thr} ({ratio:.2f}%)\")" + ] + }, + { + "cell_type": "markdown", + "id": "74b040c05621f2d9", + "metadata": {}, + "source": [ + "Visualize the prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a130de2a03dff2b5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2c0lEQVR4nO29ebBkd3ne/5zeTq+nT+97332ZfUYaoc1CgA1IEZuIMRWHxZSxcXAMdlKxTXCRsuP4D0iqWCpOCBgCMaYgLGYxBIQljHZGHs1otrvfvrf3fd+33x+T9/W9tvOzAEk9d+73U6WyGWnm9nSfPuf9vu/zPo80Ho/HEAgEAoFAcGjRTPoFCAQCgUAgmCyiGBAIBAKB4JAjigGBQCAQCA45ohgQCAQCgeCQI4oBgUAgEAgOOaIYEAgEAoHgkCOKAYFAIBAIDjmiGBAIBAKB4JCjm/QLEAgEAsE/jiRJk34JgpuA5+MtKDoDAoFAIBAcckQxIBAIBALBIUcUAwKBQCAQHHJEMSAQCAQCwSFHFAMCgUAgEBxyRDEgEAgEAsEhRxQDAoFAIBAcckQxIBAIBALBIUcUAwKBQCAQHHJEMSAQCAQCwSFHFAMCgUAgEBxyRDEgEAgEAsEhRxQDAoFAIBAcckQxIBAIBALBIUcUAwKBQCAQHHJEMSAQCAQCwSFHFAMCgUAgEBxyRDEgEAgEAsEhRxQDAoFAIBAcckQxIBAIBALBIUcUAwKBQCAQHHJEMSAQCAQCwSFHFAMCgUAgEBxyRDEgEAgEAsEhRxQDAoFAIBAcckQxIBAIBALBIUcUAwKBQCAQHHJ0k34BAoFAIBD8pOj1erz85S9HvV6HxWKBRqNBs9mEVqtFv9/Hj3/840m/xAOFKAYEAoFAcMMyNzeHfr+PXq8Hs9kMnU6HwWAAq9WKu+++G91uF36/HxqNBuVyGZIkodPpoFqtotPpwGQyQaPRoFQqQa/Xw2QyodfrIRaLTfqvdkMhjcfj8aRfhEAgEAj+IZIkTfolvKSYTCZYLBbodDr0+32Mx2O8//3vRyaTQblcRjQahd1uR6vVgsViwbPPPosjR44gGAxiNBqh3W6j1WoBAIxGI1KpFILBIIxGI55++mmoqopIJIJCoYBPfepTAACtVotSqYSb+VH4fP5uojMgEAgEgomi011/FL3iFa/Am9/8ZszPz+O5555Dr9eDx+NBJpOByWRCv99Hv9+Hoiiw2+1wOp1QVRX9fh8A0Gg0UKlUoNfroaoqpqamsLq6ipe97GU4cuQIvF4vjEYjjEYj3v/+90Or1cLhcOADH/gAWq0WRqPRJN+GiSI6AwKBQHCDclg6Ax/96EdhtVoRi8Vgs9mwvLyM73//+3C73ej1ehgMBqhWq9BoNJBlGbIsw2az8a+TdmB3dxeyLMPv9yOXy6HdbsNisWA0GuHxxx+HxWLB0aNHEYlEUCqVUCwWsb6+jqWlJWxsbOBv/uZvEI/HJ/12vOCIzoBAIBAIbkhkWcbv//7vw+fzwWKxoFarQafTQafTYTQa4ejRo4jFYnA6ncjlcuj3+4hEIhgOh6hUKrj77rtRqVSQy+Vw5coVOJ1ONBoNtFotOJ1OyLKMVqsFl8uFXq8Hp9MJRVEwHo9RqVTg8/mwu7uLEydOoNfrQVVVvPGNb4Qsy0gkEvjSl7406bfoJUWsFgoEAoHgJcXtduM973kP7HY7NBoNJElCr9eDVquFqqpQFAW1Wg1zc3Mol8toNpswGAwwGo3weDwIhULY2dnBlStX4Ha7USqVsLu7C4vFgkAggF6vh1QqBYvFgm63i93dXfT7fej1elitVuj1eiSTSTidTjSbTej1ethsNlgsFuj1eszMzODd7373pN+mlxRRDAgEAoHgJSEUCuGOO+7APffcA4/Hg2azCbPZjNFohFarhWq1il6vt08f4HA44HQ6MRqNUK/XUalUkM/nEY/HeTsAAOx2OxRFQbvdRjKZxGg0wmAwQLfbhaIocDgcMBgMMBgMMJvN6HQ68Hq9qFQq0Ol0/DoGgwH0ej1cLhde85rXTPgde+kQYwKBQCAQvOjccsstUBQFJpMJPp8PAGA2m1n1n0qloNfrIcsydDodrFYrtFotXC4XP9QBoN/vYzgcQqPRQK/XI5fLQaPRwGg0coeh3++j0+lgc3MT4XAYRqMROp2OiwFJkjAcDqHX6xGJRKAoChqNBusTdDodTCYTjh07htFohEceeQTD4XCSb9+LjugMCAQCgeBFZW5uDvfeey/C4TDa7TY6nQ70ej3cbjeMRiPy+TxqtRq0Wi2MRiOGwyE6nQ40muuPqMFgAJvNxsWDoih8ks/lcjAajej3+xiNRjCbzTCZTKjVakilUmg0Gmi329xFIM3BYDBAvV5HJBKBJEnQaDQwGAyQZRlGoxGqqkKj0eCVr3wljhw5AoPBMOF38cVFFAMCgUAgeNGw2Wz4xV/8RYTDYej1eozHY7TbbdhsNsiyDKvVilarBYfDAZ1Oh1arhVqthitXrqDRaKBYLKJWq2E8HkOr1cJgMMBkMkGr1fLDn0SCBoMBNpuNT/+qqvIYwev1wmw2o1qtIpPJQKPRoFaroVgsIp1Oo9vtotPp8JiAipR6vY63vvWtiEaj0Ov1E343Xzye95jgsKy4CF5cJrHJKq5dwQuB2ML+6Xjzm9/M7XvqCoxGI7YO1ul08Pv96Ha7qNfryOVysFgsCIfDsNls0Ov1KJfL6HQ6qNfr0Ov1UBSFhYeDwQCqqsLhcKBYLCKfz0OWZdx+++144okn4Ha7kUgkYLPZ+DWREFFVVWQyGTidTmQyGciyjOFwiGaziXA4DEVRUCqV4HK58Iu/+Iv45je/idXV1ZtyZCA0AwKBQCB40bBarbDb7fD5fDAYDGg2m6jX68hmswgEAqjX63A4HBgMBlAUBZ1OBxcuXEAsFsPi4iJisRi63S7rDEgf0Gw24XA4MBqNUCqV0Gq10G630Wg0oNPpYLfbIUkSHn74Ydx+++2QJAmj0QjD4RD1eh2dTgfj8RgGgwGqqqLdbqNer6PVakGn0yGVSvG2A73ud77znXjyySfxl3/5l5N9U18ERDEgEAgEghccg8GA3/md30Gz2UQ2m8VgMEC/34fVagUAFAoFdgvM5XIwmUwYDAao1WpotVrw+/04f/48jh49CkmS8Nxzz2E0GsHn88Hj8aDVaqHT6cBms2E0GkGv18PhcKDdbqNcLqPdbqNSqaDZbGI0GnGRoKoqnE4ntre3ecVwfX0dnU4HjUYDdrsdHo+H8w3C4TCq1Sr6/T5arRbcbjeWl5exsrIy4Xf4heVQFwOhUAhnzpxBs9lEv9+HyWRCs9mELMusRh0MBjAajeh0OrBYLDCbzWi32wDAgRkkTnG5XHjooYfQ6/Um/DcTCP7/cTgcCIVCAMBt1tFohCtXrqDZbE741QkOOk6nE29/+9uh0WhgNpthMBgwHo/ZNthkMsFsNqPZbGI8HqNcLkOWZbhcLjgcDpRKJeTzeXg8HsRiMVgsFiwtLaFSqfCfI8syHA4H4vE4VFVFpVJBu91Gt9tl98HXv/71+Pa3v41+vw+DwcBrhDabDbFYDH6/H/V6HeFwGGtra+h2u6hUKjAajZidncXs7Czy+TzMZjNmZma4oPD5fKIYOIhIkoRAIMD2lYPBAMB1H+zf+q3fQj6fR6PRgNPpRD6fZ6OKQqHArahSqYRIJAK73Y5qtcrtpV6vh2QyCUVRcOzYMWxubqJWq/Gcejweo9froVAoTPItEBxC6BQkSRLPu6lVeuTIEbzqVa+CJElotVqYm5vDaDTCpz/9aSQSCYzHY57J9vt9aDQaFAoFMTcXPC+oCDAajchkMvB4PLDZbFBVFcViEVqtFsFgEAaDATqdDpFIBA6HA91uF41GA8PhEDqdDoqioF6vo9vtwuv1otvtolqtYjAYwOVyoVAosMo/lUrB7Xbz/x6NRiiXywgEAtBoNMjlcjCbzdBqtahUKvwaYrEY8vk8JEmCy+WC2WyGoigA/m6NUavVol6v89rhzMwMfD4fvvzlL0/sPX6huWmLAb1ez+EXRqMRH/zgB3H//fcjm80im80CuP6gXl9fh8Vi4RkUJVpptVr4fD50u11oNBoMh0M4HA6srKxgZmYG5XIZ9XqdzSsA4MKFC/jN3/xNaDQa6HQ6SJLE7lef+MQneDd2PB5jMBgc6lAMwYuDTqfjh7jP58Nb3vIWGAwGDIdDPk11Oh1otVqYTCZYrVZ0Oh1sbGwgHA7jl37pl1CtVgFc3wHX6/VIp9Mwm834r//1v6Lb7bJoi4pqgWAvqqri6NGjAK53CNLpNPR6PRqNBjv9DQYD3gaoVqsIBAJot9v84CVfgUajsW+lT1EUSJIErVaL4XCI8XjMXQaLxQKNRgOtVgubzcZ/fjAYZKOicDjMHgM6nQ7tdhtGoxG9Xg8Wi4XHAfSdaTQaHH8sSRKMRiOsVitvKNxM3LTFwDvf+U685S1vQafTgcFgQKFQQDqdxnA4hMFgQKfTQa1WQ71ehyzL2NzcxH333YetrS1kMhkEAgHY7XZUKhXUajXkcjnYbDaEw2F4vV6YTCZuS6mqCp1Oh06nA6vVil6vB6PRyEVEIBDAn/3Zn+Hhhx/G8vIyWq0WvvrVr+K5556b9NskuMl485vfjOXlZTidTphMJsRiMYxGI05vW1paQq1WQyaTQbVaRa1Ww8LCAhKJBOr1OgwGAxqNBq9rxeNxRKNRxGIxvOc974Hb7YaqqvjhD3+IL37xi5P+6wpuQBRFwczMDBemLpeL1wnpuqI9f71ej16vh16vh0wmA1VVIcsyJEnif0eneQD8EG42m2wSRBoEKjL6/T4sFgscDge8Xi97GJTLZRYzki1xLBbjDq/BYOAiZDgcotvtot1uc8dYlmVotVrutI3HY8zPz2NjY2Ni7/ULyU1XDPzJn/wJHA4HVFVFoVDA1tYW/H4/Tpw4gXw+D+B6zGW324XT6cTy8jJ+/OMf4+zZs9jY2GCByHg8RjabRb/fx+zsLHcaNBoNMpkMdDodwuEwHA4H1tbWeG5FNpp04YzHYza9OHbsGFKpFG677TZ86EMfYq1Bv9/H29/+9gm/c4KDzCc+8Qnk83mMRiOoqgqbzcZuaqqqotPpIBQKsc+7LMsYjUZYX19HLpdDIBCA3+9HuVxmf3i73Y6VlRXMz8+j1+vB7/ej3W4jEongjW98I/7ZP/tnOHv2LP7sz/4M//k//+dJvwWCGwDSVbVaLUiShFwuh3A4jI2NDSiKAqfTCYPBgNFoBKvVynHC1WoV9XodJpMJer0eBoMBbrcbANhEqNVq8QO61WrBYDAgk8nA5XIhm82yXoCEhKdOnUKv18POzg4fAAuFAhRFgdfrhc/nQyqVgtPp5FEYeR30ej0Mh0MMBgO43W7IsszfHbq/+/1+PPDAA/jYxz424Xf9heGmKAa0Wi3e8IY3wOfzwW63I5PJoNFoYHl5GW94wxvwxBNP4KmnnoLL5UI+n+cVlVgshnQ6jTvuuAOBQACXL1/e15Yaj8fodrvY2dmBy+VCo9HAYDCAxWJBs9nEpUuXMB6PEQqF4Ha7uetAsZl0yur3+/xnHTt2DFevXoWiKPB4PLBYLLBYLPgf/+N/oN/vw+v14t/+23+L3d3dSb6lggOA0+nEgw8+iKNHjyKTycDn80Gr1UKWZRa2+v1+WCwWOJ1OZLNZjEYjaDQaDm258847Ua/X0e/3sbOzg1qtxjdNSZLg9/uRyWQQjUah1WqhKAq3bwGgXC5jOBziwx/+MC5duoRvfetbqFQqk31jBBPjnnvuwalTpxCLxVAqlRCNRnnWTuI9WZZhNpvhdDrR7XZRLBahqiqazSbP/BOJBBsC3XLLLej1eiiVSlwo2O12tNttuN1udDod1naRw6BWq0Wn00EsFuMxgdvt5m4tZRAYjUbo9XqEw2EUi0UeoVFUMo10NzY2oNfrMRqN+L/rdrs3lYbmQBcD09PTeM1rXoNisYi5uTlMT0+jWCyy2tNms6FWq8HtdkOr1aLX6yEUCnHgRbfbhdlsRjKZ5BkTWWHS7qnJZEI+n4fX68VoNEIikUCr1YLZbIbP58N4PEY+n0cgEMDm5iYMBgO63S5qtRpMJhMLDUOhEPR6PYrFIgKBAIxGI2w2G2sVXC4XbDYbisUifu/3fg+lUgmVSgWrq6v49re/Pem3WnADcfr0adx6663wer0cyUo+7qPRiLddqOtUrVa5E1YoFFCv1zEej2E0GlGv1/n74Pf7YTabkc1m2ZSl0+nwDjftidfrdfR6PbaSNRqNkGUZ8/PzePDBB1mcValU8IMf/GDC75bgpaTdbqPX68Hj8SAcDrNa3+Fw8OFnd3cXpVIJ9Xqd2/+9Xg8nT57kKGOn0wmj0QiLxYJ4PI7l5WXuEPT7fRQKBWg0Gni9XlitVqTTaTSbTWQyGVgsFkxPTyOdTvN/Px6Psbq6img0isFgwM8Jp9OJWq3GngS33347Wq0W1tfXYTAY4Pf7MR6Psbi4iH6/j/Pnz6NQKCASiWBubg6PPfbYhN/xF44DWwwcP34cP/dzP4eZmRmOnXQ6nWi1WuxQJUkS77HW63XYbDYW9VksFgBAq9WCyWTii0mn06HZbLLRhE6ng8vlws7ODu+ZUlVpsVhgMpn4tKXVarkTQKrXfr/PFWir1WLbTapQSZSi1+tRKpWQyWQwNzcHr9eLRqOBYDCIUCiEarWKRqOB7373uzel+5Xgn+a+++6DTqfD9PQ0ZmdnYTabuRXr9XpRLBbZQU2WZZhMJqRSKd7N7vV60Gg0MJlMvEPdarVgtVrZyIWEhVqtlluniqIgk8nwjXE0GkGSJE5/o+vfaDQiEonA7/fDYDCgXC4jk8ng8uXLk37rBC8B/+Jf/AucOnUK9XodW1tbOHXqFN/zSEg4GAyQz+dRLBaRy+UwNTWFQCCAWq2G1dVVqKoKACzco3t1sVhk18LxeAxVVeFyuZBMJrG4uIhischZA+12m+/lGo0Gzz33HLRaLRYXF/mAR2Ow3d1dLC0tIZfL8RZDq9VCpVKB3W6H0WjEhQsXcMstt6BarWJhYYHHZfF4HEeOHMEHPvABfOQjHznwgtoDVwycOnUKw+EQ99xzD+666y6kUin0ej2MRiNepaLACvo1qiRVVeXMbKo8K5UKh1r8/XUq6h7Y7XY899xz8Pv9kGUZer2eH+bdbhdarZYvvlarBVmW2Q2L5ralUgnlchkWi4V3VUlTQDNd8sHO5XKsmF1cXMR9992HZDKJer2OVCoFg8GA9fV1FIvFSX8cgpeIW2+9FW9605u4WO10OqhUKrBYLPu2VCjZjTpUyWSS1wspCIY2YKrVKq/AUleh3++z2rpcLvNDngoDasECQLfb5e8eAP7+KIqCwWDAlrBGoxGFQgE7Ozs3VVtVsB8y/nG73RiNRjAajVhfX0e322W7YUVRIMsyGo0Ga6l2dnZw/PhxHgHQ+h5w/Rqbm5tDr9dDs9mEXq/HYDBAuVzG9vY27rrrLsTjcWxtbSEUCkGj0aBeryOZTHJX7K677sLW1hZqtRrMZjNsNhs/F8h0iBIMi8UiLBYLzpw5AwAsehyPx7yJYzKZIEkS6vU6JEm6adbGD1Qx4PP58Ju/+Ztot9us5gwEAojFYuw4RWpSUoF6vV7eDqD2/3g85nno3NwcisUiC6RSqRQLqfL5PIbDIfL5PKtQ7XY7+v0+fD4fFEVBuVzGysoKJElCuVyG3W6H2+1GvV6HxWLBYDBAPB5HKpVipSy1qGg0MR6P0Wq1sLi4iO3tbY7alGUZdrsdsixDVVX4fD68973vxczMDD7xiU/giSee4K0Iwc2HRqNhP/Xf+73f445Tp9PhmxKNpjKZDGZnZ7GxscHi1Xw+j2azCZ/Px0Kr8XjMxYQsy3A6nZBlGfF4HC6XCwA4UU6SJC4+aX2rVquxD0ej0WBfjkKhwCYwOp0OhUIBjUYDDocDH/rQh/DII4/gL/7iL9DtdlmEJbi5oAKVHrgAeP1akiQoisJzd6fTyQcjShGksKF6vc6uhdPT06jX6wDA4UN0wHK5XEin0+j1epiZmeFft1gs8Hq9GI/HKBQKyOfzbHPcbDa5m0v3c+rgKoqCfr+PWq3GzxFZluH1elGpVLggNpvNPJbT6/Xsy3HQOTCphVqtFv/zf/5PZDIZFAoFVKtVpNNpfoiWSiVks1k+kdMeP4Vi+Hw+5HI5qKoKq9XK2wFmsxlmsxnnz59HpVJBNptFqVRCLpfjOWsqlcKxY8f41DUcDnHt2jVsbW1xQhZ9AZxOJyqVClqt1j6jFzLdSCQSLNDKZrMol8scs/njH/8Ybrebb7pra2u4dOkSCoUC+v0+rl27hmAwiG63i/e+97345Cc/iV/7tV+DTqfjSlpwcyBJEtxuN37t134N7373u9kYi3zdqWul1WqxsLDA+9oA+Hr0eDyYm5uDLMvodrvsrtbtdlmzAgClUol3rI1GIxqNBsrlMnQ6HT/czWYzYrEYF6omkwkmk4lXv+jmSa9Do9HA7/fzjrbNZsMf/MEf4H3vex/m5uZEeNRNxh133AFFUXhkRA9tg8GAWq3Gp3q73c7Xzd7DTrfbRblcRi6XYwGq3W5nITa17um6p3k/XXfU7VJVFZFIhLdprFYryuUyxuMxpxYC1103aSusXC7zab/X66Hb7aLf73NhIssydybo+6PRaDAajXjz5uUvf/mB9x44EMWATqfDH/3RH2F5eRl+vx/hcJh1Al6vF9lsFrIsw2AwwOPx8Mxqa2uLFag7OzsIh8NYX19nr2pqNdVqNczPz2NzcxNLS0vQ6/VsYtFqtWC326HVanH06FFUq1XY7XYMh0NuT9XrdTaiKBaLnLvtcDj44U2uhHShKYqCqakpTE1NQVEUWK1WnvNGIhH0+30YjUYEg0EkEgmk02nIsoxcLgcAfOJ75zvfic997nP4/Oc/P+FPSfBCsrS0hHe96138gHc6nXC5XNxdIktWu90O4Ho863A45NFUv9+HVqvF/Pw8VFXF4uIiotEootEod8fsdjusVitqtRoMBgOmpqbQbDYRCARw7NgxeL1eGAwGTE9Pw+fz8Y2Xil2bzQa/38/FKoleaU5cKBSwurqKeDzOokW73Y43vOENuP322yf59gpeYE6dOsWnZdrGarVaCIVCPL4ikyBJknjkNBwO4fF4uJtERYLRaEQgEIDJZILL5WKTK3IEBK4LZGn0NRgMWP9FiYZGo5FzDWq1GlRVhdls5m0bOtGbTCbONyA9GBXPdL+m/9vpdHgsR6FGHo8Ht912G4xG4yQ/gp+ZG74Y8Hg8+NSnPoVoNIrz589zm1Oj0fC8p9vtsqd1MplEsVjEcDjkB24wGITFYsHGxgarS4HrVpObm5tYW1uD2WzGnXfeCb1ej2g0ipmZGYRCIczOzuLOO+/Ek08+iYceegjhcBj5fJ7no8ViEYqiYH19HX6/H263G6lUCltbW9jc3EQmk4HX60UgEMDTTz8NvV4PWZa5sqQUrUwmw7PZra0tmEwmzM7OQlVV5PN5RKNR9Pt9HD16FBaLBYlEArlcDna7HSdPnoTD4cCf/umf7nPrEhxMXvGKV+D+++9nnQud2umUQqYsdEqnrlin0+FOV6VSwfnz57G5uYl8Pg+bzYZGo4FsNss71KVSCdVqFRaLBS6XCxcuXOCuA7VK6WfQaKvX6/EGzcrKCobDIau3KSnO5/NBp9OxxbfP5+ObZ7fbhaqqePDBB/Gud71r0m+14AWACkUSl9K9sdPpIBqNIhAIQKfTYTQaIZVKoVAowO12o9lsIhaLYWpqiscHHo8HkUiEN7EURWEhN30XKPZ4OBzyyh+d3GnEoNVqEY1GMT8/z5qwwWDA90dy0pQkCcePH+fXTcJZKmqpK1Gv17lDRgJbWt+lTsdBHxXc0L3l5eVlvPe978XU1BSeeeYZGAwGeL1ebisNBgOef/Z6Pfh8PpRKJfh8Pt45bbfbuHbtGiqVCnw+H8LhMGRZ5rhKUmfvzbLWaDQYDAYYDoeo1WrctlIUBZVKhbsA1WqVgzM6nQ7rFoxGI5trDIdDZLNZ6PV6BAIBpFIpmEwmLC4uQqPRIJ1Ow+12o1wuw+fzwWq1wmKxoFwuswDy9OnTvNddq9XQbrd5PJHNZrG7u4vBYIBqtYpPfepT+N3f/V22XBYcLG699VacPn0a0WiUhaY0w9fpdCiVShwkRCeWVquF2dlZFv+ZTCbY7Xa+eV26dIlb+PTv+/0+dDodotEofvSjH8Fut+PWW2/luSoJtWRZRqVSwWg04s6E2WxmsSzlyxsMBthsNr4RA9cd4Witq1qtcpGi1Wqh1WphsVjw+te/Ht/61rcm+ZYLfkb+9b/+15wXQBsANG+/du0ahsMhcrkcPB4PO7q6XC5eiwXArfdcLsc6KuokPPHEE7Db7ajVatzxoq2AcDgMjUaDcrnMXQNJkrhr9fDDD2M8HsNisSAUCkGr1SIej6PRaODkyZPQ6/VotVpYXV1Fv9+H3++HXq+HqqpQVRWlUom1MTMzMxgMBkgmk+wySwUyxSEfZG7YYuDs2bN43eteh1AohEajgVqthqmpKQyHQ16BAq7fcK5evYqFhQUkk0luWbbbbRSLRVaMOp1OfojTA572r4fDIfx+P6+t0AVJ5hO0QkjpW5RuSB++Xq/H1NQU21RS54JeI40AaB2L1NZ0sy2VSnA4HOzeRS1gusCo8qSZFO3fdrtdniWXSiVYrVaEQiH8yq/8Cvx+Px555BF885vfnMwHKPiJefWrX42ZmRkWqQJgkxa6nmh8RW5rqqry9VAsFtkGm4oEKihJQ0N6GupMUWdLkiS+obdaLfYP6HQ6CIfD/J3o9/tcWOh0Oj6pbW5uwmw277vuKfnN6XRiamqKN22oSBiNRjh27Bjcbjc++9nPTvKtF/wM+Hw+nD9/Hrfffjt0Oh0qlQr7UUiShGw2C61Wi0wmg2AwyKuAuVwOTqcTyWSSRbHUHSXfC71ej2AwCK/Xi93dXd5SGA6HuHjxIm9lzc/P8/q4Xq9HPp9HpVJBJpPB0tISi7npnmu1WtFoNDA1NYVyuYy5uTkkEglYrVbuEpjNZlSrVZTLZT5ETk1Nod1us5ttpVLB7OwsZy0cZG7IMcHJkyfxC7/wCzhz5sw+v2ha7SOTE7qxAGCrSqvVyqpTmklRe0mn02E8HqNer7Ma2+FwoFwuIxgM8kN4OByi2WyiUCigVCrBbDbzxUWBL6SCJb8Cj8fDLoV0kqObODm+Wa1W9oynuRedsEjUSCsrpMy2WCy8smM0GtnPW5IkLgLoQqSuwqte9Srcfffd+Lmf+zmcPHlyYp+j4Pnzile8AkeOHOFdflI40/oVFYlUUNLpSafTwe/38wOestxplbVQKHDhWKvVWOBF4tpms8lKbzrF0yyUiuHhcAiTycSrhLQNoNfrAYBv5MPhkAVYACDLMv/9SLhrMpn2FTaqquKWW27BXXfdBY3mhrwdCf4Jrly5gjvuuIM7qeTf3+l0kMlkuEgtlUpIJpOQJAmnTp1CJBLhgjESibB3QDQahcvlwqOPPsq2xiTIJiFhq9UCcD2Ke3Z2Fo8++ihvx7RaLcTjcTaOo2I3HA7DZDJx2FA6nUYikYAsy1hZWYHJZOKRRK/Xw+7uLu68807u8nY6HR7PAdcPgWfPnuUtsj/8wz880PfbG+7bF41G8epXvxonTpzgeSW1hqj9SQ9Y4Lo5xXg8xpUrV3ilhFqZZMNKvtZ086LTPs3y6aZqMBhgtVp5F5Za/+TCRp2EvXMpu93OYwqz2cwKWupe9Ho9NBoNHknQrIteB7Vy6ULbuzbm8/kQCATgcrk4WavVarHSlWa/siyz2IZe/9bWFnw+H9785jdjfn5+Yp+n4Pnx4IMPwmg07rsG9Ho9qtUqqtUqrwuSOJCKQ+B656lUKrHRTy6XQ7Va5Ye9qqrQaDRoNpv8AKYiVKfTodvt7vOEJ88CEoNls1kuKIDrbnGSJLEHPVm9UhFNznL0e2mnnFZpKWDGaDRy8fHAAw9gYWGBv6OCGx+dTodf+ZVf4aLTarWyPoT2/DUaDebm5mC1WuF2u7kzu729zSMmKnj3dlQrlQqKxSL+9m//lruuDocDc3NzmJmZgSzL7BwIXD9AulwuTixUVRWpVAonTpxAr9eDy+XC5uYmhxjZbDacOHECR48eRS6XQyQS4e8bjeco36bT6bB5HI0N6F5O2wW0sniQC9obbkzwnve8hy16FUVBo9FgG0nKq6b5o8FgwOrqKrfI6TREKVe9Xo+ruEKhgMXFRX7g0023XC5jYWEBuVwOOp0O8/PzKBaL8Pl8WFxcRDweRyaTwe23385t/L3zV9oQiMViUFUVMzMz6Pf7fDqjWZjRaEQ8HsfGxgZmZ2fRbrfR6XRYvHXt2jV4PB628iwWi6jX69zVoJsqdR+o+HC5XKyqpS8AzZdJ2LWwsIBf//Vf51mz4MaCdp0jkQhKpRIXg5T9bjabkcvlMDs7y/PJfr8Pt9vNSW2lUglGo5GNtUgspdFoYLfb+ZqikVWn02FdTCQSQSaT4VQ3m80Gq9XKowaa39LvpdVEEnfRyIAKd6PRyD/b5/PxqZAKAPrekAirXq9Do9Hgfe97Hz784Q8jkUgIl80DgslkwmAwYAX/3mLVbrejWCyi0WhgcXERZ86c4bY7eRJ0Oh24XC5epa1UKqhUKvB6vTh9+jTruQqFwr6O2Gg0wvT0NOu2fD4fOp0O66ccDgePis+fP4+lpSWEQiEWBNJ1rdFo0Gq1oKoqHyjJyIuKjX6/D4fDwYZ1e42PALBHB21DHFRuqDJGkiRYLBbMzMzAarVie3sbly9fxm233YbXve51UBQFm5ub6HQ63HrXaDR405vehOnpaQCAy+Xi9bxgMMge1vV6HX/7t3+Ly5cvs4qfVNikMTh37hyeeeYZXikslUrsD9Dr9VCr1ZBKpZBIJFi13Wq1eA2r1+uhUqnA4XBwi5REiSR0nJ6eRjKZ5OQsCsa4/fbbEY/H0ev1EIvF+Etit9uRTCZRq9UwPT3NDotk40m743SzdTgcsNvtWFpaYkX3y1/+cnzwgx+c4Ccr+H9hMpnw53/+55ienuYul8Vi4XEXnZpSqRTOnTvHbVRSUpO965133smjBL/fj8XFRfj9fp7JJhIJdhkkncne+ehgMIDVaoXD4WAfjMFgwLPaVqvFhShZxsZiMZjNZoTD4X1Fr9VqZddP6maR/oDWcFVVhcFggMFg4LjbjY0N/PIv/zLm5uYm+6EInhc0XqK2eqPRQLVa5dGT2WxGJBJhW2BFUWCxWLjLtb6+jk6nA0VR+M9LJBKIxWJcSI7HY973p4MXjbDo/rm7u8sjYRLVkqMgRdevr6/v8wjQarVIJpPY2NhgfwFVVflBT52xXC7HneNCocAOnDSuq1arsFqtXDCTG+dB5IYqBv7Nv/k3cLlc/OB0uVx42ctehnQ6jW9/+9vodDo8d6f5vs/n4/hKu93OlWk6nUYqlYIkSXj66adx4sQJ3H///Th9+jRisRgGgwHvYO/s7GA4HOKBBx6A3W5HIpFApVLhdimtj5BN8JEjR/jm1u/38eSTT6LRaCAej2M0GmFjY4NP6pTG5fF4MDMzg2azCbvdzi5WNpsN2WwWzzzzDLRaLbrdLocs5XI5bG1twePxwO12Q1EUduOi2M9YLMYXK/kfbG1tIZPJQKvVolQq4Ytf/OKBF7fcjPh8PvyX//Jf8OMf/5iL3FarxTe2er0Oj8cDjUaD2dlZuN1ubG1t4fLly+h2u5iZmcHu7i6374vFIqrVKnK5HBeQsiyj3+/v67RVq1XUajX0ej02wspms9x9olFTq9XCxsYG7r77bnb8VFUV9XodjUYDRqMRtVqNH/apVIrHBntDYPR6PWw2G0eLGwwG9vKgDYNmswmn0ynGBAcEvV7PRRutmlLEL4nvVFVFMBjkzS4acZKmixIvSRNGQXGk7RoMBixcpXsmdZUMBgN3wEhIXSqVuE1frVYxGo04WTCdTrO4HACPWkkETomxOp2Oxbn0YCfhdrVaZV3M3pEG5c4YDAbMz8/D6/W+1B/HC8INMSbQ6XT41Kc+xVGqfr+fff/H4zF8Ph8b7lgsFozHYzbxCYVCvD4oyzKazSafnAaDAex2O7fur169in6/j+PHj0On07FlcCaTQafTQbvd5t9bKBRY2LezswNVVXH33XfzKY1EfhSlqdPpMDs7y9GZVNAAYFWszWZDJBJBPB5HtVpFMpmEyWRihS0ptY1GI7egnE4nRqMRjh49ikKhgKmpKVy8eBFXr17lMA8qKs6fPw+Hw8E75dTWCofDsFqt+Iu/+Au8853vFFawNwh0nZHVdT6fh16vh9VqhU6nYy912iYxGo3wer28HpXL5fg6HwwGWFxcZDEpaWYoMyMUCiGZTHLwFoV3NZtNnqGSKyCN3ZxOJ/sOSJKEYrHIBjEkGBwOh4jFYjh79iw/8LVaLXsVkKNhKpVCp9OBx+PZp4FotVqYmppCsVhEKBRCpVLBz//8z8NgMIiAoxsYi8WCV77ylSxQJcfKvRHDNpuNx1fkREhCb9KQSJKEnZ0dAEAwGMTy8jKf3umQBwAzMzO8Xq3X66HX63m7gMaokiRxdky73YbBYOBrO5PJsBCbRhSqqmJ2dha7u7v7tmD2GhwtLCxwl5dGIRStTNbz5HWj1Wpxzz33oNlssjncQeKGKAaA6w5q6XQaPp+P1wc1Gg0SiQS3xhcWFrC1tYXhcMitqWQyCb1eD4fDwSYQu7u7LFjR6/UIhUJ46qmnuKigapCqT6omh8PhvhZ+t9tFIpFg7QElF9KJRpZl6HQ6pNNpbjVZrVYMBgNWnZLrWiQSQSKRQLfbRTgc5j3wbreLtbU1RCIRSJKEZ599FmazGe12e1+ITKFQ4KjlSCQCAFzBVioVbG5uIhAIwGw2Q6/Xo9ls8iYFiWM2Nzfx7//9v8fHPvYxkTk/Yaanp/G6172O7VH3Cv72jsFIE0DxwZlMho2DqF1Pc3haJbTb7WzIRV7tZNRCJ3VqqdKmQD6fh8/n4xAuOhXRhgKZyOw9TamqiiNHjuD06dOc6UEtWvp5dDOn3AO6CXu9XphMJtTrdaTTab5mJUlCNBqFx+N5iT8RwU8C7fqXSiVO/aOMFwA8+6fI+EQigXA4vG9mPxgMeDxmNBr598uyDEVRuANMCbK0Kk5dWeB6YZDJZOB2u1m74HA4AADpdBrBYJA7VuFwmFMJ9+parFYrUqkUPB4PgsEg+8kYDAbE43He9FpYWGB/GkVREI1Gkc1mYbVacezYMZTLZR7THkQmPiYwmUy47777eKWuUqmgXC6z+t/tdqPb7WJlZQXtdnvfzjXduGjGTr+nVCqxVStFrALXCw6n08nCknw+z37sVEXS/KrT6fC8liKEadWPbtZ005yamuIbMv1MrVbLnQNJkvDcc8/xfiqFENFNkeKOdTodFEWByWRCIBBAMBjkeRS1UmmdsV6vYzgcwmazsRdBKBQCAB4ZOBwO3sklC+RoNCpyDG4AjEYjF6ekYaFiklzSqF1PLda//zAejUa8pkpxxBqNhq256RoEwFsr5IVhtVr5gavT6bj1Sgp/EvBJksTdBXJtozZ/v9/n65l+X6vV4utUq9XuW+/tdDrcfq3X68jn83xKdDqdAK6POlqtFqanp3H69OmX+FMRPF9GoxEajQaWlpawvr7Ouii6Z1MnYDwe80OSkv8ikQhmZ2fRaDSg1+tx9epVaLVabG9vc0DcuXPnOGeGYuHJRwAA1tbWEAwG4ff7ceLECfbHSCQSWFtbQzKZBADs7u7i6tWreMc73oFMJoNqtQqfz8eW78PhEJ1OB06nk9fRbTYbotEowuEwJ25Wq1XWZFEqLa3+Go1GpNNpHs8d1IPWxJ8KRqMRL3/5yzneMpfLIRwO8w2K3AB7vR7S6TRcLhfPbujDA8BCpdFoBKvVyp0FWl0ht0KHw4Fms4lms8lil2AwuC+1ikYUdPoi+19VVflLAGBfkUEteSo+SIACXE/uWl9fx2233cY72rTvbbFYWPlK6YrU7iLNAs23bDYbLBbLvvUW8iMAwP89CXZo7JBOp9HpdNh/+5577sGjjz5600RvHjQoLZOyKJrNJovpqFNA3TEy8qFNEBI30UOdVlnJkZOKCrq+6BRF+gEqPgDwTjX5cyiKgl6vx3N76kzQnLRWq7GhEekUUqkUarUabDYbr8fu/WcvZL1N+QkAeEOHvsdarRbtdps1NhcuXHjRPw/BT8b8/Dzuv/9+rK+vw+l0wu/3o91uIxgMsttgq9XigxzlX9C9kTxa/uW//JdYWlrC5uYmrwDSporb7Uan04FOp8PS0hK8Xu8/6Gp1u1224Q4EAlhYWGAtjF6vZ5t6r9eLfD4Pp9O5z4J7OBzixz/+MU6cOAGtVotYLIZQKASz2Yxms8ndhKmpKV6flWWZ/17FYpHXvrvdLvR6PWtrDiIT7wzQ6lOj0eA2DrV6er0ednZ2WIVPJx/6fZ1OB7lcjkMyALBmwGazsTkF3WAuXLjAGe3UVaCYWErHisfjrAqVZRl+v593U8vlMlezJpOJH9jlcpmdBcl0iG7i2WwW9XqdjZLoJNdut1Gr1Thpy2q1Yn19nTsb6XQa6XSacxYkSYLX64XRaEQsFuOf32q1+FSVSqU4Qa7ZbHLKXblcRjweRywWg91ux/vf/37hPTBBjhw5gle84hVwOp37zIOsVis/3GkEQLoQmoXuNfWhuT+ZTQHgZLVqtcqjJo1Gg0wmw54UtNtPa7gUy0oCXKPRyG17u93OvgS0ilgoFDgJbjAYsD4FwL5CnP6hAsTj8bBam0yyaB2SbuqhUIiLVqFtuTEh7YrVakU2m+UikkZSlNGyV2RHwm7qcm5vb6PdbuNb3/oWj3apk9XpdFCtVnnVulQq4Yc//CGazSZvFnS7XRgMBhw/fpyvPxJ4k1DV5XKxjoxWCclsS6vVYnZ2FmazGefOncO1a9ewvb2NJ554ApcvX0atVkOj0eC/G23YxGIxpNNpHueRPiafz/Pm2C233IIHHnhg0h/TT8xEiwG6CVE6WiwWw9zcHFqtFtbW1lAsFuF0OlmQ4XA4cOHCBfZBb7fb3Db3er1YXFyE2WzmmyXt/4/HY8zPz3OCILVeDQYD72qrqoparQar1QqXy4V2u41kMsmtn+XlZeRyOd7pN5lMcLvdvAFABQad6inpsF6vw263IxAI7HNyo6LCYrEgl8tx2taFCxdQLBZZj0A3UXKlo3kXjTBGoxGvjo1GI9hsNly+fHmfpazH48FrX/ta6HQ6duESTBbas6eV0PF4zL4UdPKpVqvY3d1Fu91mO1WKHqZYVbrGBoMBXyfj8ZiLz2w2y0InmsnTA9jj8aDdbrNWgNILaZ5rsViwurrKu9t7O2hWq5VFtzQaoFYutWPpZ3m9Xni9Xi4+QqEQ7HY7z4N3dnZYiJtOp7lbMBgMJv0xCf4RaNxpsVigqioeffRRAOAsFkmSEAwGcerUKRZh0yogJQQuLy+j1Wohn8/v812hw5vH40Gr1WJfl7W1NTZ9oxHx1tYW1tbWeEOFkjtTqRQLCmu1Gv9c2kqg8SsVyACwuLiIubk5LC8vw263o1QqIRaL4eLFi9wJoy413b8pvItEuXs5iD4ZEx0THD16FO973/vw+OOPY2ZmBtPT06xw9ng8PIsnT4Bz587tW1eifea1tTW0221cvnwZR48eRa/XQ7vdZmXrzs4Or5V4PB6USiWoqorjx4+jUqkgFouhUqng1ltvxWAwwNbWFkajEV80NBOr1WpwOp0wGo3Y2dlBPp/nhztVnDqdDv1+H9vb23xT3d3dhdFoZLdCmq/RisrS0hKfEp9++mk+0dGXKxaLYWZmho1i5ubmYDKZuEV75MgRDrFZW1vD/Pw81tbWYDKZMD09DaPRiI2NDXS7Xa5mD2or62aAWvM7Ozvskmmz2XheTi19AGxulc1mcfToUR5f0erq1NQUkskkVldXceuttyIUCqHZbKLdbrOyf3t7m0dR9LOozWo2m7G9vQ2j0YjNzU0sLi7C6/XyaG6vMyEVoeQESlbC3//+9zkkyWaz8fyVfsbm5iYXP/l8nlMUVVVFq9XC1tYWZmZmeDyYTqe5XSy4sVhcXMTp06eh0WgQjUb5c6Xx7F4L9r0W8ZIkweVyceIrCbCnp6c5NhgAF7G0Fkj6GbomKb/AZDKxcRwZAyWTSb5m8vk8FwN0XZKgm7QI5BIbCAR43ErZMqPRiLMJNBoNwuEwNjY2MB6PeVWS/l4kcCSHTzLgOmhMfExAF1Mul+NVksXFRdhsNly5cgUXL17EYDDA3XffDZfLhfn5eRgMBuzu7mJ3dxcGgwG5XI5DMC5cuICtrS04nU4cO3aMTzHT09Nwu937Zu8U8JLP5xEMBtHr9aAoCmZnZzE1NcX2rlarFa1WCw6HA6lUij98MsAIhULY3t7mm6fL5UIkEsH8/DympqbgcrmwuLi4LwmLChoaP6RSKSiKwuIVAGwEYzKZuDVFr4NUteRlT5XuiRMnMB6PMTs7yw+Gzc1N7rJUq1VcvXoV/+7f/Tv80i/90oQ//cMJtdEzmQw/MIvFIiqVCq9CmUwmOJ1OzM3N8UxyY2MDlUpl3wZMPB5Hs9lEJBJBuVzm0w4JR6kTdubMGY5qLZVK7P5GI7TBYACn08krVXu7W91ul8273G43PB4PX/+j0QhHjhzhsRtl19PcNhQK8bqrLMsol8twOp1YWFjA3NwcFhcX8c//+T/nVvLOzg4kScJoNILP58Ov/uqvTvjTEuxldnYWJ06c4LFlr9fD3NwcNBoNX1PUxUylUqhWqzAYDHA6nbxOOhgMUCwWWf1PD3b6Xuy1awfAzrDULaKVc1r1o2udLLzNZjPrbegARSvfpMGi8Vu324XH4+F/VygUWABI2RwkiCXdDhUAdrudO3Sk46Fny0H0y5hoZ8BgMCAYDPIFQv4BVLWZTCYUCgUEg0E8/vjjsNlsWFtb47Y7GfdEo1GePZFZEHUUaPba7XZhs9kwPz+PVquFXC7HjoLVapUtfMPhMAqFAhusWK1WvrDPnj2LjY0NXrei0xCNF7rdLkqlEsdiAteFjcViEe12G2fPnsXOzg58Ph/cbjeCwSBcLhfMZjN2dnbgcrkwHA7h9XpRqVTYYREAX2jFYhFra2uw2WwsyMnlcsjlcrjjjjtgMpl4Z5v+fTQaRa/Xw+XLl9kymQyTBC8t9913H06ePInBYMCf4dbWFt/sqDjYu6qay+U4zZD8J8hbggpBp9OJXC4Ho9EIh8PBpkG05loul5FIJFi0SnNQGkn0ej2EQiFeYXU6nfxdWFxcZBGhw+Fg0yGKlSUrZdKppNNp2Gw2uFwuJBIJRKNR1Go1zM7OIp1OYzAYIJVKcQgYRX7TFkS9XofZbIbT6RRR3DcY1NEpFosAwG6oyWQSsViMu7q0/UKxw5FIhOf2FANM99ypqSlUq1VotVqUy2VIksQjL9JrUYueDlJarRaKoqDT6bDXAJmujcdjBINBhMNhDt3qdrvIZDJc4NL2C4WAUTeZkjvJdltVVe7ukk6CxsF0KKTVc3I9pMyYg8bEioHTp0/jNa95DXK5HLrdLpv/uN1uviFS64nCT/aK7yjkIhQKIR6PIxQKIZvN/oMWkk6nYxMfmofuPTmRf7/b7Ua73UY8HuefT7aTer0eLpeLM7PpRE9zpH6/j1KpxGITah/RyiCFtqiqCofDgUAgwJ4IJFSkfVibzYZCocBq7FarBY/Hg1AohHK5zKmF9BppN512W3d3d2E2m1Eul1n5Sm1lSk6kdZ2D7KN9UKF5ON0IKQSINk8oQdPtdvOKLa0+Adf39WlmSZ8/2ahSpgdFBQ8GA2QyGTidTmxtbfF1A4DXvIxGI/u/DwYDqKqK4XDIpkVTU1P7thTI24IEYXSTpg4aXYc0CqGNlWaziVqtxqtbZHzUbrf5evR6vfz9JJEiFfOCyUO5Lj6fD61WC9lsdl+Yj9/v53Y8GQONRiNsbW3h6NGj2NnZQavV4hXy+fl5OBwODlWjjSfqFlBokNfrRTabZV8Aeui6XC5oNBoUCgWcPHkSnU6H11VptDY1NcWvw+/38xo5+a+QkR09vGdnZ1EqlbhwmJ2dxcbGBvx+/z/4e5EIV1VVNBoN/jVyWTSZTOyzcRCY2JggFArxSYFuUHudn4bDIQwGAwKBAOehd7tdeL1e2O12nqdXq9Xrf5H/q1qlZCxaa6L1Q2rD0noTFRs0sy2VSmi1WkilUvwB0n+311vb4/HwzJTEh2RlSasllLFNCnGv14vRaMQXDsUhU1FTKpXQbDaxsrLC0cRut5u94Hd2dvgiI2U3FSF0wqTIZTLLoLjjRqOxL+6T3OOoNSx4aSFvCrrWqWBttVrcbqRTOJ1y9iYU0qiJ/jetmLZaLZ7v07x1OBzC6XTy9UKhMvQApu4QXbP9fh8ulwtWq5X9Aajjlc1meZZLM2EKGQKwLwI5EAjAbrdzWFKv10M2m923+kumYTqdjn0MaB2XihYSRgpuDB544AHMzs5iZ2eHTYX2ml/l83kA1+PcScg9GAzw2te+dl8gkUajwcLCAotOZ2dnuaCkblWlUmHzuEceeQTZbBaVSgUmk4m3FchYTqfTcaeCBOlTU1NsBU9rrxQHXygUUCgUWKRNHjBkGKcoCgKBANLpNJxOJwKBAOr1OlZXV7lrTNcrAORyOczNzcFms6FcLuPSpUsYjUb4rd/6rYl8Tj8tEysGyEZ1b4IZiY5oZEAWvqqqIhAIcHGw1wGw0+mwdwDFF9PNlmaYJB4k22CaTdGaVq/X4xM8nfZpnkQ3u9FoxMFB1B6yWCwwmUwYj8cckET72vRnWK1W1hwA109kW1tb7FVAyly62KlF5XK5WNCSTqexu7vLAhW6EQPgdip9kWjFjFpr9XodvV6Pw2/I42Bra0u0YCfA3hhrsssGwC1ROtFTsUidBNqQobkrFZrkx0EPdlrPogc1WWGbTCb+2fSzqOjIZDIwGAz7Ht7UgaJVx0KhwMZapBin65Dmp/Q9om6aVquFy+XiJMa9a8HkC6LRaHheTLNd4O8sZw+qgcvNCG0nUSfzta99LYdr6fV6BINB1Ot1XLt2DdVqdZ99eiqVwtraGjtM0loprVKXSiVotVrejmk0Gjh16hQuXrzI3TG6Jilq+LnnnsPGxgZKpRLi8TjS6TQHy8ViMV7dzufzmJmZYVM66grTvTQSiWB9fZ2dCoHrSaKhUAjf+MY3OA2X/v7FYhGbm5vcmaMRGf1jsVh4LfIgMbFioFQqoVgschuHTh0U8kCnDNrhpCpNkiRUKhXk83luO9Ip3+PxsLgEAIs6SqUSFhcXWSjicrkQDodZPJjNZnl+L8syV4j5fJ4NNCiUhSwz97ZMzWYzz2NJZ0C+68ViEeVyGaPRCGfOnOGZGJnM0PxJr9djeXmZc7RpncXpdLLittFoIJ/PQ6vV8t/dYrGwD7fD4UAwGAQA7m7QDrrRaGQXw9FohO985zvC0GUCUPvQZDLx2idFUdPJeK8dMBW+dNMdDocol8ts9OPxeFCv1/mBTXaudN3Tr5EISlEUFlmRb0W5XOaHMK06kjsmjSGMRiN38GgUYTabEQgEoNfrkU6nodFoUK1Wkc/nOfaVhK3UBqYOGQnABoMBW8nS6yLNkKqq3PkTTB7KxLhy5QqazSaeeOIJjEYjpNNpaLVaOBwO/gwXFhb42qARLxnAVSqVfVbwTqcTLpcLbrcb4XAY09PT7EA5PT3NZnEulwudToe3bvL5PH936Noiy2KK7Ha5XHA6nXjkkUe4W9btdpFMJvHNb34TtVoN2WwWZrOZ9QVUKOv1en6mLCwswOVyscaMtsoAYH19HefPn+fnEh3oDtKIAJigZsBms8FoNGJ1dRVerxfxeByLi4scjkIzHVpFor1OeoiTU9vi4iLi8Th0Oh3K5TK2t7dx8uRJ5PN5JBIJnD59GgaDAevr6xwklEql2MmK5jobGxtYXl7m1Sk6vZFpz+rqKgDwTYxm78VikQ0ustks9Ho91tbWuIJtNBqslP7a174GALjzzju5HUaQaRF1JGhGRhbIqVQKt99+O5566ik+4ZH3O4WFXLt2jSNsgetK81qthmg0yq+HTpAHOWrzIJNKpRCJRPYpnYPBIGKxGPtn0FqhJElYX1+H2WxGMBiE2WzmMCOz2cw7+ZlMhm+a1EGgACwiEomg0WjsM86icYLT6eTAIOD6NZ5IJLgYnp2dxfLyMnfyvF4vCoUCcrkct2FHoxGazSZ8Ph/nKFQqFQyHQ4TDYV6RBMBGYrQiq9Fo+PVT+pyiKAiFQsIT4wZir3KfOjY06iGPDOq80v2l1WpBURQ2/LHZbNBoNCgWi7wNdfHiRd4So84UjVD9fj8feKibQKMqsj0eDoeYn5+HyWRiXRfpt8jbQlVV7kxR95Q6xeRSSJb4VBBQ4UyaiGQyyc8e8rhRFIWD7sjgiHJp/r4D543OxIoB2oX2+Xzsy09VI8W2Uh5BIBDAtWvXYDAY2PrS4/FgNBrh6tWryGazuHDhApaXl/kGSO18imcly15JkrC5uQmj0YhoNIqf//mfR6lUQiKRwMbGBkf/ajQabsXSLHU0GqHVavHcvVKpsBtWOBxGOBzGhQsX4PV6ed+WxCm1Wg12ux2XL19Gu93G8vIy/H4/gsEgvF4vJyGS1/v09DQ6nQ6HIB07dozXC+k0WS6Xkc1meU5LN+udnR3uFoRCIbZ5npmZ4Ru4iDSeDHQ9kdtep9PBlStX+PpJJpOsa0kmkyxGJWMWr9eLZrPJYr+LFy9yVgW1V1VVhVar5euTLKwVRdm3MkijgfF4DI/HA7/fj+3tbWi1WkxPT0NRFBQKBfbSIP0Add5oTFEqleBwOGAwGDAajfjaop9BepfRaIR2uw2/389/Fq2KAeCNgtnZWdTrdezu7vI4TTBZzp49y+19Wh+lrhSFt9F+Pe38kxCURgHdbpdHWcD10etewd/ePJjhcAifz8eHLpr3UweJQrdIZ0NjqHa7zboTOsy1Wi34/f59Hgg0IqD8DHLyBLDPWIgKBtLckDcBHeSGwyHsdjvbipNNOOVwHCQmVgycO3cOjUYDv/qrv4per8cn/u3tbSiKwidyv9+PlZUVHD9+HFqtFqurq7Db7dy+oRzpQCCAZDKJ6elpFItFNJtNNklZWlrCxsYGq+7vvPNOHgNcvXqVvf5nZ2dhsVig0+lYdJLNZuH1evHQQw/hta99LRRF4c7F7OwsarUaHnvsMVbanjhxgl/X3uzscDgMVVVx9uxZNBoNSJKETCaDZDIJr9eLXC7HRke0nUD54NFolB3pHnjgAZ6HSZIEq9XKClt6j+r1OpxOJ4vHyIt7c3MTw+EQH/zgB5FIJCb10R9q3G43FhYWMBwOkclk2HhHkiQ+edDM3uPx4Nq1a1heXmYLV3LtczqdMJlMnHFA66S0RSLLMpxOJ1+L0WgULpeL3S673S77cVBY1uXLl9k8q16v8wyXEjunp6fZ0pjCrnq9HsxmM6LRKC5duoRisbhvJavb7eJVr3oVt5SbzSav0FIRnUqlOFgmlUqxJiEej+Ov//qvJ/lxCf4vt912G6fHUldyrzeAJEn7Oqr9fp81IXq9HtlsljVclDprNpvZKEir1bJolDbFaPUPuC6crdfrPF4gp81yucwHNdqYIpEsdTIoPZHyA+hhTl0I8vmga5o6BxQRTiJF6ubR379SqbCGx+FwoNvtYm5uDgDY2Oj222/H008/PZkP7SdkYsUAXTBarRYLCwvY3t6Gx+NBuVzm1D4y/pFlGWtra2w6QYITymlvt9tclZGlpU6nQzQaxdLSEuLxOMrlMqamplAoFPYJs8gG1WQyIRqNYmVlBS6Xi33YqcV14sQJpNNpPvnQTdVisWBxcRH1ep2rUroQ97blG40Gtre3+URHF3E0GsV4PMapU6ewurrKFxt5s9OJKpPJYGFhgatUEorRKTMQCGB9fR3j8RinT59mhS0VQJTlTScyMSaYDJQ7QScXcnIjoxZS2Ws0GszMzPBmSiaTQTgc5i0EWoMtFApsJkVxx2QRnEqlOGvAarWiVCrx946sjelU1u/3kcvl2KGQHAaPHj3K7V26OdOJnsxkSJFNpizUeaK/y7lz53hNlnbPqZVKvgQmkwk+n4/1Ep1Oh02ZBJPH5/PxeijluVD3Ebh+mqbVO3qoNptNhEIhWCwW7OzscMdqbxu+1Wrxam2/32evClojTyQS8Hg87HJIAlbaniHzNkVRuOAgAa7RaOQwN8o0oLEUba1Vq1UezwLgERyNuUg0SPfLer3OxXA8HofT6USn0+FnwfLyMprNJq5duwZJkvDGN77xwBQDE3UgJCEdXRCkwiShYK1WQ61W47RCOi2RIQv5nms0Gvh8Pp59UrVGyYRkOLR3PkpKT1JL0+mKRItarZYvSHIq9Hq98Pl8LFqh7sHeGFkA+6wo9zpiud1upFIpdr8iUSDpIeiio4KF/AUKhQIURUEsFkMul0O/3+dsBZ1Ox0YwgUCAfQdarRbsdjump6fZFSsSieBP//RPUavVJvJ5C7AvPprai91uF81mk+fjsizzBkGlUuHTPYlsi8UiUqkUF3q0WkpFHhWLAHhDgVTS1L6k0xUVGzReIPErrT3STZIS4OgURyc0apeS4Qu9VjJ6AcBeIeSDUKvV9r1eh8PBbnZ0KqO4ZsGNAemjarUa6vU6jy/7/T7nokiShMFggFwuh7W1NVgsFn64U0eJPAT2joZoc+bChQuIx+NsHtdsNrG9vQ3gerQ1WbzTZhQAzM3NoVgssibK7XbzCrUsy7h69SqA6x0nKgBog4zWsOkeSt1YyoCxWq1czFDhY7PZ+NnU6XT48EbfX4o7pojwgzQqmKgDYaVSwVNPPYXTp0/z/nSn0wEAfqMBsPEEBbPQzEdRFN7LB8CzK9rbJ1MTMlihiGH6NXoQA9d3YylKluZclAw4GAxQq9UQDAYhyzJyuRzbsZITGyljaX2Fbvp0QiJPAvrzaQYmSRKHyNBsn4qL0WjEEbQ2m43bugB4D1yv17NPAlkZkwUoqXs1Gg1yuRyefvppPPTQQwfSHetmg66PVquFUqnEWhgyraIEtL3zeQBsbEIrTLTBEolEYDAYeIyg1Wp5zZacAmlOSpoEMgCidVrSAHS7Xc7HINMr8sagwoM6A2QOND09zd0w+jl7V8IowIuKFWB/mIuiKOzeSf9OeAzcOBSLRRaxkhV6KpWCwWDAkSNHkM/nWTjtdDpx8uRJaLVaPnyVSqV9n3273Yaqqnjuuefg8XgwGAwQiUT4HlkqlbCxsQGPxwMAvHFGQj2j0cgdNqvVimQyiZMnT6Lb7SKXy6FeryOZTO7L6BgOh7w5QB1hs9nMmy705wPX79s2mw1TU1OIxWIolUp8PZbLZZRKJQDgbgbdq8nvgLQ5brf7pf6ofmomWgxkMhl84xvfwIkTJ7jCAsCqVDqlU7QrCfFoPYvig2k+JUkSn6SpUqPTB51iKLlqr7iEKkPqItDMlkSEe4UtdEOrVqssgqQWFjmo0Q42/VwyASqVSvzgpiAlUsiS7SZtA9Br6/f78Pv9kCSJxYjkmUDFEdlr1ut1RKNR7O7u8pei2+3C4XDgBz/4AT72sY9N8uMWAEgmkwiHwyyso9OV3W5n98vxeMw+Fh6Ph82mSJ2s0+l4PTGbzWJubg6zs7OoVCr851ERQC1+MlmhUUK9XufREa0Bjsdj3v+nffJut8u/b2dnh8cGdLPcGytLv0ZFCK3hJpNJfi10YiM3ORprkL6ABF5U9AtuDCgDha4bs9mMEydOcLCUoih8X6Z7Ed2zySKbbK/JxZUi4o8ePYpEIoFGo8H3QXIipOuFfjaNCCRJQjgcxtbWFiKRCFRVZfErjZ9JnC7LMvL5PKLRKHK5HB8WyWWWChV6RlCXN5FIQJZl7uRS3gFFw5PZnCRJyOfzPFLYG/FNwvWDwESLAQB8Qs9kMtxOJz+AdDrN5hDz8/MArldiJIwqFosYjUYIBAJIJBKYmprCcDjE0tISt302NzdhMplgNpvx0EMP4fTp0zh79izfjPe6rUmShFQqhXA4DL/fj2KxiFgshoWFBfj9frYDJhENrUfSTYz2/PP5PAqFAgthyNSiUChwVkAkEuHwDDKroFFCoVDAwsICBoMBstksi3KWlpawsrLCYUUGgwGdTge5XI6LlGQyyacs6hzU63VRCNwgPPbYYzAajbjrrrvYwtfn88Fms+H06dNIJpN8w6TRQKVS4XXAcrkMnU4Hi8XC4lkqYklPQIp/GhWQU5zFYoGiKNy6bDQa3OWy2WxsFUvXLfkApNNpjMdj7jBQwBHpcm677TY8+eSTXKxSkUEFAHUr6Abcbrdhs9m4MAkGg0in01wgVKvVfYcDweShLpEkSawrocArst+lLZVqtYpyucwnctJOZTIZfqCSxkmv1/OBhSyIqTtG4wIKawuFQqwnITfL+fl5fjDTyZ1yC8hvAwBvmZE3gMVigc/nY1EidQ7oXm6z2RAIBDiplvw6aDRMzokrKysYj8c4c+YMj3E1Gg0b1B2kUdfES+9KpYI//uM/xi//8i9jdXUVw+EQOzs7yGazUBQFU1NTcDgcfFq22Wyo1WpotVpwu92ci12r1ZDP5znZzWKx4GUvexle97rXIR6PQ6/X44EHHkA0GkU+n8fW1hbq9TpcLhcsFguuXr2KRCIBv98PrVaLy5cv4+LFi7zHv7a2hmg0ilKphOPHj/NM12QyYWNjg8Uo1N4cj8fwer2Ynp5mK9YHH3wQd9xxB1KpFC5fvoxYLIZWq8VttWq1ikuXLqHRaGBtbQ2VSoVDQWiutry8jEgkAuDvTohUeEiSxD7Z/X4fNpsN586dw6tf/eoJf8qCvdCpiARXtLJKc1KyAQ4GgxiPx4hEImi321hdXWUzk3q9jnA4zE5npVKJDU98Ph+mp6dZ0V+tVuHxePgUl81m99kCk2aAVN40YnI4HCgWi7zPHYlEoCgK3G43n/5zuRx2dnZw5swZ3hQgh7h0Oo16vY6lpSVEo1EMh0P4/X6+UTqdTvh8Pt6KGQ6HuHr1KnZ3d/HII4/gu9/97qQ/KsH/hdr6dOpvNBqQZRlzc3Pw+XxIpVJc9On1ekxNTXGoTz6fh06nw9zcHCKRCHq9HtbX19Fut7GwsID19XUeXZGmpd1uI5FI8GGLDNpIj0Upg1R0ktcMdZVIQH369GlIkoRmswlVVREMBjmdM5FIoFAo4OjRo1xA0N+PzN0oSM5sNiMWiyGTyUCn08Hr9UJRlH0Ftsfjgd1uZwMl0p0dFG6I0ns8HmNlZQWnTp1iT2i9Xg9VVdkhaq/jWqVS4fl/o9GA0WjE7u4ulpeXYbFYsLq6CrPZzK3GV73qVVhZWUEwGES1WuV951arhc3NTXYe1Ov1OHLkCHccwuEwIpEIJElCLpfjVZILFy7wzZRaWuPxmJ21yDhmd3cXq6urUBQFlUqFq0u/34/p6Wn4fD7+ApEzoc/n49MdfQlkWcbx48fxgx/8AHfddRd3Cmq1Gra3t1EqlXDbbbfhqaeeAgCEw2FkMhl89rOfxTe/+c0Jf7qCv893v/tdrK+v4/Wvfz0Xj2QGROI8Eg7SqX9hYQEzMzPcISChFoV8kfCODLXq9TpvxlgsFiwtLWF9fZ07UOSWNjs7i/Pnz2NmZob94skvIJVK8SyVNnjC4TDfsEmcCABPPvkkXC4Xr2tRoUGxtufPn+cwMdpyoVEGhYjpdDr4/X7W/aysrEzyYxLsgQ46Wq2W9U7kL0EOq+QPQGOAqakpHnfSqdpkMrHnAD18KRxrr0DPbDbzxgAFFtEhj1Zn6b5MnQqPx8PbLuPxGM1mkw9Uzz77LH+3aPxLo7idnR3WflGBDoAN4Mhjg/QPZrOZ7/HkReNwOLhjQQZLGo0G6XR6wp/c8+eGKAYGgwF+4zd+Ax//+Mfxgx/8AFarFS6XC61WC81mE5lMBsVikT8cMjNpNBps4hMMBjE9PY1YLMZqbPrvSQW9srKCpaUlAOCc+Gw2i0QigTvvvBNra2uIxWJsZNFoNHDt2jXWEGQyGTgcDgyHQ6TTaZRKJQQCAeh0Ovh8PtRqNV4JpK0BmpWR2JAulNXVVZTLZczMzPCuuc/nw6VLl1h9TZ0Qstuk1Ufg77K+qd21u7uLP/qjP+LKmL6cJEAT3Fhsb2/j61//On7/938f+Xyevdx9Ph/bB1MWwOzsLIdt7RWukqqZ2usU1EVrp7TyWiqVkEqlWCtDIyVq98/OzsJsNmNtbY3dMoHrLqHUkfN6vWxbbLfbeXOGignyx9je3mYdAmlsKKq5Xq+z4FGWZRQKBaTTaS6qSZD21a9+lVXgghsD0pwAf2cVT3N0rVaLcDjMficA2PqXhKOkPyFhuMVi4fVaGr0CYGMg4PqGCj2IJUlifZYsy7BYLDxKczqdMJvNvOECgDUrqqrCZrMhnU7DaDSyWyZlJIxGI/ZHMJlMfJon/ZZGo8H29jZuueUWKIrCWi9aVyTfBLPZjEwmw0UuFUS0bnsQuCGKAeB65fknf/InePDBBzlAhVqOfr+fCwKynKQPjkwkyLFsMBggGo1yXjsFHAHXfd7pg6ZWq9lsxvHjxwFcv/hILEixrXv3uslqs9vtwufzcRVMiW3FYpHDVvL5PM+istksq2KbzSY0Gg2f8OgkRBexzWbjL5TBYEA8HsdHPvIRmEwmVmYDf1cM0Guk90BwMCCHwY9//ON4xzvegVAoxK1+MnGhlSk6jVA6Ie10k8amWq1CVVW2Ji6VSnxqoa0DClqhbhltKjgcDmxvb+8T75H6n9zmqItAN2DawLFarYjFYuh0OrBarSgUCvvy3mnbp9Pp8FYLiQ+pIKhUKqx9sFqt+NKXvoTNzc0DNWs9DJDyvt/vo1KpcBeHNAQUPkWze/IIoFwUl8uFeDyO3d1dvl4p14CyNWjNmzpfer0exWKR7dXpcEcn+73/P3kLUAImrZ8Ph0Pkcjk+eFFRAlw/SBWLRR7D7dW7mEwmPt2TDoAEshaLhUcPe1cLs9ks+v0+eyGQyPegcMMUAwCwurqKhYUFPlUA4NZUvV5ni2GKNqU1FHK2IhEiVW3UFqKTFs3S2+02z6ioRWk0Grm1RJaxpEqlGyQFUJBWgP57qv56vR7vupJ/Agm7SJxCATIUrEGtpU6nA7vdjq9//euc6U6WsleuXJnkxyJ4kej3+1hZWcG3v/1tvOMd7+A10r2Z6QB4f9toNLIXPBUMdDojgSBds3vTCWlkRrN8KlKpLUrFAZmvmM1mWCwWLozJmMVgMHDhSv+OjIVoA4K+RxS+tTcmmf7dcDhEo9HgmzKtcz300EPY2Njg/y24caAAOVrppoRXsonP5/Pwer1sxUujpng8zit6LpeLcyloFv/II4/gTW96EyRJ4tGDVqtFJBJBKpXicXAqleJrmvQtNpuNu7Z07VUqFd7zpy5wNptFr9djMSF1zy5fvsxaB51Oh0KhgFKpxGm05GjodDo5FIn+DDqUVSoV+P1+ZLNZ2Gw2AOA1Q6/Xi0wm81J/VD81N1QxAFwvCI4fPw5FUdBoNNg1am9rk04rZPhDN6K9D3idTsdtpkqlArvdjlwuxzcl+lCr1SpKpRJXgtQaohnsYDBAr9fDaDTCaDRi+0qacZK/O6XFAWAhyd4UK6qYaSWSdlJTqRTMZjMnxX3ve987UEYVgp+N0WiExx57DJFIBNPT07BarVzgUlt0MBhwFHapVEK/3+cYbRL90Ulqb7gV7UbTr1GYFzlk7rVlpdOQRqPhPW4KeqHZql6v5+8FGSW53W5++FssFhgMhn2nM7qWSahIkeX06yRyvHDhAh5//HHhgXGDQvdY0lMtLS0hlUrxFsDy8jIKhQLHWZMjLADecqKHrqIo8Hg8fOKm4nN3dxfD4RAOhwORSIRzNagTvFerQtc1dY9p75+0KmTMNj09jWeffZZ9BWi8a7PZeNuBng1arZZ1B5RMuLa2hqmpKRYOkobGbrfzwa/VauHWW29lgyTqqNEI7KBwwxUDH/7wh/Hbv/3buO2227jVY7FY4HA4cO3aNSiKwgKjXC6H5eXlfV7XwPWWFolKOp0Otra2cPr0aZRKJZ4VkQuayWRiH2kAvDLjcrlgMpmQyWSQSqWwsbGBW265hStXAKxm3dstoPAMapPuNYGhIsRkMqFer+PChQt47LHHJvZeC24cvvjFL+I973kPnE4nVFXl4paMfWZmZtjBj8x/aE2Kxl1UMFAxSi1PKiYAsBshmQpRIUvdMCoCKEGOAmPy+Tw8Hg8/FKhDQOMLmv+SlTKNBchldK+vO4mDFUVha+4vfvGLk3z7Bf8EZPlOrpRU3AHX2+0bGxusuu/1ehy3Tj4Bs7Oz2Nra4s5vIpFAs9nEvffei8FggN3dXe6kUmrh6uoqarUawuEwAOxbQ3S5XCgWi7xBlU6nsbu7C4PBwNdcKBQCgH3R9IqioFarIZPJwGq18gFTlmWYTCY888wz6PV6mJqaQrfb5c2t5eVlXL16lb0EyMtDURScPXsW6+vr/NqoyA4EAgcqaOuGKwYA4KMf/Sjuu+8+vPWtb8Xx48dRLBZ5NzWdTsPv98NoNCIWi2FnZwcejwfZbBYWi4WLAJop0b70+fPnceedd2J1dZVbNxR2MRwO4fV6sb6+zg9wEoDQ7n+xWMT09DQKhQKmp6fZLz6RSPCf0W63MTMzs29H3OPx4GUvexl++MMfwuFw4Ny5c/j0pz+NbDY74XdZcKPxyU9+EgDwxje+Effeey/PzWlEtbOzg+FwyCuHW1tbsNls8Pl8KJVK3C0gu2lFUXjr5NKlS5idneWTGImyaKxAHgB7R1a0HUDdOdpgIHMZ8nAnIaJGo8H6+jpOnjwJq9WKfD4Pu93ObnEAeCed9tYLhQL+8A//cDJvuOB5o6oqd5TISIeEc6VSCXNzcygUCshmsxygdeXKFY61ptyAYDDIWStbW1s4c+YMzGYzZmZmEIvFsL6+DlmWMTU1hXw+z8Fv9Xqd02CpQ0XZAeRfMD09zYZuZrMZ8Xgco9EIDz/8MI4dOwaPx8PzfgBsa7y2tsaj3ZMnT3Jg0s7ODrxeLxqNBo86SLtmsVgQDofRbrdx7tw51g2QsJaKIFEMvAD8n//zf5DL5fC7v/u7kCQJKysrvGLVbrehKAqmp6fx2GOPcQLcW97yFuTzeaiqCgCsPB2NRnA6nVhfX+c9VwA8w6QPny7UdrvNrSg6+c/Pz6Pb7XLbiTy2abVQr9dja2sL2WyWBVS1Wo0FVjqdDm9605sm94YKDgzf+MY38I1vfAPAdRHpBz/4QT4tORwOzpKnbYF8Ps+CVGrF0ylre3ubRbI0Asjn8+j1enz9UnjV1NQUdnd3WRDY7XZRKBQ4s2B1dRUnT55k7wKa/VLUrKIoeOqpp7C1tYVoNMors06nE+FwGKVSCdlsFrlcDlarFdvb2/jKV74ywXda8HwhjwgSxOXzeQQCAV6l83q97Iqq0+l4w4t0L7FYDHq9np0Fg8Egrly5glwux/dYq9XKZkQXL15EOBzmPBeDwcCt/L0BRWRnTyMt0tFQsix1y/R6PZLJJHsNmEwm5PN5HhGbTCZcuHABdrud9V5arRbpdBoajQbFYpFH1D6fDzqdDru7u7BarRwodvnyZQSDQU67TaVS+N73vjfJj+0n4oYtBgDg2Wefxe/8zu/gD/7gD6DVahGNRvcJN7RaLe6//36YzWaMRiM899xzWFpawu7uLiqVCiKRCI4cOcLGQMFgEB6Ph9XTJDBUVRUXLlxghWw0GmUVN91Ur127xrMosjwmhXa1WuVWbDAYZKV2tVrlXezPfOYzE343BQeRXq+H//gf/yP/73/1r/4VC7VoVzudTu9T9NM8tFwuswKbooVJEU2jtU6ng9XVVRw9ehTxeBxzc3NIpVKw2WzcCRuNRtje3sbU1BR/J2i0YDQa+bu1vb2N+fl5RKNR6HQ6lEolGI1GbG1tod/vYzgc4nvf+x77t4u114MDdVFJLEpjTxLWkVOfwWBggTaNqWhF3OPx8DiJriHq4JKei+7v5Hi5srLCoXQ0q9doNLyeSGvoe9NhyRRIo9GgVCpxRgDZdVNSptVq5Y0zSpOlDhl5B5A/DCXJjsdjtrCna9zn83GeDI3RNBoN/96Dwg1dDIzHY2SzWfzxH/8xPvrRj3JbSpZlNmkBgMcffxypVAq/8Au/gHK5zO5mJGQhox86lYTDYY7PLJfL+1b/FEVBMpnkbQWfz8dtUb/fz7nymUwGbrcbwWCQtwP2mgp1u1088sgj+OpXv8qrJgLBT8PewJ7Pfe5zrKqmVdd3v/vdnHdAnQEaj7lcLhQKBfT7fVitVrYaBq4HrsiyDK/Xi1wuh5mZGaTTaRSLRfbSqFarmJ2dRT6fZ/Ffo9FgfwNFUTA3N4cPfvCDvCtONsJ086Sim0YWIj774HH58mUOVSPXPTKPohHC3nwL0lCRyZuqqlzAktZgb8EAgFcMyWeF8mEqlQq8Xi9UVeWHLgnDKaDL7Xaj0WiwURHFF5N3B6UQ0iYLpcJmMhn+GVNTU9jc3GRDORLFUod4b1YGpWqSFqbVanGRTVtnB0k8CNzgxQAAni995CMfwX/4D/+BIzSNRiOi0ShkWUa9Xke5XMYzzzyDxcVF3vunkAqymtzd3WW/aMoZsFqtPOchISCpRGVZRrPZ5J1tEsZ0Oh2+2OgiIOc32sP9wQ9+gL/+678+UJWh4Mbn78dPazQafPGLX2RHtl6vh1e+8pU4efIkC2mr1SpvHOw1dbHZbNwpIEMs6ja43e596W4ejwef//zn0e/3990I/+qv/gqZTAb5fH4Sb4fgJeKZZ57heHl6MJKY2mazsU6KNqdo9Y+6RtPT00gmk3z9ms1mTE9Pc0FAq98ej4dXbMvlMtxuNzKZDHciyMtgPB6zfqvX6/H2FkEiWEpOzOVy8Pv9vI1DJkXtdhu5XA7VahVer5cf4IqisK9LIBDgCOO9wlsSN5Kd915Tpr2puweFG74YAK53CJ555hl8+ctfxqlTp+D1enkuT+1K8vCnREFaUTEajVz5VatVLCwsYDwes6XmaDTC7Owsut0uFwp721wkXqFqFACvx/T7fcRiMRw9epTXY773ve9hOBzi2WefRSKRmPA7J7jZGY1G/8C2V5IkbG5u7ov0pt1qchgk4yKr1YpKpcLx2X6/H71eDxsbG0ilUrxaqNVq8dxzz/HpnxBOgYcHGguRNTCt5ZGIr9fr8bVFjpOZTAbHjx+Hw+Fgozfy0njNa16DfD6PTCaDeDzO+/0WiwUul4s1JrQW2+l0WJeg0Wjg9Xq560TCPgrxouTBZrOJ8XiMxcVF1sOQVwJ1HAqFAhRFQSwWg0ajgdPphNvtZl2Ax+PB7u4uIpEIcrkcO8N6vV40m01On7127RqOHDkCWZaxtbWFv/qrv5r0R/YTcSCKAeJ//a//hXa7jXvvvZdTrWjlhVzNdDodh/aQmITGCgAQjUbZeIUqUr/fj1wux21N0gaQbwEladVqNVZRk9CQIl/tdjtWV1fxne98h9cUBYJJcOXKlX9gVBUKhXiWSVax5AufTCZhNpt5PFapVPDss8+KB71gHzSWItMpcoE9d+4cIpEIt/VphZrWUgEgHo+jUCiwdTAlHtI6otfrZWtgip33er1YXV1FJBJBpVLBaDRiHUw4HGYLaxp/ORwOLnLpWg+Hw8jlcpyGS2LvWq2GWq2GhYUFtkuuVCq8KdBut3Hx4kV+7XTYtNvt7MQ4Ho8hyzJSqRQXELSpQK63B4kDVQwAwFe+8hWMx2O8+tWvRiQS4TCXWq3Gq060RaDValEoFOB2u9HpdBAOhzl/Op1OsyixUCig2Wxie3sbVqsVp0+fhk6nQz6fZ+fDzc1NpNNpHDlyBE6nE8ViEV6vFz6fD1tbW2g0Gvjwhz8sRFGCG5Ivf/nLz+u/++EPf/jivhDBgUWWZXaeJOFev99HIBDgzSwyY+t2u5BlGffccw/P948ePQq9Xo9sNsujWQB8Oqcxldls5kAs6uKS/wAJZWkrhvwxaCNAkiRUq1UkEgksLy8jnU6jUqng/PnzWFxchFarRblcRqFQ4BA4KmJ0Oh2mp6fZxIh+3WazQaPR8J9fr9d5XEFribRiDoA1EAcNafw8n15U8dwovPWtb8UDDzyAZDLJ4UT1eh0ve9nLsLq6CovFguPHjyMcDnNmADkH0r5pp9NhI6J2u41AIIButwuj0cjCQtIIFAoFhEIhuN1uXuEymUywWq1IJBJ4+9vfPum35EAwiWLpRrt2BQeTw37t6vV6vPKVr8SrX/1q1km1Wi0A1419ACCXy6FWq8FoNPIKIbmsTk1NAQAr9mmjJZ/P70trJdM2m82Gzc1N3HvvvdjY2GChNmnAaEZvs9lw+fJlyLLMJl31eh133HEHdDodcrkc0uk0i8Db7TbK5TLC4TD7FjgcDs4FIZdN+n1HjhxBOp3mFUe32w2n04ler4dr166xxmwwGMDr9eKxxx7D9773vX3C30nzfK5dzT/5X9ygfOlLX8KHPvQhFAoF3H333Wx6Eg6HEQ6H0Ww2sbGxwTkGOp0Om5ubbFNMNq/UegoGgzh37hyMRiNKpRK2trbQbDYRDAYhyzJOnjyJ4XAIu90On8/HPtTPPfecKAQEAsFNDxmx0QNWo9Egk8kgl8thc3OTT/tkfx2JRHDx4kVMTU1xFgClwur1ejidTpRKJS4KZFlGMBhEIBDgPycSieDcuXNsCU85G8VikVv1lB9AmwaBQACnTp3i4KBkMolwOMwnfJvNhkAgwCf4QqGAZDLJkcrknthqtbCysoJKpcLicbvdDpPJxFqBM2fOcHbNXrv6G6kQeL4cuDHBXnZ2dvCJT3wCRqMR73rXu9DtdvG1r30Ni4uLmJ2dhdvtRiQSQbPZRDKZZNXnxsYG2xq7XC44nU4kEgncf//9yGaz8Pl8LDqUJImtYIvFIme7d7td/OhHP8LnPve5Sb8NAoFA8JJA8dkkrAbAQkJFUbiFThqrQCDAoXG0iijLMmsJut0uPB4Pb7vs7Oyg1WpBr9djZ2cHoVCIk2Lp4U2GcKQHy2azcLlcyOVyPEZwOBzsr0H5BZIkcYgXredSQmehUNgXfkRdiKWlJV4Lv/XWW/n3UQeBCpvBYIBsNounn34aW1tbk/lwfkYObGcAAO+01mo1fOELX+BKTVVVqKoKj8eDwWCAWCzGgSzBYJD9qTc2NrC+vo5qtQqHw4Enn3wSAJDJZNiC1el0QqvV4tlnn8Xdd9/NFeJXvvIV/O///b8P3PqIQCAQ/LRsbW3h0qVL+9Jc6WE+HA6h0WjQ7/eRyWTYepo2DCwWC69jVyoVlEolGAwGNpMjwTeNYdPpNK93S5LEKbHA9bEErfdVq1U2AhqNRpz6ajabefWborMpLwPAvpEAJXjSxg35EZDeTFEU2O12Hk0MBgM0m03UajUuTFZXV3Hp0iXkcrnJfDg/Iwe6GNhLoVDAo48+CqPRCKvVil6vh1QqxXaS9OvkPkhmKGS72mq12O9aURTYbDa0Wi0kEgm+SMjd6jvf+Q6eeOIJTsoSCASCw8DW1hYuX74Mo9EIu90O4HpKa6fTQb1ex2g0gkajYT8BMg9qtVrw+XxQVZVP3tVqlbfAyIzK6XSy14Ber+cCgMSFtOZN7XzaKKMuLqXP0vYBeWpQJLzBYOCY5eFwiNnZWfR6PbhcLthsNk7gNJvNXDiMx2MoisKiQtowKxaL7DtgtVoRj8e5WDmI3DTFAABsbGzwnKjVaqFWq2E4HEJVVS4GyC/AYrFAVVX+YCmsaDQawWKxwGg0YjgccvgEjQ0eeugh/OhHPxJBQwKB4FBCp2KtVsueL+Q6qdFoODmzUqnwyZ68BSgky2azwWazoVaroVQqsWERuflpNBrMz8+jXC5jZmaGT/sUX7+zs4NGo4FQKIR2u83FgcPh4FhhMgIi90vyMRiNRqjVami327j11lt5PZxyPtrtNiflms1mOJ1O9Pt91Go1PkQC4CLA6XRO8uN4wTjQmoF/jPPnz/Nqoc1mg6qq7AlgNBrZMpLysVOpFEajEUKhEOfBk3fBaDSCJElcYAwGA3zmM5/ZtxYjEAgEh4m1tTX8t//23/Drv/7r3DaPRCI858/n8xz/fvz4cYxGI/T7fVbwk8+AwWCAzWaDJEmYm5uDTqdj+2LguuVvMBiE2WzmYCHaAms0GhiNRsjn8zAYDFBVFXq9HpVKhYOPOp0OC8R9Ph86nQ4kSUK324VGo8Hc3ByPCsicjjI9dnZ2kM1m0Ww2EQ6HuSMxGo2g0+lYsFipVNBsNvHf//t/P5Ciwb3cdMXA17/+dYRCIUQiETaF2NnZAfB3whMyLCoUCmwzSeIXajmRxXG/32ezCkroutGx2+3c3qIuiUAgELxQDIdDFAoF+P1+tFotznaZmZmBVqvlyOxarcbjhEgkgna7jXg8DgBYWFjgTgI94CuVChqNBgwGAwwGA3Z3d+Hz+bC7u4tiscjJh16vl0/0NOptNBowGo0ct03JhpTo6XA4MBwOOVNmNBpxymyj0UChUMD8/Dw/9O+66y40Gg1OVtTr9djY2OBNiG63i1KpxJtlB52brhgAwNVqt9uFTqeD2+1GLpfD3NwcxwnTfElRFM7pXl5exqVLlxCJRNjJsNlswmKx4Omnn2axyY3OZz7zGfbWfuqpp/Cf/tN/mvRLEggENxHVahVf+MIX8IEPfAA2mw3lchm1Wo3b6TabjdeyjUYjC/z0ej1cLhdUVeVQoXg8jmq1CpvNxg/y4XCI4XCIra0ttoWnHASz2czr4hTRffnyZczPz7P7oclkgtfrRblcxuzsLNLpNGq1Gq/92e12jEYjPPTQQ2w973Q6uSjpdDrY3t6Gy+XC3Nwcrl27hlKpBL/fz7kMoVAId9xxB972trcd+K4A8BOYDgkEAoHgpeVGMh36++j1evz2b/82stkspqenoaoqtre3kUqloKoqFEVBIBBgp8Dl5WWMx2O2Is7lciiVSnjb294GrVaLer2OlZUV7jTs7u6i0WhgamqKbZDJAbBYLMJkMqFer8PpdKLVaiEYDLLmQKfTweFwoFQqYWdnh+Ppaa3QZrPBYrFgbW0NBoOB7YppE6LZbMLtdvPJn2KPJUlCJBKB3+9HJpPBn//5nyOVSk36o/gnualNhwQCgUAwOQaDAb7+9a9jYWEBZrOZVwvJl79cLnN7nvwAcrkcKpUKarUadDodstksdnZ2+AHf7/fR7XaRSqUgyzKf4EkMPhgMWBOWzWYRDoeRSqXQ6/V4lEBJhaQZo3jjSqXCYsJGowEAbBREkcyUM0Njj4WFBXQ6HWQyGXaw7ff7WFlZwde+9rUDUQg8X0QxIBAIBIKfmPF4jI2NDdhsNp6fk58LubU2Gg2YzWZks1nk83kUi0Xe5qIoYDJxowc0BcXJsozp6WluwdPYV1EUmEwmVKtVFnNT5DH9UyqV9mkFGo0Gb0A4nU6oqsqjB9pyKBQKnIdAa4wUS0+dAxolrK+vY2NjY2Lv/YvBTakZEAgEAsFLw/nz5+H1etl4qNfrAQAXARaLBcVikQ2FKGYYwL5obUobBMBCQbIsBsBptCaTiTsQxWKRPQGMRiMbAZHFscPhwHg85nVFsjS22+1Ip9Mwm82QZZkTaOmfcrmM4XCIbDbLowFZltHtdpFMJlmUfjMhOgMCgUAg+Kn5/Oc/j0qlwn4unU4HvV4PxWIRuVwOg8EAPp8PWq2WxYDFYhGKouD48eMAwFtdJP7WaDRwuVy8TlitVlGv17G+vo6VlRV0Oh3OiBkMBpiZmcHs7Cx8Ph+cTidcLhdMJhPa7TYHIFmtVlSrVZRKJWi1WlgsFrhcLh5X0Br6Xs+DVCrFnjQWiwX5fB5Xr149sJbD/3+IYkAgEAgEPxOf/vSn8fDDD6Pf78PtdvNKtt/vh6IomJmZYWt3nU4Hn8/HqYHb29t4+umnkUql0Gw2UalUkE6nAYDdDGmry+Fw8HYCuRiaTCbIsswmR5FIBFNTU7BYLPjhD3/I+QaUkUAFR7/fR6VSQSqVwtLSEmw2G+x2O+x2O3clKIWRCou/+Zu/weXLlyf5Vr9oiDGBQCAQCH5mvv/976NWq2FpaQntdhuxWAx6vR6rq6vQ6/WYmZnhB3Cz2eQtg5MnT+Lxxx9nh0CDwQCz2QwASCQS3Kqfnp5Go9Hg3INoNAqz2YytrS2srq7i5MmTuHjxIjY3N7G8vIypqSn4/X4Ui0X0ej2cOHECg8EAjUYDly5dQjabxa233opGowGTycTxyaQ/6Ha7mJubQ6vVwsbGBj772c/e1Bb0YrVQIBAIblBu5NXCf4xjx47hrrvuQjAY5Pji8XiMXC4Ht9vNlsImkwm5XA7RaBQ6nQ5WqxWSJKHf77MroFarRSKR4H9HFsaFQgGrq6sceqSqKucKpFIpGI1GLC4uQqfToVgswuFw4JFHHsGZM2c4frjdbkOWZTZlMxgM0Gg0cLvdqFar/OeUy2VMTU3h4x//ONrt9qTf3p+a5/OYF50BgUAgELwgrK2twWKxIBqNwuFwoNfrsf377OwsxuMxCoUCKpUK7/dLksQ2wsFgEP1+H/F4nK3jG40GexSUy2UUi0VIkoRWq4VwOIzBYIBEIgGv14uZmRnIsgxZluHxeDhMSK/Xs4iRMgVoCyISiaBer6NarWIwGGA0GsFgMMBisWAwGOCTn/zkgS4Eni+iGBAIBALBCwLt4A+HQ5w5cwaKomAwGLAAj3IBdDodpqamOPK40+nA6XTyg9zn86FarSIQCKBUKsFoNCKVSnHGjKqq7E1A9sQUMSzLMjQaDVKpFMxmM7RaLRRFQa/X40RE6giQI225XIbBYEA+n0c+n0en00G328XDDz+MSqUy6bf1JUEUAwKBQCB4wajVarhy5QqGwyGsVivuvfdeDIdDjjWm0CKDwcA5KnuV/BQYtzdGPhAIsG8AjQ3a7TY8Hg/HH2s0mn0jgHQ6DavVyp4G3W4XANhDQFEUtiIeDoeQZRnVahXJZBLxeBw6nQ67u7uTfCtfUkQxIBAIBIIXlE6ngwsXLgAA/H4/7HY7bxZotdp9IT8GgwGBQICD4/r9PiRJwtTUFJ544glotVr0+32Mx2NIksShQY1GA8ePH0e73eYOAbkM2mw2dDodmM1mjMdjFgb2+33odDoOsaM/W6vV8ggjHo/fdIZCzwexWigQCASCF42vfOUrWF1dRbfbhSzLUFWVC4TxeAytVotAIAC32w1ZltHr9TAajTA/Pw9JknDXXXfB5/NBkiQ0m00+4VcqFSSTSej1egyHQ06l7Xa7vNpIEcj9fh/1ep3XGkOhEGRZhsPhQKFQQD6fx9bWFp588slDWQgAojMgEAgEgheZxx57DKFQiOOMyY2wWq2i2WyiXC5z/HAikUAymYROp4PX68XOzg40Gg3G4zHq9Trq9TpsNhs8Hg/P9zudDvR6Paanp1GtVlGr1faNEIbDIQsC6/U6+v0+LBYLOp0OBoMBvvCFL7Bz4mFFrBYKBALBDcpBWy18PoRCIZw5cwYAcPToUWi1Wtx///3I5XJoNBool8uoVqtYWFjAo48+ikgkgnA4jGKxiM3NTUiShFAohEwmA1mWOTzI5XJxvoCiKLBarRiNRshkMgiHw3j66aehqioikQgHGXW7XfzGb/zGhN+RFx+xWigQCASCG4pkMol0Og2j0Yi7774bg8EAxWKRY42HwyECgQC8Xi/8fj8ajQY2NzcxHA4hSRJkWeYugN1ux7PPPotut4szZ85wRLKiKBgOh2xQlMvloCgKFEXBU089hYceeuimLLR+FkQxIBAIBIKXlNFohHa7jQ9/+MMYj8fQ6/V429vehjNnzqDRaCCZTGJxcRHNZhMmk4mjhsnOuN1u8zqiRqOBw+HA+vo6bwU0m030ej0EAgEkk0l4vV785V/+JXK5HHsfCPYjxgQCgUBwg3KYTq+RSAQOhwODwQCtVgtutxuFQgFvfetbYbfb0Wq1OFbYYrEgl8vh6NGj2NragtFoxEMPPbTPLpjMg9rtNkwmE3Z2dlh8eNh4Po95UQwIBALBDcphKgb+X5w9e5bFf51OB5IkwWAwoNFowOVy8ZbApUuX0Gw2J/1yb0hEMSAQCAQHGFEMCF4Ins9jXvgMCAQCgUBwyBHFgEAgEAgEhxxRDAgEAoFAcMgRxYBAIBAIBIccUQwIBAKBQHDIEcWAQCAQCASHHFEMCAQCgUBwyBHFgEAgEAgEhxxRDAgEAoFAcMgRxYBAIBAIBIccUQwIBAKBQHDIEcWAQCAQCASHHFEMCAQCgUBwyBHFgEAgEAgEhxxRDAgEAoFAcMgRxYBAIBAIBIccUQwIBAKBQHDIEcWAQCAQCASHHFEMCAQCgUBwyNFN+gUIBAKB4B9nPB5P+iUIDgmiMyAQCAQCwSFHFAMCgUAgEBxyRDEgEAgEAsEhRxQDAoFAIBAcckQxIBAIBALBIUcUAwKBQCAQHHJEMSAQCAQCwSFHFAMCgUAgEBxyRDEgEAgEAsEh5/8DdSN52kDREe0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Reshape the predicted data array to the image shape\n", + "brain_mask_idx = np.where(brain_mask)\n", + "_y_pred = np.zeros((shell_data.shape[:-1]), dtype=y_train.dtype)\n", + "_y_pred[brain_mask_idx] = y_pred.squeeze()\n", + "\n", + "x_slice = _y_pred[slice_idx[0], :, :]\n", + "y_slice = _y_pred[:, slice_idx[1], :]\n", + "z_slice = _y_pred[:, :, slice_idx[2]]\n", + "slices = [x_slice, y_slice, z_slice]\n", + "\n", + "fig, axes = plt.subplots(1, len(slices))\n", + "for i, _slice in enumerate(slices):\n", + " axes[i].imshow(_slice.T, cmap=\"gray\", origin=\"lower\", aspect='equal')\n", + " axes[i].set_axis_off()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "8ea9cf5ae629f489", + "metadata": {}, + "source": [ + "Select a number of brain voxels at random to perform the GP parameter optimization. The same voxels will be selected across each DWI volume." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "24a72a024e3f2e37", + "metadata": {}, + "outputs": [], + "source": [ + "n_voxels = 10000\n", + "true_indices = np.argwhere(brain_mask)\n", + "\n", + "# Sample indices randomly\n", + "num_samples = min(n_voxels, len(true_indices))\n", + "sampled_indices = true_indices[np.random.choice(len(true_indices), num_samples, replace=False)]\n", + "\n", + "sampled_dwi = shell_data[sampled_indices[:, 0], sampled_indices[:, 1], sampled_indices[:, 2], :].T" + ] + }, + { + "cell_type": "markdown", + "id": "4697b2182f5178d7", + "metadata": {}, + "source": [ + "Use a k-fold cross-validation and a grid search to find the best parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "e92ebf1204c7f889", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 4.00084D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23889D+05 |proj g|= 6.95102D+00\n", + "\n", + "At iterate 3 f= 7.23693D+05 |proj g|= 6.92318D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.90777D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.47262D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 9.89565D-03\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 9.896D-03 7.237D+05\n", + " F = 723658.65193438344 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.93671D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23926D+05 |proj g|= 6.95426D+00\n", + "\n", + "At iterate 3 f= 7.23700D+05 |proj g|= 6.92476D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.90796D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.90879D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 1.50953D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 1.510D-02 7.237D+05\n", + " F = 723658.65193438367 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.92653D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23948D+05 |proj g|= 6.95605D+00\n", + "\n", + "At iterate 3 f= 7.23704D+05 |proj g|= 6.92564D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.90806D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.90879D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 1.88219D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 1.882D-02 7.237D+05\n", + " F = 723658.65193438367 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.94029D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23917D+05 |proj g|= 6.95348D+00\n", + "\n", + "At iterate 3 f= 7.23698D+05 |proj g|= 6.92437D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.90791D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.90879D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 1.36717D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 1.367D-02 7.237D+05\n", + " F = 723658.65193438344 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 4.00075D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.27412D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.38150D+05 |proj g|= 6.95660D+00\n", + "\n", + "At iterate 3 f= 7.37895D+05 |proj g|= 6.92592D+00\n", + "\n", + "At iterate 4 f= 7.37848D+05 |proj g|= 6.90810D+00\n", + "\n", + "At iterate 5 f= 7.37848D+05 |proj g|= 6.90879D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.37848D+05 |proj g|= 2.05235D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 2.052D-02 7.378D+05\n", + " F = 737848.03726643079 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.08723D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.83932D+05 |proj g|= 8.32144D+00\n", + "\n", + "At iterate 2 f= 7.76269D+05 |proj g|= 7.82081D+00\n", + "\n", + "At iterate 3 f= 7.71380D+05 |proj g|= 7.71301D+00\n", + "\n", + "At iterate 4 f= 7.67603D+05 |proj g|= 6.31005D+00\n", + "\n", + "At iterate 5 f= 7.67425D+05 |proj g|= 6.42738D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " Bad direction in the line search;\n", + " refresh the lbfgs memory and restart the iteration.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.65625D+05 |proj g|= 7.62520D+00\n", + "\n", + "At iterate 7 f= 7.54900D+05 |proj g|= 6.54833D+00\n", + "\n", + "At iterate 8 f= 7.54427D+05 |proj g|= 6.69883D+00\n", + "\n", + "At iterate 9 f= 7.54314D+05 |proj g|= 6.74652D+00\n", + "\n", + "At iterate 10 f= 7.53938D+05 |proj g|= 6.86533D+00\n", + "\n", + "At iterate 11 f= 7.53839D+05 |proj g|= 6.97181D+00\n", + "\n", + "At iterate 12 f= 7.53682D+05 |proj g|= 7.03698D+00\n", + "\n", + "At iterate 13 f= 7.53640D+05 |proj g|= 7.19362D+00\n", + "\n", + "At iterate 14 f= 7.52778D+05 |proj g|= 7.31218D+00\n", + "\n", + "At iterate 15 f= 7.40147D+05 |proj g|= 7.25559D+00\n", + "\n", + "At iterate 16 f= 7.20996D+05 |proj g|= 7.03999D+00\n", + "\n", + "At iterate 17 f= 7.18577D+05 |proj g|= 6.96253D+00\n", + "\n", + "At iterate 18 f= 7.18126D+05 |proj g|= 6.91793D+00\n", + "\n", + "At iterate 19 f= 7.18110D+05 |proj g|= 6.90834D+00\n", + "\n", + "At iterate 20 f= 7.18110D+05 |proj g|= 6.90740D+00\n", + "\n", + "At iterate 21 f= 7.18110D+05 |proj g|= 3.62404D+00\n", + "\n", + "At iterate 22 f= 7.18110D+05 |proj g|= 2.86270D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 22 80 25 0 0 2.863D+00 7.181D+05\n", + " F = 718110.04019295715 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.07626D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.82949D+05 |proj g|= 8.31102D+00\n", + "\n", + "At iterate 2 f= 7.72844D+05 |proj g|= 7.73986D+00\n", + "\n", + "At iterate 3 f= 7.67712D+05 |proj g|= 7.59657D+00\n", + "\n", + "At iterate 4 f= 7.62885D+05 |proj g|= 6.65611D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " Warning: more than 10 function and gradient\n", + " evaluations in the last line search. Termination\n", + " may possibly be caused by a bad search direction.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 5 f= 7.62885D+05 |proj g|= 6.65611D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 5 30 6 0 0 6.656D+00 7.629D+05\n", + " F = 762884.93959453050 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.07316D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.82422D+05 |proj g|= 8.31001D+00\n", + "\n", + "At iterate 2 f= 7.71894D+05 |proj g|= 7.75235D+00\n", + "\n", + "At iterate 3 f= 7.66951D+05 |proj g|= 7.60726D+00\n", + "\n", + "At iterate 4 f= 7.61447D+05 |proj g|= 6.58793D+00\n", + " ys=-1.027E+03 -gs= 8.482E+03 BFGS update SKIPPED\n", + "\n", + "At iterate 5 f= 7.36278D+05 |proj g|= 7.19324D+00\n", + "\n", + "At iterate 6 f= 7.31568D+05 |proj g|= 6.91931D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " Bad direction in the line search;\n", + " refresh the lbfgs memory and restart the iteration.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.25311D+05 |proj g|= 7.04881D+00\n", + "\n", + "At iterate 8 f= 7.20388D+05 |proj g|= 6.97588D+00\n", + "\n", + "At iterate 9 f= 7.18070D+05 |proj g|= 6.99080D+00\n", + "\n", + "At iterate 10 f= 7.17117D+05 |proj g|= 6.91651D+00\n", + "\n", + "At iterate 11 f= 7.17103D+05 |proj g|= 6.90916D+00\n", + "\n", + "At iterate 12 f= 7.17103D+05 |proj g|= 6.90864D+00\n", + "\n", + "At iterate 13 f= 7.17103D+05 |proj g|= 6.90856D+00\n", + "\n", + "At iterate 14 f= 7.17103D+05 |proj g|= 1.67323D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 14 50 17 1 0 1.673D+00 7.171D+05\n", + " F = 717102.79139089293 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.07599D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.82132D+05 |proj g|= 8.31081D+00\n", + "\n", + "At iterate 2 f= 7.74290D+05 |proj g|= 7.79325D+00\n", + "\n", + "At iterate 3 f= 7.69580D+05 |proj g|= 7.68928D+00\n", + "\n", + "At iterate 4 f= 7.65643D+05 |proj g|= 6.30492D+00\n", + "\n", + "At iterate 5 f= 7.64819D+05 |proj g|= 6.44921D+00\n", + "\n", + "At iterate 6 f= 7.64800D+05 |proj g|= 6.47049D+00\n", + "\n", + "At iterate 7 f= 7.64782D+05 |proj g|= 6.49304D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " Bad direction in the line search;\n", + " refresh the lbfgs memory and restart the iteration.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 8 f= 7.62784D+05 |proj g|= 7.59947D+00\n", + "\n", + "At iterate 9 f= 7.46995D+05 |proj g|= 6.68758D+00\n", + "\n", + "At iterate 10 f= 7.46722D+05 |proj g|= 6.73618D+00\n", + "\n", + "At iterate 11 f= 7.46606D+05 |proj g|= 6.98182D+00\n", + "\n", + "At iterate 12 f= 7.46408D+05 |proj g|= 7.09454D+00\n", + "\n", + "At iterate 13 f= 7.45521D+05 |proj g|= 7.30952D+00\n", + "\n", + "At iterate 14 f= 7.27416D+05 |proj g|= 7.14360D+00\n", + "\n", + "At iterate 15 f= 7.19297D+05 |proj g|= 7.02035D+00\n", + "\n", + "At iterate 16 f= 7.17592D+05 |proj g|= 6.94187D+00\n", + "\n", + "At iterate 17 f= 7.17439D+05 |proj g|= 6.91330D+00\n", + "\n", + "At iterate 18 f= 7.17435D+05 |proj g|= 6.90797D+00\n", + "\n", + "At iterate 19 f= 7.17435D+05 |proj g|= 6.90808D+00\n", + "\n", + "At iterate 20 f= 7.17435D+05 |proj g|= 6.90810D+00\n", + "\n", + "At iterate 21 f= 7.17435D+05 |proj g|= 4.47102D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 21 81 24 0 0 4.471D+00 7.174D+05\n", + " F = 717435.20438548480 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.09352D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.99555D+05 |proj g|= 8.30971D+00\n", + "\n", + "At iterate 2 f= 7.86760D+05 |proj g|= 7.75215D+00\n", + "\n", + "At iterate 3 f= 7.81719D+05 |proj g|= 7.60277D+00\n", + "\n", + "At iterate 4 f= 7.75959D+05 |proj g|= 6.60307D+00\n", + " ys=-1.526E+03 -gs= 8.984E+03 BFGS update SKIPPED\n", + "\n", + "At iterate 5 f= 7.48905D+05 |proj g|= 7.17000D+00\n", + "\n", + "At iterate 6 f= 7.43399D+05 |proj g|= 6.91770D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " Bad direction in the line search;\n", + " refresh the lbfgs memory and restart the iteration.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.38452D+05 |proj g|= 7.03452D+00\n", + "\n", + "At iterate 8 f= 7.33912D+05 |proj g|= 6.96037D+00\n", + "\n", + "At iterate 9 f= 7.31901D+05 |proj g|= 6.97224D+00\n", + "\n", + "At iterate 10 f= 7.31319D+05 |proj g|= 6.91288D+00\n", + "\n", + "At iterate 11 f= 7.31313D+05 |proj g|= 6.90865D+00\n", + "\n", + "At iterate 12 f= 7.31312D+05 |proj g|= 6.90821D+00\n", + "\n", + "At iterate 13 f= 7.31312D+05 |proj g|= 6.90820D+00\n", + "\n", + "At iterate 14 f= 7.31312D+05 |proj g|= 1.67795D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 14 50 17 1 0 1.678D+00 7.313D+05\n", + " F = 731312.48190047638 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 7.83924D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23957D+05 |proj g|= 6.95679D+00\n", + "\n", + "At iterate 3 f= 7.23706D+05 |proj g|= 6.92601D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.90811D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.90880D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 2.05783D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 23 7 0 1 2.058D-02 7.237D+05\n", + " F = 723658.65193438367 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 7.74503D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.24458D+05 |proj g|= 6.98701D+00\n", + "\n", + "At iterate 3 f= 7.23820D+05 |proj g|= 6.94262D+00\n", + "\n", + "At iterate 4 f= 7.23661D+05 |proj g|= 6.91082D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.90898D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 3.50473D-01\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.23659D+05 |proj g|= 1.18141D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 24 8 0 1 1.181D-04 7.237D+05\n", + " F = 723658.65193438309 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 7.70901D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.24805D+05 |proj g|= 7.00221D+00\n", + "\n", + "At iterate 3 f= 7.23916D+05 |proj g|= 6.95208D+00\n", + "\n", + "At iterate 4 f= 7.23663D+05 |proj g|= 6.91287D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.90919D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 1.00854D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.23659D+05 |proj g|= 6.50553D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 24 8 0 1 6.506D-04 7.237D+05\n", + " F = 723658.65193438309 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 7.73957D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.24552D+05 |proj g|= 6.99141D+00\n", + "\n", + "At iterate 3 f= 7.23845D+05 |proj g|= 6.94528D+00\n", + "\n", + "At iterate 4 f= 7.23661D+05 |proj g|= 6.91137D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.90903D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 4.84570D-01\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.23659D+05 |proj g|= 1.99262D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 24 8 0 1 1.993D-04 7.237D+05\n", + " F = 723658.65193438309 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 7.86753D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.27412D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.38926D+05 |proj g|= 6.99855D+00\n", + "\n", + "At iterate 3 f= 7.38084D+05 |proj g|= 6.94973D+00\n", + "\n", + "At iterate 4 f= 7.37852D+05 |proj g|= 6.91233D+00\n", + "\n", + "At iterate 5 f= 7.37848D+05 |proj g|= 6.90913D+00\n", + "\n", + "At iterate 6 f= 7.37848D+05 |proj g|= 8.09551D-01\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.37848D+05 |proj g|= 4.50810D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 24 8 0 1 4.508D-04 7.378D+05\n", + " F = 737848.03726642986 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.81537D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.15845D+05 |proj g|= 8.64108D+00\n", + "\n", + "At iterate 2 f= 8.11262D+05 |proj g|= 8.52536D+00\n", + "\n", + "At iterate 3 f= 7.87008D+05 |proj g|= 8.47550D+00\n", + "\n", + "At iterate 4 f= 7.84765D+05 |proj g|= 8.46851D+00\n", + "\n", + "At iterate 5 f= 7.81554D+05 |proj g|= 8.43520D+00\n", + "\n", + "At iterate 6 f= 7.81113D+05 |proj g|= 8.43266D+00\n", + "\n", + "At iterate 7 f= 7.77957D+05 |proj g|= 8.35509D+00\n", + "\n", + "At iterate 8 f= 7.74189D+05 |proj g|= 8.22224D+00\n", + "\n", + "At iterate 9 f= 7.73008D+05 |proj g|= 8.11866D+00\n", + "\n", + "At iterate 10 f= 7.73006D+05 |proj g|= 8.12047D+00\n", + "\n", + "At iterate 11 f= 7.73003D+05 |proj g|= 5.70008D+00\n", + "\n", + "At iterate 12 f= 7.73003D+05 |proj g|= 5.69958D+00\n", + "\n", + "At iterate 13 f= 7.73003D+05 |proj g|= 1.22630D+00\n", + "\n", + "At iterate 14 f= 7.73003D+05 |proj g|= 1.72622D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 14 21 15 0 0 1.726D-02 7.730D+05\n", + " F = 773002.95537064306 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.79584D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.17379D+05 |proj g|= 8.63632D+00\n", + "\n", + "At iterate 2 f= 8.11757D+05 |proj g|= 8.51390D+00\n", + "\n", + "At iterate 3 f= 7.87536D+05 |proj g|= 8.46399D+00\n", + "\n", + "At iterate 4 f= 7.82105D+05 |proj g|= 8.44328D+00\n", + "\n", + "At iterate 5 f= 7.81215D+05 |proj g|= 8.42562D+00\n", + "\n", + "At iterate 6 f= 7.73883D+05 |proj g|= 8.16463D+00\n", + "\n", + "At iterate 7 f= 7.73622D+05 |proj g|= 5.67161D+00\n", + "\n", + "At iterate 8 f= 7.73360D+05 |proj g|= 5.75040D+00\n", + "\n", + "At iterate 9 f= 7.73114D+05 |proj g|= 5.70863D+00\n", + "\n", + "At iterate 10 f= 7.73113D+05 |proj g|= 5.70543D+00\n", + "\n", + "At iterate 11 f= 7.73113D+05 |proj g|= 8.11146D+00\n", + "\n", + "At iterate 12 f= 7.73113D+05 |proj g|= 1.66588D+00\n", + "\n", + "At iterate 13 f= 7.73113D+05 |proj g|= 3.51131D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 13 21 15 0 0 3.511D-02 7.731D+05\n", + " F = 773112.55499294470 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.78721D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.15842D+05 |proj g|= 8.63439D+00\n", + "\n", + "At iterate 2 f= 8.08320D+05 |proj g|= 8.51193D+00\n", + "\n", + "At iterate 3 f= 7.82670D+05 |proj g|= 8.45740D+00\n", + "\n", + "At iterate 4 f= 7.81250D+05 |proj g|= 8.45066D+00\n", + "\n", + "At iterate 5 f= 7.79503D+05 |proj g|= 8.42573D+00\n", + "\n", + "At iterate 6 f= 7.79062D+05 |proj g|= 8.41728D+00\n", + "\n", + "At iterate 7 f= 7.73891D+05 |proj g|= 8.28218D+00\n", + "\n", + "At iterate 8 f= 7.71309D+05 |proj g|= 8.09634D+00\n", + "\n", + "At iterate 9 f= 7.71271D+05 |proj g|= 8.14819D+00\n", + "\n", + "At iterate 10 f= 7.71115D+05 |proj g|= 8.11885D+00\n", + "\n", + "At iterate 11 f= 7.71099D+05 |proj g|= 5.71150D+00\n", + "\n", + "At iterate 12 f= 7.71099D+05 |proj g|= 8.10673D+00\n", + "\n", + "At iterate 13 f= 7.71099D+05 |proj g|= 2.01602D-01\n", + "\n", + "At iterate 14 f= 7.71099D+05 |proj g|= 2.72880D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 14 19 15 0 0 2.729D-02 7.711D+05\n", + " F = 771098.55727667443 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.79428D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.15648D+05 |proj g|= 8.63616D+00\n", + "\n", + "At iterate 2 f= 8.10268D+05 |proj g|= 8.51631D+00\n", + "\n", + "At iterate 3 f= 7.84863D+05 |proj g|= 8.46250D+00\n", + "\n", + "At iterate 4 f= 7.83265D+05 |proj g|= 8.45692D+00\n", + "\n", + "At iterate 5 f= 7.80449D+05 |proj g|= 8.42655D+00\n", + "\n", + "At iterate 6 f= 7.80020D+05 |proj g|= 8.42096D+00\n", + "\n", + "At iterate 7 f= 7.78613D+05 |proj g|= 8.39050D+00\n", + "\n", + "At iterate 8 f= 7.73916D+05 |proj g|= 8.25263D+00\n", + "\n", + "At iterate 9 f= 7.72095D+05 |proj g|= 8.15110D+00\n", + "\n", + "At iterate 10 f= 7.71819D+05 |proj g|= 8.12659D+00\n", + "\n", + "At iterate 11 f= 7.71812D+05 |proj g|= 5.72583D+00\n", + "\n", + "At iterate 12 f= 7.71776D+05 |proj g|= 5.71155D+00\n", + "\n", + "At iterate 13 f= 7.71775D+05 |proj g|= 8.10931D+00\n", + "\n", + "At iterate 14 f= 7.71774D+05 |proj g|= 8.10769D+00\n", + "\n", + "At iterate 15 f= 7.71774D+05 |proj g|= 3.32346D-01\n", + "\n", + "At iterate 16 f= 7.71774D+05 |proj g|= 7.29946D-03\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 16 21 17 0 0 7.299D-03 7.718D+05\n", + " F = 771774.43666481553 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.82325D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.33796D+05 |proj g|= 8.63462D+00\n", + "\n", + "At iterate 2 f= 8.23219D+05 |proj g|= 8.51151D+00\n", + "\n", + "At iterate 3 f= 7.97031D+05 |proj g|= 8.45674D+00\n", + "\n", + "At iterate 4 f= 7.95640D+05 |proj g|= 8.45010D+00\n", + "\n", + "At iterate 5 f= 7.93950D+05 |proj g|= 8.42594D+00\n", + "\n", + "At iterate 6 f= 7.91928D+05 |proj g|= 8.38281D+00\n", + "\n", + "At iterate 7 f= 7.87436D+05 |proj g|= 8.25046D+00\n", + "\n", + "At iterate 8 f= 7.85736D+05 |proj g|= 8.14948D+00\n", + "\n", + "At iterate 9 f= 7.85545D+05 |proj g|= 8.11674D+00\n", + "\n", + "At iterate 10 f= 7.85538D+05 |proj g|= 8.11199D+00\n", + "\n", + "At iterate 11 f= 7.85536D+05 |proj g|= 5.70797D+00\n", + "\n", + "At iterate 12 f= 7.85536D+05 |proj g|= 5.70647D+00\n", + "\n", + "At iterate 13 f= 7.85536D+05 |proj g|= 1.52837D+00\n", + "\n", + "At iterate 14 f= 7.85536D+05 |proj g|= 2.17409D-03\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 14 22 15 0 0 2.174D-03 7.855D+05\n", + " F = 785535.80548623193 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.24840D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.24399D+05 |proj g|= 6.99386D+00\n", + "\n", + "At iterate 3 f= 7.23799D+05 |proj g|= 6.93143D+00\n", + "\n", + "At iterate 4 f= 7.23660D+05 |proj g|= 6.90138D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91799D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 2.59693D-01\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.23659D+05 |proj g|= 7.24672D-05\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 23 8 0 1 7.247D-05 7.237D+05\n", + " F = 723658.65193438309 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.21021D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.24785D+05 |proj g|= 7.01132D+00\n", + "\n", + "At iterate 3 f= 7.23900D+05 |proj g|= 6.94199D+00\n", + "\n", + "At iterate 4 f= 7.23663D+05 |proj g|= 6.90360D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91821D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 8.87429D-01\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.23659D+05 |proj g|= 5.26542D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 23 8 0 1 5.265D-04 7.237D+05\n", + " F = 723658.65193438309 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.19964D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.25031D+05 |proj g|= 7.02087D+00\n", + "\n", + "At iterate 3 f= 7.23972D+05 |proj g|= 6.94817D+00\n", + "\n", + "At iterate 4 f= 7.23665D+05 |proj g|= 6.90509D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91838D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 1.59565D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.23659D+05 |proj g|= 1.35821D-03\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 23 8 0 1 1.358D-03 7.237D+05\n", + " F = 723658.65193438309 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.20595D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.24935D+05 |proj g|= 7.01728D+00\n", + "\n", + "At iterate 3 f= 7.23943D+05 |proj g|= 6.94581D+00\n", + "\n", + "At iterate 4 f= 7.23664D+05 |proj g|= 6.90451D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91831D+00\n", + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 1.28708D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 7 f= 7.23659D+05 |proj g|= 9.59853D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 7 23 8 0 1 9.599D-04 7.237D+05\n", + " F = 723658.65193438309 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 3.26019D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.27413D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.37904D+05 |proj g|= 6.93865D+00\n", + "\n", + "At iterate 3 f= 7.37854D+05 |proj g|= 6.90436D+00\n", + "\n", + "At iterate 4 f= 7.37848D+05 |proj g|= 6.89791D+00\n", + "\n", + "At iterate 5 f= 7.37848D+05 |proj g|= 5.18311D-01\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.37848D+05 |proj g|= 1.56000D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 21 7 0 1 1.560D-04 7.378D+05\n", + " F = 737848.03726642986 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.05212D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.73327D+05 |proj g|= 8.26664D+00\n", + "\n", + "At iterate 2 f= 8.00507D+05 |proj g|= 7.95926D+00\n", + "\n", + "At iterate 3 f= 7.63187D+05 |proj g|= 7.54976D+00\n", + "\n", + "At iterate 4 f= 7.55543D+05 |proj g|= 6.75243D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " Bad direction in the line search;\n", + " refresh the lbfgs memory and restart the iteration.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 5 f= 7.54887D+05 |proj g|= 7.52081D+00\n", + "\n", + "At iterate 6 f= 7.37759D+05 |proj g|= 7.25689D+00\n", + "\n", + "At iterate 7 f= 7.32275D+05 |proj g|= 6.99577D+00\n", + "\n", + "At iterate 8 f= 7.26958D+05 |proj g|= 6.98589D+00\n", + "\n", + "At iterate 9 f= 7.20211D+05 |proj g|= 7.04582D+00\n", + "\n", + "At iterate 10 f= 7.18098D+05 |proj g|= 6.92617D+00\n", + "\n", + "At iterate 11 f= 7.18086D+05 |proj g|= 6.91764D+00\n", + "\n", + "At iterate 12 f= 7.18085D+05 |proj g|= 6.89946D+00\n", + "\n", + "At iterate 13 f= 7.18085D+05 |proj g|= 6.89922D+00\n", + "\n", + "At iterate 14 f= 7.18085D+05 |proj g|= 2.25798D+00\n", + "\n", + "At iterate 15 f= 7.18085D+05 |proj g|= 9.33477D-01\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 15 44 19 0 0 9.335D-01 7.181D+05\n", + " F = 718085.40298732324 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.04261D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.72456D+05 |proj g|= 8.25643D+00\n", + "\n", + "At iterate 2 f= 7.99243D+05 |proj g|= 7.92417D+00\n", + "\n", + "At iterate 3 f= 7.59970D+05 |proj g|= 7.51890D+00\n", + "\n", + "At iterate 4 f= 7.50732D+05 |proj g|= 6.65020D+00\n", + "\n", + "At iterate 5 f= 7.50185D+05 |proj g|= 6.85873D+00\n", + "\n", + "At iterate 6 f= 7.49802D+05 |proj g|= 6.95852D+00\n", + "\n", + "At iterate 7 f= 7.48823D+05 |proj g|= 7.09653D+00\n", + "\n", + "At iterate 8 f= 7.47349D+05 |proj g|= 7.22217D+00\n", + "\n", + "At iterate 9 f= 7.38608D+05 |proj g|= 7.24551D+00\n", + "\n", + "At iterate 10 f= 7.21570D+05 |proj g|= 7.07431D+00\n", + "\n", + "At iterate 11 f= 7.18547D+05 |proj g|= 6.97867D+00\n", + "\n", + "At iterate 12 f= 7.18070D+05 |proj g|= 6.93066D+00\n", + "\n", + "At iterate 13 f= 7.18050D+05 |proj g|= 6.91910D+00\n", + "\n", + "At iterate 14 f= 7.18049D+05 |proj g|= 6.89780D+00\n", + "\n", + "At iterate 15 f= 7.18049D+05 |proj g|= 6.89818D+00\n", + "\n", + "At iterate 16 f= 7.18049D+05 |proj g|= 6.89800D+00\n", + "\n", + "At iterate 17 f= 7.18049D+05 |proj g|= 1.46904D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 17 31 19 0 0 1.469D+00 7.180D+05\n", + " F = 718049.33988406940 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.03950D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.71848D+05 |proj g|= 8.25518D+00\n", + "\n", + "At iterate 2 f= 7.97381D+05 |proj g|= 7.92739D+00\n", + "\n", + "At iterate 3 f= 7.59092D+05 |proj g|= 7.53010D+00\n", + "\n", + "At iterate 4 f= 7.49630D+05 |proj g|= 6.64430D+00\n", + "\n", + "At iterate 5 f= 7.49465D+05 |proj g|= 6.81840D+00\n", + "\n", + "At iterate 6 f= 7.48950D+05 |proj g|= 7.00058D+00\n", + "\n", + "At iterate 7 f= 7.47672D+05 |proj g|= 7.08044D+00\n", + "\n", + "At iterate 8 f= 7.42528D+05 |proj g|= 7.22874D+00\n", + "\n", + "At iterate 9 f= 7.30933D+05 |proj g|= 7.21534D+00\n", + "\n", + "At iterate 10 f= 7.18401D+05 |proj g|= 7.01430D+00\n", + "\n", + "At iterate 11 f= 7.17236D+05 |proj g|= 6.95199D+00\n", + "\n", + "At iterate 12 f= 7.17082D+05 |proj g|= 6.92255D+00\n", + "\n", + "At iterate 13 f= 7.17079D+05 |proj g|= 6.91803D+00\n", + "\n", + "At iterate 14 f= 7.17079D+05 |proj g|= 6.89793D+00\n", + "\n", + "At iterate 15 f= 7.17079D+05 |proj g|= 6.89800D+00\n", + "\n", + "At iterate 16 f= 7.17079D+05 |proj g|= 4.39164D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 16 33 18 0 0 4.392D+00 7.171D+05\n", + " F = 717079.11894415319 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.04185D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.71437D+05 |proj g|= 8.25541D+00\n", + "\n", + "At iterate 2 f= 7.97348D+05 |proj g|= 7.93616D+00\n", + "\n", + "At iterate 3 f= 7.69474D+05 |proj g|= 7.70185D+00\n", + "\n", + "At iterate 4 f= 7.58212D+05 |proj g|= 7.50010D+00\n", + "\n", + "At iterate 5 f= 7.52139D+05 |proj g|= 6.71860D+00\n", + "\n", + "At iterate 6 f= 7.51847D+05 |proj g|= 6.80502D+00\n", + "\n", + "At iterate 7 f= 7.50910D+05 |proj g|= 7.02185D+00\n", + "\n", + "At iterate 8 f= 7.50190D+05 |proj g|= 7.09594D+00\n", + "\n", + "At iterate 9 f= 7.46711D+05 |proj g|= 7.23406D+00\n", + "\n", + "At iterate 10 f= 7.36828D+05 |proj g|= 7.25652D+00\n", + "\n", + "At iterate 11 f= 7.20708D+05 |proj g|= 7.07099D+00\n", + "\n", + "At iterate 12 f= 7.17871D+05 |proj g|= 6.97659D+00\n", + "\n", + "At iterate 13 f= 7.17431D+05 |proj g|= 6.92933D+00\n", + "\n", + "At iterate 14 f= 7.17412D+05 |proj g|= 6.91801D+00\n", + "\n", + "At iterate 15 f= 7.17412D+05 |proj g|= 6.89906D+00\n", + "\n", + "At iterate 16 f= 7.17412D+05 |proj g|= 6.89927D+00\n", + "\n", + "At iterate 17 f= 7.17412D+05 |proj g|= 6.89896D+00\n", + "\n", + "At iterate 18 f= 7.17412D+05 |proj g|= 2.78471D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 18 36 20 0 0 2.785D+00 7.174D+05\n", + " F = 717411.52134795184 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.05923D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 8.88773D+05 |proj g|= 8.25485D+00\n", + "\n", + "At iterate 2 f= 8.12846D+05 |proj g|= 7.92712D+00\n", + "\n", + "At iterate 3 f= 7.73505D+05 |proj g|= 7.52751D+00\n", + "\n", + "At iterate 4 f= 7.63776D+05 |proj g|= 6.66304D+00\n", + "\n", + "At iterate 5 f= 7.63456D+05 |proj g|= 6.85988D+00\n", + "\n", + "At iterate 6 f= 7.62806D+05 |proj g|= 6.92725D+00\n", + "\n", + "At iterate 7 f= 7.60245D+05 |proj g|= 7.05954D+00\n", + "\n", + "At iterate 8 f= 7.57024D+05 |proj g|= 7.21945D+00\n", + "\n", + "At iterate 9 f= 7.47805D+05 |proj g|= 7.22857D+00\n", + "\n", + "At iterate 10 f= 7.32973D+05 |proj g|= 7.02599D+00\n", + "\n", + "At iterate 11 f= 7.31501D+05 |proj g|= 6.95735D+00\n", + "\n", + "At iterate 12 f= 7.31292D+05 |proj g|= 6.92361D+00\n", + "\n", + "At iterate 13 f= 7.31287D+05 |proj g|= 6.91783D+00\n", + "\n", + "At iterate 14 f= 7.31287D+05 |proj g|= 6.89829D+00\n", + "\n", + "At iterate 15 f= 7.31287D+05 |proj g|= 6.89835D+00\n", + "\n", + "At iterate 16 f= 7.31287D+05 |proj g|= 6.12573D+00\n", + "\n", + "At iterate 17 f= 7.31287D+05 |proj g|= 1.05089D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 17 31 19 0 0 1.051D+00 7.313D+05\n", + " F = 731286.97671517858 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 5.42643D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23966D+05 |proj g|= 6.96698D+00\n", + "\n", + "At iterate 3 f= 7.23705D+05 |proj g|= 6.91704D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.89908D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91785D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 2.05885D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 2.059D-02 7.237D+05\n", + " F = 723658.65193438367 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 5.39364D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23966D+05 |proj g|= 6.96699D+00\n", + "\n", + "At iterate 3 f= 7.23705D+05 |proj g|= 6.91704D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.89908D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91785D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 2.05985D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 2.060D-02 7.237D+05\n", + " F = 723658.65193438367 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 5.36936D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23968D+05 |proj g|= 6.96715D+00\n", + "\n", + "At iterate 3 f= 7.23705D+05 |proj g|= 6.91712D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.89909D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91785D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 2.09840D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 2.098D-02 7.237D+05\n", + " F = 723658.65193438367 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 5.37698D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.23039D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.23971D+05 |proj g|= 6.96739D+00\n", + "\n", + "At iterate 3 f= 7.23706D+05 |proj g|= 6.91724D+00\n", + "\n", + "At iterate 4 f= 7.23659D+05 |proj g|= 6.89911D+00\n", + "\n", + "At iterate 5 f= 7.23659D+05 |proj g|= 6.91785D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.23659D+05 |proj g|= 2.15845D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 2.158D-02 7.237D+05\n", + " F = 723658.65193438367 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 5.47557D+06 |proj g|= 9.21034D+00\n", + "\n", + "At iterate 1 f= 2.27413D+06 |proj g|= 1.38155D+01\n", + "\n", + "At iterate 2 f= 7.38164D+05 |proj g|= 6.96722D+00\n", + "\n", + "At iterate 3 f= 7.37896D+05 |proj g|= 6.91716D+00\n", + "\n", + "At iterate 4 f= 7.37848D+05 |proj g|= 6.89910D+00\n", + "\n", + "At iterate 5 f= 7.37848D+05 |proj g|= 6.91785D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jhlegarreta/.virtualenvs/eddymotion/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py:445: ConvergenceWarning: The optimal value found for dimension 0 of parameter beta_a is close to the specified lower bound 0.1. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 6 f= 7.37848D+05 |proj g|= 2.15751D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 6 22 7 0 1 2.158D-02 7.378D+05\n", + " F = 737848.03726643079 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.67246D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.05370D+05 |proj g|= 8.59454D+00\n", + "\n", + "At iterate 2 f= 7.93673D+05 |proj g|= 8.45570D+00\n", + "\n", + "At iterate 3 f= 7.86233D+05 |proj g|= 8.44013D+00\n", + "\n", + "At iterate 4 f= 7.83307D+05 |proj g|= 8.43184D+00\n", + "\n", + "At iterate 5 f= 7.79600D+05 |proj g|= 8.39439D+00\n", + "\n", + "At iterate 6 f= 7.79094D+05 |proj g|= 8.39220D+00\n", + "\n", + "At iterate 7 f= 7.76140D+05 |proj g|= 8.31471D+00\n", + "\n", + "At iterate 8 f= 7.72357D+05 |proj g|= 8.12355D+00\n", + "\n", + "At iterate 9 f= 7.72270D+05 |proj g|= 8.13581D+00\n", + "\n", + "At iterate 10 f= 7.72143D+05 |proj g|= 5.71824D+00\n", + "\n", + "At iterate 11 f= 7.72139D+05 |proj g|= 5.72605D+00\n", + "\n", + "At iterate 12 f= 7.72132D+05 |proj g|= 5.27579D+00\n", + "\n", + "At iterate 13 f= 7.72132D+05 |proj g|= 8.09885D+00\n", + "\n", + "At iterate 14 f= 7.72132D+05 |proj g|= 3.58664D+00\n", + "\n", + "At iterate 15 f= 7.72132D+05 |proj g|= 4.12909D-01\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 15 21 16 0 0 4.129D-01 7.721D+05\n", + " F = 772131.57504821080 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.65785D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.06921D+05 |proj g|= 8.58986D+00\n", + "\n", + "At iterate 2 f= 7.94113D+05 |proj g|= 8.44316D+00\n", + "\n", + "At iterate 3 f= 7.82970D+05 |proj g|= 8.41911D+00\n", + "\n", + "At iterate 4 f= 7.79739D+05 |proj g|= 8.39908D+00\n", + "\n", + "At iterate 5 f= 7.79120D+05 |proj g|= 8.38395D+00\n", + "\n", + "At iterate 6 f= 7.77640D+05 |proj g|= 8.33776D+00\n", + "\n", + "At iterate 7 f= 7.75123D+05 |proj g|= 5.65579D+00\n", + "\n", + "At iterate 8 f= 7.74933D+05 |proj g|= 5.79235D+00\n", + "\n", + "At iterate 9 f= 7.73943D+05 |proj g|= 5.84809D+00\n", + "\n", + "At iterate 10 f= 7.72319D+05 |proj g|= 8.08401D+00\n", + "\n", + "At iterate 11 f= 7.72270D+05 |proj g|= 8.10031D+00\n", + "\n", + "At iterate 12 f= 7.72264D+05 |proj g|= 8.09639D+00\n", + "\n", + "At iterate 13 f= 7.72264D+05 |proj g|= 5.72206D+00\n", + "\n", + "At iterate 14 f= 7.72264D+05 |proj g|= 5.72246D+00\n", + "\n", + "At iterate 15 f= 7.72264D+05 |proj g|= 2.72379D+00\n", + "\n", + "At iterate 16 f= 7.72264D+05 |proj g|= 4.80516D+00\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 16 21 17 0 0 4.805D+00 7.723D+05\n", + " F = 772263.56102596270 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.65010D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.05251D+05 |proj g|= 8.58763D+00\n", + "\n", + "At iterate 2 f= 7.90267D+05 |proj g|= 8.44090D+00\n", + "\n", + "At iterate 3 f= 7.80465D+05 |proj g|= 8.41894D+00\n", + "\n", + "At iterate 4 f= 7.78623D+05 |proj g|= 8.38258D+00\n", + "\n", + "At iterate 5 f= 7.77485D+05 |proj g|= 8.38786D+00\n", + "\n", + "At iterate 6 f= 7.75156D+05 |proj g|= 8.32756D+00\n", + "\n", + "At iterate 7 f= 7.73379D+05 |proj g|= 8.27125D+00\n", + "\n", + "At iterate 8 f= 7.72138D+05 |proj g|= 8.22278D+00\n", + "\n", + "At iterate 9 f= 7.70865D+05 |proj g|= 8.15223D+00\n", + "\n", + "At iterate 10 f= 7.70367D+05 |proj g|= 5.72297D+00\n", + "\n", + "At iterate 11 f= 7.70363D+05 |proj g|= 5.75719D+00\n", + "\n", + "At iterate 12 f= 7.70297D+05 |proj g|= 5.74445D+00\n", + "\n", + "At iterate 13 f= 7.70261D+05 |proj g|= 5.72885D+00\n", + "\n", + "At iterate 14 f= 7.70260D+05 |proj g|= 8.08915D+00\n", + "\n", + "At iterate 15 f= 7.70260D+05 |proj g|= 2.48853D+00\n", + "\n", + "At iterate 16 f= 7.70260D+05 |proj g|= 4.51512D-01\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 16 25 18 0 0 4.515D-01 7.703D+05\n", + " F = 770260.40219358355 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.65518D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.05091D+05 |proj g|= 8.58931D+00\n", + "\n", + "At iterate 2 f= 7.92902D+05 |proj g|= 8.44556D+00\n", + "\n", + "At iterate 3 f= 7.85838D+05 |proj g|= 8.43163D+00\n", + "\n", + "At iterate 4 f= 7.82649D+05 |proj g|= 8.42338D+00\n", + "\n", + "At iterate 5 f= 7.78607D+05 |proj g|= 8.38534D+00\n", + "\n", + "At iterate 6 f= 7.78067D+05 |proj g|= 8.38289D+00\n", + "\n", + "At iterate 7 f= 7.74956D+05 |proj g|= 8.30304D+00\n", + "\n", + "At iterate 8 f= 7.71309D+05 |proj g|= 8.13716D+00\n", + "\n", + "At iterate 9 f= 7.71005D+05 |proj g|= 8.11919D+00\n", + "\n", + "At iterate 10 f= 7.70983D+05 |proj g|= 5.74874D+00\n", + "\n", + "At iterate 11 f= 7.70920D+05 |proj g|= 5.72889D+00\n", + "\n", + "At iterate 12 f= 7.70919D+05 |proj g|= 8.09015D+00\n", + "\n", + "At iterate 13 f= 7.70919D+05 |proj g|= 8.53290D-01\n", + "\n", + "At iterate 14 f= 7.70919D+05 |proj g|= 1.92460D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 14 20 16 0 0 1.925D-02 7.709D+05\n", + " F = 770918.73107949912 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.68299D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 9.22966D+05 |proj g|= 8.58775D+00\n", + "\n", + "At iterate 2 f= 8.04756D+05 |proj g|= 8.44012D+00\n", + "\n", + "At iterate 3 f= 7.93080D+05 |proj g|= 8.41035D+00\n", + "\n", + "At iterate 4 f= 7.92176D+05 |proj g|= 8.39009D+00\n", + "\n", + "At iterate 5 f= 7.91645D+05 |proj g|= 8.38014D+00\n", + "\n", + "At iterate 6 f= 7.87514D+05 |proj g|= 8.26959D+00\n", + "\n", + "At iterate 7 f= 7.84861D+05 |proj g|= 8.10394D+00\n", + "\n", + "At iterate 8 f= 7.84810D+05 |proj g|= 8.12825D+00\n", + "\n", + "At iterate 9 f= 7.84691D+05 |proj g|= 8.10053D+00\n", + "\n", + "At iterate 10 f= 7.84684D+05 |proj g|= 5.72978D+00\n", + "\n", + "At iterate 11 f= 7.84680D+05 |proj g|= 5.72422D+00\n", + "\n", + "At iterate 12 f= 7.84680D+05 |proj g|= 1.12844D+00\n", + "\n", + "At iterate 13 f= 7.84680D+05 |proj g|= 1.83845D-01\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 13 17 15 0 0 1.838D-01 7.847D+05\n", + " F = 784680.17670340673 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 1.37170D+06 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 1.10457D+06 |proj g|= 8.30646D+00\n", + "\n", + "At iterate 2 f= 9.64302D+05 |proj g|= 7.83671D+00\n", + "\n", + "At iterate 3 f= 9.62637D+05 |proj g|= 7.83024D+00\n", + "\n", + "At iterate 4 f= 9.62178D+05 |proj g|= 5.98021D+00\n", + "\n", + "At iterate 5 f= 9.62166D+05 |proj g|= 5.97630D+00\n", + "\n", + "At iterate 6 f= 9.62148D+05 |proj g|= 7.85827D+00\n", + "\n", + "At iterate 7 f= 9.62145D+05 |proj g|= 7.85437D+00\n", + "\n", + "At iterate 8 f= 9.62145D+05 |proj g|= 5.96242D+00\n", + "\n", + "At iterate 9 f= 9.62145D+05 |proj g|= 1.34110D+00\n", + "\n", + "At iterate 10 f= 9.62145D+05 |proj g|= 3.49965D-02\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 10 17 11 0 0 3.500D-02 9.621D+05\n", + " F = 962145.18997697858 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n", + "Best parameters found: {'alpha': 0.01, 'kernel__beta_a': 0.7853981633974483, 'kernel__beta_l': 0.47619047619047616}\n", + "Best cross-validation score: 1011.0595625257647\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import GridSearchCV, KFold\n", + "\n", + "# Define the hyperparameter grid\n", + "param_grid = {\n", + " \"kernel__beta_a\": np.linspace(np.pi/4, np.pi/2, 2),\n", + " \"kernel__beta_l\": np.linspace(0.1, 1 / 2.1, 2),\n", + " \"alpha\": np.linspace(1e-3, 1e-2, 2)\n", + "}\n", + "\n", + "optimizer = \"fmin_l_bfgs_b\"\n", + "gpr = EddyMotionGPR(kernel=kernel, alpha=alpha, disp=disp, optimizer=optimizer)\n", + "\n", + "# Define k-fold cross-validation\n", + "cv = KFold(n_splits=5, shuffle=True, random_state=seed)\n", + "\n", + "# Perform grid search with cross-validation\n", + "grid_search = GridSearchCV(estimator=gpr, param_grid=param_grid, cv=cv, scoring=\"neg_mean_squared_error\")\n", + "grid_search.fit(X_train, sampled_dwi)\n", + "\n", + "print(f\"Best parameters found: {grid_search.best_params_}\")\n", + "print(f\"Best cross-validation score: {-grid_search.best_score_}\")" + ] + }, + { + "cell_type": "markdown", + "id": "9249e76858c166e7", + "metadata": {}, + "source": [ + "Train the GP leaving out a randomly picked diffusion-encoding gradient direction and predict on it using the optimized parameters" + ] + }, + { + "cell_type": "markdown", + "id": "83166ebc22702475", + "metadata": {}, + "source": [ + "Define the GP instances with the optimized hiperparameters" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b7e1ca2ccc899189", + "metadata": {}, + "outputs": [], + "source": [ + "kernel = SphericalKriging(beta_a=grid_search.best_params_[\"kernel__beta_a\"], beta_l=grid_search.best_params_[\"kernel__beta_l\"])\n", + "gpr = EddyMotionGPR(kernel=kernel, alpha=grid_search.best_params_[\"alpha\"], disp=disp, optimizer=optimizer)" + ] + }, + { + "cell_type": "markdown", + "id": "1ebe09c2e2fef822", + "metadata": {}, + "source": [ + "Pick a random diffusion-encoding gradient direction and call fit/predict" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ba7e22252116b374", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RUNNING THE L-BFGS-B CODE\n", + "\n", + " * * *\n", + "\n", + "Machine precision = 2.220D-16\n", + " N = 2 M = 10\n", + "\n", + "At X0 0 variables are exactly at the bounds\n", + "\n", + "At iterate 0 f= 2.51647D+07 |proj g|= 7.64969D+00\n", + "\n", + "At iterate 1 f= 1.78650D+07 |proj g|= 8.43930D+00\n", + "\n", + "At iterate 2 f= 1.61450D+07 |proj g|= 7.97417D+00\n", + "\n", + "At iterate 3 f= 1.56409D+07 |proj g|= 7.61023D+00\n", + "\n", + "At iterate 4 f= 1.53457D+07 |proj g|= 7.20265D+00\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " Bad direction in the line search;\n", + " refresh the lbfgs memory and restart the iteration.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "At iterate 5 f= 1.44974D+07 |proj g|= 6.81551D+00\n", + "\n", + "At iterate 6 f= 1.43453D+07 |proj g|= 6.87952D+00\n", + "\n", + "At iterate 7 f= 1.42177D+07 |proj g|= 7.00259D+00\n", + "\n", + "At iterate 8 f= 1.41897D+07 |proj g|= 6.94118D+00\n", + "\n", + "At iterate 9 f= 1.41844D+07 |proj g|= 6.92042D+00\n", + "\n", + "At iterate 10 f= 1.41830D+07 |proj g|= 6.89929D+00\n", + "\n", + "At iterate 11 f= 1.41824D+07 |proj g|= 6.89793D+00\n", + "\n", + "At iterate 12 f= 1.41820D+07 |proj g|= 6.89811D+00\n", + "\n", + "At iterate 13 f= 1.41818D+07 |proj g|= 6.91827D+00\n", + "\n", + "At iterate 14 f= 1.41818D+07 |proj g|= 6.89926D+00\n", + "\n", + "At iterate 15 f= 1.41818D+07 |proj g|= 6.91796D+00\n", + "\n", + "At iterate 16 f= 1.41818D+07 |proj g|= 1.70266D+00\n", + "\n", + "At iterate 17 f= 1.41818D+07 |proj g|= 3.99657D-04\n", + "\n", + " * * *\n", + "\n", + "Tit = total number of iterations\n", + "Tnf = total number of function evaluations\n", + "Tnint = total number of segments explored during Cauchy searches\n", + "Skip = number of BFGS updates skipped\n", + "Nact = number of active bounds at final generalized Cauchy point\n", + "Projg = norm of the final projected gradient\n", + "F = final function value\n", + "\n", + " * * *\n", + "\n", + " N Tit Tnf Tnint Skip Nact Projg F\n", + " 2 17 50 20 0 0 3.997D-04 1.418D+07\n", + " F = 14181772.726816090 \n", + "\n", + "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH \n" + ] + } + ], + "source": [ + "idx = rng.integers(0, len(indices))\n", + "idx_mask = np.zeros(len(indices), dtype=bool)\n", + "idx_mask[idx] = True\n", + "\n", + "X_train = bvecs_shell[~idx_mask]\n", + "_dwi_mask = np.repeat(brain_mask[..., np.newaxis], X_train.shape[0], axis=-1)\n", + "y_train = shell_data[..., ~idx_mask][_dwi_mask].reshape((X_train.shape[0], -1))\n", + "\n", + "gpr_fit = gpr.fit(X_train, y_train)\n", + "\n", + "X_test = bvecs_shell[idx_mask]\n", + "y_pred = gpr_fit.predict(X_test)" + ] + }, + { + "cell_type": "markdown", + "id": "dc93122f8370d2cf", + "metadata": {}, + "source": [ + "Plot the data." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e5c8e303b4639b8c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFFCAYAAABxMu67AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9aYyk53UdfGrf97Wrq/ee6dmHs5AaiRJlLZEoW0tkx0mMxEhsIAiSwEiAxD/iLLDj/AqC2DAQK4iByIgTb/Am2Y4cMZZsSiZFcjjD2TjTPdN7de37vtf3o3XuPDUyoKYhc6ivnwMMyOnprq563+d9nnvPPfdcw2QymUBDQ0NDQ0Pj2ML4tN+AhoaGhoaGxtOFDgY0NDQ0NDSOOXQwoKGhoaGhccyhgwENDQ0NDY1jDh0MaGhoaGhoHHPoYEBDQ0NDQ+OYQwcDGhoaGhoaxxw6GNDQ0NDQ0Djm0MGAhoaGhobGMYcOBjQ0NDQ0NI45dDCgofEexq/+6q/CYDDIH7vdjkQigU9+8pP4pV/6JTQajb/S677yyiv42Z/9WVSr1e/tG9bQ0Pi+hA4GNDS+D/Af/sN/wK/92q/hC1/4An7qp34KAPAv/sW/wPnz53H79u13/HqvvPIKfu7nfk4HAxoaGgAA89N+AxoaGt8dn/rUp3D16lX5+7/+1/8aX/va1/DpT38an/3sZ3H//n04HI6n+A41NDS+n6GZAQ2N71N89KMfxb/7d/8Ou7u7+F//638BAG7fvo1/+A//IZaXl2G32xGPx/GTP/mTKJVK8nM/+7M/i5/+6Z8GACwtLUkJYmdnBwDwxS9+ER/96EcRjUZhs9lw5swZfOELX3jXP5+Ghsa7B80MaGh8H+PHf/zH8TM/8zP46le/in/0j/4RXnrpJWxtbeEnfuInEI/Hce/ePfz3//7fce/ePXzrW9+CwWDAD//wD2NjYwO/8Ru/gV/4hV9AOBwGAEQiEQDAF77wBZw9exaf/exnYTab8Yd/+If4p//0n2I8HuOf/bN/9jQ/roaGxl8TDJPJZPK034SGhsZfjl/91V/FT/zET+CNN96YKhOo8Pv9WF5exo0bN9DpdL6jXPCbv/mb+LEf+zG8/PLL+NCHPgQA+M//+T/jp3/6p7G9vY3FxcWp7//LXuPFF1/Ew4cPsbm5+b37cBoaGu8Z6DKBhsb3Odxut3QVqId4t9tFsVjEtWvXAAA3btw40uupr1Gr1VAsFvHhD38YW1tbqNVq38N3rqGh8V6BDgY0NL7P0Ww24fF4AADlchn//J//c8RiMTgcDkQiESwtLQHAkQ/yv/iLv8DHP/5xuFwu+P1+RCIR/MzP/Mw7eg0NDY3vL2jNgIbG9zFSqRRqtRpWV1cBAH/7b/9tvPLKK/jpn/5pPPPMM3C73RiPx3jxxRcxHo+/6+ttbm7iYx/7GE6dOoX/8l/+C+bm5mC1WvF//s//wS/8wi8c6TU0NDS+/6CDAQ2N72P82q/9GgDgk5/8JCqVCv70T/8UP/dzP4d//+//vXzPw4cPv+PnDAbDX/p6f/iHf4her4cvf/nLmJ+fl69//etf/x6/cw0NjfcSdJlAQ+P7FF/72tfw8z//81haWsLf+3t/DyaTCQDwpCb4F3/xF7/jZ10uFwB8h+nQX/YatVoNX/ziF7+H71xDQ+O9Bs0MaGh8H+ArX/kKHjx4gOFwiFwuh6997Wt46aWXsLCwgC9/+cuw2+2w2+144YUX8J/+03/CYDDA7OwsvvrVr2J7e/s7Xu/KlSsAgH/zb/4N/u7f/buwWCz4zGc+g0984hOwWq34zGc+g3/8j/8xms0mfuVXfgXRaBSZTObd/tgaGhrvEnQwoKHxfQDS/larFcFgEOfPn8cv/uIv4id+4idEPAgAv/7rv46f+qmfwn/9r/8Vk8kEn/jEJ/CVr3wFiURi6vWeffZZ/PzP/zz+23/7b/iTP/kTjMdjbG9vY21tDb/zO7+Df/tv/y3+1b/6V4jH4/gn/+SfIBKJ4Cd/8iff1c+soaHx7kH7DGhoaGhoaBxzaM2AhoaGhobGMYcOBjQ0NDQ0NI45dDCgoaGhoaFxzKGDAQ0NDQ0NjWMOHQxoaGhoaGgcc+hgQENDQ0ND45hDBwMaGhoaGhrHHDoY0NDQ0NDQOObQwYCGhoaGhsYxhw4GNDQ0NDQ0jjl0MKChoaGhoXHMoYMBDQ0NDQ2NYw4dDGhoaGhoaBxz6GBAQ0NDQ0PjmEMHAxoaGhoaGsccOhjQ0NDQ0NA45tDBgIaGhoaGxjGHDgY0NDQ0NDSOOXQwoKGhoaGhccyhgwENDQ0NDY1jDh0MaGhoaGhoHHPoYEBDQ0NDQ+OYQwcDGhoaGhoaxxw6GNDQ0NDQ0Djm0MGAhoaGhobGMYcOBjQ0NDQ0NI45dDCgoaGhoaFxzKGDAQ0NDQ0NjWMOHQxoaGhoaGgcc+hgQENDQ0ND45hDBwMaGhoaGhrHHDoY0NDQ0NDQOObQwYCGhoaGhsYxhw4GNDQ0NDQ0jjl0MKChoaGhoXHMoYMBDQ0NDQ2NYw4dDGhoaGhoaBxz6GBAQ0NDQ0PjmEMHAxoaGhoaGsccOhjQ0NDQ0NA45tDBgIaGhoaGxjGHDgY0NDQ0NDSOOXQwoKGhoaGhccyhgwENDQ0NDY1jDh0MaGhoaGhoHHPoYEBDQ0NDQ+OYQwcDGhoaGhoaxxw6GNDQ0NDQ0Djm0MGAhoaGhobGMYcOBjQ0NDQ0NI45dDCgoaGhoaFxzKGDAQ0NDQ0NjWMOHQxoaGhoaGgcc+hgQENDQ0ND45hDBwMaGhoaGhrHHDoY0NDQ0NDQOObQwYCGhoaGhsYxhw4GNDQ0NDQ0jjl0MKChoaGhoXHMoYMBDQ0NDQ2NYw4dDGhoaGhoaBxz6GBAQ0NDQ0PjmEMHAxoaGhoaGsccOhjQ0NDQ0NA45tDBgIaGhoaGxjGHDgY0NDQ0NDSOOXQwoKGhoaGhccyhgwENDQ0NDY1jDh0MaGhoaGhoHHPoYEBDQ0NDQ+OYQwcDGhoaGhoaxxw6GNDQ0NDQ0Djm0MGAhoaGhobGMYcOBjQ0NDQ0NI45dDCgoaGhoaFxzKGDAQ0NDQ0NjWMOHQxoaGhoaGgcc+hgQENDQ0ND45hDBwMaGhoaGhrHHDoY0NDQ0NDQOObQwYCGhoaGhsYxhw4GNDQ0NDQ0jjl0MKChoaGhoXHMoYMBDQ0NDQ2NYw4dDGhoaGhoaBxz6GBAQ0NDQ0PjmEMHAxoaGhoaGsccOhjQ0NDQ0NA45tDBgIaGhoaGxjGHDgY0NDQ0NDSOOXQwoKGhoaGhccyhgwENDQ0NDY1jDh0MaGhoaGhoHHPoYEBDQ0NDQ+OYQwcDGhoaGhoaxxw6GNDQ0NDQ0Djm0MGAhoaGhobGMYcOBjQ0NDQ0NI45dDCgoaGhoaFxzKGDAQ0NDQ0NjWMOHQxoaGhoaGgcc+hgQENDQ0ND45hDBwMaGhoaGhrHHDoY0NDQ0NDQOObQwYCGhoaGhsYxhw4GNDQ0NDQ0jjl0MKChoaGhoXHMoYMBDQ0NDQ2NYw4dDGhoaGhoaBxz6GBAQ0NDQ0PjmEMHAxoaGhoaGsccOhjQ0NDQ0NA45tDBgIaGhoaGxjGHDgY0NDQ0NDSOOXQwoKGhoaGhccyhgwENDQ0NDY1jDh0MaGhoaGhoHHPoYEBDQ0NDQ+OYQwcDGhoaGhoaxxw6GNDQ0NDQ0Djm0MGAhoaGhobGMYcOBjQ0NDQ0NI45dDCgoaGhoaFxzKGDAQ0NDQ0NjWMOHQxoaGhoaGgcc+hgQENDQ0ND45hDBwMaGhoaGhrHHDoY0NDQ0NDQOObQwYCGhoaGhsYxhw4GNDQ0NDQ0jjl0MKChoaGhoXHMoYMBDQ0NDQ2NYw4dDGhoaGhoaBxz6GBAQ0NDQ0PjmEMHAxoaGhoaGsccOhjQ0NDQ0NA45tDBgIaGhoaGxjGHDgY0NDQ0NDSOOXQwoKGhoaGhccyhgwENDQ0NDY1jDh0MaGhoaGhoHHPoYEBDQ0NDQ+OYQwcDGhoaGhoaxxw6GNDQ0NDQ0DjmMD/tN6ChoaGh8ZfD4/FgMBjAbDbDYrEAAEajESaTCUwmE0ajEVqtFrxeL8xmM+x2OxwOB4bDISaTCer1Onq9Hvx+P5rNJjqdDoxGI8xmM0ajESwWCwwGA7rdLqxWK8xmM0wmE0wmEyaTCSKRCHZ3dxEMBtFsNjEcDuVnms0mHA4HgsEgyuUyzGYzDAYDxuMxAMBut8tn2NnZgdlshs1mg9VqhcFgQKVSgcvlgtvtRiaTwXA4hNvthslkQrvdBgC43W5YLBZ0Oh20Wi0YjUYYDAaMRiM4HA5MJhP0ej2Mx2M4nU4AwHg8xmQygcFgQL/fh8fjQbPZhNlsxnA4xGg0gtFohMPhwHg8Rr/fl+vW6XQwHo9hNBrR7/fhdDpRLpfh9Xrh8XjQbrfR6XQAADabDcPhEAaDAb1eD2bz4XFqMplgNBoxHA7lHjmdTnQ6HfT7fZhMJtjtdlgsFkwmE9jtdrRaLQwGAzgcDgBAr9dDr9cDAMTjcfT7fZTLZdjtdng8HhgMBrRaLQDAcDiEz+dDo9FAv9/HZDKRa2C1WtFoNDCZTL7rWjNMjvJdGhoaGhrvOnw+H7xeL2q1GobDIcxmM8xmM/r9PoxGI7rdLhwOhxyOJpMJg8EAo9EI4/EYLpdLDrVer4dut4vRaASTyQSn04l2u43RaCTBAQA4nU74fD5kMhm43W60Wi05eNUDzeVySRDh8/nQ6XTQ6/UwGAwwHo9hMBhgNpsxPz+PdDot79lgMGAymcjh2ev1YLfbMRwOYTQaMRqN0Ov1YLVaYTKZ0Ol04HK5JNAYjUYYDAbyc/1+H16vF51OBz6fDwDQaDRgNBrRbrdhtVphs9kkaLJarRgMBjAYDLDb7SiXywAOA49Op4PJZAKbzSYHebfbhclkwng8lt/HA5jXutPpwGq1TgVqVqsVVqtVAhAe8FarFU6nUz6b2WyG0WhEpVLBeDyGw+GQe8xryACD75sBUa/XQygUmrpm/L5erydB21GOeV0m0NDQ0HiPglm40Xi4VQ8GA/T7fTlkeKjzgJxMJrBYLDAajTAajZKl8/+ZMY5GI/l5/lEz+/F4jOFwiFarJT/DgyoQCMBut6PZbCISiaDT6aBQKGA4HMJms8Fut8vhYzQaUavVMBqNYLVaYbfbJYjhYW2xWCSrZ0DA4IAZ/mAwkM8wGo1gs9kQj8cBHB7iBoMBLpdLPhsPco/HI0wDD8x+vy8sSqVSgdFohM1mkyBmOByi2+3KQc/s3ePxyH0YjUao1+sSPHi93ilGwmg0wmKxIBgMYjweo9frwel0wuVywWg0SmDGwIjsRCQSEZaH94L3aTwew2q1AgC63S76/f7UvSab0e12Jdgiu3AU6GBAQ0ND4z2KbreLdrsth6TFYpGDgX/IFgCHh+lwOITVapUDDcAU/c0ss9frySFvt9thMplgMBgwHA5RqVQwGo2Ezh6NRpIRM/N1uVyS9fLrBF9rNBqh2Wyi3+9/R9bcbrellDAcDgFADjUeqPy6yWRCv9+Xg9ztdkvwwYyc5Qce7mRHVJZiPB6j2+2i1Wqh2WxOBUfMpO12O+x2u7x/m80Go9EorAgDLL4u3zNLK6PRSK5JPp+Xa9fv9wFAAiaDwQAAMJvN6HQ6MBgMsNlsU6UPNcAYDAYS8DF4I2PDa8ZSEu+VzWY78lrTmgENDQ2N9yiYPfKw42Y/GAxgMpkAYIrmH4/HsFgsMJvNmEwmcpiSXlYZAgASTKiHsApS1DyE+Lt42JL65+vy4CKYpfPAYkBgsVik3DCZTOSA42vw66TKJ5OJsAM89AeDgdTiWX9XD0uWGaiNYBmE2T0PZ2bf6rVjVs1D+8lrxmsDQN4nALlWDLx4/8bjsWg/+DN8L7xXZD1UJobge2TQQcaIjBA/j9PplM/3TqGZAQ0NDY33KKxWq2SgAORAN5lMcDgccihbLBY5PHjwUUMA4C/NkC0WCywWi1DkKmtA6n04HAq1zyzcYrHAarVKIMDXIa2uZsr8XpYimIFPJhM4nU4JCPgaPARZKuChx2DG4XDAYDCg0WjIZ6XwjsEAKXSKAsmm8PrZbDYRKrL+TiEgADlgKfxjls/3qGb0ZC+YiTOQMBgMUsJRgxvg8NDudDrCppD+p5iRAQ/fL4MNXlv+DpPJhG63i+FwiE6nI4EEGQIGJkeFDgY0NDQ03qOIxWKSMff7fbTbbck2LRaL1NxJPZPup+jN5XIhGo1KtsiD0O12w+FwIBwOS52ZBwgPKwYXPIxdLpeIFdXggQGGemg5nU7YbDY4nU553VarJRn0YDAQ1oKlBjIGwOGBGQgE4Pf75X2o4jhV1e9wOOQA5R+DwSAHrt1ux2g0koOfB/B4PJb6vM1mg8PhECaAB3Wr1UK73cZgMBAhHoMiAPB6vQAORZdqUGE0GtFqtURLQQ2EWg5hJ0i1Wp1iRVTmgYxCu92G2WyW99PtdtHtduHxeOTzBQKBqc+oywQaGhoa/z8Bs+RQKCQHAA8UAIhEIvJ1BgIUzrXbbdRqNeRyOTidTsmUbTabHDij0Qh+vx+tVkvEgmxbozgtl8vB7XaL+I4ZKABpVWw0GpJ993o9OUybzaawDWx1Y8bKA5D/pgrg+P/tdhsmkwmRSATFYlHeF8WCdrsdhUIBVqsV9XpdDkM1s2eA02w25RDm76W4MRQKodlsys+Ox2NEIhEREwKQ0oHD4YDT6ZRWR+oz+JnJcHQ6HQkSGDyxDZGtkOFwGKlUSl6H15NsSa/Xk+tFPYHBYJBgK5vNwul0wmq1IpvNwmazSRDBAOuo0K2FGhoaGu9RxGIxNJtNAJBDk8I+n8+HdDoNl8uFYDAIg8GAer2OarUK4DBrbbVaWFhYQKlUkpo5DwrS3FTC8wCmSI8td6FQCJ1OR7JMvg7FdeFwGLu7u1NlA742WwKLxaLQ58PhUA5HAKKybzQactAZDAbkcjlEIhFUKhXpUGAQYbPZ0O/34XK5UKvVhCWhILHX68Htdst7rNfrorBn3Z7sRK/Xw8zMDIbDobQksnTS6XTE66BWq0nWzffZbrfh8XgkIGi1WtI1wUPfZrPB6/Uim83K38mksGzi9Xrl/8nAdLtduW8OhwNer1eYA743AAgEAsIu8BqzlDEcDuWzfzdoZkBDQ0PjPQrWiZ+sp/PgYm2/UqlI/7zRaJRWPa/Xi0KhIBm1yWSSA9Bms2FmZgapVArBYBD1el2U+mqNejgcwul0TokS2bHQaDTg9XpFu8Csdjweo9VqweVySd2aBkpslWP9HgAqlQoCgYDU5sPhMBwOBxqNxpS3AAAJKGw2GwqFAqLRKCqVijAeDJRI7fd6PXlvapav1vXtdrsEIxTqeb1eJBIJlEolWK1WuFwuABAdQrvdloCArZ58XeoWKI4ka0ChJdkTi8UCh8MhrAx/Nz+zqqcolUoIhUIAHndfTCYTdLtdzM7Ool6vT7WFkuE4KnQwoKGhofEeRbfbhdlslo3dbDYLRUzRWr/fn6LxAUiNeXFxEc1mU1Tm1APw0Lfb7QgGgzCbzQiHw3JQka6miI8/w2yXZkbsl2e2TKFcr9dDMBiUfnzV3Y+lAmbaDAgGg8FUVp1KpeB2u+UQZtsfWwl7vZ4cymRNSM9TUMeDVTVqosbB6/VK22OpVAIAOXxZQuj3+9JaaLFYpF2TQRI7Kmq1mrwvBmz8Q5MhtTRDdoV1fwYh7AoZDAbyPvh6gUAAnU5HmBFeb2oenjQxeieBAKAFhBoaGhrvWfDQACCZPQ8TGukAkIychykzVR6MFKHxQGQdmjbHfG2n0wmPxwPgcesce+vZgUALYSrya7UaTCYTAoEALBaLHGqdTkc6EdS+elXMyBo6HfMoQqzVavB6vZKF+/1+CTJUF0QefPwsqgcD7YapE6B2gT/TarWEQWFdnzoEt9stHROqgE+1a+brshOAwkUGSQCEzSF1r1L4qq+AGoTwGlAnQKEhf5/6h6hWq3JNeF34fo4KzQxoaGhovIehugiqrXZq3z4V7Nz8WTJoNBqSZZK2JpXNIIEHHHvt+fPMUkld86ACHvfW8/CjToDZMQ9oHkykrlU3RVXZb7PZpsoYrVZrSieglgpUbwR1joJqusNDnQEJuyVYoiAb4fV6UalUpmrqZBhoNMSDl8EAmQ3gUO9ASl49eJm1qzbBLBeQmSBrwM/IoIzBF1tEGSyobAffJ68rAyl+fuBxN8JRoYMBDQ0NjfcoaCzDw8lms8Fms4lSXR1ow5570udkB9S+f9bseWi0Wi2YzWappTNAUGv/qsUxOxfYKcBDq9frSdbN9kOTySS1cbbnqdm8Wkd3uVxCx9Npj4dZu92WA5FQzYR4wAOPTXzUQT0ulwvj8Vg+j+o1wM+lMg285hRTqoZKDLgo/nO73eIQqbZH8j2Q+WC3gRpUMGAgI2EwGCQ4UOcgsDTEbgleP76GyiKoRlMMNjjQ6LtBlwk0NDQ03qPggcH/Z00fgPSWq8GB3++XLJt95zzYSJ/zkGMtvtFoIJ/Po9VqodvtotFoCKNAISF/NzPjfr8Pn883ZYPc6/XQarVkgh8p/VarJb32ACTD5c8Cj5X9HHbkdDoRCoWEjWArHg//fr8vbZLUN1BAyLZCdXAPrxevZbfbFZEjyx18jXA4jGg0KgEJAwCPxzPl9GgymWQioCrW4zWn3oMsBA94TiZkUNXtduH1eqeuH+9RPB6XzgLVyZAMg2pWxOvL8gH9J44KzQxoaGhovEfB7A+Y9vun8Q2z/EajIX30ZrMZwWAQdrsd+XxeBH888FifbjQaokCnCREPtOFwKNoABgSqx4D6fcyY1QyabMNgMIDf759qs+OBWC6X5e/dbhe5XA6hUAjhcBi9Xg/pdFrKCj6fb+rz0Sp4MpkgGAzCarUil8tNzSXodDqIRqPSgqdm3zabTcSDPFz5c9VqVT4fAw62+fE6djodEf+NRiPEYjEUi0UAkODJ7XZjMBggGo2i2WyKEJPvUWU6ms2mBDC8lixPqCwPAzR1aiVbQxuNxlRpR/WDOAq0z4CGhobGexTBYFAG6LA+zMN2MBjA5/PJaF51hgH785vNJtxuNwqFAmw2G1wul1DYrVZLaGYeQOroXvavc+xvpVJBvV6fMtBhpso+eNoBG41GYTDoEMiAgFR3OBxGNpudeh2/3y8WwHwf1CHU63UZwWyxWOD1emE0GlEsFiWooGCQQVQymUS9XpeDljbGDHxarZZQ62o3AKl5BhL8GZfLhXa7LX39bNGcn5+X7gOyG9QmJBIJ7OzsiGshACkp+P1+6fZoNptTnQA0PKKWgkGXatxUr9el00DVhKieDOVy+Ug+AzoY0NDQ0HiPgtQ4FfkApG7vdDoRDAaRz+fhdrtF8MbBPewOqFarU1MPVZW52WxGrVYDgClKnXMAfD4fut2uZKzAYdtio9FALBZDvV6XQ5+9+XQDVAcoqd0NtAGORqPioMdghZ+DFDqDBwZBzMx52IbDYbTbbRSLRQyHQyldDAYDuN1uYQAMBgPK5bIwAAwG7HY7qtWqMBCcmWC1WqcyffVe8GsMPDgwifoAdkcYDAYZWUxdAYWNwGF5xmq1wuFwiNUx75sabIVCIdRqNZjNZjGgIpOTz+clcGm322K0xLZTsjPadEhDQ0Pj+xisL/f7fTQaje9Q7bPfv1aryQHC1kIephTQkTlgTd/r9YpwkKIzfp/T6UStVpM6tmqFy0ONdXeyCRThAYcagFAohEqlgna7jV6vB5/PJ1mtw+GQ3v5KpSJdEqyNcwZAt9uF3++XA1sVU/IAVc2KeIDSO8BgMKDZbCISiUhAQlEe5wVQO+HxeEQDQIqepRlS8+o44clkgqWlJaRSKXE5VMGBSqoeQWVGgsGgBD1ut1tMj6h5YJdHpVKRz0XWgO2VNptNZhWw9ENBpTq86SjQwYCGhobGexSs7zudThk+ROtbiudUVTrV82r/OkVpLAUAh4c+a+Ok43lo0cGQv5Mtenw9Gha1220Ah4FKLBZDu92WgxzAFFWuthVy/gBV/ZyFwFo+M1tVnKgyFjz0GRyxtZHiSr5HdXpjt9uVLgdVbc/s3O12T7kFshRCZoNtjQw6eM14T9Sf5e+m3wDdI9VRyuoAJR7cbKtkkMXPxQCQgYn6+1U/BTIL/H+WDI4KHQxoaGhovEfBljRVuU8GwGg0olKpTB0M7MfnocTvpS5AtTSm2p1/mPUyQ6dAT+3hpwDP4XCgWCwKEzAcDmW8MDNTGvUwgFGFbQDktXhA8vOZTCZpq6OWgMGOWubw+XzCdKi6AwBivsTfyWybn0cV6/EQ73a7IvBjaYZ0v9qRQBEmAxJeS7W1UNVesP2y2+1O+QqoSn+2QTI4U/0C6FCoekKoGhK73Q6z2SxBjtp6+E5UALq1UENDQ+M9ina7jXq9LuN/1WyTLoQ8tNRSgPr9atbKw0zNtPk1NaBotVpoNBro9/totVqSvfKQ4oHDzJU6BQByaDGjHw6HUstm5k5tAPC45Y7vgYwBf55fUw13BoMBvF6vdEOw/KAK8Ph5yGiwjk7mgboCADK1keY9qlkSaX0aMTGgIkOj2kWTGeHhzkyd15qHs0r7c+Q0BZYMhjgPgqUidfYB7xOvL5kXBloMGt5JMKCZAQ0NDY33KOiwVy6XJcPmgdHv9+HxeOQg5jRDj8eDcrks2gAO0uGhRtqag4nIBqhe+jy4SNcz62WmzYOfBy/r8RSs8TC32+1ot9tTLW6k4DmDoFKpwGg0igkQ2QWKBWl3TPZgMBigUqkgEokIWxAMBoWp4HyCJ22Jed3oc+B2u0XFzwDA4XCIAyJnQLBtkWwFgx2Px4NSqSSBAw/1drstZRVem0ajAZfLJcGQypSwjEGdBNkKCkApkFR1B9Rt0GmSXQ1Wq1VEjCxjHBU6GNDQ0NB4j4LtaMzwmBmzHa3X68l0P9LOZBKYmTJ7ZbDArNNoNCIajaJarYpPAbsRSFWbTCYEg8Gp3nvgkLFQD/lyuSyZLOnzyWSCSqUCt9uNcrmMQCAgP2s0GuFwOJDL5TAzMzM1ZIiBAml1BgGhUEgGDnm9Xng8Hrjdbvl8FBWSLieDsri4iHw+L0wJD2hqAVqtFmZnZ+FyudBqtVCtVtFsNtHtdhEIBBAMBiW4YrA0Go1QLBblmkUiEQmoGGwVi0UZNexwOCRwAQ6ZCAZNnU4HPp8P9XpdDnnV4ZA+DfRFoEZELUcUi0UZA636QbwTzYBuLdTQ0NB4j4IjipkpcrtWOwHIClCMx9bDdrstGbXH45FRxA6HA9VqFTMzM6jVaqKCVwfwAIcHls/nA3B4sHIccbPZxGAwgN1ul2zYZDJN1fCZ3dbrdXg8HhHvAZjKWDnNj3Q6hYVUwns8Huzt7YmxDw9zDhIaDocoFovo9/tIJBIygKjX68nIZNLqLpcLlUpFfBAYFPD9+nw+CahIvfP/2dVAKp/dFH6/X6h8Oi2SvSHjwe/l+GGWBNgqGQwG0W63kc/npfODjAZLGnRe5HRKskGxWEy6PYrFougmeA21z4CGhobG/w/g9/unxvTyAG6320JTs2+dg4ZIQ6tCvmAwKOWA8XiMZrMJq9WK2dlZNJtNOTCcTidMJpNkqTQAogEPM3C2zPn9fqHkGZSwvZHdBjwI+TnYEtdoNJBIJFAoFKYGD7lcLjgcDmSzWaHaQ6GQZL0UPNIwiHS61WpFtVqVzgGz2SzlFZvNhtOnTyOdTkvZpFKpYHV1FYVCASaTSYR65XIZnU4HoVAIpVIJHo9Hxi2rND9r9AaDAeFwGP1+X3wAJpOJvL8nuxgotGy323A6nfD5fNjb24Pf7xevCAYvZGdKpZJoB9SADThkicLhsFhCM6gbDAZihHSUY14LCDU0NDTeoxiNRjIngLS2qsjnaF/23vNngEPGgEI91pk7nY4c0uPxGOl0esrvnr+H7WykwTlFkDV31qRZV+fXKdyrVqvw+XxCgZO2ptnRcDiUvn4e8D6fD+PxGKVSCdVqVX4fBzDxszPoYSuj0WjEzMyMZMyq2JG/x263I5VKiUESnQWLxaIYDFGM53K54Pf7kcvlJOjo9Xo4ffo0AoGABADBYBDJZBJGoxG5XE7aPJnZu91u+Hw+sTReXV2V4I6lmtFohHw+L54H7NygXoMeAl6vV+4tD3eWUuipQIaG7ZvtdnuqK+G7QWsGNDQ0NN6jUNv5mN3xv2p3AOludbARM3CLxSIZK7NvWveSpidroM4aUNsT1WmEfF01UFHpc7b1dTodBINBdDqdKbtf9r+rpjycgqj6A/B9cSoiBZAA5O+9Xk8OWGB6mBOZi5mZGXS7XWSzWXi9XrhcLgly+BkMBgOy2SwcDofQ6/x51VWQ195qtcLv9yOdTkswxEDH4XCIsE/VerA0wNIBtRBkSQAI60DtgXo9+Dpqh0Q4HEY6nRZG4cn2TN73o0AHAxoaGhrvYbDur47QJQtA1T4zStXKltmlzWZDq9USypkHBelytqgx82ZwwUl4Xq93auQus1iKEyeTyXcEInT+o2iQ7APfJwA5EPm7eRDy81KzwFq5z+eTA9Vut4sIz2AwSFmD7X+sxft8PsTjcbTbbXi9Xni9XoxGIxwcHKDf72N1dRXZbBa5XE66HBgQ+Hw+CVTMZjOq1aoYFLHUQpEiPwOvHVkVBlTA4wCG7IZqxMQgiuyPGiywJZKvwxHPZAwYmPE+MODjdTwqdDCgoaGh8R4F1foUA5Ip4GFP22AeyqrzHGlyZrps1aOWQM2gWf/mAcUDW2UPVOc+egW0Wi15r6pTH014eACqdLU6FwE4zLLZGcCvM3unL//S0hJCoZC0QyYSCaHFy+UyHj58KP/mcrkQDodx4sQJofEnkwmWl5dlDgJLE9euXUMmk8Grr74qGTcDD153CvhqtRqCwSCMRiNqtZrMBWDQxRIDRZwsm/BQZjcBvSJoJETGgzMXKJJky6I6z4H3nSUfAFNWyPw53k/e76NABwMaGhoa71GQIlezT2b7pK/ZJ68a0ZBiphZApfxV+prT90jJk1XgAc5RxK1WSzoSOp2OZL8ARPlOt0S+D5vNJocZuwX4c2xZrNfrOHv2rNT82TY4OzsL4HFtf3FxEcPhUFoYl5aW4HQ6sbCwgEgkgpdeegm//du/jUKhAL/fj8XFRZw8eRKxWAwHBwfweDyIx+MIhULY3d1FLpdDIpHAyZMnEY1GYTabsb6+DrvdjtnZWSmjqB4LlUpF5i/QVGkwGMDlckntnuOEOckRAHw+n0xn9Hg8ooEAIF/jwCcaHfX7fbn/bE9kQMYDH4AEKGpgAUBYBYfDITqJ7wYdDGhoaGi8R8HsXTW8sVgsojTntD9OF+ThyXq6x+NBPp+fCiomkwkajQaCwaBQ3f1+X+hvCgMpqmOtvVaribENvQmcTicGg4Fks5yLoDriLS4uYmdnRw5Vn8+HkydPIhQK4fTp0/joRz8qQjn+jmQyKUI9o9GIQqEgv4cBDc2AgsEgPvCBD+D69eswm81YXl7GpUuX0Ov1UC6XZdRzv99HsVhEuVyG1+vFysqK6AmuXr0qnRSrq6uYm5tDuVzG3bt38ZWvfAXtdhvRaFTq8vQk8Pl8ODg4QDgclkObg6Lo5MiSCkswtEnmNSsUCiIyVEWgw+FQSjmcttjr9cR7ghoLBnpkhHgPGTAcFToY0NDQ0HiPotFoTM0aoG1vtVqdcvlrNBoi4rPZbNJj32g0xEq3UqnA4XBImyBr/gDgcrmkZq06EarT71RffpPJhGg0Kt780WhU1P3UF2SzWbjd7qmJgXa7HbFYDBcvXsTi4iLG4zHi8TgajYZ0CNDBr1arScsgP18ul4PD4cD8/LywFa+++qqUTOLxuIwl5mfr9/twOBxwuVzI5XKwWCxYWFjAwsKCMAQ87F0uF9xuN2q1GjqdDj760Y/izJkz+MIXvoBHjx7JoWy322GxWMSMaTKZIBwOS92e2obJZIJsNotgMIharYZ2uy0liEajgUgkIm2AqiUxHQ4ZRFitVmkTBCBji/1+PzKZDBKJhExp5PdQlHlUaJ8BDQ0NjfcootGoiNWoGeAUQ6fTiVQqhclkgpmZGQyHQ9TrdWkp8/l8YnzjcDjQ6XSmxtlyxDAA+TrLBACk9szxuMw0qWS3Wq3w+Xwol8sIhUKoVqtCo6t97olEQsSIH/zgB3H16lUYjUY8fPgQwWAQsVgMlUoFsVgMnU4HpVJJtAjdbheRSASVSgXpdBoGgwFzc3OIRqO4d+8e1tbWEIvFsLKygj/7sz9Dv9/H0tISHA4H/vAP/xBra2tIp9NYXV2F2WzG/v4+LBYLZmdnpf3u0qVLaLfbyGQyqNVqU7MOOp0OZmZmYLVa8T/+x/9ANpuVg55eA61WC+12G4FAQNgQCvd8Pp8wM+12WzQJdB4EIOWUSqUyNVyK1H8kEpF7p9opW61WtFothEIhsW1WxaC8p0f1GdDMgIaGhsZ7FLTYJVjLZ985s+ByuYxwOCzOhO12W8YY0yYYwNQMAWbMtC6mjS3b3Wh3y5ZCtvupDoWsSdMFj+WIdrstgsVCoQCXy4XZ2VlEIhFpxZubm0OhUECv18PW1hay2SySyaQMNVpYWMDOzg4ODg6kBKG2TQYCAZTLZXEuzOfz8Pl8Uk4gHZ/P55HP53HlyhWEQiH4fD643W7cvHlTKPVsNiu1eho8AYc1eQB47rnn8AM/8AN45ZVXkM1mJVBSZxBQ7EkXw2q1KhoGsi0UG7ZaLRiNRvj9fuTzebGOpuBPHe8MHDpRUrAIYEr3wdIF3xP/qNfqKNDBgIaGhsZ7FMPhEP1+XzQCwOHmTiEds3AAQqXTNIiHN7NEis/Ucbls9eNB9uTIY9a2OWSHdX8O67FYLPB4PEKdq3bARqMR4XBY2vNOnz4tWT4tjXn42mw2dLtdVCoVBINBJBIJBINB5PN5EThGo1EpX7BjgHqA7e1tlEolec9OpxORSAS5XA7dbldKBNFoFAaDQTowZmdnUSwWhU2h+JIZPo2bJpMJ5ubmRIPR7XalZh+LxZDP5+X6qU6KDCwooLTb7VLeGY/HUyOT+TnZ7cG/1+t1+Hw+mQ7J8gcDFrIY7FCgJwVLDkeFDgY0NDQ03qMg7a7Sz8wuORdAbTVkhsrDRx1rrLaxUUiomgrRx4ATEQHI4CJaHqutdPx9PIBoE0xhHKfsUbNAR8J6vY5+vy8uhaqVMacFRqNRjEYjeL1eBINBEU6qpjx2ux3hcBitVktU//l8HsFgEPPz8/I+eW1ofkQKP5FIIBaLoVgsolqtIhKJwOv1ykFNR0OWSjwej7QOcuiTOnmQbAQAafUkG8Dfy68x6OL3sSuB7pA8zFkO4P1QfSVoa6y6Hqr6DtWs6CjQwYCGhobGexRUhasbPjB9WPCPeiAT/H9SyqSPmf2TimY2qf7h72M7oTr8hvVulgToRcARuwSz00QiIa2J7MlntwLV+SpTwSzY5/MJHU9lPr0RaCK0s7MjCvtCoSCjiRuNBux2OxwOB4xGI1wuF0ajEZrNJjweD5aXl+FwOLC3tye1fL4HMiJ8r61WCy6XCx6PR5gOv98vUw7Z7cFggsOQyFQ8WU5QLaPpbkg9CK85vSV43Xq9Hrxerwg9eb95jVlSYKDGz31U6NkEGhoaGu9R8DCxWq0iGmS23ev15BDmoczv5cHgdDrRbrdF9EYjIFL0NAdi+xsAYRA6nQ6cTqf0upOGpjaALACzfarh+XsHgwHq9ToajQai0ShOnDiBs2fPIplMStZOC+DZ2Vn4/X44HA643W54vV4RwHHqYSAQkM/NmQMqa0KGodVqYX9/H8DhdEe/349kMilOhLu7u8jn83A6nZLJz8/PIxQKTY3+rVarcqhSwOnz+WC1WsV7gVQ+a/30WmCPv91uR6/X+47JkACEUeAkSd5PlnDIrkwmE+n8qNVqU9MUORqZ4sJarSZOiurkxaPgyMwA6SWOjiT1QYMFAFM0keqiNBqNRM36pJ0mWzVITfFCqe00/MCsFanGDO12G6FQSKZAeTweeTC40Blxsb+UYgs1YguHw7Lo1YiYD0Gn04Hb7ZbPyJvOxai6T/G6UIDDaNTn88kC4oNtMpnQarXE6Ys9wFSMAo9dyFTXMQ7uUB8E/i4uBkawVMd2u135f0anqi+5amtJOpDXQI1ySVWp1qUAZJgJ/cL5vqmUDYVCyGazR16c3yssLS2hVCqJeIoPO+t65XJZaomVSkXWGik9ZgnhcHjKHIQPnHpd1LXLmulgMEAmk4HBYBDlL++Fz+eTB9jlck1lYcyW6vU65ufn5b1xIwYgh4Tb7RblOLM2ZhTMeFKplGRUXHfNZhOj0QiBQEDGzfKes16aSqUwPz+PfD4Pv98Pp9Mpw1A41e3SpUvIZDLIZrPodrtTh42asXL2PMEMkG52NptNsjFSwcyKOA2v1WpJxmyxWMTwRr2GvL/qs9hut6WurVKwpMyZ6VGcxSzR6XQinU4fSZH9vQafa9U4hu1+6jp7MqOlEp0HEoMAZt7D4RCRSET2I7b9sT6uWvCqlrkcBBQIBFAqleD3+6faEzlmuFqtYjAYIBwOIxwOIxKJIBgMynCearWKg4MD2fNcLhcuX76M+/fvI51Oy/rMZrMiHPR6vQiFQrIGU6kUarUazp07h/39fZw4cUL2XF43k8mEZrOJubk5jEYjpFIppFIpxGIx+Hw+hMNh+P1+uFwu0QKwXNHpdHDlyhVYrVYUCgVxRKTwkU6Gc3NzSCQSaDQaqNVqcs3JejSbTTgcDtkzWRYYjUYolUoiegQel4XY/kkhJj8z92ves2w2O9XmyL2IzITaPfLd8I7LBGrLAgBRo9psNvk6bwI3PNZzaJCgmiGwJ5U1F3Uwg6qEVTcqmmQYDAb4/X60222hROr1ukRJ3ATVVgy32/0d3tB8cFjXUQU3qpEDD0gAMlFLddjivGxGdNzUGERQ4GOz2SRY4edlrWw0GkkLCgd+2O12lMtluS6NRkOCqCcPdl4XBg58vwwc6ErGOencXCioURcafa/b7Taq1SoAiMMWf06tVXIDVkeuApAg8J30vH4vQYOVer0+VcdjH7bBYEAmk5GaIDdOPkxcD9w4A4EATCaT9G13u1243W7U63WZVub3+yUI7PV68Pl8YrnKDYebAe87W8BoPkKbUX5fIpFAJpPBeDyG3+8XMVav10M6nZbrzIO3VqvJNWdgPplMUKvVpqhlj8eDQCCAarWKZrMpY1XZNhWJRKTnW1WTU1gGAOvr6xIwLi8vIxQKodPp4P79+xLc8OCmm5rdbofL5ZKgQbVeBR7b3losFgQCATmQLRaLBKB8Thno9ft9OJ3OqaCchyUP0cFgINk19ybuXcya+f0MVp4WxuMxwuEw2u229OLTHc9oNCIej0vWaLfbMRgMhF5OJpPI5XLSYcB9gRPzSqWS9LGHQiE0m03UajWh7bmWut0uFhcXkclkMJlMRCxIEySDwYBqtYperyciPiZxH/nIR7CysoLhcIjNzU1JJpPJpPTJF4tFpNNpLC4uitHPG2+8gdOnTwtD4ff75TXZf18ul/H666/j85//PJrNJmKxGKLRKJrNJra2ttDv99FoNORg3NnZgcfjwdramlwr/hvXQLPZlG4MBiOLi4tYWloSY6Znn30Wfr8ff/qnfyrXkfsEa/ZkAoDDFk6aJlUqFQnIXC4XFhcXUa1W4fV6Ua/Xp5I7sgjD4RA7Ozuw2Wzwer3o9Xoy7ZGdCmRLmOxyzbMb4ig4cpmAETSZAC4ElSLhBsuFysOBVAvHSnKRM5pVlY882Lgg+TOMWNlvyffR6XSEheChxN/B9wQ8nuLEn2FmwPfPAIIHJt+7+v/MIPj7Wcfj71CNOdQDmhucx+OBx+P5DjaF77vZbIrJCMEojw9ONBqVuhF/N20v+VlUm1AAEuyogQxpOi4iumbxvQMQRoQbkOqcxdfjAaAGIbxOzDBJQb4TMcv3EuqoU5fLJZ+DdVNeA5WV4qaqCriYnTKY4EbJNi+qgieTiWSqHJCiXk8eaAAkYOQaBCAbAoNCr9eLWCwmgQIZqGKxKM8OAxW+L26ifI/FYlGMZbhx2Ww2ORRHoxH8fv+URz3fD/3h+X742bjO2u02ms0myuWyBOq853Nzc5ifn0ckEhGjFD4no9EI9Xpd7oeaqTPb4boCHgefVGRbrVbJArnu1eeO6xOAtMvx+QQwtU9xA+Xv43NAVuxpgWuUtWNS49wXeF/JZDKJ4oFEpojrw2g0otFooFQqAYC0H5LZ5IFqtVrlkOP69Xq9cDqdaLVaqNVqOHv2LEKhECwWC5LJpAj8+D459tflcqFWq2FnZweZTAblchn9fh8f/vCHYbPZsLW1hUKhgEwmg0qlgna7jfF4LLMEBoMBgsEg4vE4DAYDcrmcBCZvv/02SqUSnnvuOXn+/H4/TCYTtra2AABnz55FpVJBNptFOBxGNBpFuVzGo0ePkEqlcPv27anzi0zt/Pw8yuWyJF4GgwHnz5/H2bNnkUgksLy8jFQqJc/l3NycdH1wP2UAyj2X65xJ1O7uruz93W5Xyi3A4/2ErPFgMJBAV/Uc4Hrl/eX9Z5BzVLyjMgEX4ZNTsbjhUNhAGpVZL6klHlxPHibqIuabZ1asPsAMGPhaaubOf+v3+3Ko8fB7kkrk51FpcuBxgMILS9Dkgw+cWv7gBsVsIxqNTi0olj8YDapRm1qKYBbJ98b3w0zF7XbLBuxwOOTfVPML9TPzc/FecUEzg1dVtWqJgYcSDz8OA+H1IF2p9rOq7TS8V6r/Nlt2nhYmk4n09fJ9qOpstQSiHmY80NTPyg2Da5XXjmpjHkaqJzxFQuztVoNqvh8ya2QjeJ2NRiN8Ph/m5ubQ6/WkzNDpdJDP5xEOhzEajYTR4P3m80Qa12QySRmD7maBQADdbhczMzPI5XLy76TKKb5isN/pdCTzUfumqWrm1zmtjQF4PB6XtjFm8WqfNpmz0WiEUCgkv1993tSsi88H8Hiin/rZn3y2SZfzYGQAzvvIvzNL5P7y5P7wNOBwOMRljoEm69esd7MEpVL4drtdgiOr1SplQpZQWHPnKF6+rsrY+Hw+6QTgmiODY7Vahc6nboD7MUsL165dg8lkQiwWQ6vVws7ODsrlshgNRSIRPHr0SFr0dnZ24HA4cPr0afT7faHty+Uy8vk8dnd34XA4EAqF5Jlj10C320W325UAJpPJYGNjA/F4HLlcTtYZPyO1F0xebty4IWwpS8szMzO4f/8+XC6XOCJyj/T7/bhy5YroBCqVCpLJpLANLGmXy2XpxuCapp8D15/FYpHyKd8D907u9QQZGOoMmGwySeD3MuDwer0ol8tHWmtHDgZYm2IWyYeXB4rqXMUPrUb3HKbB7EOtZTO6UQMIZqLA40NatePkheQNZXtJo9GA1WpFIBCQOg2ZBm5epCbpcsUNhvVTZgv8L2ukLEGoUTgFIDabDfPz83A4HCgUCsjn82i1WnI493o9FAoFyVBISambGLMiNbrjn1qthnK5PEUjq0wGPcH5O9VsSdUakBXh4aAKcOiDzetB5oOHJA9+sjS894x+2SrzpDqZpQm1Vvxuwm63o1arwe12S1nAYrHILHWn04l+vy80vxpEqiNe+Zn4wLE8QHaKJSte03q9DpPJJPQuN2GWCXgPHA6HsE8MDnideW1Jg9ONjMNi+Pm4OfN5Y5BIp7MTJ05IOc/j8WB2dhbxeByVSgXPPvss3nzzTTx48EDU0FwjHo8HrVZLNCD8HLRcJWuRz+eFWgYg9KzZbMbJkyfh8Xhgt9tFd8BAiQcvtQIcWdtutyVw4FpzuVxSNiG4VpnRk+1Q67O8HqrOg7+XOhcAEuzw+3k/3knd9XsNvm+WYwFI1k2mlJQ992ge1vz+8XgsLoK8d3y+6/W6lE7VQJl/mKW73W5xLGSGWi6XZf/i6zBIWVpawrPPPouVlRU4HA7s7+8Lm5HL5VCr1aTUquq3HA4HvF4v2u22GAFZLBZkMhn0ej3EYjFJ/Dwej7BWzWZT3Be5P/O6AMDa2hpSqZQ8i0ygYrEYtra2xA+h1WpJUNjv9zE/P49sNgur1YqHDx+KDiIQCEhwvru7i36/j0KhINeZa5DPKcuBZHlUho4BJ4MQ9dlgEsbSKxNGPvPtdhvBYFCeVz4PDDbUQOK74ci7M2leqidJzasiPwASKfLmPklnsCbFA9BkOpxeVS6XRUVqNBrh8XhgNpuRyWSkdxQ4jHhYe6UNpFrCUOl8lc4sFArS58oLzAXB7FvddLjpUWxVqVSkzqPWKT0eD6LRKM6ePSuGFMxCdnZ2xEMcgFCkPGyYXfEgcDgcqFarkuVx02NUqQYWvP4ejwd+vx+xWEwYgG63K+0yPDCe1ClwI+HnpLiK/86N/8nFxAdJzQBJSVIJzM2ZC52f5WmVCTwej2yW/AxkkEh7chPj5+FmCByuEx6S6qHidrslQOv3+0in00IHkl2heNXv98szxOtiNpvh8/mQyWSkRk8FM+ewz8/PY29vD7lcDvl8Xuh9i8WCYDAom04qlZLNgYzaYDBAsViEw+HA0tKSHA50RmOp4vXXX8cLL7yAL33pS+Ib32g0sLe3J+1U9F2nmpn3uNVqYXt7G16vF6VSCdFoVJ4jHra5XA4ej0d6uQ0GA/L5POr1ujAvPIDT6bQcvnxOGRjwGpFpGY/H0putChGpZbDb7aKkbzabkmSwRQ04fC78fr8wMap+gEmPOqb33QaH61B/xY1eZQ/J+qlaDgByoFB/AmBqT+B94oGlllz4b0w26FJI/cFwOESj0YDH48FodNhz7/V6pWTwwgsviCiXSQLLCNSIUEfD98lnkWwzhyElk0kUCgVhi/kePR4PnE6naLW4J5rNZvj9fiwtLeHs2bPSFUHdQbVaFRtmlgnVgLDRaAA4XAssBXCAUrvdRrFYFJEhE1CLxSJ6sWAwKEOguA/7/X55JpmksTTHGQuqxwDZVQaBvBdPsrE0h2JnAXUzqgbuqDhyMOB2u0Wopw5TAB5TdcwIrVarHFjMYM1mMwKBgOgNVKFeuVyeahlxu93o9Xqy8fh8PqmL8sar1DTZALpOeTweyfS54Xi9XjQaDXlo1IO0Xq8jm81KLYn0qMvlgtPpnCqBGI1GzMzMSGTGg3pra0v6UTkSc3l5GSbToR3n5uamOHXRbIORKABZ5LzOKnPCDU59MAEIK0IWotVqIZlMijq2Xq/L559MJggGg0KnMXtl1hsIBOT38nNyg+ADTMqWpiGkE1VNQLPZFHqKa4WZCIOZdxus2TWbTQQCAWGjgMcdMAxmGZWTESKrwc8NQDa1yWQia4UPI4WHFHWRYuRBxSCBNF+hUMBkMsHJkycRCARw8+ZNNBoNuYdvvfWWDDrxer1Cefr9frmfGxsbWFlZQT6fx+nTp+VgYytVs9kUQRQDEW7eHo8HL7/8MjqdDs6cOYP79+8jFApJG9fy8rJsOhSuNptNYe54/XZ3d+XakI7nlLy3334bXq8XS0tLMBgMWFxchN/vx+7uLjqdjjxzzBR5D7h/8JDgs8bMi91EKpVPBoVqcAAigOShRLqY9CpLIrlcbipjYyLxTrKr7zVGo5HQvExentQ1MAvmnsFAn2BAwCCBAZUqgFaDYbIEZB0MBoOIZdnDn8vl5BAfDoeYmZmR0tOZM2ewurqKTCaD7e1thMNhDIdDYYRYUmUiWK/Xp/z5KdTjXsWymSrmZNeaxWJBLBbDW2+9JecDP8vi4iJWV1clICVToJbSKpWKXB+ubTUxAg61Ev1+HzMzMyJm5/vkWvP5fKL3isfjCAQCU+LtRCIhTIHKBnDqodfrFa0OD3BVi8Znmu9VZQEYvPB38exVX+MoOHIw0Gq1hDYiGF2TNuJNY+ZIhb2qK+h0OiKyINVFMRAXDZWXfOhVuoSRKOuvZrMZwWAQV65cQSqVwu7urnhhU3C3v78vXtY84Mrlstz0Wq0Gv9+P5557DoPBAKVSSai1g4MDdDodxONx+dzqdK52uy21JB6gOzs7krXxEDh//ry8X4rBGF1T4EOKmRkMa0LVahWdTgeBQGAqo2FWxcAsEomg0WjI5kpRT61WQ6FQkJqf0WiUg4FlGeoSEomEiCu52Ll5MANhyYcHPXDYVhQIBNBsNsXRSxVqqf99t6Gq0NVhLaSjgcONlrVYt9stQitS89yMgMdCNmY46s9zbZNmpiEJ76nJZJLWV1Xs+vbbb8NkMomHe7vdxuuvvw6TyYTl5WVsbm5Otd6Wy2UUCgUEAgEJ/P7W3/pb8Pl82NjYkJa/ZDIJAPLsqi1K3W4XZ86cwYc+9CG89NJLsFqtuHz5Mi5duoQLFy5IK+XBwQG++MUvIhaLwel0IhaLiYr9+vXryGaz8nynUinZ7FTxHjsiDg4OkEwmRUvg9/vx6NEjGI3GqSCYgSYP5BMnTkinAA92AJLVkpna39+X3niVgeO1Y/sXldlc15VKRYIsNblhye5pdRTw2qnCYODxs8R2SnUfYODLtcl2X+4XAISxIuPA55zMIjVafF22uXGP4z5eqVRkrwKAubk5OYB3dnbQ6XRk3kAgEJhql6O+gUwNkwgGmfv7+1hcXJSggSwqE7GDgwMxDrpz544kopPJRNrMVf0KmWkAWFhYkIA1FAoBgCScTGqz2Sz6/T5OnDghzLSqxWKgRFaB+2Gz2USz2ZxqleV+YTQa5exSM3qVdaeeSNW3cd8na0B2k4wbSwW8n38VjdY7KuKyRs6FyI2MdWoeZqS8eeiQKu73+1OuSLxxjObpQ6229fFisq7KFkPW6RcWFmA0GvHgwQOJaslcMGN1Op0S9VEZy2EVrJ8CEMaBB2ilUhEqh3QU51gDEFqKr9PtdkWMw+hNzRaDwSBmZ2cxGj0ensGDggEFr0mj0UCj0YDX65WWm4ODA8lyuVjU9kN1ZCcjcI7kjEQi2Nvbk/fC+0TaiVE5Wx+5CfABYeZPkRv/nRsuRTSMyFmS4MNDgdPTADcR9drwOjNgY3ao0nAul0taeFg+UnUUvOYMXPnvapdNKBSStlBV4c4yFoMU1RaVlCo3Skb5LEdw0zebzdLrPTMzg9dffx3vf//7cf78eaFJ4/E4bty4gXQ6LSW4druNWCyGS5cuyevMzs6i0WhgcXERZrMZW1tb2N3dFR3A7OysqKVv3ryJnZ0dxGIxLC4u4tSpU7h165a0n6p+661WS8a3koLd2tqaYmtCoRB6vZ4EvTwQ1Ho/dUcMDrghUl0NQPQX3OR538l2FYtFyQj58+xm4P3h4ctAzWKxoFgsPpV1CzzeY8hUMggnq0gth9/vF8qbhw/3BjrjqYJnsqQUo7FdD3icfc7NzYlGgC2ZtVoNRqNRdCwUtLJzgfstnxuWiObn51GtViXBo8icpdFKpSJlV+pZaFaUz+dFF0ZGmK6Hc3Nz2NrawurqKrLZLJaWlgAA169fx2AwwOXLl/H222/LulA1TLVaTcpgPKQpqjQYDEin00in0+h2u5ibmxPzIdolcx+xWCxIp9MyQrjRaGB7e1sYFpPJhL29PWlBZ/bPch6DL14PnqNMHhhUsExTqVREcxEKhYR9ZHKjJs9/LWUCRixqaw4PJNJvzDLVSEZt2WKW/6Q4TrVT5M/x+xqNxlT9g4uZ0X4mk0EkEsEHP/hBdDodrK+vizBsPB5LpBeJRCRzIyVF9oCbEOvuPOy5GbCGz42ZC5lKXIfDgUgkgq2tLXS7XTGaqVarqNVqsFqtWFhYQDKZlGiQDAdFZbFYTA5P0j88dDudDprNpoi/GPCoCn7eC4rS+BosvQCHpR4A8jCpQj8uOFXtynuidh+onSR8LbV+RXqXa4a/Wz2Q322whqZmi9SrBAIBAId6DpURUdmQbrcrNVcGOcz8AWBmZkZKCLxWvI80DCoWi1JjZBkiEomgVCohHo9L7zDrktQGxOPxKcUysya+P7/fL8KtRCIhqmSbzYZ8Pi8MQSQSwcbGBux2OxYWFhAMBtHpdOQQcLlc2NzcxAsvvIBIJAIAUxvZxYsXUSgUsLOzI6WyeDyOWCwGm82GRCIBs9mMVCqFvb097O/vo1KpyDVkXZ7ltnq9jmazKWuFNV22X5Jx4v6gtvqq4igyOe12W+bSA49H8vK55X5Aox3VdIiszmg0EoEpy5hqa+PTAPvmVe8WjsuNxWI4ODiQvn+1tZIM3ng8RjweRzqdxnA4FNaE65/lPpZjVK3LeDxGpVJBOByWoIpsLt/L+fPnxWhqZWUFs7Ozcv0uXLggz/329rbQ2dxzC4UChsMhMpkMLl++jGazie3tbYxGI9GeMPFkls4D1uPxYGlpSQ7IjY0NjMdjBAIB+P1+pNNpPHz4EHfu3MGjR4/gcrng9XrR6XQk8FhdXRWN0/b2tmjC6PRnMpnEZ4BMS6lUQq/Xg9vtRjgcRqfTwSc+8Qm89dZb6HQ6yGazU3oar9eLhYUFMVkCHre50hOAXh2zs7NTbe9MXvv9vgR0hUIBo9FI/Bqy2SxCoRAymYwkq6pWTjWr+m54R7szD+sn229IbfPGqb3TKl3BB4+1EVJOpPl48Kh9/PxdzBD8fj8SiQTG4zHK5TKq1Sr8fr8IFFnPp2Kz0+kglUqJgMjhcEg5gtkGI2LWEhmAMANRTVl4uDKKo6VlPB5HoVCQDZsRJikgLmi+HjdyCiVZ361UKlM1QlJ0ZEJ4KJGWI5htMjPlwctNjQ+Az+eTSJQgrWQ0Gv9SoR83Q94PUnqq+pg/S6pMrWnx3/4q1NX3AiyDcH3xvjKwoUaF61ftpFDLIwyC1M+uCpr4GZnt09WMm0epVJJngpoE4FB573a7hepjOcntdkvmZDKZRHzHcoI6VIXZCr/XarWi0Wggk8kgmUyK1SoV5exmYTmLmSWzQGbqNHkxGo0ol8vC9Pn9fszNzSEYDEq5i0Gx3+/H6uoq9vb2cOfOHfk91BOobAfLco1GA4FAQA521feDgSafJyYRXLdca9x3GNgxaAMea57IfKn3iUExAxG+T1XEpZZH301wTanlLaPRiFwuJ51FdrsdBwcHErQ6HA7UajWpWzO5UQXJZEa4B1Nboo4s5n2jdoCiTDKSZI0WFhbw2muviVfAaDRCOp3G7OwskskkGo2GCFabzSaq1SrG48MphNSqcL+amZlBMBiE2WzG3NyciGrp50HNGctcN27cwKc//WlYLBbs7e2hWCwiHo/jzJkzmJubwze/+U1EIhEkk0ncvXsXAITpZSCxt7cHAELP8xoxc8/n87h9+7bMQmAixSCYpTPqWugXQD1FvV7H9va2lKrYpTSZTFAsFuH1epFKpTCZTLC2tiblG3ZmMUkzGAzCFk4mkyknUQZqZLm4bqi3OQrekc8AN0O1pUztCmBEyMOCmy83VfV7GERQIKfWsLnB8SHl5kVal61tFHv0+32sr6/D7/fLqEdguo796NEjBINBWdS0Yu33+1IzYv2fi1XdELiZMPOmixd/F/uXmbWpm3W73Ua5XJ4yqFEXBR3oGo3GVEmD74G1NHUD5c8wcGLWq5YA+P55rcxms/Sl854yk+DDqGb83HBZFyM7oLIWatakdkrwNZ4UOj0NqA8f8LjmDzzOIBmN8/rx2lFgplL8qlEPa+W8jvzcpPUMBgPK5TIikYjUFrnR8OBKpVKw2+3w+XwoFouiL6AmBQCCwSBWV1eFmqSgsF6vo9VqIRQKiXCWZTQ+i6Q/GSSrrYl+vx9+v1/oTtKN3W5X5rYvLi6KqItthE6nE4lEAj6fD/v7+0ilUiJqDIfD8Pl8yOfzaDQaqNfromDnteb6Z0trrVaDz+cTd0fuHex4UUVkajBGf4zhcDhl6zyZPPYh4b20Wq2o1WoS3HD9MgDi96vPD2vUTwuqa6bqrEijJqPRiEqlIgc1kzIGuZubmwAg5Uzef5YA+W/qHs6Eh2Uvfp3rnocd93S6DjJQoNaGCUggEEAoFJLEZmFhQYTHu7u7SCQSePXVV7G3tycZLzVHtP8ej8fY29uT/WtjYwOZTAYzMzP4n//zf4og1mw+tP/NZrOoVCpYXl4WjQF9E0ajEXK5HO7fv4+VlRV5tlKplLQYF4tFFAoFhMNh9Pt9Eesy8OZn93q9eOutt+Dz+WTN02qez26z2cTMzIwwvExCybKo15oCYSaNtHVm1wyff9UZlkG+6karMrtHxZGDATUL5H/VzZN2usygVEUks2hSoWw7UjsISHOTlmNZgrUT6goajYbUMkmxtNttoXsYSFDA4f/2kAoKSYxGI2q1mmRfjPozmYzUj/neeZE7nY64VM3MzCCRSIiJByndfD4/lUny8GUg0ev1sLCwAIfDgUwmI7Qnyw6k6MhyAI8padbsmUnyM9IMhKwKF0IkEpHDixEjF0g+n5eAi/eOYk5u2MykeQiazWbpbab4Sj34GCTyYGVWy5IDA7mn1a/d6/UQiURQLpflmpBy5mHNrhIeOux+Yf2elDHXp6q5sNvtKJVKEvgyCOBUNvZ8UyHNDIN1dJfLJaUq6nImkwlSqRQMBgMSiQQSiQT8fj/C4bBkNVarFdFoVLp8PB4PAEiJyul0IhQKYXV1FUajUZgvHiTpdBq9Xg8f+9jHUK1WRSnODMbr9eL+/fsAgNXVVXg8HgSDQWEx4vE4PB4PNjc3YTIdmsucOHEC7XYbZrMZ8/Pz+PznP49KpSJdEsz6VYEsE4NWq4V4PC7iWKPRiFQqJcI1KrfpSsr2MtaSucbL5bKwPFx3/X4fkUhkyt+Dmh4GdazNU5vR7XanRLJPE+xq4p7IvYaeFQyUWL5k26vH45HWN16zwWAgPf3cg9jap7YV1+t1+Hy+qQ4jBgRGoxHVahVvv/22HHrUerD8dubMGRwcHCCXy0kwwH8LBAK4f/++sDPRaBS5XE5KzqzVLy4uIhaLoVQqTWlC2NdPwyPuUW+88QbefPNN2d/7/b50r0SjUdRqNWF+nU4n6vU6zpw5I5oZrlGed9SNnTt3Tlrc2eLK1wEga4hMIf+frYUUvzLBY9nFZDLJ9YtGo7Jnqmwjn3cmzGSJmHDmcjk5e1XNwDvRCwDvIBjgQUEBGTsGSN+r1JL6ZliXGwwGoiINBoMwGAzihc3v45unOIUbNxmCSCQiURk3VJPJhHK5DKPRiEKhIKK7Xq+HcrmMZrMJt9stkRczEG42PETD4TBsNhtu3boFp9OJ5eVl+Hw+CSpYR6PIK5lMIhwOS7uY1WrF22+/LcMv+Pl5iLvdbhSLRaGPQqGQXD8eHNzESqWStE01m02JrpmtMGBgNm+1WqVbIpPJIJ1Oy8ZOOo0POSkuABIMeTwe1Go1jMdj6VvnxkLqlfVsUl/qelAXLwWfFGupwePTqr2y3k7qWS1P5XI5OWATiQQODg5Qq9VE/KbS1VyfqqkWrw0NnRi0MssMh8Oy5tiCRFEXM5RkMikKYzoGcp3YbDbMzs7i/Pnzktnt7+9jOBzi9OnTcn9NJpMEvKT4Sa1funQJhUJBTJVYi7xw4QJmZ2fx8OFDdLtdnDt3TmqqoVAIiURCBIAqsxAOh9Hr9ZBKpRAOh3H69GlR6b/66qvwer0yAIZU74svvgij0Yg/+IM/QD6fR7VaRb1el72Am9v29rasXTJJJ06cEGMXbqCsy2YyGQwGA5nTwA4EHny9Xk9Kg5VKRZ4Drkce9CwzsoTBZ8Fut6NQKDyVdQs8Vo+THWX5lfeCmz/ZE+69/Dkq6tXyK7N4NZvkOuKaISvFoIFUPd+LxWIRPwcmc/QfYMs2/41TB8nckGFkZ0G9Xkc8Hpf2Vf4bNR6ky8mekhlhYFsul6fOI2bQiUQCzWYThUJBugeYkfPQVc272F0WiUSkjMzggy3b6sHMsoDa2s7fzffC/Z1rmSViNQhgiyuvC5NlnjlMWNUyOoMdBtVkGHjmqGzOUUtc79iB0Gg0ypsBMPVgkYoiDUgP/Xw+LwuStBc3NlLdoVBIIla1nY0UM80sPvzhD4u4hEIJ9r23Wi3cu3dPnP5YN3K5XHjw4AHeeOMN2VAYBauvz75n6gaCwaD0W5P2YncBHxST6bB9bGNjA263G4uLi3j48CHa7bYYx/R6PUSjUbkx3HATiQTm5+flNaLRKB48eCCWm+xyiMViCIVCsNvtqFarUmNlrzQ3wv39fRgMhqnBJsyYxuMxkskkhsPDOeLMQhkJsxbGw1KtT6oMRLfblclkVMS6XC4pawyHQ1Euc3PgImZJ5d0GH14+5KpPBtek0WhEJpMBAMmYuPlxjav2zNRusNeZWSYjfpUlSiaTQk/WajWkUinptaa/PJ3NWPZi3dNisWB7exvvf//7Ua/Xsbe3J4Kh3/md38Ha2houXLggmwKnprFW2Ov1ZExsJBLB9evXpSc8k8ngwYMHeP7559FqtZDP5/GhD30I/X4fd+7cQaFQQLVaxYkTJ1Aul3H27FmYTIfteQw21tfX8dxzzyGVSsHj8eDTn/40crmceLqze8hms6FUKuEzn/kMbt68iW984xviKkfBG2laMmEUafGZiEQi2N/fRz6fl2DVYDBIeYXMHvB4DC+pY5b+qFgn3c1DjoEuAAkYOp3O1MCZpwG1lMHniP8FpkteLO1xjyOdzNfggUSmVRWoARCWgf4ZZAg5D0EVA08mE5llQBaGg74ikYhM8aOmqt/vyzNDbxmyL+VyGYFAAIuLi8hmsygWi8LS0JDH6XTKIC2ymRQLZjIZ0bQkEgmxAWbATkZ0e3tbnhOWp3iIZjIZlEolrKysiOakXC4LoxEMBmUfbLVasre6XC7s7e3JHs22bq45Zu/cT2m9Td2ZuodSvMp7R/YYgBhrqV4TZNW57ll2ULV2annuu+HIwQCjC1U9zsXKTJLKdy5UZrXsMa1UKlLXZOsJFyeFO7xAbKVhXfX8+fNIJpNC01AvQJo+HA5jZmZGFmahUBB6mJTsxz72Mezu7k5N/bNYDm1pU6kUxuMxYrEYLBYL4vG49JaSlqHyvNlsilMaHbnYTnP//n0EAgHMzMwgGo3C7/ejVCqJeIXCMt5k1og5ItPn88Hv98t1Z/sIaV32vcfjcVSrVeTzedEjxONx6aCgURLvk9lsFhcveiYwmyD7obqLsRTBLILgdD6a5rAMwQ4GijbJIKkUO+/Nuw22QFFcxzXGMhKHvTBap9CM0T4FXKQp1W6BXq+HYDAo5RkaZbE1rtvtIpPJYG5uDrOzsxII0JSpWCyKuppU7oULF3Dt2jWsra2hWCxic3MTv/mbv4mlpSUJqnw+H1ZWVnDx4kWx6GX7azgclnrrqVOnMBqN8M1vfhPr6+uwWCwIhUISpI5GI/ze7/0eSqWS9EezXbfdbmNxcRErKysolUrI5/OiI2CZrlqtYmtrS8ppGxsb8Hq94kMAHFLc4XBYtAuf/vSnsbi4iJdeegkbGxuyyXHN+r89iY1r+fLly+h2u7h+/bqwWdwUmcGRSeAa83q9mEwmKJfLcg/JePBeMstVjb1YwuCmyoP3aQUF1AIxUOchMRwOZa9lsEpLcB489Xpd7hNZUDJiZDxCoZB0nNCPQNVrMSiy2WxysAOQgJWZ+OXLl3HixAnE43GEQiFxpIxEIkilUnj06BFWVlbg8/nQbreRTqcBQNr1ACCZTMoexk6Ue/fu4QMf+ICU+fj8mUyH/hv0ceE+TtZY7ZSIRCK4desWMpkMLl26JPs6GdrJZIKtrS1pNeSzyUA2mUxK+clsNqNYLErJgA64ZIpv3bolejJ2cpCdYZDFgJflHXrx8O9kxngfyVoxQGPZRmXb1QSEQQRLLkfFX0kzoIoJx+OxtN7xzZJeZSTFbIciF1UZTNpIFT4wmDAYDKIsHQ6HmJ+fR7/fx8OHD6Xuz42EfaOj0QjJZHJKaRmNRrGwsIDt7W0Eg0GUSiWhullrOXfuHPr9vrRjsX5F2nZpaUk23VAoBKfTiWAwKC5yq6urIsphNFYqleSm1+t1lEolLC0tIRQKIZfLSZ3W7XYjGo1ieXlZdAiZTEa6CGhRy+lfvC4Oh0P8Eqgn6PV6Itwic6JS9RT8qFkDKWa2/vB6c0PkJsT7yE1e1XmQFuMCVpXgrFMyM3i3wTIK6+EAZI5DJBIRRzG17MLBH2wz4obKGic3YW62ZvOhLSlnk5Ny5H3iQcl7RopyeXkZ6XRaOkVOnjyJK1euyPCgYDCIj3/843I4cn3FYjF4vV5RgLMEND8/L+/Z4XAgn8/j4cOHePbZZyXjsVoPvdKpEg8EAlhYWMAbb7wh64jdCe12G5ubmzLHIBwOo1qtCvO1tLSEvb09ec16vQ6/349sNoutrS34fD78+I//OEajER48eIB+v49sNotIJIK/83f+Dra2tvDFL35RWCWr1YpisSh7SbVaRblcxsmTJ+H/9lhoAEK/MiAdjUYiFma2ZzabhcWjvoDqegrUGAwwceGByhq8z+cT/4SnAdL9/H/qb2g0RSqYmTdLBmprKwNVMokGg0FKl4VCQQ5YGmEFAgFEo1ExwiIbFI1GAQC5XE5aCTc2NtDpdDA/P49OpyOjriuVCm7duoVEIoGNjQ05jBkUtlotfOITn4DH48Gbb74pSdDq6ioSiQTefvttGI2Hfgbb29swmUyYn58HcLjH+f1+nDx5Evfu3cNkMsHS0pIo8HktJpMJNjY2cObMGQyHQxHdknF2OBw4deoUzGYz1tfXRTzIgCAcDgvbyvOF/gI0rVteXhZvDrZu0/iKHi/b29vw+XwwGo2IxWIwmw89XagpIoNHnxN2FJFZI6PFZIMMDgARKqu6Fq4XtQPlKDhyMMANT+09Z/TF2rLaPkYqh7QVB1A4HA6hiFhaYKRH4RZb9ebn58VRbW5uDjabDQcHB/JQUNwTiURQLBZxcHAgmU80GhXHw93dXelCoNEPxThmsxmhUEjEVTMzM7LJsk5D3wKKcXijmd273W7kcjmhikizk05itn3ixAm43W7x5GbU5vF4sLe3J62SZBpYouDipciHr82sfTQaYWlpSbIz0qaZTEZ8tPkwcLAOFyAXOoM0qpGZQVO4xfvM0g4fOB5SatDB+84NievhaeHJljoyFmrdjiYmfLh4oKvrneuY10yN0NVpYyx1AZDDml7oateG0WgUirrb7aLZbCIcDku3C9tm5+fnUa/XpeuFwkOK59geyw2C7AY7ArhRmM2H9sIMgB48eCAOiU6nE16vVw4+MnMUoS0sLKBcLotCXBXN8hrTJY7Wxzy01LZN6hlYzjp16hRWVlawtbUlQRvXJVkABi2rq6tySDAgZTalaibU0hT3LHUGBXU8PDi5jmlqxFKQGhQ/LfDZ4jUHICUOWuByv6HrHl0aAUgLs91ul/2Mn41iNwZPLBG2Wi2kUilxDrx79+7UNee+U6lUkM/n8b73vU+0Wt1uF5ubm6jVanIfR6MRTpw4AZfLhVwuh0ajIeXRZ555BltbW6hUKnLYGY1GnDp1SloX2Z5KnQCf4Vu3bmF2dhYzMzPy8+FwGBsbG7h+/TpWV1eRTCaxs7ODCxcuyN5arVaRy+XQarXwoQ99SOYusKTcbDbFgG1+fl72+9deew3BYFAY6HA4jI9+9KN4+PAh9vb2sLi4iGeeeQYPHjyQPYAlLnrN0IyIewy9AvgMsixLDQe/t1aroV6vYzg8tOsns8l9KR6PixcCS7bsajuq2ds7ai3kgaS2olDop6og1Q2CC5LlAS5EHtTAY1vj8XgMr9eLUCiEWCwm07T4mtwEmUXxvVDlrr4POl11Oh0UCgU5BLvdrvgAMKvjhszeWdr60umJff9sSQIgvbMUPtHQiJ+drIjZbJZoNBqNwmg0SvcAa8qMyumQxYFNpOWMRqNM21I9GKiq5sPJ2Q98PRobUewCQJTeDN54n3g9uUi5AfKw46IkNftkeyEDK/XgZHDA4OJpb6pkSvi5VEElrz3w2L6WNCzrpQwG+FqkXHmd+fNqNseDmoeOKt7kv3u9XjEMYXsW+7F3d3ellZbvneUYt9stimWKysjU0POfjp35fF7uGynmZrOJUqkk897L5TJOnz4tyvXBYIC5uTmpCzOz5qGfzWaxt7cn2enS0hL83x7IxPXo8XhEa8O1z/XAAPKFF16Qrg5Vq8K1xKCHtWiKwIDHg9HUa8NrTEEVnyF+ja2dwLQg2ul0yv2i1ob196cJVeXPZ5ulUZaZOIeFlDsDITJEZBr5bO7v78Nut2N2dhY7OzsiduM6HA6HYmBlNBoRj8eRyWREIGez2VCv17G4uIjl5WWcO3cOgUBgSsjN9cwkz2w249SpU6LJ2d/fR6/Xw+XLl/Hnf/7n2NnZkSCNWpper4cXXngBwOG9Pjg4wP3791EqlTA/P49SqYRYLCbP3O7uLrrdLs6ePSvura1WS9pbFxYWpFefa3cymeADH/iAZPbFYlGSt+XlZbz22mtIp9Mwm814++23sby8jNXVVWG7SqUS7t+/jx/7sR/D22+/jbt370qmz7JUNpuVvZ4CYZZ/EomEsGHswiKbxUSOQnUGp+ykY1Kby+XkGvBZY+nkqDhyMMAsiAcCD12qp1V6CnhsdmOz2eDz+RCJRJDL5abqV6SX1Qc/FovJcJRSqSQHMR2i6PjHnwEg2Qw93Vn7ZCZIaozKUapdqQSlGpSlBTr98d8Z4VLJzMXFWdW0ZQUgtpPhcBihUEiU2IzUXS4Xstms2KBSVMbNiWM5+eCyX5wtbsxaaCzECJ/lBbVlhaM2K5UKKpWKBDj+b4+R5gPGjJaZ8WAwmFK1coPlQgYg1BSDATVrUJXN3ISpP3ga4DqgCQ3vJQMCHvZqK6UaKFEzoLavUSdD7QRLTwzQ+HnJrPA+8nX5DE0mE2nZ8/l8Ujsn5Vqv17GwsCAlrOHwcHAXy2eqIU4ymZzq/qhWq+Jrkc/nYbPZZA4AN45gMIiTJ0/irbfeQqPRwKlTpzCZTHDv3j2022188IMflE4ZPjdkqywWC1KpFHK5HBYWFiQ4AR47TvLw4mAbWtFSxNbpdHD58mWYTCZ861vfko4HXis6r5XLZczMzGBpaQnb29silmLQzzIQA1nuT1SzM0HgnqN6mZBapvCV60X1nnhaoPiS1DDfM9cK7Wmp2WLLZCAQEJU990BeL4vFItP3mJAEAgHppqh+e9Iq20fX19endBOqkdq5c+dw4cIF9Ho9ERvOz8+L2PMrX/mKtCPyWaMfRbVaxa/92q/hM5/5DJ599lns7+/L/jsYDHD//n0Mh0Nx4Zyfn8dodGgrTW8KtWSRSqUQDAYxPz8vJRGTyYS1tTUpJ1EvlkgkYDKZkEqlpnxjmESp2fejR4/w4Q9/GLFYDLu7uxgMBuLGGQ6HpXPmjTfewObmJobDoTiDPnjwQKblAo+1LGTNuLew7MNSHsWNDNDY5smAWT30qU9gwKPuLUy0j4J35ECoigd5YDBDJE2pTrnjYUHv/v39fQCQrJSbLjfUXq+Hubk56Qdl/2uv18PBwYG08vEiUihHat5iscgmmc/npV2OF+/ChQtot9sSubLfeHFxUSIu+qcHg0FEIhHZcPmwdbuH87hNpkP710AgIGKu8XiMBw8eiNsUsyO1u4JiRl4/ZnKk87rdrphYhEIhOYAp+mFNmBsYxVxUdjMrW15elgXC2tW9e/eEilX7YqkHID0FQLJ8BhbcQJglPZn1M2NmVMssRtUMPOma+G5BbcfihslAlg8P2wQZwFApzCyMh47KcDDq5mYcDodFxUwmjNe+Wq3Ktef1cblcUiulopjXj61V8/PzsqlQHc3fubm5ifF4LDV7Bp7sOLHb7QiHw9jc3JQyUCqVgslkwtzcnLidnTlzRoIVdbAXDwpO9ex2u5ifn5dJi6pRUigUQrFYRKVSEQGmytzduXMHbrcb73vf+/Dmm2+iWCzi9OnTuHr1Kt566y2cPHkSk8kEf/qnfyqZPgPVbDaLmZkZqR+zDs7DazQaYXZ2FvV6XQIQsgLA4VAndd4GuxWoS6AvCOvj7EzgyPF3IsL6XoPBNYNUrj1VJ8BnlkE51yqzbLJ6PBy4blkm477NLhQGWmazWcSv7XYb0WhU2v54zdiZxPu8s7ODVquF+fl5eb54EPv9fgQCgSmjKFLfc3Nz2NnZQaFQmBruc+rUKXnvZvPhULqFhQV5DnO5HB4+fAiz2SxMF69PMpnE6dOn4Xa7pdbOoIo1fpat1tfXsbq6ipmZGTidTlnL1A9xmN38/Lxcn5WVlanAuVqtSpmmXq+LuI+BFpkCtY2TSSsZFIraWbpSz1U++/w7J/FylDQTNDJbLP9+z1sLmcWqL6zWs1T1L7NqPnCsH6nteKToaUPKjcZoNGJzc1PqJXwQG40G7ty5I6KIeDw+1bNdLBZRq9UQi8WkxkhfALaIVSoVuN1uxONxuFwuFAoFoZ2YbbGEwM/C2ube3h4ymQyWlpZw9epV2cgp8KvVashms5ifn8ff+Bt/A/v7+9jZ2cH9+/fhcDhw9uxZFItFbG1tYWZmBj6fD8AhTZzP51GpVOD1epFIJOD1ehGNRuFwOMRSlq1WdKwjXceFzU6IWCwmi4qZEVkJ9rrzYeHBSEe6druNUCj0HR0iDKaerKEyU+GGyQNVFZsyA+dB/LRATQAPYrU3l+NZZ2ZmpIWy1+tNtUjOzc2Jmx4/IylXBg+pVEqCOga3kUhEgk9+jYrneDyOy5cvY3FxEW+88Ya0eNpsNkQiESwuLuLtt9/G7//+7+PkyZOyubCUxi6Uj3/840ilUqhWqwgEAkgkEpK9cUOLxWLw+/1YW1tDJpPB/v4+Hj16JAzSzZs3xXedvh1k2ux2O5555hncuXMH169fR7VaxcmTJ3H27FkR0lJXU6vVcOrUKdEYfPWrX5W2yWAwiHw+L+9/Mpng9ddfFxdDeicAh1St2WyWuvjBwQHu3r0rlL9qHMW2KraI+nw+uY4WiwV3796VDRmADNdhqygAudekzjmojEHt0wKfcYp1WbZqtw8nUFKYS+EZ1yaZDbqgMlAgM8ZAl6/H0gtV9DTH2t/fF18WCg0ZqLEstbOzA4PBgEKhIJbVXKsrKyswmUzS7s0yBEtE7N0vlUrSUTMajbC7uwuj0YhoNCrdQLzv3Duz2aw4Z7JEzZIUfWPolMjpsOzzJ5PBpJHaG7vdjlarhUKhAIPh0P43GAxib28P8XhcEicmDp1OB1tbW1hcXBTB7cHBgTAOajJABphlmFKpJGw7BY0AJNBl6Zo+C9QCkNVjZwnXCVlansWqGP8oOPJ3qrQpL4RqPENVrqp4tVoPLSC5KdHrGcDUw0sLRzXDYu+92gq2v7+Per2ORqMhis2lpSV4vV7JLCwWi9TORqORiPPu3r2LXC6H2dlZqasxWuPEOG7eqvApnU6jWq3CbDbj6tWrItQhJcme2Gq1Kq99584d+P1+ocra7TYePnyIRCKBy5cvy9CKbreLQCCAS5cuoV6vY3d3F6+++irC4fAU3eN2u7G3t4dbt27h7NmzskkyAiyVSsI2ZDIZ+TmKyCwWC2ZmZrC2toY333wT6XRayjI88Cmw40PicrmkXYuCL/b2UnvBh5M0OKlxljPMZrOoeukc9zSgttmwZ5o10n6/L74JfMjJdrB8ZDAYsL+/LxmNx+OB1+sVn/5QKDTl605h1ng8FvOly5cvY3d3Vx5un8+HT37yk2i321hdXcXS0hJ++Zd/GY1GA3NzcxiNRpLdMwM5ceKEUJLclFkKstvt2NrawksvvSTthV6vF/Pz89jY2EA4HMby8jLK5TL29vZk852bm8Nv//Zv41Of+hSef/553Lt3T6Ycbmxs4AMf+AAODg7QbDZx5coVydI51CuRSEjLV7FYRC6Xg8vlwqNHj1CpVHD16lWcPXsWt2/fFu0Q1wHX35//+Z+j1+vh7Nmz0ubF/YGmNwyCSfkzi2fCQCbRYDCIRavRaBSvAnaSMGtjNsupdSwDqQ6pPGTZCvY0wN+vBtJ85lTHUPU548GgirR5ePBZYBLF7JHPvVoSYUJFvdKTOjHuk2QbZmZmEAqFJMkbjUZiPcxDnrVydqtwP+XBSN8D9tVzD1GZJ7ae8/V4wJLxJGtFEzaWTtrtwwFPFotFAj16SdC9k7+bJQ9VhMfrzX2SJlc0wwMg+h9+H9vgmTjQU4EBEBM5GvexNEA2kgc7hezskmGZgOcDAwaycQCmWKOj4MjBAGk0/kIuMv4/a1O08qT6nBl+qVRCIBCQGqKabfKmUNjT7Xaxv7+PYrGI2dlZyYIAIBKJ4MKFC0gmk+j1etjc3MT9+/cRjUal/YkMBOmsmZkZzM3NSb2G0RIXIetUfO+NRgPZbHYqeuVFzWazKJVK2NzcFP0Bh1V0Oh0sLi7Can08eCkej0vWzClXwOMJVbVaDZubmxgMBrhw4QI+9KEP4eDgQB5E4LDeS2qoWCxicXFRrFX7/b4MsNnb28OlS5eEPiP9zAMsGAxid3dXVNcM7FiD3NnZkSiVwZSqLWDdUM3OuKFTYEeRGd8/6UM6pj0NVCoVyVR5H7kRrq2tod/vi+sjBWNkTbhBmc2P5wSovuJGo1E6Nuirzno1a45Op1NqjdVqFaFQCCsrK0I7fvnLX4bFYsGnPvUp9Ho9Edrt7e2h1Wrh7Nmzsmnu7e3h/v37cLlcSCQSSKfT6PcP5wZcv35dtCvsJGk0GlhfX8f8/Dxu3LghVOvZs2fRaDRw7tw5LC4uYnt7G7/yK7+CmZkZXLhwAefPn0c6ncZbb70lds1//Md/jGAwiFAohGw2i29961uYn5+X3uuVlRUEAgF5hur1Ora2tqRMxGCV7X/hcBjz8/NYXV3FhQsXcHBwgHK5jPPnz4sJGPVBqVQKsVhMOi4YcPLvrVZLDh12MjAJASAMDw9Ntdspm81iZWUFDx8+FOMnlmyoWXpaYHmOQabaNslnmHQ8tQVGoxFer1c0JgxsGAwAEOFsu92WvYRMHktEzJQ7nQ6q1SrC4TA8Ho+8Fsdnr62tYX19HefOnRMRXz6fBwBR5NNUKpVKwWq14uzZs1hYWEC9XsfGxoZ0s3BvZmstu0VarZaIXEnx2+121Ot1uN1u+P1+6awgOxIOh1Gv15HP53H69Gnx/ef6NJlMMlHQ6/VOBZJq2/hw+Ng4jOUvg8GAer2O5eVlXL58GXfv3pXrFQwGEQwGxU/k7bffFmaDwl2WI6m5Y8CmiulV1oddNSwVPunnwnOZ4mfqmcgKHwXvyGeA2SSpCAAiaKP6UV2gjBAZWXKhPtmVEAqF0Gg0hDY1GAx45plnMBqNkEqlpAY4mUyQTCalf5YXTlU4P+kjzgAjFouJAIY1IPoShEIhLCwsoFKpYG9vD0ajUYx+eKjb7Xbs7OzA7XZjbW1NIsNCoYBOpyNGPrlcDgDENzsSieDUqVOw2+3I5XJC9aitIzy0m80mjMZDsxj2a5NN8Xq9WF1dFXFNpVKRoRcul0t6gHk4UTDEaDIej8uhzwee7ZI0/mC9kfdF1QMwA6MClupt1YAHgHwGfkauGwYeTwMmk0noaV53qvvT6fSUVgKAlICGw6FQycwMuf5Npsejc0nvc4NQ22j39/eFJePDrZqkAMDFixelR5+CKLWeevPmTQQCAZw8eRIHBweSgY3HYyQSCQDA1772Nannu91uzMzMwGI5dC987rnnkM1mpQZOgysAeO2117C7uyuZHm2LKVBjeyzXIttanU6nlLvu378vzNPDhw+xu7srpRY6zNGEhvqgVquFbDYrhl/McrjRqeUVi8WCc+fOCVvI8h0AqaWyLsy/s1cbAAKBAFKplNTDyWJxr2Lwy/HmXAsUZz1NzQCze75XivEYULEtjjQ4M0oG5ywFqG2ELClEIhFhWvi8s0vFbDYjm83C5XLJXq52YQCH8ypMJhNmZ2el3KjuieVyeap8wfkm7XYb+Xxesv1arSbsDb0kqtUqMpkMCoUC7ty5g1gshpmZGSmVkpna3d2V/T2dTk8dqgwmy+Wy7H9qq7DD4cDp06fF+4LtiUxYZ2dnYbfbcevWLbkm+Xxezj8KVTc3N/HWW2/hhRdeQCKRwGRyOI3w5s2bsr+USiWMx4eTGrlPMEki88DEifskA6FIJCLD/J4UDAYCAdnjKShlkEDB7ve8tZCHOACh6FThCqNKbnx86PmhSJ+oqm4eGqTL6WBlsVhk05mfn4fD4cDBwQEGg4FQPKzvWa2Hw1qoOGbdkhdnPB4LtVmpVGA0GsXngBedlBYAxONxsftl3abf70u5o9VqyQNJ0QYj9l6vJy0iqio9m80K88Hr5fP5ZBGodWdmdJxQRoqJ5ieko1inp4iSGwU3QaqQmZFbrVaZ1cANVqUE6QDJ+6iaB/E+MeJUywtcsOqhzw1W9Rp4J3TV9xr0AGDmzzIXI31unMwmScEDhxkUlcXj8Vh6gfl9fNhUnwX+PD0J6HfPGnwymZRxw5PJBNFoVKyw2XHDTXhmZkb6tsnMsHQBQMafsk86n88LzU477u3tbdRqNSwuLso6YSZFG2yuIx486sATqpnJ4JFpYrsTvRHW19dRLBYBHDJ4bH1qNBrC5DEg4lqlRwMPE64fDm25d++eZMLMqFQ7aQDSPscyDjNg7kfMGCkYY5Cj9u8XCgU5GFWvAXXfexpg+VVtaWV3AADRFXG9qSwWrw8DUa5DPo8mk0nE2l6vVz5/t9uVAW+TyURG/HKfYZBsMh06+M3MzKBcLkunCrVXlUoFBoMBlUoFuVxOGM1SqYTd3V38/u//PnZ2dvDMM89gYWFBZoKo152sx2g0wt7eHk6ePIm5uTmUSiVcv34dmUwGn/nMZ+TzsbRcrVbx+uuv49lnn8VwOMTOzo4YwzGp9Pl82N3dxaVLl8SFNJFI4LXXXpNOBnooPHz4UFpPvV6vTGLM5/My5K5eryOZTCIQCIi4T/UmoQU/W9RZOmfHGnUgFGfyWc1mszh//rysBe5ZfD2yYX6/X54Nng9/LaZDpNSAx2NuuVmQdmNURhoJeOx65/f7hTkgMwBAIhxS7SwvUDTDCI7CtkqlIm1coVBIAo9e7/EscrbkGQyHA4D4EHAjYVak+pHn83mxQlXfJ6Nug+HQtYu921ykbEekcQQ3QdKS1AsMBgMkk0l5CNnKoopymPUzyCG1ypnzauZDN0CKeVgro60sI3nWyIbDIQqFggzX4AFP5be6MfJg5+FIKkptFVT/n+UetmSxRsdIXM20ngb4EFW/PQ6Un49BAbM/tRZHGrHT6UjvPA98rhkeUpw5wfIIRZsMWKn6ZiARDofF+IeDr9htwI2CQkGKpSh45abDfnmz2YxWq4Xl5WWYzWYkEgnpY2Y73je+8Q1hkujnzvolDw/eQx6oXF+cUHjnzh0x46Kehp+ZgjyW1hjsk8oHHnefcM/gJsYgnOUABqxUjbOsRaEtJ+PxoCedOh6P4fP5UCqVJJjlvapWq/L6ZL5UUR0zMq53/uF+Rjr6aYCHIx0zea2YTDHYjMViciACEAv4arWKWCwm+xnvK4Vwm5ubsFgs0qfOoKrbPRzuNRwORRfQ6/Wk3p3NZuH1emUdLy8vo91uY3t7GwDET2BnZ0c8VuhdsLu7K0OuXnzxRWEbq9WqMMGj0WhqTc/Pz+Pg4EA0H7du3cL29jYcDgeuX78uepPZ2VmZsxGLxRAMBmXmSzwel3tZLpeRTCaRyWRgMh2O6S6XyxKMs4y7vb2NZDIpg7ioDeJ+ePv2bWHGX375ZTlrSqUSTp06NZXs+f1+YcHICLCrgKwL2V5VIOtyuXDnzh1hgflv/L3AYx0JExteQz5fR8E7mlqo0vJqj6+aLXMBA5B+aZr58GKSJmX0TdpWdWLiRlcul6U1CDjcFLmx8fCmUIubdCKREAaBYq1+v49oNCqCP0ZXjNhoD8ysmXOzKchhts7PyRvGUsj+/r6MwmRUzJYsjmZlRsK+fy5UDrKgaCUSicjvdTgc4n3PyVmseTFTpTKdwkSafKj9vSwFuN1unDhxAplMRkycGL2qKm01++WhxyCw3W7Lw6Bm/fx5rhG1fKCWlt5tqFPPeAiRKaBvPuvEbDtUDwNm/sxcSZtSlcx5DQxcGWSpUwoXFxelZc1iscjBn8vlsLOzg7W1NczNzcFqtU5N38zlcuj1elhbW0OhUEA8HkexWEQ6nZbhVerExZWVFczOziKXy03Nk0+n01hfX8czzzyDhw8fYmdnB0ajUTpfaG/MwJLBAV05U6kUTp06JfVQPr8M+kejkazbVColzyxpXVpkx+NxUbCTDi4Wi9JiyUAGgATcRqNRSie0ouV7o5iX11+lpVle4x5E9zruX9yvGGBTOKuKlnkYPi2QNWLwqj5fzJ4jkYgkOmRpSSnPzs7CbDYLhc5rwmCAB9XS0pIwpmazWQJnlnRisdiUS14ymcSVK1cQj8fx+uuv48yZMwAeCx6p5aCuw+12Y2NjQ6ZxUlvF60+fE85lYRcVVfzZbBYWiwXpdBr5fB4PHjyQBHRlZQWLi4tiisT7GggEMD8/j7feeku6YthFUSgUkE6nUS6Xcfv2bbzwwgsilrbb7bh8+TIikQg6nY4IaE+dOoWlpSVhaEwmE4LBIIbDIT796U/j9u3bso6YaDIQbTQawhpzL2WCQoaS+zS7I5jM0q6e5TwmNCz79Xo90UdQXOnz+TAej9/RxM0jBwOM9gGIsxRZALawcLMEHmeBPMS4IEjlq4cUaUk++FR4MtvlBKydnR2cPXsWy8vLyOfz0o1gt9sRjUalXktbRjIFpM4zmYxYCtNlymQyYW9vT6IzALLJ8pA7deoUHj16hLm5OdjthyMzqeAvlUpwOByIx+OYTCb4gz/4AzG5YDCyuLgoD28kEsHOzg4ymQzcbjcWFhakTjWZTCRzo0iGbZp3797FeDyW4SCJREJo30KhIOKotbU1dDodZDIZmTLITZJCTFKMZC6YGbOdUDWrUIfzsDWG7AbXA0slACTTZrbGP0+zrVB9uMiAUMzaaDREqMSADIAcYrSTTiaTSKfTkpVSgEXRIMsudIvjdebae/ToEZrNJk6cOCE1bQaY/DvbmhqNBsrlstj9JhIJ/NEf/ZEEKzabDbFYTMS1VqsVKysrsFgsonlJJBKIRqPodDq4du0arly5Ii27gUBAHDl3dnYwHB4Ov3r48KEMMGK7Fa9RPB5HLBbDJz/5SaysrEjJolwuw+Vy4datW9Ia1mg0RMTHEbScy0FNA82Q+v0+lpeXMZlMkMlk4HA44Pf75ZouLy/jlVdegdVqxeLiomhSuKHmcjlh8BjwU6fAdrPR6HDS6O7uLkajkdRc6dT4ZNcTgxwyd5xm+TRAXQlrymQK1NIga/HAY20XgyImNxShTSYT+cxqC1s6nZbPS2EyBc9sj+PBDhw+87Ozs+h2uzg4OEAoFBKjIvbzs417eXkZ1WoVDx48kP58dg0Eg0HcvHkTFy9ehNFolCCE+4jdbkcymRQ1vdV6aN+7v78v64hmRWonlc1mw8zMjGgSaOnNWj2ZPpPJJIZ4bL1W2/YqlQru3LkjHW6hUEg0Bs1mEysrK3KAM1ErFArS0k4GbzweY3Z2VsTgAMS7wGw2T80cYBDNDihONY3FYtIazfZR6mKY2AKY2nvVcv53wzuyI+YhwQE7jOKYrXPRABD6w2AwiHiHZkGkAV0uF9LpNJLJJGKxGKrfHosaCoXEvAE47Dmm69i9e/dkkEYkEpEJZ8xUi8Uidnd3xVjE7/eLnSo3wnPnziGfz0uLldvtRqlUkuiKgzFcLpe4noVCIRQKBdy/fx+7u7uSLZPyV+u5b775pvSNGgwG3Lx5E6dOncLm5qYovHnTyuWyDBu6deuW1LgYXbdaLVHOHhwc4K233pKaL00/2u02zp07h0KhIMM0GJyxzstAolQqSebAKFINADiGly1ApA1VYwt2iZCJ6Xa7Umog5axm4HxAnxR3vlvgg8NOh3a7jVQqNdVWRj2E+gA1m03xnKBDHT3Lqd6m+pi113Q6LUNO6E3AYIP1WHYU0FedbbVUYu/u7sJiORzZzRkTzz77LGw2G+LxuDBUfJ7W19cxmUxkbDDvj2r3zU36xo0bIjwKBoPIZDL4yEc+gm9961vY2tqSrCYQCOD06dPodrt45ZVXMD8/LwNf2IFjMBgQjUbx67/+65ibm0MikcCtW7ck4PJ4PDh16hTy+TwWFxfFG95kMiGdTovdrdlsxsc//nEJsHZ2dpDL5RAIBMTXnR0PbJnkdU8mk9KGlk6nhbFkIkGXPYrhgMesFUuKXK/9fh+BQGCKPaTY7J3UXr+XYMLz5GFPkRzvNXUkZCxZ7uGe9GT9nfsK27DVfnUyhQzwyXSq5Vsmdvv7+zKjgF4NtD9nYtNqtVAsFoXB4IRZfgaLxSI6LyZ3ZPI8Ho+UTikS5XyYYDAo70ttoeY44OFwiNu3b0tpjsE+92aWPcLhMFKpFADIvBsmpfl8HkajUUTg1AGwg85oNAoLx/dOY7xGoyGJAc8/doHw67yWHECnarHY7UE9De8P/53lawbH1COQ/WLAfNS1e+RggDPAS6WSfCi2alGFTroVgEQmgUAAhUJBaHPW63gTufHOzc1hYWFB6D1uzFQO+/1+MajgwJZMJoM33ngDi4uL8Pv98Hg8iMfjWFxcnBp+4XK5sLu7KyOIOUFwf38fe3t7iEaj4m7Ih4APz2AwwNe//nVUvz2bejAYiM0wM4lgMIhwOIydnR184AMfQLPZlMicmQuzUoquGERwMVHg9Nprr8FutwvbsLy8LFG32+3Gzs4O7ty5g0gkguXlZWEhGo0GZmdnAQCvv/46Dg4OYDAcmmawdsZMl3Vfg8EgRhxUuNLgiAcNZzCQXSiXy3Kd1LZQlgjY8sI1QEaEm/TTADc6dkzQQ4H1ObXdjJmS2Xw48pnUKD+PKspkgEAhJ7UxPp9P2JR0Oj2lq/F6vZidnYXNZsO3vvWtKbEePQkuXryIubk5MT+p1WpYX1/H5z//eXnu+JlozkPKEzgsk4VCIfR6PWxsbGB9fV0EWoFAALOzs6hUKvL1X/qlX8K1a9fkd5bLZWxuboryPhgM4tGjR1haWhJP+JMnT8LhcODGjRt4//vfDwC4ceMGer0eZmdnkUgk5Dr82I/9GF566SURcG5vb0tAcfLkSUkcPvjBD+LGjRs4ffq0UMS5XA5utxtf//rXpzQq3HjVjZW0KfvY2Q/Pw8lgMEi2ywOWmpC5uTlxsIvFYlMDX9g2/DTAlkl+TgYpaucWjdx4MKh7MjN5quHJLJDlU4WwbH/jPk3KnaUbsl4M8B8+fIj79+8jmUyiWq2KqNNkOpwhUKvV8OKLL4pnBQMA7gej0eGwK+pMWNpkaS2VSskBPJlM4PV6sbu7i0qlIhb31Omwju/3+5FIJKQzh+6YNptNRLvMvgGIoLrb7cq5xqF3o9EIBwcHcr6wxZLXk+3KfE7j8ThmZmZgtR4OFqJ/DjUaZB0ASOLFKY9qFxfvKzN9NYnhveVrqLoX6pJUUyTuE0fBkb+TogQKolQ1K8eZNhoNhEIhlMtlcT/iQUfBA28YN2DSdjyYA4EAVlZWRExByj8SiQiNyoeY1EoqlRJ/eAoNqdYfDofY2tpCPB5HOp2G3+8XC8tqtSoK14ODA+zv70sHQzAYlHpRo9GQjMTv9yMUCuHg4EA2KrvdjkePHsncAXqxs7Y+Go3E1c1sNk/ZcrK+WalUkE6nMTc3B4PBgHw+L5uxOt/BarXi5MmTKBaLmEwm4qvAWmA2mxVfbI7sVMcT83qzhlatVmW2OBcU3csY+TKzpp0mN2+2ijLQ4cPMtkZ2MTDSf1oiLNLFpPL53qiSZ+801zQ1A6SOA4EA8vm8tGQymxwOh8Imsd7OLNVkMglbRvMnOpSNRiPpLGg0GpKBra2tiZcEFfKXLl1CPp/HBz/4QSldsG65vb0Nm80mJaHnn38egUBAstt79+7Bbrfj6tWreOmll6S1KR6PSzfBwcEB1tbW4HQ6ceHCBWxsbMjBwHpxu93Gj/zIjwj7MTMzIy2Bp0+fxpkzZ/Abv/EbaLVauHjxoogfGWR3u1187nOfw5//+Z/jxo0bonOhwJUudtFoVMpwLBu2Wi2k02nZqNVgFYCwOtzguWGyBEb9DINbls5YA6d//6NHj0S7xHvEIO5psQLAY7M34HFQy8CA2iUyefyManmOa54dFgzITCaT7NP8OfoBsHuF/gY8mMiUkdXd29vD7u4u1tbWxPo9kUjA7/djb28PlUoFy8vLyGQy2NzcxNWrV2GxPB5LzUNrf38fiURC6u9MLDlPg+cNEynu736/X+zdVY0T234Z7POzJBIJ2Gw2NJtN0SfcuXNHfAYikYjsZ5lMBplMBltbWxLQMOji9WSHDIcWkSmzWCzi2ULdALVlDKTogcNglZ+NGg4ytUy8GMwyQFNL6sAhO8vrx3WjsrdHwZGDAUYtqlEN3xDFRMxQGQgwK2T91OfzSX8/a+IrKyuYm5sTNTAFRaSYaPxAxyjVzIaUDPtWKQAiBUSbXw7eoO0sAFGIqy1LPCQomuMft9uN+fl5yag2Njbk93EjDwaDYufK4IcHIT83W7/YAsPX58O1tLQkJhGj0QjNZhP7+/sYDAa4du2aUFRkRhjRqp0BXDyTyeH0Q2ZA3HxpD/p//+///Y4+VDWjUNtEyZAwgODBz9IRAAlsaGmqdhT0+/2p/tl3Gxz/y1LAcDgU0Sv1DSylsO2N9UuK09T3z4eVQizSm9xkh8PDeeds5zMaD21V2d9Pqp4BNkWuZMv4fJw4cQLdblcO/1deeQXXrl2Dz+cTdotBQSwWE1FYOp3GYDDA7Oys1OBDoZAwEBzctbi4KAzRvXv3pC/8xIkTonMpFAqSwaVSKZw4cUJYLL/fj3a7ja9//euSNXo8Hng8HtTrdezt7Unwq84w4AZYKpXQarUwNzcHk8mEzc1NaZPj1M5+vy8mXB6PB5lMBvl8HtFoVIIvBgbqpDcelmQimXhwc6RXBuur7L9np4669o/q7f7XARqh8TniQQBAtAM0amPnCQ8Mdb0zuKIwlvoTlh/Yslar1cTamtNbI5EIxuMxSqWSuPjRQjoWiwEA0um0HEZ2ux2JRAK9Xg+3bt2SZ4w98yz30smTZThmzVwXBoNBDnt2nXm9XqytrcFsNiMQCOD69eti5rW0tCR0fj6fx8LCAiwWCx49eoStrS0JZFiC5gF+5coVPHjwAHfu3JG5B8z2meBQoE7tAq8PGeVsNotcLofNzU3ROzBJ4pREls8o1qb3gv/bg+NUASE7ethuSU0Rv49MK9cpA0RO9eUz9k7Y2HdkR8zDHYAc8gCklsR6ldqKprZk0TOfiuxwOIxkMom5uTlUq1UxhlBb/3jwkFrnwUdTBbU1iAebyjzwYWEdjZ7RtHClot5isYgXAnUNdOpj61SxWEShUJiaSU3RBzd3RrKqxz+1A7yOAKb6+Pv9vtScSO9SdELlK8WZNBxSzTO46VFowsyGmxsA2UxpSsLD78nNk/eT9VL+na/D3lUGg8Bj4yHgcSsU+2SZRT9NMDgEHq9jHgps2eQ6Gw6HkgEAhzQtNzkaEQGQdccNyuPxyOHMzZvucVyrdGis1WrY2tqaUhMz0GRwRz0Cf7fZbMby8rLUwJnJ8ICdmZlBOp2WToVYLIZIJIJms4lyuYyrV6+KtTZbm1h6Y92YLpnqsJbJZIK5uTnpcFDXLbUXbGddXV2dGsFKEdpkMsH29jaCwaB0+hQKBRHm0TJ4fX1dVNUM1NWSHT8bh4mpUxJdLhfK5bIEJayh05uEXU8s5TCTZFDLHm8AwmAxWH+azECr1ZI2NwphOR6YexzLHu12Ww48CuL4bKrW5LyWc3NzePjwoTAqb775pgQPrLNzTTx48ADD4VDWFQDMzc3JtWKve6lUgsfjwfnz59HtdnHr1i2Uy+WpEb7qPnfz5k3ppOFAOpPJhOXlZRFQf+lLX0Kj0RCBIvcdh8OBa9eu4Wtf+xq2t7dFSM7SKq8BZ2KwPEpL8oODAzn0M5kMzp07BwByJjgcDoTDYfEYYJmYrYN//Md/jDNnzsj6oQ6LzNeFCxfw0ksvyZpLpVIYjw9nyDCAoMMjrfhVZpHaFl5jnntcsyytAJCBSwxkHQ6HPP9HxZGDAZPJJJk3Dwlu8jyY1J53VWDHDbjVaol3Nds+qCrmfxnlk9JjvYh0OTMvWg6zvsLggwN/VDcmiuCMRqO0qszOzkpbYi6XE48A9upyBCYzZArHKHLi+yGNXi6XpZTADZsbF9Xa7PNnLYcUHjsnWApgTZi1NAYbDI5qtdpU2xXpUG4KLKewpY60FFtV6PLFRcWgCpieRsisnxmz2+2WTJEPNQDxFlDtTtU+cIrtnpbxEAV6arDDIJXXgVk9A0jgsRUs8Ng4i9eRtUUA4g1AipHgulBFXidPnhS9CVX2J06cQDKZFIU/s1m2PmYyGVy5cgVnzpzBK6+8AgAyiKVWqyEej0s27nA4EAgEEI/HZRR2sViUnm2yEQw4VNW/y+XC7OzslD/8eDyWQId2v/1+X0YXM/C8f/8+1tbWJJCmK9zy8rIIrMhckfHjM8/xzXz22YExGAxER8GWNgYbTDzIkrCnWh3Awxo6e7MZrPM+M8hgAMKuDvoTMDt7msFsIBCQ54jXmuwddS/ctxi0OJ1OeDweOVgo5uQ1fZKlY5JFF1MyqbxOjx49QjweF3MiTpY1Gg9N0pxOpzBogUAAZrNZXCkXFhYQDAYBQILuUCiEc+fO4d69ezh79iwA4O7du6IxISvMdlXOeHE6nZibmxPNjc1mw4MHD3DhwgU8ePBAhgEdHBxMtdl98pOfxL1792CxWESQyYmG29vb2NraQjAYxNzcnAyoopZqZ2cHlUoFJ0+exHB4OEZ5cXFRGBRajfd6PcTjcTSbTWxtbYmfi8/nQzgcFtEw79F4PJbuAyYJHCrFhGQ8Hk9ZnKv+Pgxm2eUXj8enygZqgnxUHDkYYOTNxcWIk29qMBjIolQjUY/HI05NfEADgQBmZmZk4ZTLZZw6dQrZbFYWOxWoAOTQ40JXKXwqXwFIqxP7Li0Wi9Tm6/U6UqkUms0mqtUqVlZWkEgkYDQaRSzCi8xDlRcyn8/D7/djcXERlUpF3gOzbVK6zLg7nQ5KpZK0mlGElclkUC6XRVULQCJKCv0ymYxYGnMjY/81BSws05DOoue2y+XCs88+K7PMWdtvNpsiGDtx4oS0WjGS5Ofm+6C2gZsH7zEPddbgGSwBjw9/tjKR6lKVrU9rU6WBEEs4fFBYa6a3PdkOslw8jJkhMzCjOI2BBEsC1HawDZPlJw5CcrlcuHTpEpaXl9FoNLC1tYVGoyFjWukxsb29jUajgZWVFVkfpO3X1tZkAh97rhnQnTlzBu12W1qswuEwgENBIa1ZOUeewrh0Oo2FhQUZqJJIJIQxond8tVrFq6++Crfbjc9+9rOoVqvY3NwUX3tmfW+//TaSyaRklRwAxi6el19+GWfOnJHOFlLM1AXE43FsbGzI5ke1OoOB4XAotDKzf2a5pHHj8Th2d3cBPDabmkwm4jFAYSgpWgZgNOjhvWcCwfICW7jebTAg475KmpkthRRmq+ZAdMkjM0NXPgBTjBfbhml4w5IrJ5hS3MbglMlNrVbDuXPnEI1GUalUREdEfQ0Pf7vdjps3b2JhYUE6uFRWisr/SqWCtbU1mT3A1tpms4lbt26hUqlIfZ4JGY3tKHRlIqoydTwkub/fuXMH8/PzEiSn0+kpf4sbN25gdnYWzzzzDObn53Hnzh24XC5xTIxEIhKQUcTJ8yKZTMo0Tgrhi8Wi+OSk02m43W7ZO3m+UG/H4Vm1Wk0ye7/fL88POwU4o4BlAjJXqocBk1TqJ46KIwcDjLS4obKXlL+MB58qLuSboi0lN2S2xoVCIYkGHzx4gE6ng0KhIKpr0tpczJwJwNHBnNjmdrtx+/ZtaYGjm9vCwgJmZ2fx6NEjqaPykHvjjTekXkt1+L1790Q1y89HQ5fxeIydnR2k02k5GBcWFrC4uIhgMIh0Oo379+8LlUXXQFWjwLGqLJHQu50KVG56VC+HQiGcOnUKy8vLKBQKIsYkC0Gv7kKhgLm5OeRyOTkIOPGOgjG2TQWDQZkgyACPXRsUIgGHGyk3ApZMVCEo2Rge8DyQyA6o6mvWLt9JlPq9BPuZaUzDwwZ4PIaZgRyDAjIhKusBQGi9arUKv98vToPsZ7fZbBIokwXjA0oKu1ariQ0wPTMqlQoCgYAImuLxuMwdOHHiBK5fv47Lly/D5XLh+vXruHfvHkajEWZmZhAOh1GpVHDr1i34/X4Jysh40V3P6XTi6tWrYuLyzW9+UzKZRqOBz33uc3jllVdQKBQwOzuL06dPw2w249VXX8ULL7yAZDKJ4fBwaEsoFMLOzo4ops+ePSu0Z7PZxMHBgbQbzszM4HOf+5zYp3INb21tySCjv//3/z6KxSLOnz8vgipO8eTGysBrbm5O+uEpRksmk0ilUqK3YI2WpiwMPLgG1LYrPv8sz9GBj+zB02K0COp/WG7iPAzWoFkyYcA9mRw6kQKHs1LYVsogT9X6cK9QSzFs6VTNtygOp7KeOpUf/MEfxMOHDzGZTESIbDabEY1G4ff78eabb8JgMGB2dlbEypx6St0LWVqWAtSBU3t7e9jf38fzzz+PWq0mHTMce0+mlMG62+2W/frBgwcSVG5ubsrUT7arctooy4LPPPOMJAFutxtXr17FeDxGMBhEuVxGIpFAIpHAaDRCLpdDqVRCKpVCMBjEeDxGOp3G8vIyLBaL6B663cOJmtQs8R6xjMj2cmpVyFTxnGQgCECYMSZnLDEzkVCnL5L9eSd6l3dkR6zW7Fl3ZVRJm1+KHNgeR1U6hXrJZBInT54U1eV4PMbe3h7C4bBQ0DRiYA2WmdjDhw8RjUaFwuSH5qHq8Xhw8eJFyZzL5TKuX78uwkG/34+trS0AmHqf3W4XOzs7YtvJm8YDgizH22+/LVbB/X4f6+vr2NvbkxvJrMNiscDn8wllPDs7i3q9LlPdtre3Jftg/+vBwYEcAlRysz1rfX0dFosF58+fR6PRwNLSknQfjEaH0/JsNhvm5+exvb2NVCqFSCQiNqM0JaJf9tLSEpLJpLQSspWTB5VqXqFeIy4+g8Ew1c/KzVM19+HiJcuguqe92yBLwSie9Vej8XC6G98nD3w6ZlJ5zPtNjwaaobBGSOXyYDBAs9mUbKvRaMDn84l2hirnwWCAUqkkvgX7+/uYm5uTiZSqYOzg4AAPHjzA6dOnp+jGS5cuSdljdnYWr7/+Ol5//XWcP39eSk9utxuXLl0SAVKj0cArr7wi8z9IM37kIx/BL//yL+Pll1/GtWvXcOvWLaGRO50ONjY2hAWLxWLimshphnfv3sVnP/tZCY7W1tbQbDZRq9XwwgsvYG9vD1/+8pdx8eJFfP3rX58aB0wV+W/91m9hbW0NDx48QKPRQDQaFROt/f19WK1WHBwc4MyZMzL5kGKreDwuZmZ7e3twu93w+XxSR43H4yIiPTg4gMVikbY6JhrUbZANYwbHQPlpQWViVUaQZRG2tzJDZNmUXRTj8Vhc9Ww2mwTtLOuSbaB5FV+D7q7sOFhcXMTMzAxmZmZk7RcKBZw4cQKPHj0SWpzC52g0KqZD5XIZOzs7MJvNU2ZTvGecRulwOKTNmdkvg2XuQezgMhqN2NjYwPb2NqzWw8FWZIHz+bzU0/1+vwgB/d8etsVDkkwe9/But4tMJiPMcjQalQB+Y2MDlUpFOrW453U6HSwvL0sZMZvNTrV58h4ywWU5h9eCszvU8iTP2eFwKO3g/Dv3XABTDBlLIuwUI5P119JaCEA2P/4SthVy46CKmqB4gdk3s0bWXGkKwmz+1KlToqqmSxYPKuBwk2ZWzA4G0n2ckrW1tSUXleIjXlTSPJwvwJr8cDiUVi9SLRQSVioVhMNhhMNhCUjIZlAwQ1FLNpuV6VvMqsfjMbxeL06dOoXh8HBCIWcUMBhi3ZhT7viAc1gNN0aKI3kg0Gjl4OBAaLRisShKePbT08uh3W5jcXFR2BEAUywPM/cnaX7WmEnLMrNW61ik/yhcpMaEegO2iT0NMINiXbpWq4mHAM2m2PrH+nG7fTjeOpFIiJAPgJijqHU7jt2dTCaofnv4EOlc4HDs9cmTJwEcPgsf+MAH8IlPfALpdBovv/wystksLl68KK1QDDgA4NGjRwCA+fl5vPTSS5IR8B70+31sbm5KBvzNb34TFy5cwI/+6I/iwx/+MF5++WUYDAZks1ns7OyIcn8wGEit/q233sLOzo6o9lkuoW12IpGQksX9+/cBPO7P5nX4oz/6I5w9exalUglnz55FLBbDo0eP8L//9//GyZMn8bGPfQw3btzAm2++Kdkl6dI33ngDP/IjP4Ld3V2cPn16qh97dXUVd+7cwXB4OIqcUxVZlqKOg3sTrwlZP5ZygsGgMAQsvVDXxOl9DDr4c6r+42mBguterzcl9FXnEzDw5PPG987nkNoBtbVWpZHZ2UW9FLNSMpuj0UhYHh7m3W4X6+vrkqHTiZWHGp91l8uFzc1NtFotXLlyRczlaKdutVqxv78vnU4MXFmO4xAtq9WKYDAotHmpVBI9ltFoxMzMjOxX2WwW/X5fhhFZLBYRPXK/YuDebrfFK+bhw4dSPmFyy64AliQY9HBWgdfrRbvdlgSuWq1OjX/3+XxC4/MaU3xPppWtzWR8yBKrND+/n0wAExTq8Zg0U6fHBPyddHAdORjg2FJmWKpimAcWhVKqQIvqaFLHdKvjTalWq0Jbvfzyy4hEIhJVUWSker+rtX3WrTudDrxeL5LJJF5//XWZA+/3+7G0tIQrV65IWYG0+vb2ttBatJBkxkenNJ/PJwM3gEOR48LCgrQVkk7m5kWFZ7/fFw9u/ruq8E8kElISqVar8kD7fD6xvuUIWbPZjJmZGdnsaITByJmsSDqdFhqLxhgWi0XqorxurVZL2r42NzclsODBVq1WpXOBi4yfjW2D6oajdo+wvqmq9flzfJ2nARoksQ5KoxK2jZrNZvEUYCRNSo5lo0qlIpkjp4xxY+b4VJZlWPtjC9NkMpHs45vf/CbS6TTOnDmDZ555Bh/5yEckwud9o5jN7/eLzXW9XhfPAWZ6sVgM2WxW6PPnn39eMofXX39dvMw/+MEPCjvBGjg1MDRnIZVLYxiuY+oVfuiHfggvvfQSisWilO84f8Dn84ktMZ8tevy///3vx9raGorFomSQ9Etg2+Tf/Jt/E4PB4fTDGzduYGZmBiaTCdvb29jY2JBxvRR09vt9GetKD/zRaIT9/X3RJZFNrFarUuJUfQhUNz6KbymYo10tN9OnOcaYbB2AqWeNpUQGLxQXk9VkEqW2wzIRUwXMfMZZCqRAlh1BDBx8Pp8E09R13bp1C71eT8pHdK/kgc5OlkwmI4kQ3f5arRbC4bCwt/Pz8zhx4oS8n0AgIC16Fy9eRKFQQCKRwHA4xMHBAVKplDwf1KhsbW1N+ZtQqMuyBfC4G4o6E+rUmMjSw4JsLX9fuVyW/5J9YZm21WphaWlJ2Gd6FDAgY8mDpRcal/He+L9tvz0ajWQOCgMbJoyq2JXMo6olYccaS1pMwFguOtJaO+o3qpEoFyYXK0sAzIhJtTOy4eICHttd8oFlHynrMmoZgm105XJZHlK2BDJyYiY2Ho+xvr4utfJEIiECKh7sjJqMxsMZAaTXKpUKstksPB4PhsMhFhYWJLPv9XrS8kWRETObfr8vw2cmkwkePHggBySV09QOcNNaWFiQjWtvb09EUWRLqMrljeboY2azgUBAsnKTySQLkA8przMpN/oL8LCu1+totVpC8z7ZXw1ANkIAEoConSLA4w4SVT/Az64KBpmJqLMf3m0Mh0NREbNzgsp1jsNWfRpUSo5ZIjcLHiaqzwIV+VyLXLssL83OzmJvbw9zc3O4ePGiuKuxxtfr9fDaa69J61YwGJQgpdvt4tq1a7h79y5GoxHW1tbEyjebzYoWgEJTtfPDaDSiVqsJ68WuFJqsMIMPBoOYTCY4c+YMnnvuOZRKJWSzWcmyl5aW0Gq1cOrUKSQSCWxubgI4pPiXl5fxxhtv4MKFCxJoRKNRLC0tSQtvsVjEl770JYTDYXz+85+XAJFlpXQ6jZ2dHdEAdbtdZLNZrK+vy1S5Z599Vjo+ZmZm4P/2qFcyfePxWHQ4zHAByKFG4TLXuOrWx2vDDZcMGUsGT0vrAmDqWSKbx153p9OJ6rct3JPJpBz+drtdWEX+TCAQkGCfJj0ej0eE3Y1GQ3QILFHxD5kV7mXsslDLDRxexYPYaDy0yb5z546wbLdv38aFCxeEHQWAL33pS0gmk8hms7h16xaWl5el+2NhYQEbGxvSBTA/P48LFy7A4/FgfX1dbOE/9alPYX9/H8ViEWtra7I3Ly0tyVjlcDgMn8+HQqGAcrkserXt7W0ZZMf5I2z3VVv1WF5yOp2Ix+OIx+MyP4DsA/dJJsf1eh1vvvmm7DW5XA6xWEz+zj16MBhga2tL1vGTbAAAKQPQs4XBPZkbloAYwNND5p0kYO+otZCHOLNGboZGo1HeoCpgYG2EtSsuYqp9OdaSiz4ej0/1cvIPszRavFJtzwyV7TJsP0kmk9K2yIff/22PbNYAuXlw7CmzLZPJhPn5efHjZsbANhdS+AyAXC4XgsGgTHUbj8fShsgDgQzGwsICVlZWZGGxxjWZTLC1tSVBA2lmWqLyOrO+RN8D1uMZaVJzQQEQSx3qJkL/A/a7s1XyL6v1q50CPPhVDQBfk4EMD8knVawMCBlIvNsgo8VyCWutfE/qgC1G1gxmGdXz3vBrLHPx89JIhIEFA1QO+QGAmZkZMYxivZ6/ZzI5nLE+MzMjOgZmfCzBUNzI7Iblt0wmg/F4LKpkHoa8N9VqFa1WCx6PR0Z601CIYt5r165heXlZshIGAtxkWEIoFot4+PCh1EoXFxelnzuTyQjNTDYIONwEKfLj2FjuIdvb21hfX0e1WsXs7Cze9773IZVKYWtrCw8ePBCbWAByaPOw4cbIe8oASB1mBDz2zaBhFvcorg3eV64P1s7VlumnBe6Bahavzkzgoc7RuqS4adlLhpLmTMzyPR4P0uk0zp07J4Y8FF7yGqgus9QRcI+Yn5/Hiy++KLV01dqY12x3d1eSAA6ZI4XPjq7Tp0/L7BnaGrNl1P/tcfLZbBadTgcPHjwAACmnZbNZzMzM4Pz583jppZckMCS7ybY/APL+2PlTq9XwzDPP4OzZs+j3+9jZ2cFoNMKZM2fkelarVWErzp07h9dff110cU6nE71eD4lEQpxEeWCTqUqn0zh58iR2dnZET8M1SFYimUxKED0/Py9+Hjzg6bxIgzkGpmqZq9vtSismdW+DwQAzMzNyZhwFRw4GSO3zYGJkTVqGD55KSzHyVgVkzWYTDx48QD6fl/5o9mcGg8GpLJWbJaM49smzRcXr9YoobjQ6nN53+vRpzM3NiWqUToM2m00sIrlYGT1RWDIej4UxUOkWTl10OBxYXFyUA5+9uczmqYTe29uTKJ2Lajgc4vnnn5da8uLiorQ20vErlUqh1+thYWFBalAUx/CGsxWFhy9bbTjtjpbBzG4rlYpkOOFwWIxhmC2zxEE7U/o48H5yo6Xeg3/+stokrxfBA1Zto3wa4Nxw3nceIgBECMQ6LPDY85sqbraaAo89CshMud1u2Zx5X+j7wA2VhyRbPllOoDkMa5pqWaHdbksgyOFc/X5fplfys/j9fjx69EgMczgIif4AKysrePPNN2G1WjE/Py+0IUW/nC3/wgsvYDAYyCAsZhgcP0zL7m984xvI5/NIJpOIRqPw+Xy4cuUKNjY2ABxmoKlUSmYy0NHtxRdflPnwzNrJtvAAODg4AAD4fD5hsri3vPXWW0LXV6tVCbZVFpFBG/ckrlNO3ON+xWedQTd7ulXPDbIEZLWeFtiCRqqYB4fFYpER1VTfq+3AquAwFAqJct9qtQq7ury8LElcOp0WVoEHJwNDdpC43W6k02mZ+bKwsCATBF0ul4zgps11IBDAD/7gD8JkMuG3fuu3sL6+LteVrCjf68WLF6WjQO1eYkdXo9GQ0mav18Pc3Byef/55xGIx6QIj9e9wOGSOC107+cyRTc7n89jc3MTe3h6uXr0qE0Aprj04OMDOzg7W19fxQz/0Q6hWqzJ9kWVlBvdvvvmmCLjpUcNR3jbb4fRECtRVDxNORGQpkF4cFC93Oh0J0NiCycSA5V+aZbFMx+Ffk8lEZjscFUcOBlTlOKfXAZCaDDe/0ejxNCWXy4V+/7GHPfvmSVczAiXFSaqKlBZFQNyU6FHOOhEjY7YuslZFCoUag52dHXGearVaclOr1SoePnwIs9mMtbU1MZhIJpMiqvN4PJifn8fe3h7S6bRkk3w9umxls1nYbDYsLCyIkQZwqMZ+9OiRWGKurKzA7XaLe1wqlUKlUsHly5fRarVQqVTkZ6k32N/fF80EADHmYIsbKU5ugKxrMVCg0p+KaqfTiVqtJhkHvQi4SBmQ8UCkoIeZCe+N2nKl+j5wY1UV62qJ6d3GwcGBrD+V/aD6ljoCrmkGuyyxUMvB0gAPmX7/cGTu1taWBL0sK5AtY/sS7YFZHvN/e+pkLpfD+9//fty6dQtf/epXpbTEZ4kH887OjgSJhUJBxvFeu3ZNgrubN2/CYrEgGo1KS5/T6cRf/MVf4LnnnkOv15O59Wypq1Qq+JM/+RMsLS1hNBrh1KlT4gESi8Vk5ojVasXu7i5WV1fx3HPPifkYD8pEIoEf+IEfgNFoxF/8xV/g/v37krWGQiH8g3/wD/D//t//w+3bt6Wbw263i+/Aw4cPYbFYsLW1JX3ppVIJjx49kmciGAyKcIusBcuX9LInzc0Dnowa36v/2wNnyA5w72DQx3VNzQFV508rkOWzxIyf5TqyXezYIsMEPPZXACCeJ7xGk8nhdEv2pVcqFczNzUk3C59ftmh6PB5YLBYpA1NvVCqVEI/HkUwmsbW1JXosjht+8OCBrNv5+XlYrVbR35w+fRqxWExYnUuXLmE0GslMhKWlJZw7dw52ux25XA6zs7NwuVzC7rRaLemwMplMePPNN9HpdLCysiLtfLxWq6urUrpuNpti/GY2m+W1PR6PzKCpVCpYXFxEPB5HIBDAG2+8gWvXrqHVaskUTyZRw+EQDx8+xA//8A/jzp07EsBarYdzCxYWFvB7v/d74nNATQKDubm5OXHTZBmLLBSTFgau3GtZ6mbphecg1zevD3VH72QejGFyxH4vbk4MBPiQ8WGhIx8jaTWSJaVI21MAcjhQBGS1WhGPx/H+979f6ihs3djd3cXZs2en1Ojdbhf5fB7ZbFa81HO5HPx+vwQuPMy4GGgMwcOJrUesi9+8eRONRkPaSxYWFvDCCy/g0qVL+MY3voGZmRkcHBygUCiIA9fOzg4KhQL29/eFqvT7/Th37hyWlpZgNpuxs7OD27dvIxqNYnFxUToLODOetBnVrRSDMDii2pRlhdu3bwtl5HA44PP5JIChf7hqzEHhJgCZmlcsFrG/vy8OjRz5yQCBXQi8xxRD0jaTARdb1lifVPtn+TMMytj7/W6D9qMMfIDH7YYM7HiIkBUxGo3yuUg5kkXhtWk2mzJSuFaryQbLg6ZWq8HlcmFlZQXd7uGwHtKG9+/fl04Aer+73W7s7+8LS8ZZFVeuXMHv/u7vot/v4+rVq7JeKJCl6JWbJoWPd+/exdbWFi5evIjt7W1UKhX8y3/5L+FwOHDz5k3cvXsXVqsVX/va15DP56X11efz4eLFi7h69SoODg6wsbGBbDaL2dlZ3LhxQyxy5+fnUSwW8eqrr8LlcuGnfuqnZMBWoVDA3t6eZHEm06H964kTJ1Cr1bC3tyfz3HmNfT4ffuAHfkAo4P39fTx69EhmJpjNZgkMzGaztC9zEydFyn+j5ohOjcz6WYJTD32HwyFCSqq9mVBYrYeDjJ5GayyFcOwIICPEbhKVlVW9E5hBshOGFsYGg0Hq4MwoqU+p1+vSTUUNVSQSQavVwsc//nHxO2F79qVLl/DgwQMpSXLkOzsEBoOBzGKh8Bg43IM4zZb+Kzs7O1K6jUQiU+ZQ1JJlMhnRKhiNRsTjcTz//PP4zd/8TUmQ9vb2pL0vGAyK/wTbHCnuNZvNMsuA3+/z+TA7OwuTyST+FZubmxiNRjh//rwIHikwbzabuHv3Ln74h38YyWQSN2/eRPXb80wYHK2vr+N3f/d3hdFlIuVyuURXwD2W5W6v1yvJG/dRtSz0pG5PdShkl51aGmb3zXfDO5pNQLUt6+CkN6loZ32TC5KCn9nZWekN5oFGc6Jmswm32y093Hfu3BHKJZlMolarSbZE7wEKXgDghRdeQCKRgMlkQigUwv7+Pg4ODmA2m+WGVKtVqeOQPqcpBPC4Pkyqkm6KJ0+eRCQSwa1bt/Do0SNsbGzA5/Ph/Pnz6Pf72Nrawv7+vkwKpGNUPp/Hn/3ZnyGbzeJHf/RH8R//439Eu93Gb/zGb+D27dv41re+JXUt0mS1Wg3nz5/H8vKyWNiSKjIYDIjFYkKbsd+czoYmkwmPHj0S1XEoFEIkEhFlL9sXWRfd29sTmolRLiNvh8OBcrkswiFm/NSM0NiJi5CiRwZY/BlmNMyUnyYz4Pf7RcfBbJ9sCPt++X4BSLTN3mwGMQwoqF8xGAyoVCqiKVlZWZmilBmd53I5mYh57do1LC4u4uzZszAajThz5oyouAeDAZaWlrC5uYnNzU2sr68jmUxif39fguHBYIDFxUWcOHECwWAQW1tbyOVy8sCvra1JT/P73vc+fO5zn8OJEyeQTqel5rm9vS0zDbgBnT9/Xmq87D7hYcyWqG984xt4//vfj2effVYyO3ZGsJvi5s2b+P/ae9PeRtPsvP8SJe4UN4mk9r1Ua3f1uKeXcdxjI7GTvA4wiQ3kAwTwt/CnCGAgQAI4eRUEAZLYaceTzoyne2a6eq1VVaWdEinumxaKFJkXmt/Rrf4HcfU/zlTH8xygMD1VWsiHz3Ofc65zXdfZ3d21NcdAyJubmwYP46fw7rvv6vnz58pkMvrDP/xD/exnP5PP59Pt27fVarX09OlT5fN5MxZjdgxnhwITxj/jMjp50LJms6lsNmvwLffn+fm5HaBsR5WuxhTcI69zUZGrLQcpgq/kugsyHqCgpdjhvJOu0F3uS/53OByaKRPFOvcAMHWtVtPdu3c1MTFhSFqpVJJ0+XwdHBwok8nY6GIwGFjyXllZuTbS5EyTZOcMY0hQYTxcVldXrbt1myV2JEDKZjRRr9eveZowBkylUjo8PLRdI2yx5QwbDC5dMTHrASXC/2Z/f18bGxtmqc+OjbOzMz19+tRI3Jhhcc/U63WNj49b4YkqDJS8UCjYmekaz6H84ndwjpODpSu+1sjIiP1e/l66vvHyVeKViwHIeFTL7guD8IEW+/T01EhEjUbDkrP7wPImuHDupsHbt28rGAwabLW2tmbEEyBF6ZKQxU2ysLCgo6MjraysKJFI2LwlGo1qYmLCxhBUoEDfBNXfxcWFtra2FIvFNDExoXg8bp7bJI/Dw0NlMhkzYGHhRSwW082bN82Ranx8XI8ePdJ7771nRMV2u22JnUqZqhVUgpuH6yjJmLLlctnGKkgSGb1MTU1ZhckMmevNqKbdbmt7e9u6ZLgXaGchbDH3dgmj3Ozuw8xc0tXN4tIHVNnr9Uy58ToCl7yJiQnbGEmFHQwGzfzHRTxGRkbsPpWkpaUlbW9vazAY2M4Mn89nElYOZPgIFHlwbeClgPjg0358fKxMJqNbt25pa2tLL168UKFQMFRsMBhYEsQXIBwOm8778ePHikaj+hf/4l/oP/2n/6TNzU3zbt/b29NHH32kUCikp0+f2ggvmUxe88EYDodW9MFQf/LkiYrFog4PDxWPx/U7v/M7Oj4+1ve+9z2bHb948UK9Xk/ZbFalUkkrKyvK5XLWlYXDYc3OztoYDinke++9J5/vci327//+76vX6+njjz/W0tKSvb94PK6pqSk1Gg3zv4chv7CwoE6no1KpZImdZOIyrvn7mZkZ7e3taW5uzv4Na2Y+T7T1jDwpxuHAvK712zRW0tXhDt+DZw4kwB3l8fXwDTinpeve9jz3PAOtVst09UDPPp9P1WrVtP90uPCQEomEdddwly4uLlStVo3Itre3ZxsDOQdZvEUxUq1WVa1WdX5+rlKppHK5bOu2K5WK8ZwCgYAhU5KMKIi0lKb07OzM9hTwTJRKJaXTaXNR3NvbMw8QFgZxBvT7fWWzWVNP4GcxPT1tXLHZ2VlJV/scGNkxqkAhQFfPZ8DIkrXQjH4g3bteBDTVnNdwsFy5Nuewq5hjHPGq8a0IhGNjY9ZJuUlgMBiYeQ+LNUAGOHRI9t+U73CwIoNDuwljmoQCqWN3d1dnZ2eampqycUWlUjFP9F6vZ7OtarWqRCJhySmRSGhtbc2UB+itLy4u9NVXX6lcLpvvtyTz84doKMnMc+hM0um0fu/3fk9ff/21+v3L3dybm5umpe73+5aMe72ecrmcDg4OFAwG7YaORCImS8STG0iP78dTnt0IHIxAnJhzPH36VJ1Ox6RXaHYhD6FigDTY6XQMqnIZ4Nyw0pUMC1IZ83WKOToS6UqOxWFEuMXBrztSqZSNNNAIg2IMBgMbIZHMQQlYt+v3+1UsFu3zAJql4MT0yvVO5+CkaI7FYopGo2agMhgMzHDr4uLCil2eh8FgoGw2a77vP/jBD+x5Oj091d7enoLBoO7cuaNnz57pxz/+sXZ2dmx0hFyp1+vpo48+MldPvAGYOTcajWvjEw5vSQbRV6tVFQoFvfvuu/rJT36ibDZr76FYLCoajRrnZmNjQ5lMRuFw2HaFXFxc6NGjR2bVzXPGdX3+/LkuLi5048YN491UKhUbHXLNuT+xJsb0jC6fJWCuBJYxJeNLvg9ZItwR1yoZGBjXzdcliSXckSsHPmgN2nNGonwtoy9GB4xPmC9zpgWDQRUKBeuEKV4hXbvFLmMEt2jmfxOJhDVOlUrFniGKL/ZYMLKRpJWVFR0fH1uhe3R0pMPDQ0t6Y2OXy8DW19ftXOZ5Q5kFMgby5xZ0ksyTpV6va3Fx0eTBjUbDnpORkRFTmzFCYEEQi+P6/b7W19fV+JWNOEjq8vKy/H6/LY+TZMoMuC00Du5oCjQVnwtUO+RTd5zKWcvf8x5dRRd8AfcegbPD9f6b4ls5EPKQuZUmzF3gLA5EV6pGJz4YDMxZD5KPq1WHxYp+lDfLPBo4lfkQbn+hUMjmiuPj4yYTBFrDGhWyBpA1vgKdTkfVatVGCmx9g13PAwWJj8KG9+46XFWrVXW7XeMMtFotbWxs6PDw0PZax2IxSZfyEIwtdnZ2JMkqX34XD26329XLly/tYKtUKnbgASvx/5eWloxgiA0xpDceBm4+5o1AiBymLtQGAkSi55q4agGUBTxg3Cd04HQuryN4cFxJLKgAr03SNcY5pDNISxy4rrwyGo0qkUiYc2Wn07HxAl/PWAG3yoWFhWvmNyhEXL8HCupUKmW7MW7cuGGuaVtbWzo5OdHc3Jwpb/L5vPb29hSNRs1kB86DdFmksZVwYWHBCFuxWEzz8/N2ANZqNRsb9XqXvunlclmDwUCzs7O2trbb7ZpcsVQqKRaL6YsvvlAymdT8/Lwxm0ulkpF06W5QD7BYZ319XYeHh2q325qfnzc5J9Je3D77/cvtn3x28JjoUDnYQU4ocOis8JHg7+jYcJCTrrpp93niHHsd4ZpgkXxdyTVNGrN0EFg+F+nKp57nm+cejwsQQ85DCneUL/Pz8/qt3/ot48n4/X4lk0kVi0Wba5dKJTOsKhaLajabWltb08nJiba3t3VxcaEHDx7YeBL0kySMygU0GZTxyy+/VL/f19ramhE/l5eXjQi9sbGhcrms5eVlex/SpWwdNJfxQqPRUCKRUKlU0ieffGKOhyjFRkZGlMlk1G631Wq1NDc3ZwhDp9PRysqKjQPwgEmn09rf37cGlSKy2Wxqd3f3mqMj52E2m1UmkzFCJSMFd2RF0wWfSLquzqKQo8BIJBLmmUGBS8P4yvfaq36hKyf7pg7dJdyQJJlJodPnBgT6oHiAKUuHhlbU7bp4gIFaSZI8CJOTk9ekcbBs6YTQkksy+DsajV6bayEZabVaWlxctIMYWQvf983OAnId87tEIqFcLqf5+XnNzc3Zwpjd3V37oOPxuLlzoWrggcVljcqYpDsyMmJmIVS93AjYDtPhYWZB90CCR5ZFF0Byo6iDAEqXQfdMMcQBxIjD5QJwYAJLkXBdOZSLOvw6g5EQRQwPJe+NxIwihk6KB5kuFrdNkgX3bqFQUPJXa3n5HYzT3CICJjeJyO/3a3Jy0u4hmMgUljxXmUzGilSuN4kQU556vW5dML+TkQTvGRRqfHzcNniySrxUKmlxcVE7OzsmaeV/2Za2v79vzy/PNe6YLMv5/ve/b7+Xey8Wiymbzdo+EkibyIVZTwxqwXXEYpy14JxBzLpJlNx7JDeut3tvw/RGukliBPGiAGR2SwEJn+R1BUUODYGLiOCRwMzdLVa5HqlUyjwiQE1BTo+Pj6+hnMDb7hlCMba4uGjy7EKhYEZs+BV8/vnnCofDmp+f19LSkp49e2Zd7sHBgcnqSKaVSkX/+T//Z62trWl2dtZcK8PhsBEHU6mUbt++baNRv9+vGzduKJvNqlAoaHd3VwcHB0omk8pms0by5Hd8/fXXmp6e1tOnT7W8vGw7KkiY1WpV7777rgaDgT799FOlUim9/fbbunHjhlqtlr7++msjS0J0dyXdKHru3LmjQCCg6elpG3WTbzhPGXFw/SWpXC7b5wb/RZI1EJKsuOGMcM9SGlGKDxox7l38FF41XrkY4KFhDkdHxcEJSxeTBAoDblpmeXTiFxdXa0F5cFn2wwWMRqO6e/eubt26ZXPs7e1tlUolMy9iU+Lq6qp5zVMFA5OPjo6ahDGVSuno6EiVSkWFQkHb29smsyqXy2b4AjJBwdDr9ZRKpRSPxxWJRMyoiMIjGAwat2B6elpHR0fK5/OSZA8XVXu1WlWr1bIZE0nFTU6uoxTkMpI0RkFcO24k+AIwVyloSMxU4hQy3FR0FLCsQXWozkkA7mfu+k64PgN01HQx0pXs0DUi+nUGRByKHfc9cNCSwCm83KKBv+cwdiWTzPP7/b4x5YECKf46nY7xVjY2Nmwj5Y0bNyTJHAAhu/HZ8vpOT0+1ubmpu3fvqt1uG2O7XC6rUCgolUrpxYsXhoZJsuSGl//S0pJtISyXywYrUnSXy2XdunVLb7zxhiQZITSdTisSiVhS2dzcVDweVy6XUyqV0s7Ojqanp3VycqJ33nlHg8FADx8+tE5vfn5eb731lo6Ojmx5DXI+9O4/+clPtL6+rmAwqJcvX2p5ednuLQowCk52yEuyBA/xFw4AGvVvMu/Pzy+XTWG+wxkB1A75jWaG738dKgICsh5FNp08oz/pioSHtJWCMBAI2EgSpBFJJ8qMhYUFO99CoZCRYycmJvTo0SOlUik9efJEiURC77zzzrWR1j/6R//Ini3OSvhK09PTunXrllqtlrn7kaCGw6Ft5BwbGzPP/3w+r7GxMeM+QUj9oz/6I0WjUR0cHJi73+joqD788EPzAGFjLA6G7GjZ3NzU7du3r/GgUqmUJiYmVK1WdfPmTW1vb+vOnTsaHR1VPp9Xr9cz5OH8/FxvvvmmOQQmEgkbJwDdHx4eam1tTdPT0ybbpSj7+uuvr0mST05OtLW1ZSoatkr6/X7jF3D+8PNBNWmOuZfdcQ8EfnIpBSF8mVeJVy4G6BwxpuBQJckjOYTpSidGAsE7m86W5MaBxIrHcrms8fFxLS0taW5uTjMzM2aa4ff79d5776lcLptEEU0ss1gQCeY8U1NT1z5An89ntq1A15ubmyaLyefz2t/fNyiHAggd7u7urpLJpLn84fD1/Plzdbtd7ezsqFgs2iFON93pdDQYDEwhwLUsFovXrtvo6KgymYwlGyAfNOuMYSCHDIdD4xT4/X67jo1Gw/TFfr9fCwsLyuVyJqXK5/M2r5Z0rTNDuQEi4srtsD2mQ6NQAJLmAHUlfC4D9nUEnJbJyUm12207PJG0wvgn8VCpc/9CciIJMQNMp9MqFosmN+Shc+9xOuunT59qcnLSoLtms2nwOctffvu3f1uPHj3S9va2FRibm5tWzPb7l6t8GY9Jsnu63+/r008/NRJdr9ezOSY71nmGIFMeHR2p1+tZgSJdFiY7OzumYPnlL39p7mkUqfB6ms2m2u22dXM7Ozt68803FYlEtLS0ZKZXDx8+1OTkpHZ3d5VOp60Aky7XM8/NzSkYDOr999/XcDjUgwcP9Itf/MIcRVlLe3p6at0jeyZIjjwbHKYu0kaBDLIAMkDXj5yWz45iAij2dToQ8uxTGAFD834oUOGTuGcb1xl+yMXFhUqlknGpgP15fuGVNJtN62K73a7Gx8fNHGdpaUk/+MEPjOg3MjJixHHXupvRGEXe+Pi4dnd3dXJyYjsxms2mEomEvvrqK+u6FxYWzJ+m2Wzqj//4jzU/P29nDdsFj4+PValUTFK6tbUlv99vREj4MljI9/t9I5GTbNmAePv2bf30pz+1hpHmZWVlRU+ePNHLly/NPhyrcPhtGxsb+su//EsNBgO7R8fGxoz0uL+/r3Q6rVKpZKZiExMTNpJ2R+xImCWZuoWCNZlMmqU6DS7eE/CTKIwpZLvd7rcivn6rYgASHAkOwsro6Kg5PwHbQ1DjJtnY2DA2N1Arhi6DwUD7+/v2xtHCtttt7e/vq1araW1tTalUStLluIBOC1aoJKvq0WxLsgUVMP4fP36sQCBgDPq1tTX9wR/8gWq1mn72s59pOBxqdXVVKysrGh8fN+nHhx9+qFQqpeXlZSOsQMSamZnR4eGhKpWKjQAg+Y2NXS7JQIOOKQQJiYcXs6RoNHotYZEEgFPPz8/NIREp1OTkpB2uh4eHhswA82PS9Mtf/tK02bg3npycqFKp6OTkxLb3cSORKOF3SLIlPW53TdV7dnZmJEUKCKBrbvrXESRbuqNYLGYHGYQm3AOlq6UuGA0BzTabTRuHAfnTqTDHhb8BbyYWi+ng4MDeP+6Afr/fnBG///3v6/j4WP/yX/5LS2BAf8vLy3r+/Ll133fv3tWTJ0/0X/7Lf5Hff7m1ErfNubk563xx9gTF+PGPf6x//s//uZ4/f26jDO5vPNg//vhj/f2///d18+ZNSZcE2rW1Nfl8Pj148MAkYs+fP7fCttls6osvvlA2m1Wv19PNmze1urqq7e1tffHFFzYPfeONN/Rf/+t/NZdB7pGlpSXFYjH93u/9njY2NvSnf/qnBrNSQHKYw76GF+CS5zgQuXeDwaCi0ajdvyQpilPGnaBFHNSMFJvNpiGarzNAXJvNpnV+FDGgtJwVFGtIZyVZ0YtCBtXF2dmZwuGwJfX5+XmbjZOUaCRYbgb0z7jqk08+0fvvv69kMqnDw0NTIgHbg5aRvHO5nI0AODuazabm5uaubQMslUoKh8O6f/++7t+/b8UJ7wVZeCAQ0OLioiQpk8lcWzfv8/m0uLhoXJXd3V3Nz89b8zM+Pq5bt27ZSIAxyo0bNxSPxw09DgQCpmSgwOL3FItFnZ2daXV1VZubm9ZoMqJNpVK2wC+dTl8bSVGsk1fhk7FrgPsZNL3X6xnJlTEx9wDFDWc0HAjGxH/rdsTflESQdElS7tyJww/5DjMfKi4gJW4ICCVHR0fKZDJK/mrRxNHRkW7fvq319XWlUimb36yvrxsfoFarmUkRkOXc3JxKpZJKpZKOjo5ULBa1t7enQCCg1dVVI2VAYmo0Gnr06JG9tuPjYz179sxGGlNTU1pfX9fq6qodIMgMLy4udHR0ZMQQ5o6uzpm56djYmDGsM5mM2QYDzTMvpRN1ST+uBAq0AEi01WppamrK3NggXI2OjtrNORwO9cYbb+jrr7++JiVDbYCMjqUdkAWZT7vbId0tiEC4uETi8sjDI8l2PryuzW+NX61zdnW5vPZAIGDFFKMBiGVoiTc3NxUMBjU5OWkPJ2MTyEk+n0/Ly8uqVCrGAeGhxi/jgw8+0MbGhkltB4OBPvroI3388cdKpVKG+nBoczDs7OzY1sOf//zndi/RWRwcHKjb7Wp1ddXgUOmyCCqVSubDjgX43NycTk9P9eWXXxpiMjIyoh/96Ed68uSJ9vf31W63VS6XNTIyor29PSscQU76/b6ReiORiObn51Wr1fThhx/a/cboanR0VP/xP/5H87d46623tLKyolu3buntt9/WX/3VX+np06fa3d2158pN2gcHB3b+gFpx1gClYkZEQ8L1heAGyYrZLTwAuqlqtaq1tTXzS2Bsh/zzdUUgEDDjIIzYGKEw/qCwokB359QE83tGXyCU3KPwB/haV4o4OTmpSqViDn4kNwiHrG7He39yctIWzyERTyQS1woDpJEgyxR6IKXf+9739P7775uk8fvf/762t7e1tbVl90ir1bItt5lMxpLm2dmZmb+xNwG/gMavNoOOjo7qxo0bGh8ftzMB1Ayk1vWmYbTCWca1ZWxMAZJKpWwh1tbWlnw+n40UOOMZAUA0Zn8AHCOXbM3Ikdfhfs7kgfHxcSPJuiMEio9XjVcuBvihzFC5gFTojUbDuli+jvk2NxedlqthRUHAXoJOp2PQVzQaValU0uzsrGlOO52OPv/8c01NTWl+fl7dbteMSVZWVlQsFq/N6g8ODnR0dGQzIg7i8fFx+7O/v6/d3V01m01TKbCmlfliIBCw2RodCazbiYkJjY+Pq91uq1qtWidKwmGuBhGK9wmqwugl+av1lzzoJGyKL24SF47jtQ2HQytKSOIQvXATy+VyunfvnnVeqD8Y45DUOUgomECC3AUvkq7dmMwLSRIu54AxAXOsX3ckEolrREdXEQPDnE7DfZ31el2xWMwgPRAZvpfrRhJPpVL2/vv9vhVGJKyf//zndrCEQiGl02mD/vx+v22i4zOmSIR0yoGAfpt7z1XNuCuCfT6fJfpisajj42NjeEejUb311luamZmx3QX/5t/8G33wwQeamprS48ePlc/nNTMzo8XFRW1vb1/j1AB1sl9+e3tb77//vur1uj799FNjfoPQUThXq1XVajUtLi6qXC7rz/7sz/TgwQN98cUX9rOBiUEh8alw+TCMF/Fm55CXZPei3++3jiyZTJpFsiQbe0lXuvvt7e1rq2D5/TzvryNAEaPRqKEiJHYKHhAplyvlNhHufU1Xyn3IiIdkQoEMwRbUMh6PW+IcDAbmTri1taVms6n19XUjZjNukGSEukQiYfcCIwIKV86qfr9vfjUgpoyn3nvvvWuIMmgI99KNGzdULpfV6/XMJl6SIUSpVEr7+/t2XXu9njWCqGJc6TT3Icjm8vKySTBBnBizksTj8bgh1o1GwxZtcS2Z7zOS4myUrjbrYizGGUOzze8i70qyz1i6Imwz0uI++DY8rVcuBngBbsVJt0ficGeuJBEuFgeeKwfiBUtXrElQBuky2TACYF7FbAQtay6X0/T0tMlbhsPL7YcjIyO20Ghs7NKI4tatW0YE48aC6HdxcaGJiQnNzc2ZCmJk5NJBj39n3osJBUQR1smyYAJoloMMmI8qFwc16UrixM90Fy8BC1JEkfhd6R83FhA2RRf2oHQ3Z2dnRtxy3ckgFQEdLy4uan9/36AnJGocnBQkwKt89ty8HCgUBm6n/bpY2SRnDjmXkEOHQTEkXRm9uDwHIDf+joKCou3i4sLIgxSyMzMzxtqGSIX7psvHWF5ettktRSKjLO4NJGWZTEZ+v9/8/SXp3r172tnZMYVDv9+3Z4HD7I033tDJyYlevHhhWzN5Fvr9y9XJu7u7xouh+MaRMhaLmesgBDUOX8YFbCdkPCXJ5tn4pAPZchiXy2VL6hSd0tWmSzqjmZkZNX61fte9HwOBgBnFgLJJV6oWSbatETkiyImb9FEv8AyB0PA7XldQTLpSSFe1xb2HYQ3FAwghhTqJRZJ97lNTUxobGzNuEURoCmZGJOVyWSsrK5boUHtQLLlnPM9RrVaz5UecbdzHvd6lTTQW0JOTk+ZVgCW2JO3u7tqK+/39fZXLZY2OXtoGk/T29vZ0//79ay5/kszOGj4PBTiKs3A4rHA4rHw+r8FgYOQ/nkmI25hg4XJbq9UM+WBtMkvE+Nm9Xk+NRsM4EniFUGiRG0B54eCBnrufNecyKBBJ3z2HQOz4nGnCeAZf1UHzW0kLvxkkTd4gHQr/xhuCmEFlK8mSJm+KeQdIgXSlYMDKNR6Pm7aapEeCoxPCBIcL7l5MKjYgMd6Tq8X+pqSOZA6BMhaL2fvk+7EPRvLE/gMIP3xgjE04THmfyNZI9pIMcXE/dOkSsgM+deWBENa4YZj3S7LlGlxfEjYOd0CrFBkUbe7sGziS3+HKttwb9JsJn9fjFi6vI6iq6Zaoml3fdO5Xt6qmKCSp8b5dlQqdGQUifIBv3kMQ+0hA7XbbmMAcDFxLNm6yp4DtiBCI+JyQPGWzWbPq5kAZDi+9CringMTZuBkKhQxd4h7F9ZOCkWIklUpZJwOngZ8XCATMapUilefcletJV+oXZszdble5XM4gWbg17jmRTqcN+kUCzM/iM+R+5bl0D0Z8DTgkSXjcF9yzJBL3791n8nVEOp1WtVrV0dHRtUYAmJ+Exf1Jo8XzmkgkdHR0ZMW7dIXaUqxTRDF+YpQC654EKV3C4qC4+XxeR0dHpkyAL9NoNHR0dKTNzU2dnJyYciASiWh6etqQAUjP5+fnpixZWFiwsSXjAMinoM/xeFzHx8d68uSJoUYnJydaW1tT8le7aSTpxYsX9rr29vaMD4Z7K4Xu3NycjVq4987Pz+1cZwcHDSNJm3ECY1rQhaOjIz1//txkxCcnJzo8PNT8/Lx8Pp85PfK8I62XZB4kw+HQxrGgDqCEkO+RL1MA93o9I5xShJE3XiW+NTIgXRUGLpGFN+NW1C7cDLRlv/hXFS5dmwvbsRCGAxXHNUlGkIIAyFz/9PTUkv3h4aGkqwSAaxYzTLpDIB9kUiRM2KIcOjjY8d5d2RMfdiKRsO6O985hxY2DbMf9sLgOPJzuzJjX6bJGw+GwkV2ALilOuJE58Ega3W7X1htL17smCHW4PlYqFbvJONi/WRTR9VNoufcAr4nX8b+6b37dQdfI//JHupox4zZHMuYauV25C7lybaSrXQbsWaezOjk5sZk1nz0KBhfSo+MZHR014hZdrM/nM44LJDGSLof65uam5ufnTT1AdzYYDMzHAMkTzwiacwqbVquler1u7oCQHd35Ofc6zyzvXZIVK5gg8bnjpkjhNDo6al/DPpKLiws7xLGF5vtZ6LKzs2MMeJ4/l5zKZ0Gx4haqrnUvI0gKIN4Dxer/apT1OpUwFKKcGRQnjB8DgYA6nY41SOPj40okEjY24Yzp9/s2ajk/v1wLXyqVjAgqye4fCls66JmZGfuMFhcXbT6fTqftXgA15X6hU8dV8O233zYVGAVirVbTO++8o729PZPaYes7NzdnJkWgztPT08aRefTokaLRqG7fvq3nz58rmUxqYWHB7JRv3rypQqGgp0+fanR01Aqier1uBfv09LTS6bS63a4eP36sWq1mOz+4h3Z2dlStVvXOO++YXXulUrGEPDc3p3/7b/+tfvSjH2l1dVWFQkGbm5v6+uuv7TnAtXBhYcHQBwjjoI3hcNj2KjDG4Sw6PT21HMbn75KdyUXcz6CV35aj9a0cCAlQAJed6pJTuIF5SOk0YPlS7biwsiu3cBOjy1HY29vT9va2Zmdntby8bHK5VCqlr776yvgBkmyLonS5uGd0dFTVatUIF3TuzLnW19d1fHysqakpIwLWajUdHR3p4uJCy8vLOj4+NmjUhUTj8fg1+Q8mH3xo7uwdBjrzZRIMWu+Liwtbp8p1dKVYeNrDSuegGB0dNSc54Gb4F4wm2IbFv1F9soeBn428iGvEzUm3hHyGREoFCgpAccc94HaJryMoRqWrxS8USrOzs7aamvdIF09yg19Bd0mRho+GC8NSoML+ZlschDqKKCSYLroDgkXhQXEVCoWM2Yy7IPbddDyPHj2yLgqTJNjhJH983rm3GVsBlyM9Ax7mcG+1WsYMx7cAJCuRSEiSEaUmJiZs7j42NmYjEtA76Wo9K9ft8PDQOkaulcv2pwAmUXANGX/htsm9yxnEvZrL5XR4eGj7Qbgved0UFsyOOZcY072u8ZZ0NT4F2eTvYPzzvIHgUWxReEIyRa5MYdbtdrWwsKDz88s9AOfn51pYWLC5Na6lFH+cCbyWUqmkhYUF3bp1ywhz29vbxp0ZGRnRb/3Wb9nCrWfPnkm6MlHa2dnR1NSUYrGY3n//fd2+fduMhI6OjkwmCop7+/ZtK4KkywI6n8/rH//jf2zNW6FQUCwW0+zsrDKZjBYXF/XXf/3X+vzzz20URlPo9/s1Pj6ubDarfD6vSqViRcnk5KRSqZR18Mh7x8fHNTk5abLBBw8e6P3339ePfvQj/et//a/17Nkz2/JZrVZN7grXrVQqWcOYSqXMLA6beZo9ijcavmAwqMPDQ2vwXBIjOZJCgLOX5tsdi/1N8crFAH72HCwcXlTgoVDIXpRbSdNVxGIxI4TQLdCBDodDKwJ48CBRuaxLKtVWq6WHDx/qs88+09nZmZHvotGoeVBDAIQUSELM5XIaDAZKp9MGtW1ubtrB6ELqwLMcEmdnZ9rf37cKGqIg1RtmFe7cjYRdq9VslOEuxUFignxvaWnJoFcSC1atsFkPDw/tv5mJLS0tmbIAa1zga5fhuru7a3Nft9rEwGR0dNRWG7uMVdbD8t5BZCSZ/peCh8TCa+Q6fxtm699mjIyMmP+CW0AxgoJIRJKBuOnz+cwlbGZmxhAoHui5ublrS4RIdlj1bmxsKJ1OKxQKaX9/X7lczhIdbGW28XHfUCDC0macFY/HrfiEk9FoNHTr1i11u10zMgE65l4m8eHdvru7axsO4biwxyOdTiubzSqRSJhzZq93uYio3W7ro48+srmoJNum1ul0zKqY8QFJhwQPSlEul62g5uygc4LNToMhXY7uWKHM/UqhQICUwVniUGWOGgwGbVc8iYpOm7ODbXIQ20iy3zzPft3BvcI1hfNzfn6uRCJhxkGu0ySk7dHRUTsTcWKFP0UzRuMyMTGher2uUqlk38c9enR0ZAWSO+9++PCh+v2+OfyxRh256vT0tDKZjB49eqTHjx8bOsY9Xq/Xtb6+rpWVFVNJgG4yWoasyFIqzm1+9q1bt/Tnf/7nun37tkklJZkSJ5PJ6P79+1bUuj4AsVhM+XxeH3/8scmAQ6GQNUXxeFzr6+t2PUFXuS/u37+vO3fu6MmTJ3rnnXdUrVaNUMsZglU4pF3k9IzA+XlnZ2fK5XK2x8YdTUqyfOMijxS/sVjMcirNCg3atyFtv3Ix4JoX0HFLsoRUrVavwawunByPxw3yZE4qyW5MSbZ8hK+l4onFYjo6OtLZ2Zl5BpCc0cUXi0U7/Oh4FhcXtbS0ZKZD4XBYm5ubZtJCgq5UKraZDbve4fDSEzqbzdqih08//VTPnz/X2dmZ5ubmJMnY2+fn50omkxoZGbFO0F19CkMVWA1ZITceuxjW1tYMmoUkwygD+QoyTDp3Dqr9/X2Fw2EtLS3ZtUabS/JmPwOEk7W1Na2urqrX6+n58+eqVCqq1Wp2GHL9MVhiDTWHL/MuPi+SJIjQxcWFJSeX3PM6gkVDfPbSZdJ25UM8gCQCEtbY2KVLGigInXyz2TTmNEQ6DktYzxwguVzOfj5byvh8EomEJfORkRGz3a5Wq1pdXbUDnmtOJ9vpdPTs2TONjo7q7bfftk6czZysP15fX9fk5KQODw8VjUa1vLxsh2E4HNaHH36oyclJzc7OamlpSZ999plevnypQCBgnTJcHeyyOdDZwvn222/ro48+sgMOkiyoXrFY1Oeff27FBAf/+Pi4dnZ2TE4LBwJEEAMz7GwhaTabTUtuJCu3q+I55948OTmxVcilUskIbf1+3wpmih/m8BRR32bu+rcd3G9YA4PIgJi4/A4XTUQGzCiK8xTkhDk2IzCKdhJwq9WyxUNwUDAWW1hYUCgU0pMnTzQ/P6+pqalrHgScN5FIRC9evDDffgigg8Hlnosf/OAHeuONN4zQzXmLaoRncH9/385nzpG1tTVtbW0Z4oSKiwK32+0qEonoe9/7nq3J/vrrr/X48WPjrp2enmphYUF37txRPp83BdDZ2Zkhwt1uVzMzM9rf37d1xDSX2NiDoszOzmo4HJpiLJvNmnS+0+nY94M6np+fq16vm4LAVZExthofH7cFZzRn3APu6vhIJGJjBneE920Ms165GKCrxXgIAgOzCpirJApXD0tH40J80hUBkSBR8YHDNkWXDxkPwhd6YVYAwxhmzSYXslAo2Ouq1+uGciSTSevoSqWS7t+/r1KppG63a3sDIpGI7t27ZxuyJicnVavV7EEFxr1z5451bZL07Nkzg3Tw/4a41e12VSwW7cNmfSc2y8xUuT78HFd5gfkPcCbGHNPT0/Y9PFxsBlteXrZEL112dp988ok5OE5MTBgzFhibDW6gM1SxLtETdIckJ10x+L/pivU6AmiciptgOQ0wqKRrXA0ePpJDt9u1jlO6QgB6vZ65VfLwUdW7S3NIOvij062urKxoenraugC6A1bDTk5OSpJyuZwlO2a7GAA9evTIDhDGbHt7e+r3+3r48KHtO6CrA/kIh8P6Z//sn6nT6ej3f//39fTpU4XDYU1NTWlyclKZTEYPHz7U8fGx+TG4iBeH07Nnz4ywGA6H1W63VavVNDp6uaP+3r17mpyc1BdffGEzW84GoM3z83NTHPAe0H1Xq1UjoAHTFgoFSTLJq8t5ceeq8AoohlyYmJnu0dGRFVpuYmVs87oClI1CE9RoMBhYtw+vBTRgZGTEkinnE9dCkjVpzLTxneBcD4VCymazZvBDIYod9czMjD1TkrS4uKhisaharXaNpMn3siAumUzac9Jut81bA7tuLHVxkX3y5Il2dnYUj8eVzWa1u7urWq2mqakpU+pEIhHNzc2ZjTXGQmwlJDmnUimtr6/r9PRUjUZDk5OThtAiYwQxg7y7u7trGzq/+uor9ft9lctlJX+1ArxSqZg5FYg5Ww/5vBYWFowzRGHH803DxGjSRaHcpO5yjFyVDa8V+SLPFOcWTcqrxisXA7CuIeO4DFt+OYx2mMzASrxpHlCgjPPzc3Nhgjvg2teOjo7ajdfv9438gUzDnUdvbm5eS1SSDEoLBoPm0T0yMmLmGOfn5yoWiyoUChofH9eNGzcMTmfu2u12tbGxoYcPH5omnQ+SDx2LyZmZGWWzWVNYPH361A6ndDptDwbXhdfoPpwuuzcSiWhqakrdbteklMw80+m0kdmY/4PI4Op2dnamarVqsNXIyIhWVlZMLoiBSCaT0dzcnIbDocrl8uWN8auZP2MemLzc1Mlk0iRYbvHnKhAoBvk8XxdnoFQqGZuahMmoAD4Emn/e0/n5+TWGMdCpK5Oi6wwGg6rVatf2H3CwgjrE43GTM3GoDwYDOxyBJjnAeW56vZ4hDKAWfO7Hx8caDAYmQSQBuO6XkAb5uRMTE2o0Gsrn8wafr66u6p/8k3+i58+f6y/+4i/MbKhSqRi7H+JXLpe7xle5uLgwqePMzIwRF9F+b29v2+iNZUNA/dx7OEK6pGAKTHd7G/tASM7sIoADcnx8bN2tJIOaIXxJV4tjgFLdGSv3BvNqd0HV6wpeFwopSXbduUYusZXz0OX4cO5xP7pFVqfTMdgaV0I+D1A9XsfR0ZF+8pOfqNVq6f79+5bw2AMA4uB6aPCZlstlLS4uml2wmxeY4/PMMG50FVhwrCjq8TMIh8O6deuWyuWymRjhIClJc3NzJhefnp6W3++3bZgge3DW0un0NZUYDqBI0ClqWq2W5ufnlcvljFMyOjqqp0+f2nPMvev3+60Zdcm7oC1cB85NigP+wP2Rrrh6FAJwh0B8+cy5B8hRrxqv/JU8dAQSPpc0SNUq6dpNCSpAguCN0k1ituIS6twxA3CkdDVPJElRFSG1kmQSGT7YaDRqhheFQsGUCqwp3t7eVjabtUOfmwH0o1QqmY1rv9+3jo7uMRAIGHFkdXVVFxeXBjDT09OanZ1Vq9UyaBICDdAY4wB0qnAmONzo8t1qkEOAhxTIOZ1OG1cAiC0cDiuTySifzxuqQ5J3CUlcFzchueRH/pvP2p2LcTO7SAZf7xYD3Bu/7nAX20hXGnZeD/cKigmSLhKidrttciYOLO6FdDqtv/f3/p6ePXtmpk9cezw3YENj0gPJCetUXDRdwy1kWhhV9ft9zc/P6/T01DoLZrrFYlGSzBGOwwNEie5rZmbG7i/gSDrzf/fv/p3q9bp1SyCB7XZbnU5Hc3Nz6nQ62t3dveYtAjcHtGFqasqIUq7rJpbc8Xj8/9OFttttOww5vBhvcd/E43EjeoJO8MzzXnhfJE3udz53PuNvqnVw7CRZckZRKEQikWsI5q8z4IfAd6GQ4bOVrszN+BpXDeO+J1eqTHdLg8J4AdIk4xmKCNYBP3/+3Ahvv/M7v6NAIKAXL17Y+BAULJfLGfLC2T01NWVEbkaMdNX4YjB2pZCZn59XMBhUIpHQ/Py8NjY2bNQMYXt2dta8Zig0QImWl5d169atay6i1WpVe3t7ttOFjbOoJPB5WVhYMCSKpWDwAjKZjJaWlux5CofDtroZZQV8r6OjIyUSCXMw5fOAUAzJz+X4uIgPxRHoGectuRUlkzvGpNlwR/p/U3wrO2IOfooCt3rhl7uyQh46KiVXmy5dPvDRaNTm4shh+D0kROZazEn4+S6U6EotQCncDo7KlxkvFywSiRh7lERGMuWwcJ2t+ODdzvL09FRHR0d2CALrLS4uanl5WeVyWc+fP7cPDhkb838+SN47XTwfNjcCBySVO1AxSTyVStkNEIlErn0mg8HAZm6pVMreC5A1ScA1huJa8DPdROIWatwffKYcPHxGLjH0dYRLAOOg53VRtCCJ5OF0DaZwxHPJPHgu+Hw+IxcCEfK5sJeAe7LT6dhBBuoAkgUCIV2hMlzfZDJp9zFjG+nyGYjH42aP7T6H/AygYO5lEBwSysjIiNm0Hh8fm7kKARmRkRxJvt/vGwkVlr8re6Q4oGBhmynXGI8ECmNssHmdjBPpzHl/bqEL6sK1AglxC3o+P34ejYnbOXOO0emCfvEcfhuo9W87uHeRjILCUeRRmALP06VyHUmYPMOQKmHmD4dDM6yC3Mf3JpNJk/JRJPAzdnZ29NZbb5lJWbvdNiUJ9zt22Hfv3lW/3zdnTIq0VCqlYDBo/BRGA+12W2tra1pYWFC9Xlc6ndbExISmp6dVLpfNzrjZbOrg4MDOGQpPzhq68FKppF6vZ062KAuGw6Gy2az+4T/8h/qzP/szXVxcaGZmxhBo9gr4fD47p2u1mi3TQ72VyWTU6XSsaHWfyZcvX5pCgaJLkn02KD8YxbgNGs8raDW7ClBySTJ1GmcVhS+58ducu69cDPCD+eGuVpsuCWSA7pFDiJvU1f+iRuBmBmLlcKDCdfXXMCZ5iLlpgflgI+N/jV8BxUG/fyklw8IYKHh+ft4W0aDf5eAplUq2rz4QCFhXRDUOajEcDo2FzSHJnJbkyRIjNLxuJy7pGtzO7AwWKyQRSVY4MEuDYIX5RjabtQo4n88bKx1IGTmYex2RR0qyWRuHCKgFN60LufO6+RySyaSRlfg60JvXFSxBoQhwZa9uoQns745qcBADGgeRAl1w/dRdBIokBJGNcQ7fd3p6akl9ampKOzs7ikajZi/Moq5qtar79+9b90TnQ+cBT6RQKCgej9vrZFnV4eGhUqmUMpmMaa35zKSr5V7MUEmMdCBwbDY2Nox4iGqBhMzP8vv9BtdSbJ6fnxvBjNW0/X7fCnDGaCAMwKd8JhQ19Xpd8XjcUBBX4klhwvyUc8XtPt2REMUdnzXKGb4eXgHP5euyIpZku0poQKTLewvpMna9nGUUQcPh0PgXrh03SB+jsEwmY7N37nvknZJMlrm1tXUNco5Go/roo49s4+TIyIhisZgx5sfGxnRwcKB+v6/FxUX98pe/1Ndff607d+4ok8no8PBQP/vZzwxVcsmB3JPs1bhx44YqlYotiBsMBmo0GvL5fPrqq69s9IpCgoYplUrp2bNnymazunnzps7Ozmy99vLystbW1jQYDIyEC2ctFovp5s2bSiQS2tvb06effmpbdNvttikG8vm8MpmMdnd39eWXX1pCxmxoMLh0yKWAxX+B85BG+vz83FBdciyFOmMCiLf8DFRpnCHhcFiNRsOWGbnqmldFtV65GKDidmFqYGgXunK7QVeGAkmFmxGoma6YeSSsbyon3LWA1Sk6OAxIyFScqBt6vZ51vc+fP1c2m1UymTS1AWzT+fl53bx505Kc661dLBZVLpft0Hj58qV9KEhc6CSLxaLW1tbsYAoELrddffbZZxoZuTTB6HQ6RmKCzVuv120xEweTq32mq4aRXiwWtbu7azyFiYkJZbNZTU1N2fty50hUkHSA09PTCgQC+uSTTzQYXMq9mAmzeavdbhvMTVKEuMnhTffnwq5ul8W8kfsAOdfrCKDeSqVi10KSXV9kke64i9kfYyIWr/AeXYIhRejS0pKSyaSKxaI2NjZ0cXGhu3fvKp/Pa2trS9lsVvF43FQDWKQ2Gg1dXFzYPUSHj6QKjTYqGunK6Ghvb08rKytG0nvw4IH5ALioTSKRuCY7pAhHagUqUS6XNTk5acoEumR31NJqtQwqBgHZ39/XzMyM3RfMnvP5vD7//HNbWHZ6eqpMJqNUKmXJZWZmxtYR0+XTMXG+cPZwT7qIDhA3bHIKLToryMiMAvgZ3KvIlQeDgX3OKG6CwaCy2ew1X/tfZ0A0Rj1EwikUCgoGg+aKijSSc9Hv92t2dtasminc4JK4jPdUKmU+MJOTk0okEjo4ODD10Pz8vI6OjmwbJudxuVzWl19+afD07du3jasE1L6zs6P19fVrEr2RkRFNT0/rk08+0fT0tP7pP/2n+pM/+ROl02ndu3dPo6Oj2trass/pww8/VDqd1srKir1XjJMoHN59910dHh7q+fPnCoVCmp6eVr9/uTTv5s2bJqulkD86OtLs7KzefPNNlUolsxkGScGWm0S8tbWlubk53bt3T8ViUY1GQ8ViUW+88Yb+/M//XMVi0YiILsqE7BgEBPQA51Fs7Kenpw1dcItgcsL4+Lgajca1JtvlkMCDkmRFLL/jVeOViwG6PA5LqhS6WeAhSDjcqK6OeXx83Mgaw+GlvphqFkkfUDUdablctiIjl8vZYXZ+fm6HMEYsXDxgXG48zIJGR0fN2AeSVSqV0tzcnHZ2dvTTn/5UH3zwgXw+n/b29swCczAYKJ/P24HpyhDpioBJQQWAyemcmJm6rGC6FkYd7Nrm3ylC8B132aR0pfV6XfPz87pz54729/f17Nkzff7551ZBUzEfHx8rk8noq6++Mve3k5MT7e/vK5lM2vXi9YPccGMyd4bIc3JyYmMeOmysMl1EwIWsXxc6EAgEzM/eJWMNh0N70IDj3AVSFIjurJn7iwMFZAidfaPRsBkqZClWd4NCoJkGoer3+wY7VqvVayzp09NTVSoV/fCHP9Tz58/VbreVyWQUCATMV/3ly5daWlrSv//3/97c09COk9QoTLa2tnR0dGQjD7oH7GeDwaDBnicnJ8ZT4GCpVCqanZ21jgbm9/Lysl1XiFIvXrxQOBzWwsKCPSMU15DLEomEDg8PVSwWdfPmTcViMZXLZduSt7i4qEajoXa7bSMM1+EOfxDQPwpQF/2hEwOd45lm3BAMBjUxMWFEWdC5brdrn/HrCtwnKbzh/FBQUqi75FW6fgp0nlvGLRTo09PTyufzmp6etqIUCR3XlLMJh8hqtWooIMRZRqI4WLojs8nJSf33//7f9eabb5qiKx6P65133tFwONTDhw+VTCYVDAa1vLxsVsQob2Dxv//++8Y34fMlZ5ydnalUKikSiSiXy5mSBUQJPgAKHd5vr9fTz3/+82sEblcO3mw2zQsEvsv6+rrK5bIVh3/1V3+lx48fW1PAqIpi9OLicmsp5F1QXp/PZ0uZDg8PVa1W7TUxagRBpCBmHM55PhgMDLGtVquWN7/ZpL1qvHIx8LqY4F548X8aGJF44cX/a9Fut23XhcuTYCxK4qDxAhVBfg36Q6dOEUzxBCrIvzPqIvnk83lrKFznO5dzcffuXe3v79soTJJJnCn2tra2zCvi4OBA4+PjhmZub2/bzNx1qAUN9vuv1ogDezMCabVaun37ts7OzvTy5Utj7YdCIa2urprNdqlUMkQbf4vj42N9+OGHCoVC+oM/+INrRErGJiDRFxcX5mAbi8WUyWT04MED/at/9a/U611ae7daLTPZonCZmJgw1E+SjfggfOIaCeHTVcvB06D5qNfr14pDmhsKNF6za9rFPfEq8f/LjtgLL7zwwov/++GqI+jUQQLc8QlOokDGGOugcaebBsFFlYLfCgUzo1s8JSBtu3I3Eg7EumQyqYODA0MIMR8CoUomk2o2m5qbm9PIyIharZYhtWNjl6ZbX331lX7xi1+o0WiYayLkQMYNs7Oz5n1ycXGhpaUl3b592xIjM33Q1HA4rGg0qmKxqMePH2t6etoULvDR+FmsZD45OdHR0ZERHrEVxkGXzvzZs2f68Y9/bOgSo2F4KXTkWHSzcAwI//T01Hxnstms+v2+IVbuuJL3j1wW3xYXZUXyTGHBqAhVxavG62N1eeGFF1548b8Nxh2MCCBMYgzmduiuXFPStfky41jcIdm54So34HPxvXNzcwoEAgZTu2NP6bJw2N3dtTEEjpajo6MGY09OTtqsPxKJKJ1OK5FI2JiMJEu3v7m5qZ2dHdvjks/nLZGyFbDRaBhUTrLD4IpiBxUO7xtvC/gqvIeFhQUroOAf+P1+458wVpmamjL+1NbWlr788kuD9nk/sVjMCMY4RDLLhxfHXB+CLEgEPCY+I7cI5HPnZ5HsKQgg5/M1jIFAF141vGLACy+88OI7GiQMunJXHeVC/iRAyKF4RZBUSAokGJAEyLL8bLhU/X5f09PTtvCI1wKhGdn3ixcv9OTJE0UiESsyLi4ujNA4OjqqhYUFTU1NWdJ1ExTGR6lUyjYIVioVI0IjBUTJws/w+S735CCLrNfrqlarhk6MjIwonU5LkqkmYrGYFRUYsmWzWa2srFyzyE6n00bqrlararfbmpqaUigU0t7enj777DNtbGyYYgoUIBC4WhuPeg2/EHfzLP/GvJ+dCXT1JH2XkA/nyHUZdIn435Tu828QyF/pXvs/v1298MILL7z4vxGQwvhvoG/peseIygnIGkWGa1BDAif5sz8CYmE4HDavAHgEyWRSe3t71tGCHKD2CgQC+h//43+Y/wR23XTJT548kXRp/Y0UttVqmaFaq9VSIBDQ3bt3lUqlDFWAeOu+N+TV2J5T/ADRDwaXlsK4gtJFc43u3r17bS/A9va29vb2dO/ePQ2HQ+vkMS/a39+3fS0k9a+++kqfffaZDg8PzYoYHxrkg/ALarXatZXNzO+xf0cdU6vVTM2CPwDjBNczwufzGUnd3SZLBINBG/2wQ+TbKLg8zoAXXnjhxXc06PxdR0uSIlJMTM+QObt+9ZiMobxyYWpMekjqJNzj42OTYM/MzGh3d9dssZFwX1xcKJvNqlqtmgkVZD98MpDfsU4etj+wOn/m5+c1GAy0u7urarVqBLnt7W2Fw2HdvXvX1Dkw+4+Pj7W0tKR+v69CoaCZmRlNTEyoWCxap01Cv3fvnrLZrILBoDY2Nmwz4507d/Txxx/ryZMnGg6HunHjhvb3980rIx6PK51Oq9FoaHNzU51ORw8fPjQTJr/fr2q1asl5ZGTE5N6McgqFgik8XK5Fv983RCSRSBisL8ksl0FhRkdHlUwm7T5wDbFcg77hcGgupPy8/yu7CbzwwgsvvPj1BpIxVAHdbtfgZWyiq9Wqms2mdeUQCyGb4eGAfXwgELCNhpgSgRrQWbJsKh6P63vf+55KpZLJmUl8+Mbkcjk9fvzYHAy73a4ajYa2tra0uLhovhWNRkOdTkeRSEQLCwtW1Dx58sSWrWE9XK1WtbOzY0gFygmIfyTMUqmkubk5TUxMKJPJmDdHrVazGT0GTB9//LH5UmB0dfv2bb148UIjIyN6+PCh/T3+NKg4PvroIz18+NBIfp1OxxbhSZdEwXK5rHw+r+XlZeVyOeNTsGhMkikWMGZi6R0eDK77qySTkXY6HWWzWSMxgtBAcjw+Pr7m9RIOhw21eNXwigEvvPDCi+9oQAJD209HCRQPEoDjHNsx4RmwNj0ej18zy8I6GugZ2J0ZOH4cDx8+1O/+7u/q5OREzWbTYG/XEr1YLKpUKimVSun+/ftaW1szeSPyuJOTE+3s7KhUKml2dlY+n08bGxvm1bK6unqNVY8D5tramvL5vEqlku7du6fx8XGl02k1m03t7OzY1tdisWhjiomJCfOcOD091cuXL81DxV1CFQqFdHBwYJ4rGM6xfRAlwXA41BdffKFOp2Nqh0wmY1bAuI7iDcLOB4yz9vb2bBU40L6rFuC6g7Cw4ZV9BVyLVCql2dlZVatVc5U9OzuzhV189jgxgiq8anjFgBdeeOHFdzRI+Pj5QwwDosYICj16v99Xs9lUv9835ztgcbT8jBqwwMWB0t2F0uv1zJoXS2rX4ZXFc2yGbTab+ulPf6p+v6/f/u3fVi6X09TUlC0Y+g//4T+YPh+lwMLCgpaXl/XFF1/YXB+N/erqqur1umZnZxUKhWymDtdhZmZGjUZDuVxOq6ur+uu//ms9fvxY2WxW2WxW6XTajO58Pp+eP3+ug4MDs4mPx+OSpOXlZaXTab148cKUBYFAQNPT05qYmNBf/MVf6MWLF9cMjlBUQJSMRCJWrODMCOEvHo8bdwAehWt8lkwmVa/Xlc1mTRmBEiMQCCiTydjOHgziWF2P9TPOhRjsfXPPyquGVwx44YUXXnxHA+a5a1OLEyDLr0hgyAvdnQpYBePcB9MeCRuoAJ0xEjccVU9OTvTll1/qH/yDf2AQdqlU0unpqbkEHh8fmwwvn8+rUCgom83q1q1bqtfrqtVqevfdd1Wv163LjUQiGg6HZsNLxwyBj46YxV6ZTEaVSkXNZlNLS0v6/ve/r5OTE+VyOQUCAc3Nzdn6abbgTk5O6uzsTIVCwRIka49ZBHTjxg31ej198sknOj8/19nZme2FaTQa+uyzz2xpE2RHZv6oA7ATZimSJCNCsteFjaQoMRgFsLETR1d3Bw3jGBQBjGVAAaTLTaVcM4pEpIXcA68aXjHghRdeePEdDWR4HPgQwoCasYpGiuYmGjpN5Gh8L0mHDhVEgUVaFAzYzQ+HQ+XzeZtfM6uHeDgcDu3vDw4O9PHHH6vVatm2wlqtZoZB7Pdg7t/r9TQ1NaXNzU1lMhlDK4rFoi21ajQa11CPcDisdDpt3fTW1pb6/b6y2awt0Gq1Wpb0WdYFGhKLxUwtgR38ysqKufs1m02VSiW9ePHC7IlxCGRWD48D0yZUGbj9seUVV0AKFbgAyA3d/SGuoZBrBY8pEkUTqMLY2JiZLDFOokiAKOoRCL3wwgsv/g6EuyHTdadDIkeXTwGAyZAkk7RhYkNiYBkPCAJ8BOBnOAoY9QSDQR0cHNhMfnJy0siGzWbTtqCyb6bVaqlYLNoStpmZGZMNwm/g97gWwOPj47apld0z7ERBUthsNq0wkS675VKppOFwqFwup1gsplarpUKhoOPjY9sHkEwmzanP3fcyOjpqW0dzuZzy+bw2Njb06NEjFYtFY/AjBWQGzxI9riHWxfgJ4DFA4CPgbu0leVMkcP35mQSeC4x3pCvPh2azaaMkd2U5nzEIwSvda9/67vTCCy+88OLXErDMSSChUMhIgKx2Bxp3t1FCmJNkm1BJDGwQRY+PQgE+AgUHY4Zms6m1tTXbnBiLxTQ7O6t8Pq9ut6t0Om3rikEKCoWC/vIv/1KpVEoffPCB0um0RkdHbYaPlTEQfi6XM/MgEu/5+bnq9bqt533zzTeVTCZVLpf17NkzJZNJZTIZjYyMqFAoqNVqmUthuVzWixcv9Lu/+7uKRqM6ODgw4mGv1zMJoM/n04sXL3R0dKR2u62NjQ19+umn2t/fl8/ns7X2rJFOJBJG0ItEImo2m3r58qUtmmNHBKugd3Z2tLi4qGq1attqQQP4fBgH4CnBGICRCvbS7oZOXBslWfFGYQWig03zq8bIkFLDCy+88MKL71TMzMzY8ht39TZbOMPhsHWX7hIjN0Ekk0mbcVMs4BsA651EIsk6eKDoubk5071DpJuZmTHWfTQavbZdFm9+1kmHQiH96Ec/UiaT0cLCgm29ZKTwxhtvKBwOW5dfKBR0cHCgUqmk4+Njvffee/rss8/0wQcfKBKJ6PDwUAcHB4pGo5qfn9e7776rX/7yl7aeGc19IBDQ1taW7t69a0gAroy89sPDQz19+lTPnj1Tp9OxccDJyYldY9dOGGIhTo2NRkOlUsl2A1B4Md5pNpuSpFAoZORDdzW8dFkUzM7OWvHFyAFkA7SAPQo4T7qOhO52UpAkColaraZXSfMeMuCFF1548R0NIG5gfTgBLCtypYFs1AsGg8ZAj0ajarfbNnN31zufn58rnU6r1WopnU7bvJ2Eivogl8vZ32GoQ4JhyRELe1KplOnqq9WqxsbGVCwW9ad/+qd68803tbS0pLm5Ob3xxhv64Q9/qF/84hcqlUq6deuWrfeFMzA/P6+zszONj4/r3r17Ojs7s7HDycmJ9vb21O/3TebHGvJsNmuIQTAY1MLCgs7OzrS4uKiDgwMVCgW7nltbW9rY2FC9Xtf6+rrq9bpxCTKZjPkzICM8PT21IqlUKmljY8M4AxQ0oC7n5+e2GKnZbNrWR+myoIN4+PjxY5VKJbNj5vPlmkpSsVg0VACnREmmWsjlcup0OpqYmDBJJV/7quEVA1544YUX39EAEaCLx/++0WgYCgA07vrWp9NplctlW6ML5OwuMwKODgaDqtfrNipALhiJRKxbx942EolYd03SLxQKmpycNJJivV43uLzdbhvR8MGDByoUClpYWND29rb5Fty7d0+Tk5Pa2toy4t/S0pIuLi70/vvv6/79+/rpT396zYxnOBzqs88+08rKin74wx9qcXHR/p5kLEmdTkd7e3tGSGy323rx4oX29vYkSQ8fPrT39OzZM5vdQ6zEhZAdAqgf8vm8ZmZmNDc3p8PDQ1tZDAKBRTJOhLFYzP6eBB8MBnV0dGQrleEwQBDE0KjVaikWi9mIAXSBr6UwgHTovn72SrxKeMWAF1544cV3NCqVijn4SbLOk0QTDodt/bAk6yiZQ7Pshw6R7vT8/Ny6etAESG6sLGYlbqvVMpdCZI69Xk9bW1vKZrO6ffu2BoOB8vm8SRjPzs6Uy+UMNWCdcb/f1+HhoTY3Ny35Ms6Ix+M6OzszC+VUKqV4PK5AIGC/PxAI6ODgQFtbWybJe/z4sWq1mk5PT3Xr1i0tLS0pFArp888/V6FQ0FtvvaVyuax6va5ut6vDw0Pt7u6q3W6rXq9rbm7OvBVOT0+VSCSUSqVMfsgugeXlZZ2cnBh60Gw2NTo6qpmZGXNIRCmBLTDvDVkgRdLY2Jii0ah8Pp+tmK5UKur1eopGo2YSVS6XtbS0pKOjI7tW/B7GPrlcTltbW0YaZCMiK6IZVfxN4RUDXnjhhRff0YjFYgZbS5dIAda9o6OjxvCnY2TmfHx8rH6/r0QiYUY+kowX4MrX2u22zdv5g/vd5OSkYrGYGf+4WwslWeFxcXFxzbgILwRsj7vdriKRiM3e4TI0Gg19/PHHthlQknEeKAwePHigWq2mer2uSqWifD6vfD5v+wH+23/7b1YwnZ6eqlgsqtls6vPPP9fx8bGq1aoODw9Vr9d1cXFhVsbBYFBzc3NKJpOq1WoaGRlRKpXS+Pi4yS+Z/ycSCfn9fiMJsjWRlckQPVERRKNRWwCFasAl87G9kGVSQP8UY7hNTk1NqdlsGuzvLl+SZIZHFCGQSJEqfhsCoVcMeOGFF158h4PVusyrJVmSarVa1xIw/vbRaFStVuuayVAgEND5+blxDOAdkDxQAwQCAZtdS1cGREjm+B14ELRaLWWzWUMTkDSen58rFAopGo3aAqKxsTF7PdVqVa1WS36/X48ePdL+/r5J5JAYIg3s9Xo6OjqyDX+uy16hUFAsFtNgMND29raKxaKKxaIqlYqGw6FqtZrJ9yho2IQ4OTlp6gnWL/O1FDkTExNWlGEkRPLtdrvXXP98Pp+9Z3gX7rV3yX/9fl/Hx8dm7YxBEbsP4GuMjo6auRRSR5QCyCXxh+j3+9cIhJ4DoRdeeOHF34HAW8Cd8XPgS7Ktg8gCgZKxqcW4x12v2+v1rFul0IBt7hYAyA6Hw6HNuvlDIpQu5/IkLZIsnIbz83OlUinrZhk94DLI7yV5g1y4a5CZlTebTft6uvZOp3ONbLe7u2tJlq8DcndVE5FIxJL68fHxNWMmiiTpysUxEAiYt4Jr/ETx47L8QWkIdjjwOWFWxNf3+31TFjBicWWHFF9cF76P+8P9nPh7yIZeMeCFF1548Xcg6OAlKRwOX4Ovz87OjJx3fn6ucDhsnTpdLrbFwNQkcr4HuB9lAtbFEBdbrZZOTk7MH4BEx+8mqR8cHJgM0e/36/nz54Yc+Hw+S8h8L13vxcWFarWaKSVItMzcNzc37TXixIeXQSAQUK1Ws9EDC4JAOM7Ozgx2r9frNjtnBIGTIl23O6/n/1NIEfgBcE1DodC13QndblfVatWKiHg8rna7bV/rGkfxOo+Pj40wSNGFRBNVCHJJSdd2SXC9KM6wpea+oMh4lfCKAS+88MKL72gMh0MbB9BFYoGLtt/dakgyqFar1woJ4HnXxngwGGhqauralkC62PHxcdvu1263Lcn6fD5FIhHbclipVMz6GBkhiodMJqNWq2WGOXTViURCS0tLOj09ta6f5IbZUblcvkZu9Pl8qtfrCgQCxtjvdDoKh8NKpVIGoUciEbVaLbMwXl5e1tOnT+17SJQXFxcmZSRpYu40NjZmlsXxeFyFQsHMj7BAJvmzmdHv98vv9xv5kgKDYqTT6WhqasrIhOFw2CSRoBhu0UYx1mg0DEkYGRkxdAQEgntEkilO+H7In68anumQF1544cV3NEZGRpTNZs3jHtmYdEkeY3UvVrbJZFKBQED5fP4a2W9kZMRIgsz2g8GgJiYmdHh4qGQyKUnmRYBEjUVE6NkhKWKGQzJbX19XuVzWcDjU+Pi4YrGYvRZW8+7v76tQKKjf72tiYkLZbFZffvmllpaWjBdAR51MJg3ZgOnv9/uVy+Vsn0A0GlWhUFCj0TDvgZmZGcVisWu2yKFQSEtLS8rlciqXyyqXyzo7OzNync/n0/T0tJH2KpWKarWaIpGIYrGY9vf37f2EQiHjDiC/LBQKGhkZ0eTkpMrlsjqdjiEIuBRi60zBEQqFlEwmzVp5ampKu7u7Rl5kpAJK0+v1TL7IxsVyuWzrjicmJowb4RYLjHg80yEvvPDCi/+Hg1k77H46fWbJkMsgkrEFD8Od4+NjhUIh+x7cAVlHTKeOhS0JBJic9cV4HMAZIPFQgDA2YJRRLpdVLBY1GAx079494z0Ai7fbbcXjca2uriqdTisSiWhvb08nJyf2MyhEEomErVRuNpsGu3e7Xfn9fqVSKRUKBSWTSXU6HXU6HR0fH5t1ciQS0YsXL3RwcKDx8XHb6gfq4fP5lE6ntbe3Z8jI0tKSfD6fXr58qWAwaKZO8DYgcwLVg6wMh0NlMhnjOjDaYPUyoxMklrgYwmUA0WBcMRwONTk5aShGr9czPoYkKxYgVlIYUrR9m62FHjLghRdeePEdDdj9dMZA3KFQyBjlsMn5Wgh6JINer2eLjUAJWBkMHL60tKRisWhbEPkaNO6Q7CDY0ZFCZMRcKBgManx8XNFo1BAFCIqzs7OWTEdHR5XP5xUKhTQ9Pa1+v6/d3V1THDCSYEyAEgC4fDAY2Ca/wWCgeDyuVqt1jdyHQ+Lk5KQ6nY4VP/V6XYPBQOvr6+ZPIF1aEJPUQTSQHML0h6/gKiMajYbZPSPDhHtBF0+hhR9BLBaT3+/X0dGRFV7JZFKpVErSFZGTomZiYkKVSsUUHYwIgsGgoShnZ2eKx+P2PWxKdIma/7vwkAEvvPDCi+9oDIdDpVIp1Wo1W/DjEu3oTIH2SVyQ0IDUvzkyQBpH4isWi9ZN0gUXi0UdHh7a74JIRxKUZPPu8/NzTU9P22seGxtTrVZTKBSyJT7MzYPBoEkNU6mU8vm8+R6Ew2EzVDo5OVE8HrdETrEB56Hf75tVM26B+C+Ew2FVKhWdnp5qfn5eDx8+VLvdNkMhJILD4dB2AIAYsFGw1+spnU7r6OjITJwgQUL4oxiiOIAAGAwGFYvFrGA6Pj42h0e+n9fs8/nMF4LdBnxW7rU8Ozszkqi7rKrT6ZgBFYRBjIk8nwEvvPDCi78DgYschD0SIvbAMOkZDSA7o0hglEBiIYGQMOm63Y14KBaA1CkGCFdV0O/3lUqlLPEgXWy329YBI4XsdDqqVCrG+s9kMpIu5XuY7mDNS5Ku1+u2nwDEg0IE4iLfB+9gbGzMjItYuARBEYi/2+1qf39fvV5Pc3NzajQa1wokSUqlUoagRKNRg99J6Cx5gpiJ6x/XjOJKupIX0vGT+PEVODs7M6SHfQaQAXld3Atca/gfWDCDpnB9+v3+t1ph/OplgxdeeOGFF7/WYIMdiRw/AddbgO2FaNkx0KE4cE2HkMXRMfIz0KPj/48rHv/G74HZjvIAF0RWJmOeg2sixQrs/0qlooODA0MNXNleJBKxIobX3el0zIjI3UooXZIrkeXBZaAQ4JrEYjGVSiXr7E9PTw1Gb7VaOj8/18TEhG0EJHm7KoNAIGCKBve18XVcE7YIUqzBKeh0OiYFRdrJ50qBArGQEQCfI0qLUChknAXQAlYe85pBE7imXIdXDa8Y8MILL7z4jgZJhAQhXXZ8LKAhMeDYx9/BHTg5OTFjHjplkIJut2voAn+H/h6+wdnZmcHhSBdJQoPBwHgErNHFuwCyI/A3GxBJwrD96cK73a4R5kqlksrlsvx+vxKJhHK5nBkpMZMnyZHAq9Wq/H6/4vG4YrGYFTw+n0/lcllHR0c28qBIikQiSiQSRkiULpGYUCiksbExNRqNa5wByJyQ8lhTLF2ZQ5HsIS7G43HjN7g/n2Kt2+2aL4T7GYASQPREQur6ClB48Z54PchM2evwquGNCbzwwgsvvqMB4Q7oORqNanx83Gxssbtlhk5iYPZM0mGWzNgAIyAS1f7+vhUWg8HAYP5AIGBeACATkNVYtIOqAIIiSbFardpGRbplEp0r44Nw2Gq11Gq1DPofDAaan5+3gqLVapncLxwO6+joyCSTWA+DHkgyMiR8CbwSJJnywufzmfwQL4FEImGGRkD1dO78PNY4UxDRxbsukXT5gUBAqVTK3rcroez1emaw9M3V1BSA+/v7VqAwnsG7Af+EcDhs/ArcI92RwauEVwx44YUXXnxHAxgZ3TqJABa7CxMzHvD7/TZzJsEj2SMxhkIh63qTyaRisZgZEUlXRQjLd0heJClY9SRxigB3DMHrhcPQarWMOAexEZOeQqFgmwn5WblcTvv7+4pEIgqHw5YQA4GAjSpGRka0vb2tUCh0zROB3zc5Oal8Pm9yPXdnALP24XBoGxaB2QeDgWq1mtLptPEXmPmzYwCehnS5QAoEhs/C7/er0+komUxqc3PT+BgsneLnVKtVG6lgLYxsst1ua2VlRcfHx1bwRSIR8w+QZEuJcE48OztTp9PR+fm53RuvEl4x4IUXXnjxHQ3kaq4+vdvtWtJAzx6JRKx7paOkY6V7BJYeDodKp9OKRqNqt9va3d01OBq4GhOdg4MD+f1+ew101nSfSOYgzrmvcTgcWjGBvwHfz79DMJyYmJB0WYREo1GDxkdGRlSr1Qx+DwaDVgz1ej3Nz8+rUqno/PzcOnW67GAwaEY+p6enliD5PZKM5Q+pkILD5/NpYmLCLIwhRzLugEcwGAx0enqqarVqagiIfS5ngOuJgyC2yngNMGahaJEukQ0WNXFN6fa5FiA1jDI6nY6NXiAZvmp4xYAXXnjhxXc0EonENVkb3SO6/263q5mZmWtSORIl6gC22VFQuA538Ar4WZDwXAe9RqNh3SzIAKz8XC6nbrdrHAYXlsaPf2JiwhwUSWCnp6c2z4Y74CoiWq2WQe0UI26nC6/h+PjYipJms6lQKKR4PK7R0VEdHh4acgJHgoTKexwOh0Ye5OcfHx9bITMzM6ODgwNTMrgkR5L37Oys8vm8qTMgE0oyw6dut6tisWjXpl6vm5pgOBya9XEkErG9Ee12W/V63SyN+QwYGTFKkS73VlAIcA9gU/2q4RUDXnjhhRff0QDOpguVrgx1OOjRnEtXRLZYLGYJ9Zs7DZiPh0IhHR8fK5VKGeEvGAxaVw5sHovFzLGPRERHDPnN9f13t/Px39Vq1TpaOm/+TE5OGkvf3aVAwnbRB6R+SBEZQ8RiMSPgNZtNI9GBTODbj8zQ7/fbxkdJthnQ9XGgEGGtsTvHDwQCJlvk+/m83G2ByA9xUXSVCKFQSMFgUNFo1Iq1TqdzTd4oyQyMeH/8bMYESEEptPg939ye+DeFVwx44YUXXnyHA2iY5Og6/wFfk1jdvQJsxXOTqSRLEsygSSKQ4EAi+Nl4/bub80KhkM7OznR8fGysdVAFumPIgvF43LpuChjQCn6HJEMrSGzdbte+j/XL/BsyOzgUJGO346dDd4slt0ChA+druLYw9AOBgOr1uvEfeP+utBFPBUnXRhAkbVYcuz4FyA9RRUDAhHjoci54vcgceV8+n88KRN4P79EdE3gEQi+88MKLvwMBpO06DJL8SRzfnCXTfUtXPgLwBygSXJ8AN6G4RjXMwEk+dOVuh4y/AB00v5tiwjU5Yr7N66JI+aZ3AAnXLXL8fr8VBixMguiH7I8xCl9PccEM3/VWcJM1RYor3aRocfkBJHNeo7vGmc/lm7wNigv4ErxGV87pGilJsu913yvXiGvJ9aR4Qs3B+ye+zX4Cz2fACy+88OI7GnR5QOiuTa0k87snmZEIk8mkJVBkhBjd4FvgzrYpFvgZ0tXM34WoKThOTk4kXSIEjUbDEhdJHgjbXQvM+3FRCWRxrg0wJkfo9Um8cB7oxvFJgNuARt91TMT3gITqSgBJ7KwfBl3gd3NN3YKGa8/Pwc+B98+4gffhki8xhiLBn5yc2O4Gvpafw7WiEHRRAUyW3DGAywvhtVIsvmp4yIAXXnjhxXc0+v2+ueCRbOh6E4nENdIfSWo4HKrdbluSxbxnbGzMkiiJDpvgSCRyDZKGBc+qX34OEDqIBFbB0tXIgg4WOZ673AcEgASbSqWMLc9sX7raeYAXwunpj0jsyAAAAaVJREFUqf0bRQE2zDgluhA8BUKlUrk2q8f10LXvhX+AtJLXxnXmmuKCyGuFoOfaCvPeKa5OT09toVIymbT9BfhASFIymTRyINcHL4dut6tkMqlWq2W/A4SC4onrxTIqPgM+q1cNb2uhF1544cV3NEZHRxWPx68tHWo2mybVg7yHHwHe/rD9SfhuUmc8QGIieWEidHZ2Zhv3arXataU8QM50uzj54XQ4HA4ViURMrndxcaHJyUmTB7qdMWt9+X28P6BvEI1YLGbrkN2thfglUAgw/sCREc19OBy21wIJEmRiZGTkGhHwm0uCOp2O7V6AhIgsEqRAuixuEonENWMjfgboCB2/JENhGK+4yIwr4aTwQFUC8kPxR8E1MjJiskVMpbhWrD/+m8IrBrzwwgsvvPDiNzw8zoAXXnjhhRde/IaHVwx44YUXXnjhxW94eMWAF1544YUXXvyGh1cMeOGFF1544cVveHjFgBdeeOGFF178hodXDHjhhRdeeOHFb3h4xYAXXnjhhRde/IaHVwx44YUXXnjhxW94eMWAF1544YUXXvyGx/8Eoitvc0ZNezQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFFCAYAAABxMu67AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjWElEQVR4nO2deZRlVXX/v2+eh6rq6gmZ2hZRiZIIioDMwiJGotEYIIEljTiAthKzMIL5gUsJcWzEIBI0IAoOKBKWIAS0g6JBiYhItFFI0wI2XeOb53r390f5PW/faghIuvtV9f1+1uoF3fWGW++de8737P3d+4Q8z/MghBBCiMASHvYFCCGEEGK4SAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAgRcEKhEC666CL392uuuQahUAiPPvroDnn9Rx99FKFQCNdcc80OeT0hxI5HYkCIBWzevBnvete7sN9++yGdTiOdTuPFL34xzjnnHDzwwAO+x1500UUIhULuDx/7wQ9+EJVKZUi/wXC4/vrrcemllw77MoQQz4HosC9AiMXEt7/9bfzVX/0VotEo/vqv/xove9nLEA6HsWnTJtx444244oorsHnzZuy9996+511xxRXIZrOo1Wr493//d1x88cX43ve+hx/+8IcIhUJD+m2eG6eddhpOPvlkJBKJP+h5119/PR588EG8973v9f373nvvjWaziVgstgOvUgixI5EYEOL3PPLIIzj55JOx995747vf/S5WrVrl+/lHP/pRfPazn0U4vH1A7U1vehOWLVsGAHjHO96BN77xjbjxxhtxzz334FWvetVOud5Go4F0Or3DXzcSiSASieyw1wuFQkgmkzvs9YQQOx6lCYT4PR/72MdQr9dx9dVXbycEACAajWL9+vXYc889n/G1jjnmGADzKYen4z/+4z8QCoXwta99Deeffz5WrlyJTCaDk046CY899pjvsUcddRQOOOAA/PSnP8URRxyBdDqN888/HwDQbrdx4YUXYu3atUgkEthzzz1x3nnnod1u+16j3W7j3HPPxfj4OHK5HE466SQ8/vjj213X03kGvvOd7+DII49ELpdDPp/HwQcfjOuvv95d3y233IItW7a4lMk+++wD4Ok9A9/73vfw6le/GplMBsViEX/+53+OX/3qV77HMA3z8MMP4y1veQuKxSIKhQLOOOMMNBqNp/1shRB/GIoMCPF7vv3tb2Pt2rV45Stf+X9+rUceeQQAMDY29oyPvfjiixEKhfD+978fExMTuPTSS3Hcccfh/vvvRyqVco+bnp7GiSeeiJNPPhl/8zd/gxUrVqDf7+Okk07C3Xffjbe97W140YtehF/84hfYsGEDfv3rX+Omm25yz3/rW9+KL3/5yzj11FNx6KGH4nvf+x5e+9rXPqvf55prrsG6devwkpe8BB/4wAdQLBbxs5/9DLfddhtOPfVUXHDBBSiXy3j88cexYcMGAEA2m33a17vzzjtx4oknYs2aNbjooovQbDbxmc98Bocddhjuu+8+JyTIm9/8Zuy777645JJLcN999+Hzn/88li9fjo9+9KPP6vqFEM+AJ4TwyuWyB8B7/etfv93PZmdnvcnJSfen0Wi4n1144YUeAO+hhx7yJicnvc2bN3tXXnmll0gkvBUrVnj1ev1p33Pjxo0eAG+PPfbwKpWK+/evf/3rHgDv05/+tPu3I4880gPgfe5zn/O9xpe+9CUvHA57P/jBD3z//rnPfc4D4P3whz/0PM/z7r//fg+Ad/bZZ/sed+qpp3oAvAsvvND929VXX+0B8DZv3ux5nueVSiUvl8t5r3zlK71ms+l7fr/fd///2te+1tt77723+z03b97sAfCuvvpq928HHnigt3z5cm96etr9289//nMvHA57p59+uvs3fr7r1q3zveYb3vAGb2xsbLv3EkI8N5QmEAJwzv+n2s0eddRRGB8fd38uv/zy7R7zwhe+EOPj49h3333x9re/HWvXrsUtt9zyrHL6p59+OnK5nPv7m970JqxatQq33nqr73GJRAJnnHGG799uuOEGvOhFL8L++++Pqakp94dpio0bNwKAe63169f7nr/Q7PdU3HHHHahWq/j7v//77XL/z8UcuXXrVtx///14y1vegtHRUffvL33pS/Ga17xmu98bmPdhWF796ldjeno6cBUbQuwslCYQAnCLca1W2+5nV155JarVKrZt24a/+Zu/ecrnf/Ob30Q+n0csFsPznvc8PP/5z3/W7/2CF7zA9/dQKIS1a9dul7PfY489EI/Hff/2m9/8Br/61a8wPj7+lK89MTEBANiyZQvC4fB21/XCF77wGa+PKY8DDjjgGR/7bNiyZcvTvveLXvQi3H777ajX68hkMu7f99prL9/jRkZGAACzs7PI5/M75LqECDISA0IAKBQKWLVqFR588MHtfkYPwf/WhOeII45w1QQ7C+sfIP1+H3/0R3+ET33qU0/5nGdjdlwKPF11g+d5u/hKhNg9kRgQ4ve89rWvxec//3n85Cc/wSte8Ypd9r6/+c1vfH/3PA8PP/wwXvrSlz7jc5///Ofj5z//OY499tj/NWS/9957o9/v45FHHvHtyB966KFn9R4A8OCDD2Lt2rVP+7hnmzJgj4aneu9NmzZh2bJlvqiAEGLnI8+AEL/nvPPOQzqdxrp167Bt27btfr6zdqHXXnstqtWq+/s3vvENbN26FSeeeOIzPvfNb34znnjiCVx11VXb/azZbKJerwOAe63LLrvM95hn0zHw+OOPRy6XwyWXXIJWq+X7mf1MMpkMyuXyM77eqlWrcOCBB+KLX/wiSqWS+/cHH3wQ//7v/44//dM/fcbXEELsWBQZEOL3vOAFL8D111+PU045BS984QtdB0LP87B582Zcf/31CIfDeN7znrdD33d0dBSHH344zjjjDGzbtg2XXnop1q5di7POOusZn3vaaafh61//Ot7xjndg48aNOOywwzA3N4dNmzbh61//Om6//XYcdNBBOPDAA3HKKafgs5/9LMrlMg499FB897vfxcMPP/yM75HP57Fhwwa89a1vxcEHH4xTTz0VIyMj+PnPf45Go4EvfvGLAICXv/zl+NrXvoa//du/xcEHH4xsNovXve51T/maH//4x3HiiSfiVa96Fc4880xXWlgoFHznJAghdhFDrWUQYhHy8MMPe+985zu9tWvXeslk0kulUt7+++/vveMd7/Duv/9+32NZ+jY5OfkHvw9LC7/yla94H/jAB7zly5d7qVTKe+1rX+tt2bLF99gjjzzSe8lLXvKUr9PpdLyPfvSj3kte8hIvkUh4IyMj3stf/nLvQx/6kFcul93jms2mt379em9sbMzLZDLe6173Ou+xxx57xtJCcvPNN3uHHnqol0qlvHw+773iFa/wvvKVr7if12o179RTT/WKxaIHwJUZPlVpoed53p133ukddthh7vVe97rXeb/85S99j3m6z/fprlEI8dwIeZ4cOEIMg//4j//A0UcfjRtuuAFvetObhn05QogAI8+AEEIIEXAkBoQQQoiAIzEghBBCBBx5BoQQQoiAo8iAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4ESHfQFCCCGemlAoNOxLELsBnuc942MUGRBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQAUdiQAghhAg4EgNCCCFEwJEYEEIIIQKOxIAQQggRcCQGhBBCiIAjMSCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAEx32BQghhBB/KMlkEqeffjoikQgAoNfrwfM8hMNhTExM4KabbhruBS4xJAaEEEIsWo499lj0+30AQDgcRr/fR7fbRS6Xw3nnnYdEIgEAaDab6PV6CIfD2Lx5M6amphAOh9Hr9QAAoVAIoVAIADA7O4v//u//Hs4vtEgJeZ7nDfsihBBCbA8Xr6BQKBSQy+UQCoXgeR4ikQjuu+8+1Go1xONxxGIxtNttVCoVAEAmk0E8Hkc4HEatVkO73Ua/30coFMLc3BzS6TRKpZJ7rUQiAc/z8F//9V+44IILAMx/xo8//jh256Xw2fxuEgNCCLFICYoYiMfjAIDzzjsPb3nLW5BIJNDr9RCPx5HJZPDkk08iHA4jlUrB8zx0Oh3kcjnU63UkEgkkEglUq1V4noe5uTn0ej2k02nk83lMT0+j0+lgbm4OiUQC0WgUnue5iEEqlcIf//Efo1qtotfruSjE7oTEgBBCLGGCIgY2btyI5cuXIx6PI5FIIBaLuRA/d/edTgfRaBSxWAyhUAj9fh+e5yGRSKDVasHzPLTbbQDz6YRWq4VsNotarYZoNIpwOIx4PO4+00QigVqthlgshqmpKUSjUZx//vm47bbbhvlR7BQkBoQQYgmzO4uBbDaL22+/HWNjYxgdHUWpVEK9XkckEkE+n0c8HofneSgWiyiVSqjVai7vHwqFkEgk0G63sXz5ckxNTaHZbLq0QafTQavVQiwWQ7VaRSgUQiwWQzKZRDQ6b5VjKqJcLiMSiSAej6NWq6HZbOKee+7BueeeO+RPaMfxbJZ5lRYKIYTYpTz/+c/HTTfdhH6/j2Qy6ULziUQCqVQKADA3N4dUKoVOp4NOpwPP8xCNRl2oH5hf5KrVKqLRKNLpNLrdLur1Onq9nnstphF6vR7m5uYwNzeHdruNRqOBer2OZrOJcDiMbrfrIg2HH344vvSlLw3t8xkGigwIIcQiZXeLDLz+9a/Hsccei0KhgFe+8pUolUpYtWoVQqEQms0mACASiSAUCiEajboFnCmBWCyGWCwGYF4sMOxvowaRSASRSAT9fh+pVApPPvmkqzjIZDLOcxCJRFCr1ZzhsN/vo9/vIxqNIh6Po9FoYOPGjXjf+943tM9rR6HIgBBCiEXB6173OrzxjW/EMcccg1e96lWYm5tDLBZDp9NBr9dzAgAAOp0OQqEQOp0Out0ugHmRQOMfIwl8jXa7jbm5OQBwi32n00E4HEYoFEI8Hkc0GnWPoe8gEom4x3ie5xMTmUwGxx13HM4991wnQHZnJAaEEELsVA4//HC89a1vxYEHHggAvsWX/QG4CLMiIBaLIRqNOpFgxcDc3BwikQg6nY7b0c/Nzbk+BLbnAJ87NzeHVqvlHsfoAB9DP0E4HEY4HEYkEkE0GsX69etxzDHHIJ1OD/dD3MlIDAghhNhp7LnnnvjkJz+JP/qjP3I7bEYCuMPnjhwA+v2+W4xDoRC63a5bmCkUuPjHYjHUajUkEgkX4k8kEk5Y8LUbjYYTDp7nod/vu8oDYD6akM1mXWQCANrtNiKRCKrVKj7xiU/gT/7kT3ZrQfCsOxDubrkrMRyGYVHR2BU7Atmrnhvf/OY3kclkUKlUXEi+3W4jHA6jUqlgzZo16Pf7ru6fEYNEIuEiCNz9d7tdJxZsWiEej6Pb7aLRaCAWiyGXy/n8ABQHFBme57lGRIwiMErBiEStVkM6nXbegy984Qt43/veh9tuu81d6+6E2hELIYTYabAKgH+A+V03F3k+huF6LsATExNuwa/X664HQSgUcumAer2OXC6HVquFTCaDYrGIXq+Her0OAJienkYsFoPneeh2uy4aEQqFXNVCt9tFIpFwQgGY30CMjY1hbm4OoVAIpVIJhUIBn/jEJ7BmzRpcdtllQ/gkdy5KEwghhNjhpNNp/OAHP3ACIBwOo9FooFaruQZBqVQKrVbLdRa0bYMTiQQymYzPO0CvAMsI6SFgM6Jut4tarYZGo4Fut4tkMolYLIZMJuNEBFMJyWQSqVQK+XwenU4HtVrNNSai74D+gUwm48yMb33rW/GZz3xmyJ/ujifQkYHVq1fjZS97GTzPQzKZdLkp614F5gdxIpFAs9n0lbtw4FK99vt93Hbbbeh0OsP8tYR4Rvbee29n5gIGB8DcddddKJVKQ7susXuwzz774Nprr0WhUHC79H6/70L07XYbsVgMs7OzAOAWeJr8gPk2wZVKxc3NnG/ZWyAUCmFychJr1651zYPoJYhGo8jn825H3263Xe8BRglYPtjv95FIJNxin0qlXNTAigAA7uwDViXsTgRCDITDYaxduxaA38V6+OGH453vfCfm5uawbNky1Go1JJNJ1Go1nwElHo+jWCxiamoKyWQSrVYLjUbDNaiIRqOuOcbvfvc7N1ABuIHzyCOPDO33F8EkmUxizZo1bqG3J7+dcMIJeNe73uUmtUwmg1arhb/927/Fpk2bAGzvtfj1r3+9W/ZtFzueaDSK1atXu0W83W670j5upNgu2PYYoKufxkGOQVYDMMrQ6/VcR0Fg/sRCe95ANBpFq9VyfQgYNWDFQK/Xc5u6ZDKJ6elplyqgHyGRSKDRaLizDihmYrEY/uRP/gQf+tCHcOGFFw7h09057LZigCdcAfMT3c033wxgfpB0Oh3X+7rRaKDdbqPdbrtOWKlUyjlWmWOqVqsIhwdZlUgk4gYTT9nq9/v46le/6nuNer2OWq2GY445xnd9VKpC7Ehsu9WXvvSluOWWW1x/dvZoZ8i12+263RTH7JVXXolms+kauiSTSeeqPvjgg1GpVHx13EIsZO3atTj99NO3M+sRhuq5KWNZIU8fJAvnSKYI+HrchPExFAvWdBiNRtHtdn1HGQMDH0O1WkUymXTVCnwuBQuNjrwuvvfIyAgOPfTQnf1R7lJ2W8/Ae97zHtx33324++67cc8997gwPpVps9l0u3t2rqpWq655BQcslSnzUnSo0gCTTqfRbrcRCoUwOzvrQlC2fWY+n8cvfvEL3H///fjhD3+Ie+65ByeeeOKQPyGxO/KFL3wBv/3tb7F161Z87Wtfc+O52+2i1WqhWq2i0Wi48Tw6OopcLoeZmRl3BKydrNneNRKJ4N5778Xvfvc7bNmyBR/84AeH/auKRcoLXvACnHzyya4ZEBdTCgLOqclk0i26TAEA83MtTxmk25/YxkBWPHB+53txI9fpdFCv191r2QOO4vG4Ky+0ZYs2EsDrZMSCjwmHwygUCnjNa16zyz7Xnc2zbke8VMqzbrrpJuy7775uQovFYojH45icnHSLM1tS1ut1NBoNpNNpZDIZN0hocEkmk8hms0591ut1JxB43CVDS+12G91uF4VCAZlMBgDQaDRQrVbR7XaxfPlyFAoFzMzMIBqNYnZ21u24HnvsMbzpTW8a8ie3a1Bp4c7hV7/6Ffr9PlqtFlatWoVUKoWZmRl3cEutVnMTIqNipFKpoNPpIJ/PIxqNutAoTVatVssJ3kwmg3A4jGaziU6ng0QigW3btuGVr3zlEH/7XYPG7jMzOjqKk046CRdccAHS6TR++9vfIh6PuzSq3VzF43GUSiWsWLFiuxMFuehnMhk8/PDDWLlype+ziMViSCQSePzxx7F8+XKX17fVCZyzQ6GQSwPbcw/S6TQef/xxrFq1CtPT067hkG153Ol0UCwWUalUEI/HMTs7i0gkgmw2i3A4jHq9jhe/+MW78iN+TjybsbtbpAmSySS+/e1vIxaLoVgsIhqNot1uo9lsuoHIshQaVKj0gPmQfzKZdDt7Kster+czjDD0RAXLD5gDiAPNdraKx+OuUxYAt1OjSIlGo1i7di1uuukmpFIp5HI5nHbaafIYiGdkzZo1+NznPodoNIpisejKsWyKi8aser3ucqEc20wFeJ6HfD7vJlgAvqNgmWu1hlo+jwfB3Hzzzcjn81i3bh3+53/+Z2ifiRgu69atw1lnneVSTZFIBKlUCrFYDK1Wy5UG2lRtu912QoBjMxQKuagrN2/sJcC5mPMnmwnlcjlXRcBeBolEArlcDpVKBf1+3x2DzLMLli1b5qoGWGXAe6DVarnjk7lRZOqD0eXdiSUtBg488ECcc845mJubwz777OMGFVUhQ0+9Xg/FYtE5R/mHeaJut4tms4lEIuHUpf05F2+6Ypl7CofD2+222PSi2+26Qel5HjKZjC8Xawd+r9fDqlWrkE6nkcvl8P/+3/9DuVyG53n41a9+hc997nPD/JjFIuOUU07BCSecgHg8jpUrV2JkZMRNqgx3Mg/LsZtOp1Eul9FsNrfrx86UAeupF+7O6CfgPQLMG2MpaFOpFPbdd18Ui0V87GMfcxPvgw8+iEsvvXSIn5TY1XBjBMBXHVCr1ZDP592JgdFoFOVy2S3MnU4HyWTSPd9WDHARp2mQFV/btm1zZYC2EqzX67lOgYwOt9ttFAoF3/HGTA/zNRntAuCiu6w6KJfLWL58uetkmEwmkU6nMTk5OZwPeiewZMXAoYceitNOOw3HH3+8C2Hyj1VwnPg4oGgmsf2nqfoAuAFlzS/cEVHNcgHnz6gqAbg8ljW6LDwpy5alUEzwuY1GAwcddJC7phe84AXO9NXv93HFFVe4MhcRLM444wyXpzz44IPRarVQKpXcue7AfJSM0SiWvDKixUgB7xPeAwyPMk9rf8ZFn0YvQrc1n8fxf+ihh7oJf88990S1WsUXvvCFoXxeYtfysY99zHmh7M55fHwcpVLJRWppSmU1AMUDTyWk8Zpikws0+wxYwdFsNpHP5xEKhdxxxK1WC91uF9lsFp1OB9Vq1WcoZ6S33++7CjK+LjDwLCSTSSdIkskkSqUS4vG4e1+WJP74xz/GkUce6UoilypLTgwccsghSKVS+Iu/+Av82Z/9mZvkOPEtrP9k7pMHVHS7XV//aQ4CTna2L7Zd4DkgGQ1gKIv/RgVLNcwF3JoMGW2waQQbvbCHZwDzg3/fffd1R2iGQiH85je/QafTwS9+8QtMTEzs9M9bLA6OO+44vPe978XIyIgThgDcwm1FpW3jGovFnBDmpAYMXNHc+fD/KVa5C6PPptfruUiXFRW8ZyjA+d+5uTmsWrUKZ599Nh577DG0223cfffdu2V9tpiHBjsulCMjI5iZmQEAd8QwQ/GxWMxFSjlfcuzRfM0UATDYZBHm9Xl8cTabBQDfvG1FaiaTcU2OKDh4MiF9MvF43KUgGC1j6eHU1BRWrFjh89NEo1GMjY3tNvPwkhIDe+65Jz7+8Y9jjz32QK/XQ6PRcDtwW9fP0BDDRzYKwAmM6QAu8nYypYK0oqDb7SKfz7tByvexB1/wvRiGoiDgUZrxeNzdHJxkKQRoaEyn04hEIk68MOc2OzuLbDaLz372s4hGo7jggguwceNGNJtNTE1NDeHbEDubaDSK5cuXIxKJ4Mtf/jISiQRKpZJLAXAnb6NXXGw5cdqF2u7yuTOqVCrI5/OuHpyigGOSPd4ZERsbG3PVNMwB5/N5d1gMDbm8t7LZLK677jpMTEzgjW98IyqVCmZmZpb8LkpsD0PunHs5L7OzXzqddmkmjr9+v+8ipxQF8XjcmbMrlYrrGcBxyscxNWt3/PbAI64J7XYb2WzWpQMYBWZKl+tDr9dDq9VCv9935vFqtYpcLud+RxoSmVKu1+u7zVheMqWF8XgcP/zhD7F69WoXyuTAoYIbHR11g6/f7yOfz2N0dNTXwYouUja2AAZnW3MXTw8Byw9p+uOuiKUmiUQCxWLRNdCIxWLuMA4+xooEGhV5qpYN/wNw4VV7UAfVNhUtB+zFF1+MH//4x/jUpz7lC4GJ3YNQKITnP//5uOWWW/CjH/0ImUzGhenT6TTy+TwSiYRLWbHNKx/DiZljiWOUkQR7LwCDvhzcTaXTabeD4utls1mXkmPUyx4Y0+123fi1qTjeR/feey9uvfVWvPrVr3YTttg9ePvb34599tnH15SKu35rpuZmzJYIcmNkN2qca60fgIs9H2ujwhQJtlkcnwPArQkUKXwcnwcMomzWM8PIAoUyIxRcEyjG3/Wud6FYLO7CT3zHsyTEQCKRwEMPPeRyTOl0Gul02uVvuJiXy2X387m5OdRqNXQ6HczOziKZTLpQKfNKnLSsGqRaZKi10WhgamrKl9e3pScMs/Ln9ghNDi4OOjZq4QCs1Wou5xuJRJDL5dDr9dBsNl01BJvF9Pt9lMtlX1lYt9vFUUcdha1bt+IXv/jFEL4ZsbM4/vjj8W//9m9YvXq1y22WSiVfLTQPZqFBMJVKuYmRjbQoIDkZM4TLyZDhVU6QxWLRTdqc9Phcig2KinQ67a6HaQXu5kqlkou+xeNxd2pdMpnEZz7zGbz73e8e8icsdiQnn3wy9txzT7d408PS7Xbd/AzApQFs2oqLru2UyTmOgpfRBsK8P0WvTVfxcXzNZDLpxr1tlkWxa4UJN2sUG2xHzEgcx7iNMIRCIefnWcosejGwxx574Ac/+AEAf+iTXx53RY1GA7lczrmlWV/N+n8efpHL5VypIUNDjUYDqVTKuVz5HA6wXC7nTHs0wDA3VqvV3IlajD7w2jgYOWESDjb7OzAEbF2wzK1x0HERiMfjKBQKLn/MXvL/9V//5XLCYunyjne8A5dccgkikQjK5bIzRFFEcsKtVCpOZALz48M2FGLELBKJOGHA8D5fx/M8FAoF9xoUsRxztu9AOBx25bPlchmlUsndLza8y/uP4d+ZmRkX2q3Vami1WjjrrLNw+eWXD+cDFjsUng1gNykcT8y/c0zx741Gw1eiys0VN3w2DWDFAcu9GaHibt1WHXCu5gFFrFLg/cDOhhSqNkLBQ5F4f0SjUTSbTWd67HQ6Ttzy/eLxuK9HwlJlUYuBgw46CFdddRWKxaLvC2TIs9ls+syD1WoVqVTK59jnwsmd//T0tAtFsQSFiyoAn3K0bVtZwtJut1Gv152C5fGXMzMzTkFSFTM3yxuFrwPA9SWIxWKu8yGNjkwdcOK278ObhxM60ySZTAaFQgFf+cpXsGrVqiF8W2JH8MEPfhCnnnqq2xFRxBYKBaxatcon9igkacRidMCW1larVTSbTRf2twe18L9sjMUwrQ29ciz3ej3Xrpv3IZscMTXBe7TT6aDRaKDVarmIF6N13FWlUikcc8wxuOqqq4byOYsdxze+8Q2Mjo66scGGbbOzs27e42LMkwK56IfDYdcmmxsnjt/JyUnMzs66nHypVEKr1fI1lGu325iZmXEbRACuOyHTwc1mE5VKBaFQCLlcDtls1m3W0um0L4XAaJYVNnwvbuKYmgPmxQ6rFobRlGpHsmjFwOGHH46zzjoLe++9t/uSrFK0u2Uu6tw9tVotnwGPTSnY0Yq7Jr6WjRKwFDCdTvs6GHY6HV9FAHsL2DwYsU2KbKUBF3L+AfzuVxpsOBAZtgLgbjC+Jz8Te3hHOp3GS17yEvzDP/wDPvnJT+L444/fZd+X+L/z/ve/H0cffTTGxsbcmGGaiYsuxw0FLQWmnaC4u+fE5nmea7jFiZKC2Y5H7v652HNc8R6yuzTuoKxHgbXg1hlu39uGcOfm5pBKpXD44Yfjwx/+8BA+bbGjsCkqYGC8BuBq+7lh6/f7zofFEDwNeuxHwH4w3OGzooDpBnswHMsV7SaL5bVMEcfjcYyOjrrXZsMtYNBquN1uOy8OX4vvxY0nACegeW1s4S0xsJM44ogj8OY3vxkHHXSQc+Yz78mdCxdMDkD+GydFew4B2/7aigFrJuEgpUDgZGmrEGwYzNZnM1/FhZ7vYQUBTVXWR7DQHMNrte8BwGdctKkK/p1Ch9cfCoVw/PHH4y//8i9x2mmn4bjjjtul3514bpxyyin4i7/4C4yPj7uJiiY9dv/jom27oHG3zcXYVtbwNewZGxSfCxsPcXxSYFpnOMUvxzR3SRSmANwib0Uy7zWGdXl/8jH0LPz5n/85TjnlFJkKlyizs7OussWaSGncjkaj7jA3jp9cLueiToyCsfW7HZ8c5xQcmUzGZ5yNxWIol8u+cm/6sQC4fgGzs7NOmABw91O9XndpLqZ8KWrZzTAcDrsqCI5bnk2wcuVKl9K9/fbbcfTRRw/nS9gBLDoxsP/+++PMM8/E0Ucf7b5YhsoZhrKLKQcMQ/ScxGyjIT7GHoBh/7AhECc4Gwq19doLS2ash4ELNB/La6fhiqrRCgzePHx/KmZgcPAGFSn7YPN6+b58DQBuMeDPjz32WJxzzjk44IADdul3KP5wPvCBD2BkZMSXr2cEiC1S7djhhGmbC/F+4BiwIsBGkAhfh+OZZbDAIEXGSdNGtSgGOAna12fEgAs+TbjAQLjb3Ruv8/zzz8chhxziXk8sfhKJBL71rW9hdHQUANzmhtEiblay2azbYTPXTz8Mx1u5XEaj0XCnvM7NDU6DZbdBRqRs+WA0GkU2m3WVV7Y8sF6vu2tgOoLdMWkop5hOJpMubWErCvh3lnxzw2jvF27o5BnYwXzkIx/By172MgBwE4st58hkMr6SFebPOaFRCNjOgNls1reoMvzOtsHM97N/O8Ox9r25w7c7cXsd3W7XpRYWul4ZPWD5FQcQJ1d73dw52ciEfUyr1XLHznIA88ZgeaNtsfzHf/zHuOKKK9wNKxYfY2NjbjHloVkUAtyRs4MbACcAmXvnWLSNrihm7WFZ9BZQ0HJ3lUwmXeki39savehdseLDphdsGSMAN8naiTWXy/miHPTmsJ0xAFx//fV40YtepDLZJUIoFMKaNWt8uXaKQFa4AINGbfbsC/q9rHC0aaVYLObOiqFvxs65jIRyvrXGWnto0ejoqEuN0RfDe8S2r6dpnPMnMC/Gs9ksut0upqen3aaPqQVGPWyjpKXMohID1mFPAwgHFMOj3JnYKABNdAsNULFYDNls1plOOAk2Gg03GFOplDOacPfdaDRQKpWccuWAZRMWG6bixMbuVaFQyIWeALgDkujKtpEFig3+oRpmDSt/R+asWLrC1Anbb4bDYZdXa7fbLgfHXgV777037rrrriF8o+KZyGQy+MlPfuIiYPYgFka/gIERlrsrjsmJiQl0Oh2Uy2Xnl2GEIBwOY2RkxC3wnEiBQe6TOzO7m7OPy2QyGB8fBwAXGeN9k0ql3ATKSh0KGhoVGU61eWOm7lgFFAqFkM/n0Wg0cMMNN+DII4/c1V+DeA5wfuFcyDEHDA5xS6VSPsM153fbh4IbLFtBwMqVcDjsIgs2hQXAF1XlazPqZL1XXBMSiYQzLwJw18E0Gx8LDMY6Ra31u1AMcy6naV1iYAdyzz33YI899kCpVHIhcQC+UhNOePxygYFrn65T+6VYExXgN7fwC2VEgAIhFothdHQUhUIB7Xbb7cR5bCUAF1ribokqk7ktvo+dQAG416FISKfTvlO3KITYRIYTZaFQcG7ahflfehU4ATcaDVf6yLJDlRwuPtasWYMHHnjAjRnu3unK58THscWyWQDOR7NixQpEIhGMjY0BGITiOSbYx4LhV9vrgr0CWKnCiZH3Gw1aNpXGPgT1et31DUgkEs6RXa1WnQuc78mdlzXEcpLljs8eACPvwOInm83iT//0T12K0nqw+HfunJl752OAgSmV49xGkvga7GNh5y5r3uOGyUYXGC3lBpEeBqa0bKtujnFGbRndshtPdrmlCZa/I9cOa0CPxWI49NBD8cIXvnBXfhU7jEUhBmKxGL7//e+7Mr/x8XFfiIm7JE6OLGmq1WqumUQmk9nuywTgJjoOFgC+nzPFwCoChmfZZpKLNkOlDAdx4u52u0ilUsjn8wiHw5idnfWdAsccGlMMPP2QoqZWqzlVyfdgn2wuAKw1z+VyGB0ddSYba5qxkQ7+P1MhzPn+6Ec/cgYaMXz4HXFCKxaLziDFiJBt/GN3RTRlAYOzMVjXT0HJhitMHxUKBV89dzweR7Va9flwGC61fhlOwCwTYw7W1l4zdZHJZFyEgKmL2dlZ3z1LERKPx13lD0u0IpEIPvrRj+KMM84Y2vcinplly5bhoosuchFQpmttFYr1RPFx9GMBcPOnrX6xCzzg38xROHIOZmQ1l8u5xdg2ZaNPjGXb1lxLMdxqtdxhRNZrxo0o02NMR1i/GEULI7nxeBzr1q1bsqbtRSEGALgaau4K7A5+bm7O1TjbDn9UZqlUyk0oXFhpFqSTmfXXtv6UgwaAeywVKpUlBwbVKdsU2/fi86anp9357ta8xXSFVbA2bNbtdn1RBluHWygUkM1mXRmONc+wVwFDwJHI4BhOChLmY8PhMIrFIr70pS9h+fLlu+x7FU/NgQceiA9/+MM+05UN4duyVI5JLq6s2+cizBI/3h92Abflh9ZcynHEXO3U1JTLlz5VSJc13TRocSzaPvK85zhZ8z7lvcvHsAcBU34UFvx9RkZGfP3gxeKE48W2UOcYsAZsjh8KA+bd2RuFmxcuqBSKmUzG16eAz7FzZaVSAQAXxeKizkgx53+mpmwnWF4bfQFMW/FeZJTO9iVglIzrkI0sl8tl1Ot1X5n5UmLoYiCfz+Pv/u7vfI1LuCOxk501idB0ZHv829I9hoYW1v7z7/YL5QINDASINUhxQuZgtWWINLoAcL6Bp9pVMZrBQWZLAnn9vKF4bbb5BWvKba02bwb+PlS5thyMvzejA+FwGAcddJAc24uAQqGA/fff3+ewtidj8nvmLhwYdHNjRIjhUk6yAFy4nY/npLewB4FNwTFczx2UFQDWJEjxayt7OL4pgO29ZP9uX4c7LGtIZKSMAuXII4/EG97whl30bYjnAkVmoVBw4o1jlP4X7syBwfzK8c3UbKfT8RlnOQ8yMsrxas2EXJi5SePzeA4GI6YAnIGcaYNIJOLOEej1es4bNjs766LTTJUxncGILdcD25CLm8N4PI58Pu82YEuNoYuBbDaLU045xeWS7OLJHQZ3RZwIGQblYg4MzId8Hety5mTIicmWvywUAlS7Nvdqd218PZv74gCh+uVkZwUMJ0Prhl0YHWCIyvZJ4P/bskFbXmaduvYgGk7ctoSS3oYTTjgBK1as2EXfsFjI/vvvj0MOOcRXRggM2k2zmoVVKgynUyRyZ84xCcCNHQoETmRcxNkLwwoL62WxEQG+HjAoX+VjeF3AYDcGDHw7thLGClb+rrxPrajg9fB6Q6EQDjzwwCVds70785rXvAZ33HGH80aFQiEUi0WMjY2hUCi4P4lEAtPT087zQs8Vjdjc7cdiMdRqNZTLZdeuutlsuo6yoVAI09PTmJqaQrVadSdftttt1Go1t7myZX8UsqyQWb16NcbGxjAyMgLA382Q17Hnnnu6OdKOT742Gx0xosXoq91Y2jG91Bi6GCB2B27rNek2tZUC1tlpoQqlGYSLOydc21mKky4XU06YDH1Sfdpafg4u7tZtk5d0Ou12NrxWDhLuzvn+1jXLCZyLuO2lAPg7D3Jx53tw98bfk/llLgjWX8HdYqfTwYUXXogXv/jFO+/LFP8rJ5xwAtatW+dzNzMVwLAmMNi1R6NRd3QqxyDHF42jfC69JlyMKZoB+EK1C0O6rVbLHdRlow98T6blFkbgrICp1+s+cWMrg1hJQAHCccnnM/fL38+a0cTiguOuVqv5zmnh3GN38bFYzB09bMP49Auwg589q4DzL7//XC7nDuVif5ZIJOKqszjObEqNvip6qDi3MnIwNzfnqlxYrs6mQ7y2aHS+zbtdR9hMi9dWLpcRjUZ9h8udeuqp+NCHPjTMr+g5MVQxEIlEXPkgcy2cMKgkOdHQLLKwVr/T6aBSqbgByskNgG/xtjWonBy50NrwPnNHHEBjY2OuDtyWYhWLRRQKBZ+z1N4YNAlSefLsd+ZNAbhqAiraUqnky7laYWFTAsTWjtOJzVJJO2Btvnj58uXbNZ8RuxYaRaPRqBszNlrFTmv8fy6YCyNdXNg5NjkxMqxJPwu/expuOYZoYGy32+5I75GREZdG4v1J8cDxbMUo87tMabFqgLlee09T6FqTI8OwvF84mdsoh1hccDyl02lnbrYLPTBoE5/NZl1alZs1fsfdbhejo6PI5XLOR8VFlfB5dP7bDZiNMPA0WW7i+FxeL59n+3lwbaDYsG2NaYxlWSR9ChSqNorF96Bwz2Qy7jTQpcRQV4VXvepVuOaaa5BIJJw6y2QyThhwEeXut1KpYPny5UgkEtuFa6hGudNiLpZ1zraOlZPuwmYttgba7n64w8/lcs4wZUtc0um0mwwZ2mX3LJZcAcD09DTy+Tzq9bp7L1YjsOqB72cHGyfyTCbj/o3hLO7GRkdHfdGKfr/vO2WLXoLp6WkA0EQ7RLiQAnDHAtMMartJckfS7Xa3m1xsmS13LNZnQlFALwCrCpYtW+YmZTrAWepaLpexbNkyX76/Xq+7E9rS6bQb46x6oPBduIOyvQoo7q2AsL4VCmZ7vkIqlXIhXbF4OOqoo3DyySe7NCUjklagMrrKMUkW1vMzgsVxz+gU51AKYI4lW/LaaDTcYk8hy40aQ/v5fN4d/tZqtTA6OupMf9zYcT6n6LApLv5eFKeMUNuSX87jdg4H/OXtS4WhRgb4AdPUkU6nXac1/mEkoFQqubAOexDYY4OpSLmAA3D1+eyiVigU3CCm+Y/uZtsohT+j0s1ms0in0y4MRPMIBxknVpoWeY0zMzOu9wF37rVazZeP7ff7qFQqiMfjmJycdGYXCplkMol0Ou3UMxd8m9vlpG3rx/l7FAoF93wuCqOjo/jyl7+Md77znUP41gV3xZwMC4UCqtWq86pwAup2u25nwmZY3B1x92R7XFD02YmawpIhVf7Xjn96EpYtW+bysLOzs5iZmfH5Z6xI5ti1488adBmlaLfbKJVKbrK24Vz6Hmz7bmsIPuyww/CNb3xjaN+T2J4DDjgAhx12mBunHB9PNS6sqOR4oHigiLXpXpsuBeDmMI6/hSWH1jtF4cn3tdiNlT1rgxEr3hM0PXKXb8/foEHbVvxYU7ktPVyqDFUMcBBxQHAnw39nCoH5n3A47PpWU4Vy4rDPsx39+HhgfhdG4wkfy/D77OysExjW3MdOf9y9cXcODBZzihK7Ww+Hw8jn864DHI+QtekEG7JiQ5dyuYyxsTFXzkLBxM+H5YM0CzJ1YsNXtmENfz9eE0/zArDdTSN2Ph/72Mewbt06t2Bms1l4noeVK1e6nT3HNycsG7q3OX9b1WIdzjZva02mHBt0ZHPnw0gVhWs0Ot/CO5/P+1JnANxx28DgvHgAPi8NxTnHaj6fdyHjVCrlS3EwemUrDzie2bdALB6sIdl6T4gtCWera85jdmyy9M8a9BbOR6FQyNfojZsuego49zabTTc/c85j5IwRBEbGOPdx7PJe4+/GOd1WdvE+5NimqMjlci5iwfuK778U59ahXfFxxx2Hc845x33obOlo1RVz/lSfTANYcx8doZxc+F9OqjbXycXQNk9hHbRd4Kl4OYna17IqFxgcxsE8LcNe/H2sEQsYmML4mnx9droC4NQz0wgc7FzwKXQYAbHmS06i9jU4YOkj4PsvVdfrUmblypUoFArue+LCSsHKCQUYGEB5dDYXTDqyGbbkDgWArw1rLBZzpYmMFHBccswy+sSxy/uM47LT6aBWq7nFnakCe4+Gw/PtsHkvWBMrw7Ac41wA+Fy+DneEoVBou7yxWBxks1kUi0W3mWm321i2bJkzSFsDNBusAXD/b0P0oVDIpZn4PHsaK/0mrDQolUou5cqdOHfrNNdyI2YjaL1ezzW6mpiYwPT0tGsXT/HK6+Tx9sBg7en3+67Cgf0yKCq46Wq326hUKu5+Y7p7qfXKGJoY2GefffDyl7/ctzsn1gRiQ0k2NEq4QHNXY8v5rGGJk1w6nXaTrH1t7tBsntOWVHEypVBgDh4YnC1vTVHEhpNo2LKuWU7M8XjchWGpnvk78N/4mXDBsBOyTREAg3CZNfX0ej1XE2snYrHr4KJnxxpz9wzzc6Lj2GT5nq1I4aTI53NnYs/psJ4aK5Q52XJsAoMjXfkatkc8/51jktUHDPXyfrBtYImNtNk8Me8BVlTY3aVNHyycG8TwuOyyy3Daaae5I4uj0Siq1aozTXNBZxSLlSkUsWyhbX1PFK82jcD0Fh+fTCaxatUq14SIqSxGWnkt1q/C6pZut+vMgitWrHBdPjnmaGisVCoolUqoVqu+Mm62IeZmjHM5Kw94D9szDzqdDl7+8pfjS1/60tC+q+fC0MSAzf/YxdxOEpzQmCPnbphuVIZIOQDswscJiAuk3Ulb5ycwMLNY04otb+TAXVhTynAUH8NogjVC2Ynd7roYuuJkx7O/AThVa8tmGH7jAsH3oqCxYS1egzWTLYycPPDAA9iyZctO/Y7F9lgRxonSVhJYzwAfaydJ/nsoFHInFvJxNvLDMce0kK1YsCFe3nsUnBzfiUTC18uDUSZ6Zrj74zUDA7FiF3FrwAIGkTG7GNjzCvgZ8X5biuHW3RXmzLkLt50oGZYH4MaOrZriLp5G1GXLlvn6ZzBdaqO8xWIRc3NzrgkQAHduDdOu1WrVl06lIKjX68jlchgZGXFzJxd+G8WlL43dEBnxAODb6bOajZHacDiM5cuXY3R01InrVquFVCrlusZybVgqDO1O46RH0wb9AtxBcJKzTXxoFOGuiOH9Vqvl+rJzd8IF1E5kzCFxkeQXDMznQjlYOUnZQUx1yIFC4cAJ07ZjpQixOXx2GeSOyk7KPCyG4X/u9GzzIXa1Yt7M5uX6/b4LcVnvAkNZ3Fmy9BAAPv3pT+M73/nOrv7aA4/t5W/z8aFQyBldrTmUvgKKZP7M9mC3UQIu1BSnNr3FqAPvEYZq+RymLXh9Nv1gxScXfbtrD4fDqFarAAZOat533MHZvgZ8T4pZllDaZkkqL1xcMKpj5yjW8jOETzHI+c2eH8Pulhwf7GvBed8KWS66MzMzLvqQTCYxPj6OZcuWOfFqzbA25Tw2NuZLQQGDCBsAnzDhYzif00zOsm/O+TZSkUgkUC6XEYlEXP8DXhPXD25wlwpDKy3kwspdLMMxnBSZe2fDCjZXWblyJWZmZlx5SbVadWEgYHDGAE1QwHy4qlgsolQq+cwsnDQZqs9kMu5kOH6puVzOiYFyuYx8Pr/d78HrBuCEAZUic6C5XA6lUsmdr02oaDlwF95MducfjUYxNjbmSicpagA4Yw1FC8WBfQyVrY16iF0LBSgXVX4/+XzeJ5C5yxkZGXGmvYXNhmxpbLlcdrvwhdUqo6OjqNVq7gwP2/KVZbAMiXKxpqjN5/M+YbmwhwWvfeGunjs+TpS2X7wVr8znclGhKLafl1gccC7ioj86OgrP83zHUNtoL+c1GlFZospIFsvGuWmyBjxGkOzhcOzVwp0/e9FMTExgbGzMrSWcjykgOO4AuGisNSFWq1WsWLHC7fgXmm6XLVvm0hIUDTSC836018d5e6kdCje0yABvfoaKKpWKW4hzuZz7oKvVqiszLJVKmJiY8BnvcrmcMznZo1RtGJM11Dy5jTtkttPkF0ujnU1JsFsVm/lQLQLzEyFNWVS4XIBtr+1UKoVt27ahWCw6cxR3+Lb8i6WH/X7ftfRk5IE7rG3btmFyctIJJl4vF3h6ETigF+bUbO5O7HpsORPTU8lkErOzs75T3zjx0E/CXur2Z4STKpukMAJVqVTcWONi3O/3XZc1hkRZlWIn23g8jpGRETQaDSxbtszdk1Zsp9NpzM3NH9DF0llgcNJcr9fDzMyMEw7RaNQdrw3A3XfAfDUPhZKtnJDJdXGwfv167Lfffm5u5NzKzYc1TDNsTmMh5zcKWooKRm857phqKJfLqFarvggwF38KBltFZUu2GVWwGywu6takaivWADh/AcU5X59mWPsca+SNxWLOwAgMvGYUx0uJoYmBf/3Xf8Xb3vY2tyAyLB8Oh1Gv133mDO7SCQdDKpVyJ1lls1lUq1XEYjFfVzSGPNkYiPlRmqD4JdOBn0gkkMvlfH23rbMUgFuY+R78GWvC7UTNgcFSwVAo5ASF9TGwTSb7X/MELe7KuDBwIbDmQdsAyUY2+HzPm29aNDExgU6ng9e//vX4z//8z13yPQs/DCHSDBUOz58madMA3IWzQQ9TYNls1uelAeAWT+5oKFrZoIXRIusTYFSAwrvb7brJNJlMurFKIcLJmT+3J35ysrZlZky5scUwHdu2FwLvX06mXBR4P7Xbbdx22206rGiRcMIJJ2DlypVuYbdi1ZrnbPUU01LAoAsqIwCcM21FGACfkAAGO3lWktlqLv6/NaDaFBPTWryPeC3c3dvW9daky42U9Zrx9+U9y0Wf3giuI3buz+Vy+Mu//Mtd8wXtAIYmBmjiSKVSGB0ddUYligPmZTgQuAPnhMMGQAztAPPpAO6AaDLkQt/r9ZDP592uxzZTmZmZ8eWTaODjQSwcsOl0Go1Gw02e3JGx7IQhKrbnZE6N3oZ2u+1CZcTmae0iYY2SNMvwRmEqgp9NPD5/clitVgMAp2aZKmE5pu3BvRSV6+6AHVvMi7LHO79f+93Mzs4CgGsqxZ2/3V3bigBOsHay5GM56XJ3wzHJ7pWMDtC3YMU0BQr7ETAXzHRAo9HA7OzsdmKXBmBrxOIYZCtb7s5o6AIGFRbsbyCGi90MRaODbqzsjmnnNHpRrDfFNnpjOJ/3ADDwxwDzAoBthumnYlTTpsh4LVy8uWni2OZ/6XXgAk7hys0gH0efACNTjF5QyDxVCo4inr+39SmMjo7iggsu2AXfzo5h6B0IGcbkB8rJimEY/qEaZYSAf+fPGB2wi6it2+f7cXICBt0KOUgzmYxTmBz81izFnc1Clz4nXy76Vh0yFEvFybAZhQMwGNAM4XO3Zx3kHHRUqBRFnMTZ3IWPtUqdnxcAfPCDH8TMzMxO/V7F08MFn5MQDVAsDbRVKMAgFcUJjGkFWy7KMcPnc0wuLK3lWLINfng/MOTP3RQFtK1kAeAbk8Cgj4AtieTrUxjbygjuDu3uLRKJuJShvT+Xmht7d4YOf1tVxU0QXfqcL6PRqEsbjYyMuNQSv1tu4BhhYjTXlnCzhJBjhWOLwmB8fNzNg6w6sCkvzpOcS2dnZ120lengRCLhfGUc6wv7fHCet9U+dmNqowv8va3PYSkZYIcqBh5//HHccMMNbnKkcuOXzEnMNjkBBmelUxywqVAqlfKFz6kCrdO03++7w1r4njQz2TAq3xeAC0Vx0bdOarug2y6ItpacaQUaA61Y4GRIlc28GlWpLU20N6Ld8TFyQUHC382q7V6vh3/913/FTTfdpN3WEOF3b8sLuZhaAWjFANNDFIS2NM/W/1uzqK0i4C5o4bji9dC0Z4UtseWvVlTYQ11sFM6GUm0PEd6DtqzXtoblDtKO9aVmwNqdYW0+MNgo1et13y6aJmdumNjW2ppL+f9MB3MzyOZBFILc7FWrVfR6PdfAx3bXZASWJx8CcGk1zr+sKqB/i2Ou0+lg69atePzxx936wbQAr7vRaDiBait2GNViBJeR21gshmKx6LuXlpIBdqhi4NFHH8U///M/+9zzdDHbkA53PMxH2RwoAJcysI1KuEOyky8Vns1JccIE5kOx/H/r6qdngaEthuh5DbwJgMFNwd/BTtA0pNg+CdZBy46IDNXaRd2KJBsmszcYFbftoQ3Mh6b/8z//ExdeeKGMg0Nm8+bNePLJJ93YoJ/DCkm7cwbmJx9bVsgdPwAnIjheuJu2qTWOLTumFpqpgEEpIBdsK0Zt9YEtAeMO6KlELlNkCz0/VmyHw2FfWS4/Ays2xPDh3GnHYCQyf3gcj/G1x2/z5M1QKITZ2Vk8+eSTvl00v3s79uyO3s71PLeD4w6A6z/A1G+z2XQbNlapRSIRTE9PY3Jy0t0PTDXw70xbUdhwDeIYZKWbFQT2XA82N+I10Bhsf6elwtA7evT7fXd0L0OmVIpcSG0+lRMhT0vjrr3ZbLrywIU9BJg/tws3JzjrtuekZh35DGGxuQXDPgzV2rIXAL5cGBdkRiM40KvVqk9IMOfGUhieIseBaXeCfBw/A4ogXqttHcv3feCBB3DyyScP5wsWPi6++GJ89atfBTC/+ykUCq4KplKpuNw8w/vWvWwbtDDvyp2JTQMsdDxHo1Hk83mXD2Uok/cSx2mxWHRmLN6P9MYwLMoKBfp2KNoBoFAouN/TphtoZrUljXw+F4hSqeRL77G1rFgccAOUTqddCSFr6RuNBnK5HFasWIFkMukqv1qtFrZt2+bGs40AsRyR44Dl0CzL5msWi0U3jzH6aSOe9XodrVYL4+Pj7t8pNDh2WXHQbrddLwyacYvFohMUvD7OnzRGcrxSaPBnjKLRsD43N4d8Po98Pu+LBC8Vhh7D2Lp1Kw455BBs2rTJ1X1SZdroAJUoywLr9TrK5TLq9TqWL1/u8q8cAFRlnBCr1aoz2tl0gPUteJ7nehYw+kD3NwDnnOXjWSVQKBTcRM1F2+ZVqTinpqZ8YTQq3Uql4oyAVNbWtWsbB/FwDA56mi3ZcYufF6sS7rjjDpxzzjnD+XLFU0Lhxomw2+26ECxD+iyb7Xa7SCaTmJycdAZWfr+ZTMaNd9ZLLzRUcVfueR7K5bLrLW/HNytQWK7KiYz/ZnsFcCfPezMcDrt7imOUaSumNzKZjKviyWazrvFXNpt15yIwxcfxe9lll+Gf//mfh/k1CQMFIs3OnHdoOuXYoRC1jYa4wNq0KUP/7BFgw/98LHu18H0oKLmpokeA6VVu1GwPm1AohFwuh36/j2Kx6MQEyyGbzaY7I4FCnL4cbvT6/b7radBut12JOQ3ArVYLhULBmcN5XwHwRcsWO0MXA8DAOczJhSYPTkqVSsU1BLJdCtmZrdVqYWxsDE888YSbaIFBf34KDIZI2cDI7py4G2F7SlsrOjU1hb322gsA3ERGVcvBypwWBzEXcxsKYySBEQvbY5tRB0YlGKJi1ILNXigwuFPjZ0HzI3daMzMzuOyyy3D55Zfv0u9SPDOXX345Nm3ahA0bNqBSqSCfz6NSqbhwOccdywvb7bbbbdjdM3dKjB5ZsxXz+rw/ALiqAdZwc4x2u12MjIw4Ac4Fmr0zrBObR2kzv2tLBZmO4H3HyBcXhpmZGd94b7VarhyYPTro6qYAF4sDLm5Mb3HxbjabSKfTbiPE+YiiNBQKudJRjiNrxgPgIlvcXdvU7czMjBO2LOVjp1WKBkaO7WaMJ92yyqtcLjvfAwVEs9n0hfH5/lwTeD/YEkU2xiqVSr4IHjCY+201myIDfyDdbhdHHHEEbr/9djfZ2Lx8LpdDrVZDLpdzkwRTCVR4s7OzqFarrqSFOf5areZ2I5lMxoWkOKioAK2JixOyNTLxS+ZEaMNR3K0xNM/XpY+g0Wi4LoQUEVSfnPisl4ADjOrblsBwADPMxrxXs9nEwQcf7CvxsQ1exOLB8zx8//vfx2mnnYbrrrvOGZgqlYoTppxIGV5lcx5gcJCPLZ3iRNTpdNwJakwncXfGydqGZ/k6jUYD6XTalcRyQrNd2RgWtofS9Ho9d92jo6NObAPwhVvr9bq7D3nN7EVfr9cxNTWF8fFxpNNpvPvd78bNN988rK9HPAW2EoRdA4H53D1D5sDAELvQRM1FmvMRS6XtcxcaTPk6nIu5OeLf0+m02/xwI7WwAo0RYhoeGell9Ipz78IqLStq7R+mbulH43rBe82WTfLalwqLQgwA87vvM888E5/5zGewatUq9+VzcqHq42LOUAx3TgBc7sfWWfPLsrXPwLzC5SLN52QyGXe2O3dZTCdw98O2r7am1JZE2RIvXj/DZQxZ0SNBuDvj8zi4+/0+fvnLX+KSSy7x5co4yKwBrN/vY2JiYtd/ceI50el0sGnTJpx11lm45ppr0Gg0XKTLmv+4SANw/dC5Q+GOCRgcY81IFQBXskvhy+gbd/kcazQGUuRS6PJ92a+CuzSmIYD5sbtlyxasXr3aZ6IFBs1dKH65mDCCwPencbBSqeA973kP7rrrLlW8LDLsIs+dNQA3F/Fn1vwNDFJitq+LfQ0KRZsiZcqXoX2OO27IbBUNUxZ8Leve5zXQi8DeGBy7XE9sSo7vy9QZRYLtFUMhwPvQnl1DocRIxVLajC0aMQAA999/v+8gE+6QqD6BQc9rYFAWxcWeXwbNHsx/MipA9caBa13QHIzW9QwMmrrY5hi21JEK1IoMK0Y4SVvzCV+DOzneKJ1OB5dffrmvNnzr1q346U9/uqu+ArELabVa+MlPfoKLL74YZ599tq+0luPDCk97tKp9HMeYDc3bccndCicsG/JktIu7GuZR7cRsjav2fWxIloKWkyAwCJsCcBOqLfG1oeRkMomPf/zj+O53v+tMXmJxYVNRzLFb8zV/xrFKLxc7oTLty/nQVgzw+QB8Yw0Y9JuwEScArokbDzyyEWGmcJn+4jinv4BRhGaziRUrViCRSKBSqbjNFv1nxWLRN9Y5fpm65esxokCDL8X6UhrLi0oMAMCdd96Jo446CitWrPCFlTjg+P+2zp47Zk5y1m1qy1EAuImIXxrDRAxLWWOhfZyNRnAC4/twIPBxNAPamwOAixzwdR599FHcd999bifXarVw/fXXu4lY7P70ej188YtfxL777osTTzzRRQfsrtrutrjz4KLPx1E0LOwJwJwlx5Qdj3wOxy0jCAtLGwE4g6y91+y4Z3QBgE8s8Pr4urw+21/A8zzcfPPNLmUiFieMCFG80XvF75kN3EZGRtymLZ1OI5fL+SqxbOg/kUg4szMP6wLgKg449hnip3Of3TgzmYwzNtqIlL1Put0uli1bhqmpKfe7hELzHQJZxj09PQ0AvnMxer0eRkZGUCqV0G63kcvlfD1pOPaZbigWiy4Vxgo2bmKXAotODFxyySVotVr4sz/7M6xevdq3S6Lqs8eu0qlvzxwA4AYDncrAwLBia/tpTGSJYqlUcqYSq04XqkKqZMLJlAOEAoTpDj4+Eolg8+bNmJubw6233orPf/7zu+yzFYuXiy66CCtWrMBee+2FVatWYXx8HAB8IUh6BzgmKRDsQswxaStObKgeGITvbW0177OnOm6WVQI2ykUajYbrKkePixXE1uxlyx95/83NzeGhhx7C3/3d3+2yz1r84VDwsdQbgAvjs+rE5tzn5uaQyWQAwNekjc/j2KSPilUq1tzH94vH46jVak48AnDRBt4PyWTSmXDtnN3r9TA5OYmRkRF33k0+n0cqlXLl4rFYDGNjY5iamnKimVG4ZrOJarWKer2OZcuW+ToP8g+FC4UJoxw0wi8VFp0YAIANGzagVCrh3HPPRSKRcCUlC8v9bGtLHlTUarXc7sqGIm2YlJMhw/QUFhQc3K1YJygbT/D8A5ZO8d9tO0rbVIMTHlV0vV7H+9//fmzatGmIn7BYjLzzne8EAJx77rl4+9vf7iZGjk9WozA6xahBJpPB7Oysm3Q52drSVCtOWYJaKpVcZAAYnJsADCZS+mrYWpaihOPa1n7TgW2jcTavag2w3Dn+9re/xYknnjiET1v8IXDc0ZfS6XRQLBbxxBNPOJFKX1YoFEImk3FHzMdiMfe921MCadiemJjwdTIMh8PuHBXOyStXrnTNjTiuOa8yOhuLxdxx2hQPNtKwevVqd8/w92EPgmq16u43il2mOGhCTyQSrh8GxzoNkGyOlM1m3f3A110qLEoxAABXX301Hn30UVx11VXodruuyoCKy052tilKPp8HAF/efWJiwkUA0um0L/dqFSnD+Jx8uch3Oh089thjTgUDcLl/Coxisehab9q8LgCnXvfaa68lZSgRw2HDhg3YsGEDgPnmKA899JDznNAgSJHLapOxsTFMTk66A6nYV4DlWOl0GpVKBaFQCDMzMy7kyvHYaDRcNQAwiDqwuRZ7aXACZWqNz+HkWCqVXO6WkzTvVWBw5gIAfP/733cCSCxurNeDLnrOb3aR526Y/8ZGPyx95q6Zm7rp6WlX1u15nquuorEwEolgZmbGNc3ic1mNRfEQj8edAZYnazKdbL0q3Kwx2sDOhRyvAJzHplwuu3NfKGj43myVzMcDcClnrjtbtmzB+vXrh/BtPTcWrRgAgLvuugsnnHACvvWtb2FqagrLly8HABeK5M49HA6jXC47gx7ro5nP4WI8OjqKcrnsJkJWFGSzWbfzojiwKQd7jKatIKAYiMfjqFQqrjSLYVcaZv7nf/4HxxxzjISA+IOp1WpYs2aN+/u1116LV7ziFa7bJo8WnpmZcQ58W1ZFYWAXY47TmZkZV65rKwcYJWOvgdHRUTSbTSfKWao1NzfnJnuasGjY5aLBSZ+7wFNOOQW//vWvAcCXbhCLG0ZROZa40HPRp1BgmonjgH0Acrkc6vW6S2dx7OZyORea5ymwjLJGIhGXyqKotEcNA3DRAy7wtmqBlWe24RH9LCyNZUSN60S5XHaRNHteCDsaUviyeRw7dTItzfHOKMPDDz88hG/rubGoxUC/38eWLVvwhje8Ad/5znfQ7/eRz+edQcOqPapAKjMOBKpH5ryYx+JCn8/nXXdCPp/GE+ZAubjzS+dgYoqBRkROmByUN954IzZs2OB2UkI8F+zYWb9+vc+0lU6nceedd/rSANZMSLMTd0gsmQLgXOE0PXHHw0nfGqDYfIiClqkIuqYPPfRQAPAJZmJDtU888YRMgkuQG2+8EW9+85ux5557+sLp1kTNPxwnjB6xzwUd/vx3RowoXhdWbLFEj9FabtBY/cU5utFoOP8XMDgEzFaa8bV4T3CxZ4WBbYhEfw0XdZt+AwZRZ6ae+TszKsz1Yyn5BYBFLgaA+Q9+8+bNOPvss/GJT3zCd9QxALdIW1e17V7GL8TW49vJigOQuxymG5iPYmg2m826QWTLAplqYC6K4uHqq6/GDTfcgC1btuyqj0oEgG3btvn+Ho1GccYZZwAYmJ7OPPNMHHfccWi1Wi6FZo+Z5X1izzig65p/uIsqFAqYm5vDzMwMzjvvPNfN0FYkNJtNPProo7v0cxC7li9+8Ys45JBDsN9++7mNEBdQtuhluN6WsHK+5tzIMcndtvWo8PUWLqZ8j0wm4zNye978aYS29wsXZVthYz1jVigz0sU23Uzz2qoXmyrjvF+v1513gtdu+754noepqSncd999Q/imnjuLXgwA84PhzjvvxGc/+1m8613vQrFY9DmbqSwZqrG7ISo4G9ZfWD5oDSjcxdhaboaF+DjA79bma0SjUVx77bWo1WrYuHGjTIJip9Pr9XD77bf7/i0Wi+GBBx5wabNEIoGzzz7bGb1IJpNx6QC7C+r3+7jvvvtw1113uZRcrVbDrbfeqghXgLELLiNF9Xrd1dvbn1NQZrNZd2gRPSq2K6bdYfP/Gb3iRssKT+7QbYUNAFeeSAMf/QZcqBnBZXTChvRbrRZyuZzrYAvMp4FZRkgTO6MGto8Nr4mRZq4z//3f/42PfOQjw/miniNLQgyQf/mXf8HatWtx7LHHYtmyZb48kG2MYv8AcCEtDhwOVoaZ2C/d1k1TMNjGQYSpCWuGAYC7774bV1xxBWq12q7/cIT4PXfccQfuuOMO9/dQKIT99tvPtxvjLo4tvZkDpZ/glltuwXXXXTfE30IsNjjvAXCVU+xUOTU1hZGREde7v1Kp+BpRAQNzId3+o6OjmJ6eRjabdWcHLAznM68fCoVchIvilYdbjY+Pu9el38VW36xYsQLbtm3zhfKJbVJEDwCNjLwum/awB8k1m03nyWEqgn6zhc3rlgJLSgwAwHnnnYd//Md/xIknnuhqVOlQZvjJhpm4a2euyTZJAeBKr2yrV+6ebA03v3C6pvkafP2JiQmcc845MgmKRYfneVi3bt2wL0MscWyfC7u56na7WLFihTt6mPNmo9HA8573PNcmndFVuvOB+WOzAWBsbMx5sLjgh0IhzM7Ouh0652/bgdbOt0wncJfe7/cxOjqK2dlZAHBljuynwd4B2WzWdVS0aeLZ2VlXzUCjIzsp2gXfHjQHwJfiWEqEn/khi4/zzz8f1157rTuUiIoyk8n4Gk7w5/l83teoiCqQOyPbH2B8fBzNZhOVSsWFk2g2CYfnDyWiMmVZ4+bNm/Ga17xGQkAIsdvy3ve+F1/4whdceoCHBtloKgCXbspms5iennamb577wlA+BUOtVkO9XneLOGv22dGQIX2mDZLJpHuNUCiEarXq6/USj8edybbRaGDbtm3u6OVUKuUqYrihs+cqsIERq2zm5uZQKBScB4KHy1kPmvVHNBoNfOITn8B73/veIX5Tz40lFxkgGzZswKZNm3DNNde4shB+KcDA7QwMymIoCNg1iuUoNMQkk0kXkuIpbwwt2bPk7RHHmzZt0q5LCLHb02q1nAhg6V+tVnPeKlsZwMWeXir+lwKCZ8kAwMjIiG+Xz0XWmgtzuZwTA/Y4evYbAOBLA9AfwC6F9XodqVTKVQawkoAbwm63684hoHeh1+u5lsfcDKZSKXf4Ha+N/WdKpZLzINBcuJRYkpEBcscdd2Dt2rU4+OCDnRmFeXwOJnZcsy2JGY6yHQ2j0Sjy+Tyy2axrWkEzied5TiTYVsS33HILzjnnnGF+BEIIsctgCJyGQWBwHDEXf5pS6Q1gMx67gDJXz1A7I7Ps6QIMzgkoFApOCHDx5yFbXLQpJOghi8Vi7oRBXiO7xXJd4FzOTSKvi78DI8n8vfkeFAtMZbTbbWd6vPrqq31+naXEkhYDvV4P1WoVk5OTOProo12PAfbJTiaT6Ha7zgsQCoWQzWYxPj7uwk9UrQDcAGezFTazYFjInjFw5ZVX4tOf/rRrgiGEELs79957L26//XbfGRU2XE6z9sJ8PqMF9HNxB82FmRFbAC6Fa1ta24oDYOAP4ALORdzm8vlYpoVpEreHfDGawGu0lQqMTFCU0BtgzeT28K5vfOMb+Na3vrWkGg1ZlrQYIJ7n4cEHH8T73/9+ZxaxSo6dsmg05CCz5YU8HIMDmarRhp3Y/OKyyy7DN7/5TTz55JPD+YWFEGII/OhHP8LNN9/sa8rDxZFiABiU2LF3P2v1be2/7RdgXf3A4DAtKyoYfeCunCXf9mA4zvG2IqHdbvsOiuMfe922AZKtRmNfmbm5OZ+YYJqZa0M0GsXVV1+NRx55ZJd+HzuS3UIMkJtuuskdUMFwEA+VAAYnCNZqNadI7XnwAHxq1lYkcPB+9atfxQ033KAmK0KIQNJut53Dnvl3YLBLtt1arTGPDeF4DHGhUHCt4Hkeged5qFarKJfLbt7lOQNMAQDz6QCeREijN9+LZkGmFRjCZ+UYr42G8Hw+79YKKxooYGhQ5JrClAfXj2azia1bt/oOtluK7FZiAADuv/9+VCoV30KeTCbdl83SFho8OEipdO3RxFSAANwpa5deeikef/zxof1+QggxTO6++26cfvrpblfMcsJGo+GOtGbOnX0sKBKi0agTD+x50e/3Ua/XUavVfKnbSqWCfD6PWq3mUrh8figUQqlUQqVS8XXStI3h2ANhfHwc2WwWwMAEWavV3EFebGJXLpedoOGZM7YqjdEA286YwuH4449f8uvCbicG3ve+9+G+++5zoScOnEajgWKx6DsIg8KAef96vQ5gvjMbz7y2+SXboXAxUywWMTY2hrGxMXcTCCHEjoQpAEYC0uk0CoWC23xxoaTBkJ4uAK4nAQUAU7YUDtls1r1+uVxGq9XydYUtFovYa6+90O12kc1mnf+ABkOWMLbbbSQSCVSrVSdUKDhyuRxyuRxmZ2fR6XScL4FiYGJiwlVJsBrBXgPPQ6C4Weos2dLCZ4Iqkp4AGgbr9bpLHfDn7DpFFWrDWsB8hKBWqyGXyw35t3p23Hjjjdh3333R6XRw22234T3vec+wL0kIsRvxyCOPYM2aNfjpT3/q6zBYqVRQKBSwevVqzMzMAIDr6EdxwP7+XGDp8md/gHa77UzgPGyu1Wq5cw/oB2B015aRs/SQO3qmhW0zIW4UuUZkMhkUCgV3iFYsFnOPZ0SYB3LZw+zC4TBarRYOOuigJVlKuJBnLQZ2l4Y6K1eu/D89f3Jycgddya5hv/32W1Jnau8MdpexK8RigVVbPEKbBmtGUrlAM8fOA9xYAZDJZNyR23wcxQKb93B3z4Pi7AFaAFzLYUYYMpmM6zQLwJ0nMDU1hec973mYnZ1FMpl0i3o+n3eLPdMavAaaH+lhoHcgkUggn8+j3+/jN7/5Dd797nfvNhVlu12aQAghxM6n3W5j/fr1rhqLi3Sn03G76VQqhVqt5o53Z+0+I7O9Xg+pVMotypVKxZ3twjQBxbytGgAGJ85mMhmXw7cmP4qE0dFRl+JlgyE+nxECphis34CVBWxox1b3rVYL999/Pz7ykY/sVkZyiQEhhBB/MP1+Hxs3bvRFAuivYkielVx04HORZTM4W+cPDAx+fDzPCGCDOGsQpHs/FoshnU478cAFn6WK+Xze11eA5YE8A4E/Yz8Z9kqwPWgAOHHQ7/cxOTmJH//4x7vw0975SAwIIYR4zmzcuNEtqtyhc7dt/86qLe6wuZNfWNkFDFIHNH+3Wi3XB4ZwwWYZIBdv25yI7ebZ7ZD9ZthFkJUKVmzYzrS8Lnt9jz32GH75y1/uyo94lyAxIIQQ4jnznve8Bz//+c+dH4A7b3tOAWv2uTNnaSBD+uwjQJc/qxIikYivvNAeVUxBQWMhqxVYMQYA2WwWjUbDPZYRDP6cJZHVatUnaAC4KIQVLzMzM/jqV7+KK664Ymif985CYkAIIcT/ibe//e249957XWg/FAq5cH82m0UikXDuexr76Nq3TYYoJJjXr1QqaLfbrlGRbWTExb9SqQCA2/2zL0A6nXYCY3Z21qUNbOQgnU6j1WohlUph5cqVruqM6QDP87B161Ykk0lUKhV8+MMfxnXXXTe0z3lnIjEghBDi/8z69etx9dVXAxiUEyaTSTSbTV/TN8DfNjidTmN0dBS5XM71LGDJYSaTcZGDTqeDWq3mOg6yPJFdZ4F5z0GlUkG5XEan00Gz2UQ0GkWhUEAmk3ECodFouH9jNQS9Bow80N/AfgYnn3wyNm7cOJwPdxew2/YZEEIIsWvhAko3P9sJs9cLMG8mLJVKzsDHkkSedMh0Qq/Xc019KAjYtZDGQBr/eCx9Mpl0jYFsp0N6BJh2oKeh3W5jbm4O5XLZpRyYgmAkIRwO4+ijj0apVBriJ7vzkRgQQgixQ7juuutQr9dx0UUXIZ1OOwFgDXrc+edyObfAWje/rTCYmppCsVhEJBJxPQboOeDxwVzsF7YkZmUBj6+noZHVA+wjkEqlnC/AHkzEiohjjjkGpVJpt+9XIjEghBBih1CpVHDbbbdhbm4Of//3f490Oo1t27a5RZbnBdjD44BB50Au1Dwhls/h4XNsKpROp9Hv91Gr1dxR9XxNegL4OGtqtOWJbD/Pngg8R6Hb7cLzPExOTuJ973sffvvb3w7nw9zFSAwIIYTYYUxMTODWW29FOp1GNpvFunXrXAdCLvrAoFTP1v5TADDcz39nQyAeWMTzDpjr5+sBg/bEXPhpOGR0gWWDNspAQyIA3HvvvfjRj36EdruN73//+8P5EIeAxIAQQogdyuzsLK666ioAwJo1a3D88cf7jh+25X29Xs+F4HlODBdonozIhZthftvToNPpIBaL+VIRrAagJ4HHJDP9wLbD9joA4IEHHsCNN96Ib3/727vy41oUqJpACCHETuPd7343fvaznzkzXq/Xc4f9zM3NoV6v+37GkkT+PJPJuMoAigYu7qxaoCjgYs8dP488pjgIh8NIJBLuICIaCDdv3ownnngC//Iv/xJIIQAAIW93d0UIIcQSZSkcmf5sufLKK3HEEUe4XgHhcNj1CMhkMuh2u2i1WgiHw8jlcr7OhTwYiaF8LuiNRgPJZNL9OwBfe2GmJmq1GqLRKLrdLpLJpBMYnufhd7/7HY477jjnIdgdeTbLvMSAEEIsUnYnMUBOOukkbNiwAcC84dDzPOy1115up85FulAo+Jr/VCoVRKNRl0IoFAqYnJzEsmXLnJ9genoaoVAIIyMjmJubQ61Ww8jICJ588km3IPIAJXoL9t1332F+HLsEiQEhhFjC7I5igCbCbDaL22+/Hb1eD+Pj40gkEu5kw1AohEgkgmw2i2aziXQ6jXK5jHg87voYxONxlEolZLNZVznQarWcoTCVSqHdbmNkZASPPvoootEoEokEvvKVr+Cf/umf3PV0Op1hfRS7DIkBIYRYwuyOYoCEQiGsXLkSwLxA+OQnP4kDDzzQeQVGR0fR7XbR6XRQKBTQbDZd4yBGEQA4A2A6nXZ+Ay785XIZq1atwszMDN72trfh4YcfRq1WQ7lcHtrvPQwkBoQQYgmzO4uBhRxwwAEuNQDAGf+uvPJKjI+Po9FooNPpuPMHIpEIOp0OWq0WkskkLrroIjz00EPOKAjMGw2TySR6vR5+9rOf7da+gP8NiQEhhFjCBEkMPB1nnnkm0um07xAkHl3c7XbR6/UQjUbxzW9+ExMTE8O+3EWJxIAQQixhJAbEjuDZLPPqMyCEEEIEHIkBIYQQIuBIDAghhBABR2JACCGECDgSA0IIIUTAkRgQQgghAo7EgBBCCBFwJAaEEEKIgCMxIIQQQgQciQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLgSAwIIYQQASc67AsQQgjx1HieN+xLEAFBkQEhhBAi4EgMCCGEEAFHYkAIIYQIOBIDQgghRMCRGBBCCCECjsSAEEIIEXAkBoQQQoiAIzEghBBCBByJASGEECLg/H9ccHOmMgsuLAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_slice = shell_data[..., idx][slice_idx[0], :, :]\n", + "y_slice = shell_data[..., idx][:, slice_idx[1], :]\n", + "z_slice = shell_data[..., idx][:, :, slice_idx[2]]\n", + "slices = [x_slice, y_slice, z_slice]\n", + "\n", + "fig, axes = plt.subplots(1, len(slices))\n", + "for i, _slice in enumerate(slices):\n", + " axes[i].imshow(_slice.T, cmap=\"gray\", origin=\"lower\", aspect=\"equal\")\n", + " axes[i].set_axis_off()\n", + "\n", + "plt.suptitle(\"Data\")\n", + "plt.show()\n", + "\n", + "# Reshape the predicted data array to the image shape\n", + "brain_mask_idx = np.where(brain_mask)\n", + "_y_pred = np.zeros((shell_data.shape[:-1]), dtype=y_train.dtype)\n", + "_y_pred[brain_mask_idx] = y_pred.squeeze()\n", + "\n", + "x_slice = _y_pred[slice_idx[0], :, :]\n", + "y_slice = _y_pred[:, slice_idx[1], :]\n", + "z_slice = _y_pred[:, :, slice_idx[2]]\n", + "slices = [x_slice, y_slice, z_slice]\n", + "\n", + "fig, axes = plt.subplots(1, len(slices))\n", + "for i, _slice in enumerate(slices):\n", + " axes[i].imshow(_slice.T, cmap=\"gray\", origin=\"lower\", aspect=\"equal\")\n", + " axes[i].set_axis_off()\n", + "\n", + "plt.suptitle(\"GP prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "8e9c1fd2f4d2bfd8", + "metadata": {}, + "source": [ + "Compute the RMSE and plot it" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "fd54cb47f4e2fbf3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 20.108829839123334\n", + "Number of RMSE values above 10: 133201 (13.549906412760418%)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAG+CAYAAACj5h/IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuZUlEQVR4nOz9edxkZ1ng/3/us9e+PPvaT+/d6axkMxE0SNgX44CKZBh0EMbxi/4cEXG+X0HHja8Oo4CDoN8ZxRnBURQYBAxbgARIQva1k967n32rp/aqs96/P07osQ1oQrd5nk5f79fr/NFVp06dOlVdz1XXfd3XrbTWGiGEEEKITWRs9gkIIYQQQkhAIoQQQohNJwGJEEIIITadBCRCCCGE2HQSkAghhBBi00lAIoQQQohNJwGJEEIIITadBCRCCCGE2HQSkAghhBBi00lAIoQQQohNJwGJEFvIRz7yEZRSpzfLspiYmOAnf/InmZ+fP2PfG264AaUUu3fv/o7H+uIXv3j6OH/zN39zxn0PP/wwr3vd69i2bRue5zExMcGLX/xi/vAP//CM/WZmZs44n3+4vexlLzu3L14IcUGzNvsEhBBP9Ru/8Rts376dfr/PnXfeyUc+8hG+/vWv88gjj+B53un9PM/jyJEjfOtb3+Kaa6454xgf/ehH8TyPfr9/xu3f/OY3eeELX8j09DRvectbGB0dZXZ2ljvvvJP3v//9/NzP/dwZ+19++eW8/e1vf8o5jo+Pn8NXLIS40ElAIsQW9PKXv5yrrroKgJ/+6Z9mcHCQ3/3d3+XTn/40P/ZjP3Z6v507dxJFEX/5l395RkDS7/f55Cc/yStf+Ur+9m//9oxj//Zv/zalUom7776bcrl8xn0rKytPOZeJiQn+9b/+1+fw1QkhxFPJkI0Q54EXvOAFABw9evQp9/3ET/wEf/VXf0WSJKdv+7u/+zu63e4Zwcu3HT16lAMHDjwlGAEYHh4+dycthBDPgAQkQpwHTpw4AUClUnnKfW94wxtYXFzkq1/96unbPvaxj/GiF73oOwYY27Zt49577+WRRx55Ws8dhiFra2tP2Xq93vf0WoQQ4juRgESILajRaLC2tsbc3Bx/+7d/y3/6T/8J13V51ate9ZR9d+/ezVVXXcXHPvYxAOr1Op/73Od4wxve8B2P/Uu/9Et0u10uv/xyrr/+et75znfyhS98gTAMv+P+X/jCFxgaGnrK9v73v//cvWAhxAVPakiE2IJuvPHGM/49MzPDX/zFXzA5Ofkd93/DG97Ab/7mb/JHf/RH/M3f/A2mafIjP/Ij3HvvvU/Z98UvfjF33HEH73nPe/j85z/PHXfcwe/93u8xNDTEf/tv/43XvOY1Z+x/7bXX8lu/9VtPOc53m90jhBDfCwlIhNiCPvjBD7Jnzx4ajQZ/+qd/ym233Ybrut91/9e//vX80i/9En//93/PRz/6UV71qldRKBS+6/5XX301n/jEJwiCgAcffJBPfvKT/MEf/AGve93reOCBB7joootO7zs4OPiUAEkIIc41GbIRYgu65ppruPHGG3nta1/Lpz/9aS6++GLe8IY30G63v+P+Y2Nj3HDDDfyX//JfuO22277rcM0/5jgOV199Nb/zO7/Dhz70IcIw5OMf//i5fClCCPG0SEAixBZnmibvec97WFhY4L/+1//6Xfd7wxvewO23306xWOQVr3jFM36eb08zXlxc/J7PVQghvlcSkAhxHrjhhhu45ppreN/73veURmff9rrXvY5f+7Vf44/+6I9wHOe7HusrX/kKWuun3P65z30OgL17956bkxZCiGdAakiEOE+84x3v4Ed/9Ef5yEc+ws/8zM885f5SqcSv//qv/7PH+bmf+zm63S4/8iM/wr59+wiCgG9+85v81V/9FTMzM/zUT/3UGfvPz8/zF3/xF085Tj6f56abbvpeX44QQpxBAhIhzhP/6l/9K3bu3Ml73/te3vKWt3zPx3nve9/Lxz/+cT73uc/xJ3/yJwRBwPT0ND/7sz/Lr/7qrz6lYdoDDzzAG9/4xqccZ9u2bRKQCCHOGaW/U+5WCCGEEOJZJDUkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nQQkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nQQkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nQQkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nQQkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nQQkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nQQkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nQQkQgghhNh0EpAIIYQQYtNJQCKEEEKITScBiRBCCCE2nbXZJyCEEEII6Pf7BEFwTo7lOA6e552TYz1bJCARQgghNlm/32f7tjxLK/E5Od7o6CjHjx8/r4ISCUiEEEKITRYEAUsrMcfv3UaxcHbVFM1WwvYrTxIEgQQkQgghhHjmigXjrAOS85UEJEIIIcQWEeuEWJ/9Mc5HEpAIIYQQW0SCJuHsIpKzffxmuTDzQkIIIYTYUiRDIoQQQmwRCQlnO+By9kfYHBKQCCGEEFtErDWxPrshl7N9/GaRIRshhBBCbDrJkAghhBBbxIVc1CoBiRBCCLFFJGhiCUiEEEIIsZku5AyJ1JAIIYQQYtNJhkQIIYTYIi7kWTYSkAghhBBbRPLkdrbHOB/JkI0QQgghNp1kSIQQQogtIj4Hs2zO9vGbRQISIYQQYouINedgtd9zcy7PNhmyEUIIIcSmkwyJEEIIsUVcyEWtEpAIIYQQW0SCIkad9THORzJkI4QQQohNJwGJEEIIsUUk+txsz8Rtt93Gq1/9asbHx1FK8alPfeq77vszP/MzKKV43/ved8bttVqNm2++mWKxSLlc5s1vfjPtdvsZnYcEJEIIIcQWET85ZHO22zPR6XS47LLL+OAHP/hP7vfJT36SO++8k/Hx8afcd/PNN/Poo4/yxS9+kc985jPcdtttvPWtb31G5yE1JEIIIcQW8b0EFN/pGM/Ey1/+cl7+8pf/k/vMz8/zcz/3c3z+85/nla985Rn3HTx4kFtuuYW7776bq666CoA//MM/5BWveAXvfe97v2MA851IhkQIIYR4Dmo2m2dsvu9/T8dJkoQ3vvGNvOMd7+DAgQNPuf+OO+6gXC6fDkYAbrzxRgzD4K677nrazyMBiRBCCLFFJFqdkw1gamqKUql0envPe97zPZ3T7/7u72JZFj//8z//He9fWlpieHj4jNssy6JarbK0tPS0n0eGbIQQQogt4lwO2czOzlIsFk/f7rruMz7Wvffey/vf/37uu+8+lPqXnU4sGRIhhBDiOahYLJ6xfS8Bye23387KygrT09NYloVlWZw8eZK3v/3tzMzMADA6OsrKysoZj4uiiFqtxujo6NN+LsmQCCGEEFtEjEF8lrmC+BydC8Ab3/hGbrzxxjNue+lLX8ob3/hGfuqnfgqA6667jnq9zr333suVV14JwK233kqSJFx77bVP+7kkIBFCCCG2CP0PakDO5hjPRLvd5siRI6f/ffz4cR544AGq1SrT09MMDAycsb9t24yOjrJ3714A9u/fz8te9jLe8pa38OEPf5gwDHnb297G61//+qc9wwZkyEYIIYS4oN1zzz1cccUVXHHFFQD84i/+IldccQXvfve7n/YxPvrRj7Jv3z5e9KIX8YpXvILnP//5/Mmf/MkzOg+ltT5PFyoWQgghnhuazSalUokvPLyNXOHscgWdVsJLLjlJo9E4o6h1q5MhGyGEEGKLiLVBrM+yhuQ8TTPIkI0QQgghNp1kSIQQQogtIkGRnGWuIOH8TJFIQCKEEEJsEZuxls1WIQGJEEIIsUWcmxqS8zNDIjUkQgghhNh0kiERQgghtoi0huTshlzO9vGbRQISIYQQYotIzkHr+PO1qFWGbIQQQgix6SRDIoQQQmwRF3JRqwQkQgghxBaRYFywfUhkyEYIIYQQm04yJEIIIcQWEWtFrM+yMdpZPn6zSEAihBBCbBHxOZhlE8uQjRBCCCHE90YyJEIIIcQWkWiD5Cxn2SQyy0YIIYQQZ+NCHrKRgEQIIYTYIhLOvig1OTen8qyTGhIhhBBCbDrJkAghhBBbxLlpjHZ+5hokIBFCCCG2iHPTOv78DEjOz7MWQgghxHOKZEiEEEKILSJBkXC2Ra3SqVUIIYQQZ0GGbIQQQgghNpFkSIQQQogt4tw0Rjs/cw0SkAghhBBbRKIVydk2RjtPV/s9P8MoIYQQQjynSIZECCGE2CKSczBkI43RhBBCCHFWzs1qvxKQCCGEEOIsxCjis+wjcraP3yznZxglhBBCiOcUyZAIIYQQW4QM2QghhBBi08Wc/ZBLfG5O5Vl3foZRQgghhHhOkQyJEEIIsUXIkI0QQgghNp0srieEEEIIsYkkIBFCCCG2CI0iOctNP8Oi2Ntuu41Xv/rVjI+Po5TiU5/61On7wjDkne98J5dccgm5XI7x8XH+zb/5NywsLJxxjFqtxs0330yxWKRcLvPmN7+Zdrv9jM5DAhIhhBBii/j2kM3Zbs9Ep9Phsssu44Mf/OBT7ut2u9x33328613v4r777uMTn/gETzzxBK95zWvO2O/mm2/m0Ucf5Ytf/CKf+cxnuO2223jrW9/6jM5Daa31M3qEEEIIIc6pZrNJqVTiHd98JW7ePqtj+e2Q/3z9Z2k0GhSLxWf0WKUUn/zkJ7npppu+6z53330311xzDSdPnmR6epqDBw9y0UUXcffdd3PVVVcBcMstt/CKV7yCubk5xsfHn9ZzS4ZECCGE2CISrc7JBmmQ8w833/fPyTk2Gg2UUpTLZQDuuOMOyuXy6WAE4MYbb8QwDO66666nfVwJSIQQQogtIn5ytd+z3QCmpqYolUqnt/e85z1nfX79fp93vvOd/MRP/MTp7MvS0hLDw8Nn7GdZFtVqlaWlpad9bJn2K4QQQmwR/zDDcTbHAJidnT1jyMZ13bM6bhiG/NiP/Rhaaz70oQ+d1bG+EwlIhBBCiOegYrH4jGtIvptvByMnT57k1ltvPeO4o6OjrKysnLF/FEXUajVGR0ef9nPIkI0QQgixRSQY52Q7l74djBw+fJgvfelLDAwMnHH/ddddR71e59577z1926233kqSJFx77bVP+3kkQyKEEEJsEbFWxGc5ZPNMH99utzly5Mjpfx8/fpwHHniAarXK2NgYr3vd67jvvvv4zGc+QxzHp+tCqtUqjuOwf/9+Xvayl/GWt7yFD3/4w4RhyNve9jZe//rXP+0ZNiDTfoUQQohN9+1pv//+9n91Tqb9fugFn3ja036/+tWv8sIXvvApt7/pTW/i13/919m+fft3fNxXvvIVbrjhBiBtjPa2t72Nv/u7v8MwDF772tfygQ98gHw+/7TPWzIkQgghxBZxLotan64bbriBfyo38XTyFtVqlY997GPP6Hn/MQlIhBBCiC1Cn4PVfrUsrieEEEII8b2RDIkQQgixRcQo4me4ON53Osb5SAISIYQQYotI9DOvAflOxzgfyZCNEEIIITadZEiEEEKILSI5B0WtZ/v4zSIBiRBCCLFFJCiSs6wBOdvHbxYJSIQQQogtYjM6tW4V52deRwghhBDPKZIhEUIIIbYIqSERQgghxKZLOAet48/TGpLzM4wSQgghxHOKZEiEEEKILUKfg1k2+jzNkEhAIoQQQmwRm7Ha71YhQzZCCCGE2HSSIRFCCCG2CJllI4QQQohNJ0M2QgghhBCbSDIkQgghxBYha9kIIYQQYtNdyEM2EpAIIYQQW8SFHJBIDYkQQgghNp1kSIQQQogt4kLOkEhAIoQQQmwRF3JAIkM2QgghhNh0kiERQgghtgjN2U/b1efmVJ51EpAIIYQQW4QM2QghhBBCbCLJkAghhBBbxIWcIZGARAghhNgiLuSARIZshBBCCLHpJEMihBBCbBEXcoZEAhIhhBBii9Baoc8yoDjbx28WCUiEEEKILSJBnXUfkrN9/GaRGhIhhBBCbDrJkAghhBBbhNSQCCGEEGLTXcg1JDJkI4QQQohNJwGJEEIIsUV8e8jmbLdn4rbbbuPVr3414+PjKKX41Kc+dcb9Wmve/e53MzY2RiaT4cYbb+Tw4cNn7FOr1bj55pspFouUy2Xe/OY30263n9F5SEAihBBCbBHfHrI52+2Z6HQ6XHbZZXzwgx/8jvf/3u/9Hh/4wAf48Ic/zF133UUul+OlL30p/X7/9D4333wzjz76KF/84hf5zGc+w2233cZb3/rWZ3QeSmt9vq5ULIQQQjwnNJtNSqUSV/7tf8DKuWd1rKjjc+9r/4BGo0GxWHxGj1VK8clPfpKbbroJSLMj4+PjvP3tb+eXfumXAGg0GoyMjPCRj3yE17/+9Rw8eJCLLrqIu+++m6uuugqAW265hVe84hXMzc0xPj7+tJ5bMiRCCCHEFqHPwXDNtzMkzWbzjM33/Wd8PsePH2dpaYkbb7zx9G2lUolrr72WO+64A4A77riDcrl8OhgBuPHGGzEMg7vuuutpP5cEJEIIIcQWoQGtz3J78lhTU1OUSqXT23ve855nfD5LS0sAjIyMnHH7yMjI6fuWlpYYHh4+437LsqhWq6f3eTpk2q8QQgjxHDQ7O3vGkI3rnt1Q0L80CUiEEGKLerHxo5t9CuIc+2Ly8X/y/gSFOket44vF4jOuIfnHRkdHAVheXmZsbOz07cvLy1x++eWn91lZWTnjcVEUUavVTj/+6ZAhGyGEEGKL2IxZNv+U7du3Mzo6ype//OXTtzWbTe666y6uu+46AK677jrq9Tr33nvv6X1uvfVWkiTh2muvfdrPJRkSIYQQYotItEI9y63j2+02R44cOf3v48eP88ADD1CtVpmenuYXfuEX+K3f+i12797N9u3bede73sX4+PjpmTj79+/nZS97GW95y1v48Ic/TBiGvO1tb+P1r3/9055hAxKQCCGEEBe0e+65hxe+8IWn//2Lv/iLALzpTW/iIx/5CL/8y79Mp9PhrW99K/V6nec///nccssteJ53+jEf/ehHedvb3saLXvQiDMPgta99LR/4wAee0XlIHxIhhNiipIbkuee71ZB8uw/Jgb96B2b27IpP467Poz/+n7+nPiSbSTIkQgghxBYhi+sJIYQQQmwiyZAIIYQQW8SFnCGRgEQIIYTYIjZjls1WIUM2QgghhNh0kiERQgghtohvr0dztsc4H0lAIoQQQmwRaUBytjUk5+hknmUSkAghhBBbxIVc1Co1JEIIIYTYdJIhEUIIIbYI/eR2tsc4H0lAIoQQQmwRMmQjhBBCCLGJJEMihBBCbBUX8JiNBCRCCCHEVnEOhmyQIRshhBBCiO+NZEiEEEKILUI6tQohhBBi013Is2wkIBFCCLF5DBMj46E8F5RKf94nmnhjY7PPTDzLJCARQgjxrDAKBXQQoIMAI5NBZTySHROceGWBYFePiaE6bd9hY7XAvp8/iHIctO+jLAscG4Ck3kBH0Sa/kn9BWp19UapkSIQQQogzmZUKynXQcULvyhm8pQ7G7BLBpTM0ZlxaMwrrkgaZu0qsehmCUkLlsELvmaE7mSOz0KG1PY9fNNAmDH91GdXz0X5AvLZ2/hZMfBdSQ/I0vNj40X/J8xAXiC8mH3/Wn1M+u+Jc2IzP7vnKrFTQUyMYrR7BdBVtKLRSWJ0Io9lFWxb9AZvsWkxQtOgeKRJPxJQfMygeVzithCRrk7/nFFgW3WuKZFcSsot9kmKGjetGMANN8cgI6pEjJP3+Zr/kc+cC7kMi036FEEKcG0phFoswOkhzX5n2gRHMZoB7ZAVnvYu93IRuj2jHGJGnMIKE7ErCxNciKo8aVB/3Gbx9gTCriDImuu+jXRtvQ2P6GrPto8KYysE2varB0vVFjJEhUAojl9vsVy/OkgzZCCGEOHtKYU1OQJIQ5z28tRBtgNEPCKcHsVaaRMNFVDlLVLApnPQx2wHeYoyxsoHZm0SbCm0a+CUDq2/h6YTm5cOgIbPUJRjMoRKNe2INbRYoHw1JCjmMbBajkEd5LvF6bbOvxFmRWTYXKHNkmGjnGIYfgZEmixLbQEUJKvk/OS/Vj9AZm8QyiDMWKtHpPrFGxQkqTIjzDs6xZaKFxfN3AE9cUAzPwxgdBkDnMiRZB/XYMZJOZ5PPTJxvrG1TECforAcr65grdRKrirXeJq7mWL84w/CdPmajj7ZNvBMb0GiRjA/R3VZETRTInqjTPFDFO65xmwnFh1bpXr+H7qBBdjVBRQlOrUdvIoc5WqZ0PCJ7ZIOkmIEoIqk3UI6DOThAvLa+2Zfk7Fygf0IujIBEKazpSfADcB0IQjAMOpdNMH+DhdVWaBO0oYkzGqurUJFCJWBEYLehNwSxq4nKMSRg9A1MX2F1FVYHohyMW6NYa+voIMAsFVH5PFgmhBHR/MJmXwVxgTFyOfT+7aA1xqkVlGmk0yo9F7RG2xbNi4dQiaY7ZFK7LGHHJ/biHpwH10l/eXb7kCQARCdnJdgWT2GNjeJvH8Je67JxeZnqnTFEMWbHJ8l59Ac9vA1NZ6ZA7mgTs9ZEd/ugE1SSEOQNjEiTZB2CnMHcq8cxA42KYqKsAQp6AwaFJ9L9rU5MZzJD6b5ltG0RlByM6w/gzNVR3T7YFqzX5LN6HnruBiSGiTJNMBRGxuOJt02SWVH0hzTOhkJbEGU0KoYor9GmJrEAU6P7CiyN2VVkl9IPdWcCUGDXzXRGlQKzr/BWNdnVhOIXD6JnxlH5HMQe7R/cy9qlFn41wdkwmHlvHR3HkGiUaZAEISTxZl4h8RykbCft5wBEz9vFzX/8WWpRnv/5Ry8j9iCxobMtwuwZDN0Dbj3GCBPygeaXf/mvef/uF7H85Z30BzWXXHeE+x/bjtkxSCzY9xttdN8Hw0inbvr+Jr9asdniFz6P+Ws8xm/voD2LzqgB145QONnH9GPMtSb1HyiRX4jpDpm0xyoMPuRirXdQjRaJbdKcMSieTDDXWyR2kfb2hN1/0SYcr5Cb6+GtW9i1Hto2UX5Cd8Shvtug+LBFkndpbncY/soSjeeNUL5rnu6+EezxCtZam/jQ0c2+RM+YDNk8B6kr9rF+WRG/kr4xbg38AY3VURhxGjznaorCfER3yGTjAFQeVbS3KZymwm5qvI0Ebz3Er1hYbZOwpLFaityCJrsaY3ViVKKJMibBlbuwmj7NF+2h+Fgdpxkx8q0Eux1R35Xh8T84QGbWxlvTdCZh29/3UN94YHMvknjOWfvJKzFuWsM2Y2p3ZvhPX72JbTtWCAuQWJA4YAQGTs0gt9jHPVXj4NtHmPgy/D+feANvesVX+LPxYfInDR75xi6mvxHjrXVpzWRZeMM+utd3qJY69L44zOgffHOzX67YRKv//jrGblnA+Q8es94A059v07m0D3gU5hSrz8vj1nOUj0XkvnUCCjlYr5O0WuiL91C/Yju9AYPxr/eoXeRRu36cobvrDN8eok/OYe2YRjXaGJUiAL3pHLMvUQzeoxi+NySq5mjuzFA52CMpZSnffoJ4YhBtQuxZ6LEilrOP5JHHN/U6PWMX8Cyb51xAsvj26/ErGqeuyC0l5Oc0q1ekQUjulMLqa1QC7QlFUIRkWdEdVXjLiuGPPshIPkcymVZt94czrFzp4g9oyo9rjFOA0vQrCrehcJoJfsWmPWqitIURuKBg8YVViqci3PWA2DUpnvRxmzbdIU2mlpBf1Bj9EK6+hO54BpWA93ff2uxLJ85j9lfHiN9WYvhTRzg5uJvu9pDBU5rBBxWBO8pwLWDpWofcgsZ5AhJL05pysdc89v3qIR7/zT1oK+Z/fOaFDD2miR1NUFYERYPsbMjyK328gxk4nqVTyzHyQB915QGe+Okc7kCPbT/28GZfAvFsUorRW1eh16f4oWG8UsLKVXmox5ROxNgPHmOoPUntkiIr1xhMRtvIzLdQDQtzaoKg5BIUFFEG7FoXp+mSWQ0xml3Wrx9jIAjRc0tQKREOZbHaIe66z8z/tnBXu2jDIM7Z2F2N1ezDoRMwUKU7maVwzzyrL5omdqF0wsRbeg7UlFwgnhMBibIsajdfTWKDX9ZE2TTo6GoDFYG3BkFF05nUZBfToCQ/r/E2YnInWhQOQ1RwUdsmIIoxeiH98QLtMQsUFI5DdjUms9TDXG8RjpQw+hGJZ6ENRaamyS76BGWbzFwH7ZqQaIxuiPIDdMbBalsU72/S2zOM1Q4xWn2SnIcRaJROf234ZYURwfT/PEq0tLzZl1VsccZl+3E/UOPR+TGi4ybmf0yY/rNpZv5qge6eIZa+T7F2bcK+P2qjTi4wc2IQkoRgssLGHpfuqMKvVCkfKZA7ZdIdSxi+L6H44Cqq3WXYdcAPiCcG8R7LMHxfgDff5om3lDl1VYT9YImBezUDjygW3nE97Yt89v92jfjI8c2+NOJfkLId1IFddKby5B5PyD00D5dPUDjWYezjy9Ru3EHzxn1klgOcdkJcijFiUL0APTJAfzRHc7tD5fE+aE1rT5l+xaCxw2WiX6E1bVB9wKN55X6KD67izG6AbdG6uIrdTqgfKFF5oEacs0lM0K6NOVDF3z1K/hvHibaPYoaaKKM48WqT6tQehv7XQ+dRsfaTNQFnfYzzz3kdkFjbt7Fx7RjFI22cdoLpa5yWQVBUWL203V13xMCIwFtThDnwNhLcRoKKNN5aHzW/gh4fIsrbOCc66DCEchGlweprvFXIbCREnqI/6GEWHKKcid02sdohuZNtjG4AiUabRbRrYi1uoF0Hf7JMb7iM04rJPbJEUsphNwOs5UZaaAhkT0VoUxG7RYzAJMoq2ldtw62NYoQJRrtPfPDwZl9qsYU0/vX3sXKNxggVxoKTjhcnisI3M7SmNGZYITPbZLKTJXEM0BqVzxNVc1gnV9LZD30ontD0q4owb+LWNJkfXKdzdIjMagmjlyNxLayWj9HsMf3ZiN5EgfmXVlFxgvVwnsGHI7Knmhi1FrmFLCpxwbEJXnoVy9c4oGHqt2RY5znn0t20ZvKsHzCZOeXS3T2A3Y6IszbGSBUzBL9gEOQ8iqd89n7IJ87YJOUczZ05yl8+it0ewzwyT7h/muL9i+ROFVh7XhGzHzH0QAhByOqP9ih+pQ6jQ8QFl+LhFnHOwerFEIQYUUJuwUc9fgLyOdqTDjljmsQxMH1N8WRMb9gmzoBRLp0/AYkM2Zx/zJFhOhcN09hh4K25mL7GXffJHe/jj+Sx2gFGEON08jSnLfoD4NYhsxrhLXWIcw5x1kKND6HCGKfWR3e6qGwGf7xImDfTGTY9jVsL0abCWevij+RIbIWKNMZGG1od6PVJdk9hr3Xxx/NYszEq8TH7EXbbxF1PCwGDwRz2Rh9tW6gwSmc6mIq44OE0IrxVH20atKdcwlwGy0+w2g6OdwAMiLMOxjcekmLYC5S68gDt7XnWLlPoQoh93MVcydEdT8guGQw82qc94aANBWGE2Q4wDdCORW/fKNoysOZMvIUWVidDnLXojLmEGUVhNsRwfXprCVHGIqo6WN0Yq5GQFDx46DB28SLCvI0RKgqzmvwjS2jbIhkskV8IyKwZaMsgLJiEOU1Ujdh403VU/vyOzb504hwxKxVi26S5zaS/3SdxLUw/QRuK/oCNvQYq1jjt9LvNr6TrzzSnXfyqonw4YvlHduFtJJSX89jraZBgrrfILeUISy65hxfQWY/Cl3K0fmA3ZpCgYsic7EHWJsxbhPuG6FdMBr94jCRJaFy/DZWA+/ApOtdup/jgCkkpy9SXbYKyTbhtCGNlDR0Gm3n5xD/jvAtIzL27IEmIhou0Ry20gjhjEjsKI4xheQ2r4KLiBGO9Sb7dI3JHaG+DzKqBW/Mxai20U6FfdkisHN6xNQzXhuEBwmqO1qRLYgMalAYVJRiBxmj1cGwTI3Swa12oN9F+gHJsgopH5tg62igAoHs97FNr2LMq7TZYLYGCOGej4icDCsskyTqEBTudYz/XhFaHTGYav2SiDUVQsmjsKKazgbKK8eWZdFrb/BJxvbFp74N4ln3fpawdyNEbVmRWIfeATfF4h/6Qi92xGHywh9kLyS+QzkhwbIKhDCrSmH5Mc8ah8ngP7TmwuoHd6aFnBnHrmu6YonwoZKFZYPxUj8Q1ib20zXdUyoDW2BkP8+QaA49MsLHXJLE0STlPdzJPZrGD0Y+x17v0xwtY3YTSEYPmTouNi2DA81A7ptNMn0zFPK/FuydpzWQZvr+P1XUxNzZQiaY/ksGtRWjbJH+sTVRyMcKE+q4MKrHwy4rumKZ0HLqjCqet6OwfxlvsomyTYCBLr2pSaobpd2ocM/KZ4xz6he24NZORu32iag7Dj4iyBoVjbZTOoMMQlfGo7zLJrGqoFPHLBt5gAXOjS1R0yR5voLp94ot3wwOPbf3PoGRIzg9GocD8y4cx+5rMeoLbTNCWQb9s4tXjtFmZbZPYJv2xDNZghsyxGuX7V+kNjKTDalGC9hy0qbCbIfZqG531qF1Swu4l+EWD2AWtFCgwQk1YsPErJvHuLNVHmti1Xrq4k2mishko5jH9hGiwgN0M0FGEbndIWm0M10WViuAHuEtt2rtKOLPraM9F2ybmeptMrUM4UgTDQGUzeCc2UJNlgrKFXzTojim8NbB6mtXnD9MbUkx8zcV4+Cg6CCXqf45SloU5MYbudHn8J7IMPAjb/nYZ1emljfyiCKtepHBfl2R1DTU1jtMN0JZBXHQxggT3yDLdA2NoE5yTa8SDJVTOI87YxK7JyO3rPP6zFTpTGTqrMWFBYzdDvH5M4posX+0x9ekVmBhBzy9T+maESrbRGzRY/r4SfkWx7Y5F1OQIan6F+guqFE9GGCHYTcXUl1oYI0OceuUgkyfm0tVdm235zJ6HzHKJXsXFWwuxaz3GvlCjt2sQnmwi6c5uoLNumpEbdggzCreVkJ3t0KsUqRyJcNd9ioUcYUaRPxWiXZP2ZB63FmH5aaG1NbgDpxXjzbcw+4rqExFGmKDCtL6v9OAamAbZQ10II/SOSRIL8vMh7YsGyC6FAATj6eyccCgHSdpW/rxYK0VW+z0PGCYbP3yAyhMhVi/GWWig5xYpAmpyDBXFNJ43gj2aI3OsRpSrUt/p0Nw2gtNKp+maoaY3kcOtWRhhgtXzIY6JSxlKx3qYrT6rP14hs6QYu72Oml1CT43SncqjYrASTXN3AacRk5nXGN0euttDt9o4UUxv5yCZJ5bR5SJGNpP+Z/EcwpESZqtP8shh8stlkl4fNTGK6vpQb6EKOexD89DrozMe/oEpopxJdzANRowAvFqCNsCrxxROJTS3ZzGmLqZwpJ1G/cqQoZznGGP3dtb/i6Zx5xQ7P97FPngKgPqL9uAXFMO3rxBWs9iAXkowun10LkN/qohftjBiTWd8CiPUVA75JNUC2jUx1rpY602S7cPMvmKQqc9HNKdNtn06JvvQHDoMiXZP0ht2GPt6B72wjH/dXtR4Ea0gf6xJ4eE+SSlLZ1ue5dfuZfgvHoRcjvFPHCNpNMlctIMoU2DlqjyjX+pQORRhDA8y+9pJxr/agPvOg1+q4gyqUiYsmGSW06BXtzpY7RJm28dodNLP3lgelWh6Awqvplm7xMT0s5SP9bEfm0NPDNEfUPgV6A1nyS5p8gshccagcKLLxt4c868K2ff+Hq09ZUbuifBW+1hz6+DY9HYM4K50UP0QFSdQLZOYisFHItrjNokD0XaLic9sYCqF6vTQpTxRKYN1aJb4PPjMyWq/W5yyLFbffDUjt6+zftUA7QkbI/aw2umKj/nFCBVD/ngbbZt09qRFVmNf3oA4Jpwo45xYY+6mKRIXKofAaUSoxMJw01bwRttn6flVYkfT3JXQGy5ROFmifNTH2QjoDWTojCnijKZ4zCJ7NCRe38Ao5lHDA6z8wChePcHrdglnhgiLFt5CF/XEcaxGm+DiKZxqGSol9MwY9COSrI2/ZyAtsF1sExc8rCdmcZfbuMtr5JSBKuTQzRbR7kmCskP2aA09v0RmaIBotEx/NEvw49cSFBQD/5+M1T9XWNumaFxUhY8p/KsTahdlyA7vpvDIGqWvHaN+ww4e/9US039lYj+6ChfvpjOaxV3vk31oDnd1DSObJbxsJ/ZSg+6eAey7TrL85ssZeMzGueMgDjCYHaM9buNXYG67ya6VIcyVOtpU9KqK1SuybDN3YnUi2pMelp/gnQqg0cZwnXRdkabGf/5FaEOx8HyLsW9GZE61KB8LiTJG+odDga43GLmryvplRcr5yzG+dv9mX2bxNJmDA7QvHiE318Ns9FB+iNYJ9sIGyeo6/jV7CfMW2dk2/mCG6kEfI4jpjOUw+wnOoUXieoPetdvpjmoyq4rekMaIFZUnQjoTHip2ae5QDA61qF0y8OREhQSz2Sceq9KdyOCtpEPu4bYh7Pknu7EaaRErQHYlIcwp6lcOE3mK0vE+rUmX6t2rMDxA54W7yf3NXZt8NcV3s+UDErNYpPaaixj5xBEo5ekNKvrDCe6aQX4jwe4maKWo77Ywp4sMPtTBaYX4FZv+4ABGpOmMmIw87jP5V0cJdo3RH3IJ8xbuuo9Z7xKXsyzeUAGgcFLhNKHyWAvj0CkwFIwN4w65qNggykB/QNG8dJCiacDKOtgWTiuhVzEwrt+Fu+aTe2QJ7djEF+/Eml3FPbEOuSy0uxi1OrrXx8x4ZDfKYFvo2UXsYoG43sAwTYgT0BEkGcID0xi9iNz9p0habdTEKEQx1nwNc93BmizTGfNYf8t1DP7Z3ego2tw3TZy1pFKgvssku6Qx+5DYisJtR0gaLZRpUDzUIigUcWpdtO9jLKyiJ2ewFjeIxwcIL5rAWe9h9iNUt4/hJxx592VkViEoWqhr96UrrT44y9plO+lNRhRGW6BNkkIuDX5XEwYf9vErDrnbHqcyV6J9yRg642B0bKKCS3fIZPiTh/AvnaE1YzP2zQgjSGjtLdEvG2BA58YxGrthz8EhNvZlaE8pesMZBnNX437u7s2+1OLpME2MUGPNrRONVzEBykXa+4dwmgO4x9dIdg2ReBbeyQ26uweYfY2DNhNG7wyJ12pw+V66QyZxIaE/08N+OM/Ey07yxI4JigdN8osKqwu1jRzTK2GarUvSYXiyDtmTHYyuz+qLprF8TfmxFuHFM9jLTbIL67SmtlHbbzLwWESYMUhs6A06OJ3kdKakcKRFstnX8p8jNSRbkzk0RP+yaZxWAoZi4+oRrJ5m5E7ILvexOiFx1iLMW1g9TXYtxtzoYsYxzrF0HDEaq9AaL9D6/u0Ubj+G/ehJOi/ZS1AwsDpWegEMxcTfL4Np0NpfpTNiUN+bpxxPoY6cIil4FL5+DD0+SJxLfxVaixsAJFOjGI0O5XuWTufJdLsDuSwqijFPLpO02ujJnTR35CjfehRVLJBMj6EBs9FBN+voXdO0J3JklgdQK/W0CBag5+McW02fq9XGGKyiV2vo4YF0pvnaBm6rw1hrCNWPMCbGiOcXJSg5TxnZLP7zL6I9ZjN8f0Bz2mbHJztYs2vgeZiZTLq2zNI6I7fUIYqgUkYHIbljDRrXTJBd6OM+eALtB5j5HMuv2k75iM/Ov21DlI7FKz9AtbtoP2D0jh7mrSFHfqJEYvewmj1yj6+iophwokpmsZMWUiea/MOLJIUcOuNiHplnuFEl2T6O3fQJ8y7eap/uRIbEVuRWYvplk8ar29gKMBSZWkJhNibOGAQFE++qi9H3PLLZl138M3S7Q+b4BrrXwx/08OIE5ZvknliH1RqUCqxe4TLxgUdQw0NkTzYpnBigtSOhsStL9/uvYvIvjjDU7lO7bICw7VBY1eworHPg6kX+d/FS2isexcOgHspQ2w9xZpr2mMno/3oc4jJGp093dzXNnASa3rW7WLrGZsefLKD9gOxqTHfYojVhYQaayqE+sW1gNwNQCtXzYW5psy/lP09qSLYeZVmorEfsmaAg2jVO5CkGH+yiDYURxBjtPkbXoDtcpvpYF7MToBotgl1jRHkbuxFgLzcYetAkypjokQGMegu7k6BNA22lH1LrRJuk2UJZFsWeT2asQm/Moz+aJRNO0J3MkouHMU6twK5xzLUWeqOR/moA8AOSkSr60cMYO2fSL+8oXWBKOQ5MjRO5JvnZHsoyiYaKdCeymH6C41mEpSEypxpYvZjeSAaz4uKs9jA3WuheH2VZ6THjGN1sQxyjmu30QumEpNnC6JXTcd18FkwTa3QE3e9Lh8LzyOIvXk/18RA05JZCvOM1OqMjJK4JQOP7JvELBtWDHcyji+maNaaBdh30eg3l+3jDuXQFastCWRb1F8wQZRTusVW0bdG+eIjugElxNiTzcJf2D+wmu9BDPXKE3Ozz8Adc7OUGutFEV0oERZvsE7Osv2Ivg99YTOuhOj64DtGeSYKSg7fSJfFsKodCVC8kOw/aVCg/xup4rKxnMPLpDwS7GeEttsEPCEdL1PflyZWuxPryvZt56cU/wZqaZPGDOQp/UiJT8OgOWWRPhGjDoP68ISrfikmWVsgtjGMUiwQzQ9iPzzHxiTbtKyboDZhkVjT9y6bJHFwi8RKKgx3qL/B4cH0cgCQysEZ6NHWG0iFF/Tqf3JKDSqD5oj0EOYPsWpbYNeiMmnTHNYMPanLzmt7FkySuQeGeeZpT2ygfCajvdOiMuZiBJnENrFWLuJzHyLjEI7swv3LfJl9V8Z1s3aJj0wQjXQXSCNOup4X5ELPpo3Q6fTYcyBGVPJxWgn1yFRWkWQGzF6INiHIWJAnWoXm8EzUwQBeyuBsBmZUQu+5DkqCrpbT63/dJllaw59bJLvQwwoTuTJHGjEl36skq7ShJZzhMjhJctp3WFWMEu8eJCi5GuUQ0mCeYLKNtK12IzDSIBnLYGz2so4voXAbDj3A3QuxOlDaZ6kSojSbuYgt33ScopH+AMAz0SJVkqIx+cmaFymVR1XI6lTgIUJlMOtPHD4jKHsFwDuU4RJMDxDvGMYeGNusdFM+Auupi+oOaMGdgt0Lc9T4AbjPG8OP0vY/T1adVlKDyWTr7h2lfOpZOH/d9GBvGagUY/ZBksEL/wCTtcQOzr9GuA46N1U1wWxqtIJoaor7LQpsKY2yE1vaE9QMW4UgJqmX8bVUSVxHtmcTqJyR5j8Qz0Y5FVM7Qns7Q2G7TncoR5SwyJ+tElQyJZWA2epi1JvZGH2/RwljwnhzrT8APUH6I2QuxO5raXhezXNrkd0B8V1FE/k9LOI2QUy8r0tgNa9cMoG2T0mN12hcN03nJxVQeacBwld6wQ3DxFMlgCbsdEWbTX+sbuxw6l45RecAk6wbYxzJstLPUvjkKTZuwY+NOtRm5fYPRzzq0Jg0y6wnFg3ViD5ausSk8ssbgIz2mb+mTP9Fh+BOP41cslq+0iceqZNYTvPk2A4/1yayEFB5dJ8waaMvEWFgFpZi90d3kC/pPU/rcbE9XHMe8613vYvv27WQyGXbu3Mlv/uZvov9BZazWmne/+92MjY2RyWS48cYbOXz43Dfs3HoZEqUw8nmU56UNxKIEIwRzZYPM4hr+vgmirEnspiuQGjFkln1wbKJqDtM0MeZWyW1kSYpZtGOj+j7J3CLsmSHJuVj1HtZKmKbwgO62ErlWFxrNdLVeK52Oa/Q92jsKRNknT81zUX5IOFygP+zSmjQJSlA8blCY9UmmRtGWojviYLUyGI1WGlQYCpbXQBnEgwXM40s4c1H6XEA0u0DiuagkwTw5j126CCOISLIe/bE8ditErdcwS0XioTJGEEG7k9aZODYU81BrwGiJKG/hmAbaNIjyJuZQBdVsysqsW9zKVQVG7k7IH2+h/JDEc4gGC3jLPtZ8DR0EFB5bhyRBtbskA2X6VZMgr7DbedzOJJ1dFZyNAENr+sNZ2hMWucUEv6To7q7iLXRxF9p4JyOSvEt3KocRQm/UgxGP3HSTtpejd9jDMxWdMRu7o1m94snZM8MVrFZA4qQZR3S6evD6RRZj3+xDFBNlTRI7bYZl93xUGGMGkJtPX2dQtjH7eYgS4qyD3YowBwySnZMYB0OSbncT3wXxjxm5HCf+6wAzb19C5zJUnnDw1iPc2Q386QrHb7IoHjIpzMecfFWFmb9eIrMS4MxvEFfzNLe5lI8GZGabJK6NOnQC/zWXwP8YIlvWBN0igw+HLF9tk100sLsWK9erNPgOYflf+ZT+nz6Z9QSzb4BpQJJm4HpjGVrX7AcNmVVNlLMpP1SnvadE8d4FAIKZQfyywdKLRqgcruDONYgyW7zA4lmuIfnd3/1dPvShD/Hnf/7nHDhwgHvuuYef+qmfolQq8fM///MA/N7v/R4f+MAH+PM//3O2b9/Ou971Ll760pfy2GOP4XneWZ7s/7HlMiTKcWD7BPHOMZJSGgmEBZPWVZPoMMRqB3SHLHoDBkacpoDruzMEk1WinEVvWyFdHA8wVuuobp9kpErS77NxSZnOVA78ANY20J20IDB3cJmk3sDIZtMW8K32k2OOAcX7lxi908db8dF9nyTrsLE3g18wqBwK2fbJGgNfnSXKWOliTwsNegMG/aEMemwQf7qKESWoXBY9MURrJpu+RqXSgCJOMHJZdBihlCLp9bE6EYQRRqtD5lgN8+FjmPkcqlTAaHVhaRWiKO130vdJsi7KsXFOrJJ7bAUdhNhz62QemYOFZcyJMZTtbObbKv4phom3ofFqAWp2ifjxI5i1JmHRxj6xTH/3CMn0CFE1l35uAKPRpnr3GmOfX2D+BzyWXzxJ5mQLI0xo7C3Q2GHjNhIq35glzCu0UiRZm7mXV5l/xTCtnQWcRkTlUMjcixR+yWT4v2ZwVi3MXpJm9PoabUJhLqK/fwKOzREWXfST4/LZ5YDccoIRgPv4PGhN5o5DZJZ7BFUHf2YQFYSYPgzfWUM12qw8z2L1inyarTQVsy9xGHioTXsmj5oYxSgUTr9Gsfl0EOJ9oUhSykEQUnqsjrOeBo1hwWTkm4riqYi1i03G7vTRWZfZGzMkxSz+YIb8XIC73qe1r0Lt0iJGtUKYU+Rn+/SGFN3JmNo+m4nb+jhtTelIl5Hb1+i+vEV/UDP4dx7+zAClr59g4N4NomqO2n6P9oSDEWpySzHDd7conoxwjywTF1wKT9TRnS7rL5hg+coM5SM+Y586xrEfNVn9/iFG79AYl+7b5Cu7dXzzm9/kh3/4h3nlK1/JzMwMr3vd63jJS17Ct76VLviqteZ973sfv/qrv8oP//APc+mll/I//sf/YGFhgU996lPn9Fy2XIZE+z5G14esQ1By6A/aWP2EzohJ8PI9DHzlFANhTGN/ic6IgZO1MX2N/dhJbIDRoTQb4brorAdak7jpeHp+IaAz6rBx9Qj52RLOXA2d9Vh/XhVvfYTcwWV0rZ7WbARhWqTqB2SOrlG/eoxo5y6qDzcY/vijqGqZYNsAvekCGSBzfCOdcTM+TGKB3Y1Qi2u4jQz0fVrXTJN/dJXSZ2dJdk4RZwfSbFAQYzo20XARfXgOa2wEjq/Q2zeKX7HIrIU4q+uoaiXNmEwWyNzfQWWzKEOBH2AsrJK0OxjFAt0DY2QyLv2xAlYrwFppoD2H6PsvxvyqjJtuOUph7t9FdiUgzFs4joOy7PT2ICEZrrD4sz65zxboTCgGH3bxVvJYjR4sLKMTzfb/ZZOcmEW5Lp0f2kd2OaR6+zJEEa1rpkFB/pElkmKWyS/4hJUMvWGH9QMeQQFGv55Q+cYpVl80TWJBa8rCXXco3bNIUs7jD2dRiSa6fBfaUqxckiH2oHAqoXLfGsVPzpLs20GSsWGwQJSzaU5Z9IZtykccJm5ZJX78CMaBvYzcE5I9skFSzBBlTHZ/ZD3NUH7iW6jxMdov2k/h3gWi2bnNfmcEYORzDH2rSXe6QG1vBbeuGXikQzSYpTVuYXc02eWYmfc+gpqZxB8rYHVh7Xklykf7OEdXIIpQk1miLPi7hhm6cwOj1QEjy/b9i5wMxtlou2RqCf6Aix70GPwL6A5B6RP3kzxvH/HkEFHeoTvikF+MceohsWuQq/m0Z3Lk5vvorIcRJaxfWWXgzojsUojdTds6BLvHmfiiwupF5B5d4uibJ9n20GZf3e/iHBa1NpvNM252XRfXPXPI6vrrr+dP/uRPOHToEHv27OHBBx/k61//Or//+78PwPHjx1laWuLGG288/ZhSqcS1117LHXfcwetf//qzO9d/YEsFJPV/cx2Vx1pwchkr0US5gbR+JNQ4Lc3q8xT96gxjt9Yof+UYlIv4EyUa2x1qL99DYioSG3JLJdx1H6MfpcMgxxZo/vCVFB+r4Z4I0M0WSbtDDJiVMpWHDNafV0HpETInXfTSGslGHaNYJNo1TnNHBoDKX96NGqiiclmSfBar4acrUcYx8cIyxrYJ9NGTTDbahNODRDvGsBc3wLLIfu4Bksv3snHdKOUn2thLaeGgchw6l0+RPZUOF639wCTlJ9oktoEZaFSYwNAA2jDwx/NkH1kAyyKpbaRDSJkMdLokl+wkNg2yjy6CY+OerKHzGYJtAwC4R5aReTdbjGFiDg2weMMAQRHCkqZS3c7AvUWSk/M49QaqVMT70iRRRjHz8RUwDYKRPHHsYvR9jJEhOjsq2EN5zBOrBHmD2DFwqgWMtQZ2O6b6WFpDcvx1FSoHNUYMzRmD3nBC8aiiN2CQ3zZEmFPs/HiDlWuKHHlDjuxCgemPncQsuPRGHHJzPQAmPz1PMFFh/ZIMjcsGKZ6cQy2s4V81Q1A0KR7rMHAwob/skDvVZu7lQ0y1uiSWQa9q0bt2KF2l1YCwUMVuxfReczW5o028ZR8twzZbRv2leyke7eDWAkzfInYUUdamPe4Q5cDqgztXR5WKNPdVyM51yc/ZdEcMusMOZjMdYl47YOG0wHnoBKpUJByvMn6bz4nSONrRbHx/QPCoR5QxKR7TaW+oAOKr99PckUn7LD3WJ3+qR+2iLM5GQObYOv2ZAex2TH/IwShXyR7ZILPq0Z+p4K50ceoGRsenvbeC6Wu0odCNJjv/dH7rfh+ewyGbqampM27+tV/7NX7913/9jNt+5Vd+hWazyb59+zBNkziO+e3f/m1uvvlmAJaW0plJIyMjZzxuZGTk9H3nytYISAyTuXdei7f+ZIu64SqrV1VpbVNUD8bkDq5iTVcJD7lUDvVo7i/RvaGK09QM3jaP90T60WpeM4VXC7DXuqhaA93rgeui8jlys126O8popYiyY5h+grcWYCw34NAJBpTCWK6hCzkYGyIazhPl0rn32dUoHcpJNMFFk0+mC8Fpxni2iXH4FMqxYa1G8zWXp90sZ3tYq810WCYMMbZNsL4/j9NKSDIW/nQVq5HDWFgle+cRcGw6V20jKKp0waogSVvWDzo4J/w0+g8TdCGLdm2i7cMYUdo0SJkGxqPH6f3APkgGUVpjrrUwNlo4G610aKpaxn/51bi33HP+tvF7jjHzOeo37MBpaqqPB0QZk8x8B20YsGsaDTT2FBn738fBc9GeQ5Jz6VdtbNck4zjoXIbc/afAc3niF6bY8Yke/oDL8vVlcstF8kebHLm5zO77muz84//zh75wtEJnWx6rG7N0rY19YoX2a7ZRPpph4LE+gw9pjCBm5SXTNLdD6SisvCZHdlExYA/iVyy0oSg+vpEW3BZy5J5YJbtWQ5WKBHtHiF1F4liM39ZE93poq0L5cAdrpYluNIl3TzL3wjzbPrXOkTcOMt3IYvgxenIE0zCJV1c3780RANR3G2SX0pqgwnyM6SconQ6tFI8r/EEHvbhC7/q9aROzehdvw6MzYRC7iv54lu6gRZTTzHx8Bd3pEu2bRsUJ7qOzbLOmWb3cob07oTecdgjp/EiLzkqO6c+mkwi0gvLREHu9SziQJbsWE+VtzGqexDHIPb7K4Z8eY+azPVSzTeJWyR5q0N5Txm7GOP2I/KNrxJUc3cksDFbp7B3EPXFqMy/ts2J2dpZisXj63/84OwLw13/913z0ox/lYx/7GAcOHOCBBx7gF37hFxgfH+dNb3rTs3m6WyMgUYYicaF8JKC9PY/VS0gccDeg9OAaycISViVHdsXCnq9T6Oax+hlUnHbp075P//IZEgusej+dcmiakGiUbRMPFumNZ7BbMYltoBV4awH2iZV0Cu34KH4lg7tukZRzqF6Ie2INx7EJhwtoy0DFmvgHL8NZaFLZcFBhTFTyaM1kcaq7yT6+jO720+dwFbX9WdS+LPn5MO3CmnepPNrEXGuiO10wTZRhQMZDD5RJMjaZ+Q6Gn8GZq0HfxxmpEpXcdEy9VkeNFQkHctjLTZzVOrgO2jLR3T5qfITsPSeJdo1jHllEWRY666GzLtHUAEaQnpdZLhPX6xKUbDJlO6hCnuLRNo3deexaH2+jhb99kKBokViKMGvQG1Z0fnQH7kb6RyAs2jitGHepDa5LXPQwTsxx8qd3Mv71iLVLs1g9KJ6IMGLN2vPKzHy2T7RzDOuJWVCK8MA0QSGdcbOxx6Z4TKMzLlZPUdvnYAaa0rGQzKkOveECwVhAcsomPwuxC0HZIrvYp3A0RHV9wqv3Yj90goV/vZ+x27PEjkl31MYvGmSXTexTq+iBCka9QzRcJBouYpoG1tw6058LCQfzTN4a4Dw6Czqtq5Li1s135H3fx+g3YsxuSG8sQ32HyfB9EVbTx1xYJ9gzhopAjY8QlCy8tZBTPzLC+O0dBh4Bqxtj9iP8kokRKVSrA6Ui/UGH7HyXZHoEuxnQH7CpjjbonRokLGhGii2ONz2yp7rox45SjffS2p7DW0jXGMs/tobOOMQFj+yhVXRtg+LxMayNLrqc1kaxvIbaWaY3ZBOUSuQPNwiLDp1hg2Kc4NRDMMytudzGOcyQFIvFMwKS7+Qd73gHv/Irv3J66OWSSy7h5MmTvOc97+FNb3oTo6OjACwvLzM2Nnb6ccvLy1x++eVneaJn2vSiViOXo/3DV5I/ma5K2hswaE1aGAEU5mKigTy9F11C4tnpB229jrnawFvu4dQDtG3ByCCdMYfsSoC2TVQ/BMtMF7Wz0lVzY1vhntogc6pB8VAL+9QautMBK/2lZ9e66HYbFaQrVoZjFeJyFqvZBwXOXA271iMayKH8ENXuYq13yJ/s4i220yCjUkwX7WvFZGoJ2dUYpxGAYdAfcjGavXTRvUYrLXKtlkBrVKuL0eiiuj6ZwyvpazJNjHobezVtSqVyWYxehFXvo1odknojrXOxLSgX6M2UIY6xah10q43udFBxQuJaxFmLKO+QO94imRlPi2rFptO+jzm3iluPqV9UoHHlGAvP99jYYxFlVNqN8mhEUICV62M29mdpTdmYvRg1v4IyDYKSgzEyRGZVkzvWRBuK1e+LWXmejbvSxYhh+coMcz+UI9k+TnhgmjBrYbcjzH5MmIeB+2qEY2ViRxMW0lWl67sdFl84hBGAvWbTnoLesKK5P6Q5lc6wMZbWUVGMitJvPxWTrvLaDyk/3qZyJMAv2+hijt72CsoPseq9dNaZY6N7PdTSOnYt/T+UbGzAUBU9PYo5MYb5z3yRin9ZKlRkVwI2Lspjt2OyKxrvxDpBxSOaGiLMWRiRRgUhmZUAdzGtV7CPLZE7uIL7+DxGP6J4rIvZV/j7xll5zU5UAubSBlHOxmz0GLpfU1ssMfhwhN1Q5OwAHRjpDMuMB0mCGSQYzS5mL0KFEetXVNLPURDC0AAqBtVos/p9g9R3uTA6hBFqMmshXi0gyTv4VZvR29ZZuWGcxDHwX/a8Tb7C34U+R9vT1O12MYwzQwHTNEmSNGO1fft2RkdH+fKXv3z6/mazyV133cV11133vbzC72rTMyQqm2XlaoPxr0UYfoTVS3+FGZHG9BMS1yQomDj1ELOfDs1ox8bohqg4RntpC2unnWCt94hLHuQ8ksH86Y6qZr2LNZJJ/7B3epgbzbRHiGWly7E7Nkarh7adNJjxbOKMlRactvpEWRM3jDDWm/QmxzG7Ydr0rNPDXF4F0yTZPo7R6qNNMIJ0+iZJQpxz6U7lCbNPrulRLGBms8SVdMqv2TVAaVQUox0DgpB4pJwuDNXuono+cTlP4lkYQVoTg+dimCa6mCPJOhhJkmaFclnwQ1SlnHZq1RrDj3A2IM5aGCsbBLvGcCbGSBaWSPr9zXzrL1jKdTEKeVQhj7Yt/EoaNAd5hTbB9CGzFuOu9TB6ISvPq5JZsIgy4DYSoqyJsXMClWjsVkg0VGT4jg1UPyS7ltBIFEE1ISq55OcCNl4esWt0lSO5bRSPAAaEWRsUZJZ1Ov3dyGJ1FE4LVARBGYKiJregKD0BmdcvMbtQZWq8xtL6KEHZwSrkQGus5QYql6V0PMSq90myacBr9mLaYzYFAKXQro12LLRtkGQdzFIxLTpXCqPdxRioElWy9Idc7FYWL0ngHxXliWdPZleD9niRjX1QfbjP4JEVAMwwbSzpLXYxN1q0LhvF6iUoPyS3oJn7iZ2MfbWBKmaJMzZmy08/172I2PWIXcXaD01TOtzFHy+ydL3GXbTJnaiz+H0lriyf4mGmOPhzJfb/QUxY9sg/tk537zB2O2L9+eMkFpx6mUd2fhudKU0y3Ucb2xi6p8HJV5dp7Slj+gl2M8CvumRW2hQfC9LPugL3xDqt54+zJTuSPMudWl/96lfz27/920xPT3PgwAHuv/9+fv/3f59/+2//LQBKKX7hF36B3/qt32L37t2np/2Oj49z0003nd15/iObHpBgKGJXkzgKY3aFkmul0WvFJvaMNNI+odG5DNoyYHSQqJrDWmtDrYGeHEYlmvzhBvrJJdX7gw5hzsBtxJjHfdhoYE2V6ewsk5mzMTpPdj9NErRt0R8vYHUzQDntANvs4R3rgFIkpRyJrQh2DmOvdbE6MURp/w+tNYQulIssX1Nk7G9XQFVRcRrNhyMlageyBEVF8WScruZbLdGbKmL1IsxmQFLKEeecNPhZa6IrRRLHxEyS9PkLGfpjWYwgwelHdLeVcBppc7Wo4Ka/Io6tk3FtSDRJOYMu5TCCCB2EGPV2OrW4lAfPxV5rE0xUsJstkIBkUxjlEnpskCjnEJRt1i9V7Prvy2CZVA56KA1GN0ib3Q0XCcoJe/+0Re2SEpVHmjT2Flm71KF0LKb0jRNEMyPp8KVlkl302fFxRViw6Iy5lO9bJV4cYseudfa8ZIWvLl5De0pz0TXHqPWyOO+t0HjeCMUHVnDrGbyNhCCvMAKF3Vb0hjWF2YRf2/Vp3rL4kyzViqgEusMWRlhJu64GIdpz8Nb6qPkV1m/aQ2c8XRPKbmlYq5NJNNpz6Y3lUBrCrIWVs3EWGulMta/Nwu5t6f/rIZewYOLmMpv9Vl2wjn7scnRHMX60Q3OmwNoVRUY+36BzyRjechej7cNaDbJZ8o/X0AvLHPvFS5j8cpfqp45iDA2gPQd7bp2kkmfith7mWouh+w1UGBNUPXpjHkHOYHDnGqtLJWqXlIizCR/51vdzxb4TPL4yAosruGs16i/eQ+mROmq1Rt6ZxOyEOO0cq1dC5TGo4zFy6yIA41/30qJ+Q6ESjZm3CQfz+AM2uSPQG1Ic+bfj7PzAEbbggM2z7g//8A9517vexc/+7M+ysrLC+Pg4/+7f/Tve/e53n97nl3/5l+l0Orz1rW+lXq/z/Oc/n1tuueWc9iCBzQ5IlErbXyuIPCMdhtBjWHUfZ66O6gdgW9SvGiV/sos1u0r3sinc1W5a+5HLYK7WUYMlOruKeKsB/QGL7EpA7qSP0eySPNnszOxGeI8vEuwYebLpmJsGOEBn3CEounjrCbGrKB2xsJrpL73YsyjcPUf7ikmsu07i1sroXAZ/W5V+NV0zwa2HDBzsozIeG7stJuZ7aNOgO+7hlxWjd/XQpgLXgdlFWtdXaey0cBoZhh4IyT00n94Xxehjp7CZBsskHirTH8vSr5iU/ypdGdXfdxVOA1Ss046dGjBMVKePdm3QGnNlA13Kp9fYf3Idh0Y7vRZKYZ1aIO5JMLJZVDZDYirsk6uE+THcdYV2HaKBDPZKm3AwT2NXLi0KtWDgfmj9v33aHQWUcFsxQ/eHZB6Zw98/gVX3OfbjVcZvC8g8sUxS28AKQjKGgozHvt/vc/z3B1n/wSlcM529cHx1B1EWohs1TlORP5EjurHO2qFSGjAMhFRGmowXmzw6OMX7515M/mGX6kGD9lg6fKNNB3dFsX79CIOfO4K/axA3GqU7qvBHYozQpHQihqEKSc7FODJHdn4ZRgfpT5XS/xPrG2RNI83qzS6hO11yGYewkknvF5vCPJZh53sfQ1UrzPyvJqs/OI7Oenir/fT7pO+TTI7QmSoQZQ3sXRW2/806+sQcynPTDHAChsphrDexDIO17x8ltxyROdXFTTRGyWX9DT70XLyTDtWH67SnyqjEZHmqQH8pR+cH92G3IjpjBlavSM4AZ6FJ85IBooxi29/72Ktdhr7UYv2GKVau0VQeMRiuZWjuLaFiTWbZx/Rj8refBMOkeKJMfq4Pg2XCy6axv7S1li14pp1Wv9sxnq5CocD73vc+3ve+93334ynFb/zGb/Abv/EbZ3di/4xNDUjU5Rfx+JsKFA8ZFI82MabGMU+uovNZkmKGeLREnDEpPtHAaPfRxXTaqw5DkskhGnsKdEcNYiftGFk6ZlA43sNq9lHNDrrVQnkuydQoKk6IV9bQu0epX1Kh9HgTY3aFaOcYXi2mX7UoHu/S2pZl9YosSmdxGppMLYI9o+QfW0F7Lu2rplm9zEKbYPXSboIqtjD7GntiHJXA0dflSZwcVjtdvfL4azwmbosJLh9lff8kUU6jgMSB9rhFZr6Iml9h+XV7GfnLZjpDKAwx4pjcSg5vuII5OoIuZCl94n50GGFMT+CsxelMouEBkpyLeuIkSbsNl+3HqLdJVtbQgFGtoPt9jGqZ6OTs1i3mukBEJ05hrOXRU2P0hiym/vgR9PYJiDWNSwZozhiYfRi+p8PqFTna05rCp0YotDQDXztFvLSMUSigRweJMiZWS7HtM22s2VV030flcxjWk/+1XQeCkGRtnepdDk/87AgM+TiHMxSPaVavTpj+zUc4/OuX8pZdX+KW/EXMrlRxj2TwvlRhxavyyrfdx2fvvYz9n1lBtbs49SFizyJ2DeZfXKV8NEJlPTLffIKFN11M4mjsDQOnCYUHlkjKeYzjC6hKiWR1HY7PYpcyrF+cg5m9ZNdjtFEls+xj9EPWLy1i9TWVlfbmvlEXKHOgSjjtE100g9n26U0VKJ70SYoZjCNz6G1jBFMDzL44y8AjMa03NBh5rwtLq6hslmRmlNZMluLhFqrdTbsLL66RG82RfXQR7dqYnR71vRP81L6v8j+PXEN3X5cTqoxzxQat2SJG32X4DkX+vlma10wx8WePknTS+iPlumSrOYr1LsoP0ZZJf88oYU5hdhVKw9yLK5SPxTRmTKyejX3HSTrP301jxsL0NZU71wknB9jY4zL8pc2+4v+IrPa7OVQcY/ae/BX04CGC77+YxDEI8yaRp9Ipt0tpoareaKDKRXQxR+PiKirRFI92qN7ZPL1YXWvSpL47h1PPMXqHg9lqkWyfpDudI3/bYdT4CBGQm+ujlaJ7zQzrByyqByNySwnmRpdys483XsCINYYfkzgmYcGi9tIx8gvDhFmD0rGE4rEuJJr2TA5vLcQ7vEzj2gkmP/I4DFRQfoB2HTp7B6jts9Lx9AmH/LymPaFQCThNjeVrutNFclFC6XjI/JsvJj+fYHdiMidbqEab3mQOz35yfZChQVZfNE3xpI/VDugPjeNXTPKzPtH1e9GGwurFdPcVUck4udke6tAsWBbRSBm1tII5PESwbRB7qUF85PhmfgQuSOa+XTQvquIXDcK84ug7D1B9VNMvG7iNhMEHA+xmSOKaWD1NNByw7/nH2Pi/xtL+OLu3p7VDJ5fILq2hKiXo9khGB1DtHiqMSAo5orKH1Q44cVOZya8M0686VA4qvG861HdC41VtCncUeNN9j/Hr/+syblm6iKFMm8pUl8rOHjt/ZJUExZeX9/KT132dL9z6A8QOlB9tERZsmtsspj4xTzRUJJyoUr9hkjAPw/fF6VLxQUQ8WOTIL1rs+Zn0D4dRLdO6fIyNPRZWD8Y/O4/OuPQniyy8PWTkgx7DtxwnHh1g/aoB/BuvZ+QD39zst+yCcvA/76BSbhEWixz/4SzZBcXkX8+CYxNcPEN/0MGth2z/eA3lBxSfcDAa69R/aDe9AYPhe1oUDzZQpxbQrguDZfTcEplTDXTGRXV6kCS0Jw3+6Js/hOobVLZv4PtZOofL7PlYE7PWZuHVFR5/+zQTX0vQ02OoBJSfThKwji1CuUj9yhHK9y6jtKb6eJ+RL9fBdejsKJHYipF7e9gLDTrP343Zi5n41AKNaybQfR+r1mHsy20ZttlCNjcg6fpkF9MlyZOr9hNlTLKnmiQzRcweZE/UYWkNgGTHOCRg1pqUHlxLh2z6QbruzPEl3OwUubkuzR1psWh/JINR3ZOm6r72BOHF27HueRxjcgCz0U97mQybDD0QkrnnGO3n76R21SC9IYOxb7QwjszBYIXGFcN0Rg3y8zGZxR6FlQbxQIGw7JHYBpnVALMXsf4Dk3gbMXpqFH8ww/rFLv0BjRErElOzsS8tn3LrCZlVKB0PsJsBQckhypn0xwssXe0wfH9I7BnU9tl4gxUG7ofsqRb9sTzdvXmKJ/o47QRnuYXaaJJt5PDyGcKqR2fUpvpYG+PYPM7DkEyPEZVcVCFPPL+ElfGIgWS9hlUtoMIt2xroOWv556+nO6qpPA5Dty8RjpWxlxrQbLN80066owb5hQTr8BwMD1DtR6z/oMWhj+xjePEoarBKc1+V2FFUVtLmevWrRumMGhRPRXRG0i9ir5ZQONlHtXvs+OMaB391G9rUVO+DwpEWdjvHqZEcwRV9/uOtP0qhCe2PjTP34h7JskfpCcUjnXS83a9obr91gIwOcI8sE8ykSzMMPtils3+Y2lvbTP6befxrL2bszj7ukRWSaoHVa6tsHNAYJxUn/2yKbf+3T3ffCNn5LvnDQTr1PIpR3T6ZIwHm7eP0BhPCa6fxVgO8Wkxz++aXuV1o3Dmb3skBGi9LuOkFd3HX71xN99JJvMU2vRGHzojJypUG05/XzP1QlW2fbuDvGKL00DpFz6Z2WRmtYABQQUjjkgFKgDYMdMHG2GiiJ4bwq2kxa/VgQmNxkOyKprM9orM9T+H4XFok3bXY2Gvh1jPU9noMPtCmP5Ihd8zEH82TP9ll9qZxBh4NyJyok5RzrF9aYPjLc+nEhV4fVSmxcqVFZsmkNzxJ9Rvz6GKe+ZcMMf7/PbDJV1v8Q5v3v/2aS1jfl2fo/h4qSrAXNwgqI6h6i9wDLeLxAbozZeyBHPYT8xhzq1AqkNTqKNdJ13IxTRiooFfXcQ7OoQwDeyRDmDew2xH2erosOhOj2IcXYNskZtvHWK9TfAK89Vzan2PbKEaYZitMXxO7JmY+R5J1SUzIrCWUvjVPsGMI+j6d6TG6QwZmAF5doXIWxWM9WjMZYreANgEFpq9w65BbTOgOGww+1KOxM0OYV7THHfSkQ5hX5BdivIUWw/cZ9AdMwpwidiAoKTrbi7i1kChjkFmPsNc7BGWbqJLFbnWhVsdQCtuATNakN5ohd8pCd3uoOF0pVtfqmMODJOU86y+cSM8t0FQeBk5u2ifggtS4JMTwIuLjHp39Q/TLJv4VGQYe9QnzabZw7WKPYmkn+duPYLWyDH15ChVrHv+/dzD9hZjciTaJZxFOD5I4wyy+QFN9MM3Rlo+kfR1UrNPiwakKRlAiM2cSlHTa36TiYTcDJr/iYnUUph9w4tUmrb0RRqLInzCoHEozcNUHQzAMmnuKtMcMJk9amL2Q7rhHb9CieKJP9m9KYCxgN9MOm/FohbDgYPqa3KxB+WhE+GABFbTxljoY602ScoHedAGVlMkcXUf1AyY+u0x/uoy70sHYaGPVMkw28pv5dl1w/FdcTVBOGLzPoO4qbjmxn5KlWLnSYeiBAoVDDYqPJUSVLH7Fob8twOj0cdo91q4fwWvERBmwuoCpSHIepYfX0xXSLQOUIto9jhHETH0xwGkEqF5Ic1uVxm7IHbPRRgwTo2S++hjZyTHmXjVMa9KlerBPY3eO2FFkjyuc1Q7hQJaJL9ToTReISxnWL8uTWU+IRsqYnQBVb9G6YoziMU2Yhc6oQcW20BmHiVtW0saZYYQOg82+9KcpzkENyTk5k2ffpv78MH2NM7tOOFGFvo82VdrMa2kVRitpYNFVKMtEB08WZ357UTrbQZkGNNvgpOPkeqCM0wjpjHqYgY2znGAtbqAzbppR8QPC0QLOskadWsTtDRCOlwjLHtpQFI608NY9jCAmHi7RH84SeYrSCR+iiH7VIb50ivpuk8QEt64JIoPEVPjltL2xuaIJMwaFUzEqAW2CuxFhBiYAkZfeFuZJU5CxJrGgvbuM1UvIz6V/ULwNlbbWzhqgbOxWhNWLUT2f7MlmOqtCKZTjkGTSxfqyx5tEAxmUbaMGM2g/wt5ok0QRlPJ0p/IYcTqtul8xiHPOefvBPV+ZDZPY0PglReRZNC4NUYFB5QlFfi4h8hRmqLG6CQynSwaoRGOGYPUUG3tsBnwPd61HVHKxWgHFwx4Dj7TpjXq4cw1UUqS5zaV/SZ7sWpz2kFjSDByM6ZfMdDr8Whtro5tmIMeHiUZNSBTmKY/cUoIRJsRZG20aWKtN7FaOYpR2Uo6KaaBu99JvzYGvL9D8oX3kl6J0jD+McWo9Ys+gXzVwmiH5uxfSGWSuhb9vFCPW2K0oXbW7lKX2/SNU//I+MkE6pV77AcpQWC2bZJPfswvJqR9LKN1tUzreo3hCUT9WJDffI8xl6IxaRNkSxYP1dKp3mMdazZOUshiNLtXH2nQm0+/MwlwIpMPy/liRxE5Xj7Z6mpVroPSEYujeJiqMMeotxr6Z4fgPu/Qu7jN+WwJRDLu3oTZaFGYTrF6C/fgcXn6G1rQFloHyQ2LXxN9dIjfXpbE7h7eRflr6wxlyR/voYg4j0DjthOp9DYz1OjoMUe4gJAn9q3eSObRCdAF0bT0fbFpjNGt2ldKj9TS4AMIdo6hYEw0WMAarqCghu/jkWjGGcbrJGcMDqHwOlcuknUrDEBw7zZrYFlajh93RRJ4iKmXS9WK6faiUIIrpjLnoUgFVLpGUsiSmQWKnl0HNr+IenE97jxRcgpKJNkAbinD7CFYvoTuUxnBOC9yGxu5orL6mN2CQWddkF/tpf4h2jLsRYoQ6XQTq8TU64y5+VWGEYERgdzRuU9OvGmzssQjzJs58Haub4K2HacdaO12p1VtsY3aCtBHQ0VmYXUxTkp6LdizCoouxtoHZDNJfqGPltMdDvQGmCVoT5gyqD2xQOhqQX4wx2/4mvfsXroEHFZkTDmYAdluza8cS2VkTuxVSfrhGbjkiP+/jLrWJCx5hJcPaZWmzvenP+5g9TWvawR/MYK91MZo9hu7rYi1upE+QJBh+jF9W1C/SqBjsWp/cUkT+G8fJrkUkpoF20nbgemKEYCiHPetQfNBh4GFNbsnH8COU1kQ5i3iwQJwx8NYD4oEC/aqNStKVtmPXJCnnWfx+hVMPseo+xtJ6OsPNSdeWAtD9Pq39VcKiQ3vSoTfkPLnwpUFnKkd7UmFMT6B7fTANVNYjGimzcbE0R3tWdSxiDww/pj9oM3hvE/vwApUnepQP9yk+uEqSdYhGSljLdXb+TTttn5B1SRyTwqE6Y99oYnVjtGVgNDqoROMtdcgtpUPETt0gyiiMVjpjp3XlBO1JFxUrUJC4ZlqDZxloz6V03zLumk+0axy7FaZN0MIY4oTsEyuYfkKcTb+XY1vRHjNZutakvbeCdiy8lR65U530/tEBVLGAVopgspx+v1rmpl3u7+jbfUjOdjsPbVqGJNmop829SnnsU2ssvXyKoftaafX+QAFzaQPzsVUSz037NlgmRDHRcPF0rxCAeKSMtdIgWd9AdXuosWGqdywQDZeIszZMjREVXMz1dlqJnVUE40X8ik2QM8iuRsSewuxrKBegnxZNaUOlGRwNzWkHt2lR+sYJ7O2jZFfTnh9OI8DYaKM9l/JXa+huDyOXxStN05q00+xIQ5Or++j5JdRlQ/SHEgrHDcwnYwG/qOiNKnJzmvyRBu0Dg9T2Wel/uhisrqZ4zIelVQzbJqk3MAaqaZfZMIDATntWFBx0qUB/PEtn2CK/GGGEWQw1AusbqFaX3GIeo9XDLHgUv3qCeG19s97+C1b1/g2yK3nsVoi91ODgFePs+++HCfdNojo9VFSgvsPDazgUvnEcY3QAa1uM3U6D7bFPzbNxw3YaOx28RWhcPkS/rCi7w+ln2DIxghirq09/wRt+mK6XZBrYjZDagQzmlEPlYJvOVJb8yQ47PzBLcPEUKtJYjR5Gs4vu9bGDEMaGmHuLg73iUTrskVmPiR1Fe9KhdLzPxoEicS4hKNvkji2howh/ZoDukEn5aIS91ILxEVauMNj+qT6lMKG+06P+gizaALcBE7f3WL9uhOzKAJljNbRjU7s4z8ZFmtJfbPa7duHInTQZut8nsQyCnMGpV5aY+oKB2fbTjGo/oL53mMRSDK7Y+AMe2oDeoEXpcDedgGAZWK2AsORhHJ3D8KsY9TbBniJLz9fs+8AS7YsGWbt+mPLhHv2KSXtCEQ0ElAs9YjePv32QyDPJBBGdHVUa2y3Gv1ijsysNUIPhHM5y2gOnvtNm9I4exWMx/oCL24gpzCtix2D1mjKZ9SQNSEyFsbCa/sD10qC49PB6ukr7ViKzbJ59KpclHq3Qmc4R5KuMfvYk0cIizsw0ut1FA+bIULooV6tFsrJKdN0B3KMrdC4ZQw14mEFCba9LlCsw9QmFduy0UDOMMNs+/ZEMG3uqDN3XQrsOsWdgRBBlTOxmhEpMukMWXj3G7Mc0LxuiXzKwe2lKPSgq7DYMPdAl9kx6l06xfKWDtsBuQ+GURc5U9EY8CvUW4eUTmL2QzHyL7IkY1eyQrNcAMEaHyZ/oYFxVwAg0xeN9wqJFULCoPpbgNGNUrLFb6R+fKAPFUzH5o23CqgeGmS78N1yhsadE8eF1iGPCoWKaFbrtQaKrD5B7aBEuGSN7cAmd9ejuqpDsr2L2EjIPnKJ/YApnpZP+EhXPOpUkZA+tEs/Ok1gW+38/QesE4xsPofftpDdkYzxZa9y5ega7E1H5lEOYjzG7JuGOUfySYuMiTe2KEqO3QW45pjtik10OURtNlDtAZj3BiAy6Qya5Q0na78dzaU959AdU2qE1TggKBv2RDN2Ld6ESQIM2PYywjFeL8Za6tHfkuejX5gi2D+PM1ehvH8Rb8bEXN9j4vnSq++QXFCvPs5hoj9Gc9sgthwx//DGSXVM0Lhtk2//vCXb8e4NgMEfsGVSe6DF4T5+44BF7JsducikeVaAttFGlO2yxcUATl6Tw+tli7tnJxFda6dIYpxYZOp5j7XdGSW63wFBYqy2isQp+yaByOMCfrqBNyB6uYfVKWEcWWH3VLrx6gtVNOw03XrIfgPKcpnC8w8rVBVS7S+woagfAqzu0pxTe1euEj1dJHq7irjdp7ciTXUgzKFopDB+MegunniUxFf2qjeFnsHs+A4/5dKZzFO9bxK+MsLHPZuBhn/z8Bq39VfolA3M4gzYUnmth1tqE1SzZZR+W1kh8yRRvFZtXQ2KYoBRmL6F6tEnn8glyShFX8ximAWs1klYLlcmg+z5mpYz+2v0wM0328Hq6UBMw3BpCRUlag5LLUL98ELuTrkjpNENG758nnB7EanTJLHRYvK5EYlnYnTSEdNoJQd5g8XqXykFOFxZavbTWI3YhzFu0pmzWr4kgjrBaJrGbBjbt8Twqgeb0NrQBrR0upq9wNhRGNISKZxh60Md98ARqaYXdi1Xq3z9NYhs49ZCiBm0qVq6wcWeqDN3XpnjCxO6ki1gZ7R7uiQV0EBDvGsdab1N8eB3VbKMLOcxemEb4polx3+NEl+0hezJtja+A3GMrxAtLmOOjJK021q330nvF1eQ2SiSdzma9+xesqJIlHi3gWiasbRANl1h9+QSjf/kYaE31riWIY5JSjnAgi/PAcU79uylKX8jRHi8y+GCL4W9sMHSvhdELUbV0SG71xmlO/GTCzJ9N0h9Il4mvHOxy9MczmP4gA3dEJMurlA7lyc85mL2QxLHwy2kX4cbLfab/yKRfdegNGFg9cNf7RGWXjTe0CQrTDN1yjN7Fk3jzTfyxImsvm6B0IuLUS032/tpBsgsz9Ac9CrM+UcZk/k0HaG9L2PFJn/W3T3Hix3Ps+vAsSW0Do1xKh1oX1zEnhtj33kWSwRLdqQJ+2SQ/F1A8oWlPyLpLz5qNJmanR7B9GKvvc/LfH2D3h9qYT8zSuHEPxW6ANb9OZnsOFWnmb3BQiaL/6gF2/HUMg2UKswGxZ9KatGmP20Q5hd3SJANFgqrHtr/3wbHJzfXJTufInuww0s9yYluBkYc0kQut7TmCnKJ8YpV4KK2tK51M0KU8fsXG3YjwDi3Ru2gMs5ChMeNQOdInnl8ia1soPYB3osb69aN0hxXtXRGtFYuRu2MMP6LxvBG6gwZOWzN4NIsxPJAu83H42Ga/AynJkDz74tVVjH6f7MggenkN7/GA1ssvw1sNMGsJOnnyipoGanIMohizVESvb8DkKHx7+KLZIxwrYs+FqPllKp0ecTWftlRfb6L7fbRpoLp9VBAy9WWP1rRLv6KIsorwySHq6qMJQUFh9XS61kEzAQyCMUX28BruVxfJrl7G3IsUmWWFu6Hxy9CZ0LgbCm9N09gL+VMGdlvjtBK0AWhw1rpEuyexlxvEpRylB1bTyN+zydZ76OOzbLsjA5USST5dxdg9vgZ+QDJURg2UUY6N1ezjT5Xxjq2hq6V0jNUyiA5MY913BGOgQmMqizZz2J0i7mofa7WJUSxCL/21wTWXkLn9caK2NJ3aDFatw/xNQ/g/XcR5bJRtn67RekGP0a8Oo3o+ut5AhxEql6E94dC/eD+F3BrDX2mw+LJxagcKeI0YuxljGQoKwwQlJ20MWOoSvjNg4/axdLn3n53F/393YbcjiGPqr7mEyr2rmAvr6CTBCEImagPElSw/uvd+eD98/T9+H9VH0wUlreU6llLYX5tk8FOPgufhbKRZjc64TW9EobSFNhMe/539TNwKrQmTMG9RfSJm/KsbbFxSwnrgCI+/by97/rjN/E3TjNxVwViuA2ltSXt7gdorykx/rk52tkV+rYEu5tC2Sfkbj5yv363nn3KBYLxEa8ql0pyhNxGjwpik3aF89yK6VodshvJ9K5x83Sj2JXU6jQz7f3uDudeMMr7hoBKo7bfIrGjsnia/EBKULGZfVmb6bxZJyjkIQmoHsmRWNfUDBbojBgN3akpHOhx/TY6dH2vgj+ZYeck0gx+7H6NyAHd2g3C0RPGBJbRp0LlsHLsRkmQdhv/3IY784h52zU/Q21ElM9uk8bwR6nugcEIz8d+6GK0+qtmmfeU0QV5hBhoVa3Qhy4nXDeHUYWSLBCTPdqfWrWRTZ9novo+qN9OiqCCddmUfWyLZqKe/+AeqRFODtKcyFI61MQHd7qTjlJUnMyndPvbjLfTkCAsvLDPxd4t0tuXplwwK8zkyD82ma+PsGaU/kC65PnDPOsFInvoOF5TCCKA9aWB1INNIaE8YxJ5JYS5i4P4WyfIqOghwayFDd3u0tgE6bW5m9RVRFrpjKi3KzULsKPrVNNNit6E/miNzdB3d6mCs1ehdvxe7FWJtdFHdPjpJQGt0xsE4tUg2GCIcqzy5zo9Jf7CMt/Zk1XqiCUfLJJ6JVmmNQFCyMH5wP5nPP0BJKXo7BwEw/AiCEOU6aD/AKBYw1lrEvV7aA0I869avGsTd0Li3ZagfiDlxU5Vdv7uB6vYJZgZRY5V0LaQgZuDrC2jHZtYbIa42yC/E5A9toG2TOJ+uqquWa2SqJTpjg+T/uIgRavLjmjCrmP8vuykc3WD2FYNUSmOUH63Dyho60SS7p2juLpBdCnAOztGMPL5wbB/lqkn2RBdqDch4JMUsY7fWeOIPd7DvV9foTuXInWijEuiPRrgbFrk5k+5oQuGRVVoTIwwcjMgdaaLd9DN6+NcO4J0y0HZEUIaNi/JUE43R7NF+8UVk/695VtcrPDFSZN+H12lfMUm/YlKY9TG30HTM57x6i3hbBaun2bikzJ7/3iIYyuDt2Z7OfBweOF0MrRJor2f5mWu/xm3BPib/fo3+ZBEjTJj8fI1Tr6xiBorJB+uY40WWr3YJx8pY9z5BcPVehj91CJXLsvDKKWInrZc7/poc4WjI8vMrtGZg9+88ysn/8DyyS5rhoyHWRo+VF45jdzTeRnR6sVWVybD7vy3S2T+EiiHOOWSXfUbuSc81Kjg4h079/9u77yjL7urA99/fSffcXDdU3cpdnYNaOUsgBAgEBpaxZex5g8eY8bOfZwRjYGbsNTMeM8vjB7bfW8BzII6tx4yNA8NgDJgokGShVupGqXOunG+OJ/zeH6dpuzH2M+6W6rZ6f9Y6a3WdunXrnFtp9/7t3960b9tBfLFF8mQXgpDWtjwLrxmk9GS0g7NvSIZkYyg3Fo0bP3EWa9MEyTMNdK+HDs79gW42seYM0t0s5moVLBMVi+GnYmhLYXsBzC2htcYo1xk4Hm1Bi617oKPCU5TCPblCd6qI7yriix6slIlVGxQrOfxsDLPjs3xDCqehCU3F0IEuVtOLtuTGbdSeLZjNLtbsOmpyhNLTPlbbx49beCkDs6PRFsy/0oCGOretV+NUFenZAHepBdUGFAcoX1cgtBRxBVolMBMORrMNXtSRVlkW2jYx613ChE2QtTF8TXvQprrFIHMmJLHkYQQhhhdgtjxiiwFeLo6RTUeNpjSYLT+aXGxb0S+RTBK9VkEvraAD6U24UYxAk54LcVc6hHaK5GJAt5Rk7e4coQ3Dj7ewar1oC7wV7TbIHfPpDCVIHVqlcVURsx1iNX26Q0nchTVYreDU8ySOrcFqGXd0iM5I1L9D2ybtG1q4a3GSgJ4ao7orAxpSMx3Wd8UxNm3lHvdrDPxlkuVbNaFVJHfYRVsG9kKFtTtHUIuK+bdMRNvWjTRoGDhokT/cZeGOGJv/sod2bYIY1CYs6mN5elnwE5r0GYPq9hBruUanFCN9Jhotr+MOsXWP2W9OMjAd7Sir787jVHxiFgQxgz7b//Cy1ts7QXPEofjQDGEhw8rNWUpfn6V+/QjuQBx7oRINFA1CJj/2Aiqb4RO/8UqMdzvs/PA0i/cV2fxHUefe7OmQ5FwXVWvgVGoMjmzBXmvC1DiqFzL/z3dSv6VN/HnY9JdrqEqd1vAUXgnK1wRkjlpU3riHrW84ReVDkxCEdEdTaBOcRoB5rou2vVglGM4xc08aw4eRx1r08i7l7Tb5w13iJ1bQtoVKJqhssRmsRRN/O1sHST43j1MdpLItTmpOAt9+sLFtEIOor4YOoi1cqtmBUhEznULXG9G21moNo9cDN0aYSWAslwltgyBmYBsGYauFiseh28NqBxitHnag8eNRy3dz2wjaVNQnYrjl6I+1Sieh1caotzDtqILcaiexmyFOPcA9uYKu1qEwgDcygOn1CDIuVruLWwlIHF0Gz8eOx4g7NmHCQZuKgSNJYtWQ+riBl4HAhV7aoD2WxCzEMTsBS7drMscN3IrCy9j0cg7xYIgg42C2fHQpD36I6nkYloHd9LGb4CUtkvOKWDXAWW6ieh7KD6DbQ3e7OK0UulQkVAqz5WOt1qNR21pHjX+ScXSjKXUjGyw108Wqd1HNDsmlBJmjVdrjaayOxkfhp2zMjo/q+KgghCDqwWC2A1iv0CqUcKsKu+ETxE0YSNPaXoi2S6bimK0OgWvRy1qElsKdDzCm4ziNkNamaH2yXTCIr4bYZ1dI5saoTVr87mOvZddzFZqjecxeGG3Z9KLaLKcRMvhdg05O0RoLaU5C+rTB4DMdzLZPfMkhdnqFtVeM0S1qYqsKswtmFxKLUPhuFW1k0YsrJKeHyZxpY6xWCQsZQscgPROSmu9hdANmX5tkeJ9PZ8DEG7cY+toGf8GuINGE3ALNa0bwEtH3SHPPcFRoP1/GGx6gMRln4OtHYWSI0LaInXTpjPo0bhhn6pMnorbuy1UGyk3aW/Is/+QWrI5GheAPxAljJs5sBS+ZRJcd9C1VaicGMHtZ2ju75J5wKF8T0BrRoAxqX9nCgB3Q3V7Cjxu0hhS+azN0wMPwQsKVNQzXYeIbmrNvzmDPl1l66xjp6YDGuENtaozCcw1MpSg+12Lu7hSjj0RTgIPSAH7cJHAhttrun343kiHZGGGrRXhmGsN1CdfLsHmCIB2DXAJr2UKtV1CJRFTQOZgltE1UsxX9QvftqOdCKhkVvg6kqW52KB1pEkwU6eZMOgMGzWGX0FZ4Scic8ehlbWAAa92O+ncMnGvpXg8xexr39Ho0b8EPorqVRi/aKpZOEgykSBxdjZY7LDPqb9Lz6I2l6aVNhr69GLWzv2MCFRiENnQKitaQjZ+AiW820Wmfbs6kt2pgdTTaBD8bo7YpRmF/Ga+YIHZiiTAf7ZW3F+to28Jag8RjC6jcAOHSCiTi0f9WQo1KJcHz8bMuRtfHWqlFQ61ME2wrClrmFiUY6QPO8XmIuwTFTFRjZBjEVjsknlqk/sottIsmWsWJz9ShEwWU3QGL9HoH5bokl6PsVjfn0MmZxIpp1vbY5I77NLamcLMxmiMO7aJBrKrRlsGmL3fQpmJ9V4zUYkDueA+7Ej134uHD9N58Fdsf6OEVEkz+8ZkoeD23Yy0YLZB+ZpHm7hK5p1doD5Vgdx1vKY293qY1mSZ3rIs3XqAxYeDHQzIVSM37UTO/Z06gXJdYOYNRzDP2jSrG7DJhs4lKJ2gNWbQHDVTgkJrpEMSiQtbqVtDmZfpb9TKlLZPAiYrtteGQemaexnWjxJ46Q2/XBM6ZFQZqKRgdwsvFaY65bPnDs4TFLKs3ZEnms3SH08ROr6KT0S7I0lNNtG3QGIthNro0x7LUJ0oE8ahWz3okS2iFdPIGuX0moaVIj9QZ2VHn2IkRhr5jsfCjPZzjcbQJoa1JLENrOEb6ZB3lumjbZPGODFs+cQq0ZvRbZdrjKexmFGKEcQttpTj5E3G2/3GV9b0Z8gfrhK5N/IVZ7NoQanZpg1/9vyE1JBvJMDEGi/gjOcxyE2tuiXBqNGo1bJhRcduZMqrnY80sEzSaGEfOYCcSkE3h7d1M6JgYXojd1ASjBTpFFz8WLZ0YPRja36KXsWmNxKKMQWBhLQeohWXcWRPd6ZI55dK5YXPULMdUOGUn6u9hGXSuncT59nOY4yOESytRkzato8LagRR2rcfKNSmcegH31BrZA0tkqw10q4WRSdO4cZLF203s+TKpg+O0h0Oq2wyyJ0Oyh+sY8ysUHq9FdTOZbdEEX5VBaY1qtFC2RVDMEO6YRHkhRqtNsKkU9WNZqUSdaM+tgZprdTAMgvFB/LRDL2OhDUXi809s8BdaAPiLS+jbr6WyMxH180g6LN+QYGypwtpuk8SixuyGaNfC3zQEQGdAUX1thomvhSQPr1C/eoilWw28QY/UnMXkH59CN1vM/MLec7VTPqnZLt2CzeJdeQaO9+hlTMwuuCs9rOXauZqlGMr3WXpDj85TSToF2LyUojeUolOMmp/Vx0zsRpRZiT+8wNZPdQhG8hBWIYh+69WmYmRPd8gdC3DXDLykYuVaG6duM7I+imq0+MSvf4R/8dH3Mvk/5whbLYzBAl4uQWLZJ/dCC2NxDWIOm76cZ+mWJPFlGHymvWFfpytRc0c0CHTyT+cxv1sm3DZJ6pl5dC5Lt+hgH/dQtSbt3cNUtthRwBuP0S3GGfzrJWrXDOKueeh6AxVzMF2Lbi5Gq2Sx8koPs5slOddh+cYkXjokPtKg9Cc2jQkXpx41l4y9aZlWzyZm+cRyHVZvSDIyWKXzkEv5Ko1dN0gu+JR3WKSPh1GDzI7H0FNNMM2oC2urS/Jwm/a2IuVtDlbbwq2GFJ5VEEJhfxntWvSyNnr7KN2CTZxRkL5MG27jA5IwIFhYZPpfTpI5nSJ3MA6Adm2MZBzWq/jXbMOqdaI5NqaJ9n1Ut4tOFmlMuOSeK4PnM7B/AWOoSGp+jVQQoP2oqJOhAtayor53kGbJIIgpurkhrHaR+EL0S89s9rCaPvVNLpXtBoHrkDsEhadXWbk7zdi3oTeZx14rozMpwrSL6vmgNZUdSbpFzdk3WLgrIyTnNbmjTVQ3wItbJB89SmZwD/7wABP/7SBrb9mD6YWkptuY1SY4DhowSoOEoYZiHqPWojeep71tgvhiF3uphp6ZRwch6z91A35cYbU0TiNFbN3DOnAMu5oiHC7Qy8dpjtrEqiGpgysy0bfP2EtVso6Bl7I4/g6bzEGY/bEJsqdClm+GtdsViVMZBr/r0Ri1KH7qcY597GbO/qrB8CcL0XPUFKmzNvYj+wkAc2yY4cdbeBkbbYDhBSTPdCnvGCB+pkLlniGCGJz4Pwyc08PkD4e46z5mK0sy0+Ff/OJD/N6Buznx0wUyJ6Pr7OYVAycDMk/NUb5zHEyTMz+zidakT/6AyfDX59BmhuZbaqysJBl+RFH6+mxUeD5eorIny+y9BUr7E/zHN/8M/AjRz+PWCWZfk6e20ye2YhJbH0CbA6RmQ0xPM/bNNfSZWcnovcTic01KjVjU+2nPFoyTc9EORdsittojnCydH14auIrEsR7hQJLaZof4wRZe0sBLxCieSUGtgUq71CctOnmFapos/FiP8T+NkZn2CWIW3U6Gbi6IApFKSKcAaTMgtBXLzRTBmRTu1hpx22NtQpE9BuVrfco7Lcw2hK6Nmq6CMrBMA2+iiNHx6Q7FSRxdJjbfYKhis3p9ChVoCvvLUb2eUoRmHDS0h6Ll9jBubVzb8u93KTqtSqfWi+NlQuoTBsnFOLHlFn7GJSglcWdr2NMrdHaN4JhbUEvr0O0SbpvATznkHzpD8/oJrFZAd2+R9CMnoJCLRlx7UTASnplB7dmG0hptKQxfkzlax1wug2NDp0tYrcG126lsMwjimsxxiK/51HflGX6yTfve6wgdhT0+TGc8Q2ypiQo0latzrF0NTk2ROQHtIahtUdSnUmRPhvgxxXc++02Wgi/z5o/8MuNrBQr7FgmKafyEjbe9iJ8waQ5PMPy/TmKebEI2Fa3dn17GXktGUzJn5qMMSjpN5nSH+qSLUw9Jniyj2l2ad+2hOWwRq4ckZ9vk99dgeY3gXGM20T/8U2ewa3WMbWPs/u061JsoyyIcHCD3rVXKr9nC0h0Bs3mTwrMQ3nUdIw8ZNEcy9NIBqekWdjNGeZuDvn4n1twana2DxF6YoXfLFGgIXIvWSJzAhvbveVQPhez63SWW68PkjrSxDhxDmSYql8Wx4vzuo/dw896THEwO461kSc2FuNWQzFNz+LNzBM4EJ//TXrb9jzUqV+dYvRYa//sYo4/6TP37JmEqoLp7gJn7JmhsDkifMCk92cT0XOwjc6y8aSvpmZDW3lHW9jq4a5rtf9SjM+iQmGly9BcTTPz5At5EgZk3FsgfyeJ+6cmN/lJdUYyuh+HZBFvHoh16QwX02Vl6ezcxfW+MbQ8sEzgp/ARoA1rDNplGj25WoXu9aA5X0QbPR6cSmKs1QjNDa4uHtW7h90xmXmcw8c2QzNmA+NPRxoHEsqI7YDD4nM/i7gx7Rhc5tG8L4XiHViXO5NhZThZHGXxGU74Gmte1KXwzWqppvmIn8YUm3WKcdtEi/+QyejhBmE1i1NsYrQ7pGZfYagftWnSGihi9gPqUS+Zkm8TZNpVr8ngJi9hGfwG+R2pINpb2fXb8xlFOv3s3lS02QysK5/Ry1CCq0URvGcc9tkSwuIzKpqm/ehdWO+p4iWURn2+ycnOWxErA2ht3kD3ZwgoC9EA6qszeWqC6xSY1HzC4v4nSGrPajNqvdy1ULIYOAqxah+LzLmt7TRJr0Rp4fdzFXdEkT5bxiin8gTjxE6sEuahPQmq6zfKNCQI3mhsy9u0m9pmlaB3ejeEVE1z3iV8iNaMxEzD3I8MUn+9GRVVxg8AxsFoBww+XCUcHaY8niS+0CEtZOkWHXsrA9MDceg3Jb7xAODWMtVwjd2I+Kgq2LIi7uCtt4g+firZQByFBEIDumzIt8X2CtXXMnoe/dzNWuUrzpk0knjxD9e4trF2rMAsd3HiPVTPD2rUxGOliTLvkD4eEtoHV9Ck91aVdimOlRjjzsyG7fi1O6ulpvC3DEGoyB1bwkmM0/mQU+94mh3+5yKapBU6cGSR+17VRZ1ZgMDZPOVDsSC3z1MEt2EMau6bIH+mwdO8ETn2c9HSXgSMep34qTy8fkn9WUfpKNJCsftMYyQcPs/jzWYpPa7KnwV1pYS+UyZ6JRjEM/q9D6PER1PQ8OXtXNI17ehU/XsJPx9jxB11WXz1BJ68Y+3YVXjhxuf5OvWyFCYfWSAzfVbSGDEYfqWE4Ds5yg9R0DJ2IkZrrnRuaaNIuGuS+2yFWTdF4xTZS3z5CLO6iu13C4RyVXWn8FDjLFvFFRXdLl5HPaGKrbXqFOMoPKe+Mk571aIyZ1B0Lr6E5+aWtJDowfMsyE8kKDx7ZibNmYrZ7pE86tEaNaCdhvYMbhJjza8SMQapbbChXsToD+BkXp9aCMCRxPJo2rOMO7rFFyq+YYPlmMHtxEpZBYCvC2OWZUXi56YuABCAol9n8mQXCbAJztYputqIlF8+L1rsTLsaOzSzfnsdPKPKHfHStDoA620TfksXoamIEeBkHw0thrtaIH6pH83JqLp1SjKXbkhhdKD2lMYOA9s4ShBp3Ok5vMElyukF1cxYAZ3qV4Rl1vmeHVTZRS9Fat1luQhBghprNXzJYvDWOtjTLNyXx7t5CfCUauuclFe5qNBk1tCFzNmD16hh2Q5OZ8XCXW3gZJ9peHGgaoybtfJr4ejQtOL7qk3h2Bq01QbuNefQsutcj7J3rS2KaYCjU6jphq7UxXzzxw9OaoF7HOjpD97rN9FIm/qu2UNlmEoy1SSa6NM9kGTisaEzA2AMGht/FWWkSOhbaNlBegNKabt5i5C+gfm2J1Asr2CcXCIcLVG8exY8ptv3LoxxeKeG5FsV4g7N6EKsddSFubfaodWJoJ2S6nUPFQtJnwOzB9OsT9KY63LbtNE9PT7Lt/S0Gn0lgeJr4YoOwmKU5lcLoadp37WL0IVi8Dca/FWIfPAupJO2rx+mlTebf4mPFfNLfvgqnoTE7ijCbwvA1s692iVVg4IRP4aky+uyctPPeAMs3p0kuhmROd8g/WYf1CoyVCGM2I1+ZIxxIYXZ87LJP4tEZVDJBWMpTv6dJ42iS9P407T0jhKZi4U6LXjFg4DkDuwbVnSHjn47jpRUYCeLPzxKMFjCCONUtNn4cWnt7bJpcZWlulOSrl7kpP82B8gSGHdId9Fm9xqE3oAlyPrUph+R8kjBmYHTyqIMnSU5cTf2ubaQPr4NSrLxqlMSKT+JMjdZkhuShRU793Ca2fOIkyzduQQUh1a0uzRFFr2oR3+gvwDlS1NonghOn4Zarae6NtuoC+HFFL2Xgneuu18kr4qsaI9BQKuJnXbqFGAMnz0XuAyaJJT8qdE24MLeI8n3sdYVVzWDXox4KoWUQjuYxvBCr3qO1PU9spUNzU4r0bIi70ov6dxgG2rYwKnV6pSRWwsZaqqDrTQgDOLcTJnsy6lJY2WoSOtH6e89XmD1Iz0TrnokFTTcbbafTpsJLmYSmS2PcIrBjGIGm8EIbo+tHwwPDENX18Bf/pgI8qNUueM10GO260PIL/PKjNcF6mdhMjiCWx0uZxFc14Yk47bhLalGRWA0YOOFjtn2CePTj2hlNEMQMMs8skWj3WHz1IMXnWsy8LomXKEU/J7noZ8ZqaiwVkoj1qFczHHhmK4VnDAIXmte3MZdjNFfyxFuKxypXkd5eoTUcIzmr0aZm89gqvzjybb6cuI7Hd94SzbBZqqETMbqDCRJnm+iYSRgzIbQoPaWwOgFqIIO2TMrbHcLXlXF9k27Hxk8o7GZUuKuCAG1E86Kyp3xSLywRzMxF/xERL7n6JugUTaY+10LPLnDml69j05dqNCeSuCkHs9XDnokKPzs3b6cx6lA4sE7qW1nKe6PeUZ28hbvuM/x4VAuyvgvau7tMfNZi7SoLswujD9XRvR5GvUP2pENjIkZ8NSSI28zEcpAJec3IMT7zzC3ojonRMhjbs0z11DBeOiRx3KG1xWPmHofRRwNC1+LU+69l6ksd7GfPFUBNjKAV+HGD+o4BVKhp7h1m9NEuq6/bwvY/rqJaXep7i8RXNYlvPifbfvtAXwUkEHUXbYxadAbVuRHnGm0qOkWIrSviy5pYPWpg5uUTeGkr6upY9+lmTUITzO65xmq2CUGIbrZQjg3zS7j1VlR0N1aivSmN7xq4GupjFr1UktaQQemJOtZCGZ1J4hUTWJUOOpsitI3zz6kSLtqOXr4wESNzuExrc5bUfDQlWBugDYVTD4jPN1m9egC3ElAfN0nNB7SGTLxQEVsPcGomXoJoMuuTh9BeD2lddoXQmuDYSRKmQWvzAFqZWG1N4ChAYzcCYk8fp/a63ee3MaoADE+D54NtYXWgPhUndDStQYMgHmU/rFa07Xy9m6DTsxk4ZJCeDYgv1Fm6LcPYUIWl6WEGvxtSnTIZfTRgzsqSbIDT1DgVg0rb5dv1PTy9NsnSzSZONUFiycXwwfA17pkWaqWHTsZZfsMQxeejwNgfzKDCqD13u2PjPJOiOK9xGgFWK8SqdVBdLxrTUNakHjmOXy5v4BdC2HUV9ZOM2ZhDRQaOhZhzq6TbHn7GxWj1WHvVOIGjUAEM/vUC3U15hr9wivWbJ6jePkFytoMKNTpt08nbOLetY3wnT3k7FJ/zUBqueeAQD33odgpfOIgaTFOfNBh6ukv2uEO7Eqe+zedbCztIHorR3NPFLJvMnxxk9J5FNrltjtemMFwfv3Du5wDwBz28lEX79bvJHFxHNVoMPdwlTLh0h5NYLR/r0BmIxYgtDKA6PU7/81HcVc3IV2bxOzJstB/0XUASPnuY9MjNeGkbq6UZeryMV0jQXraJr3goremlo5bAZtvDqrZJHumw9OoR/KQic9bH8KLW26oZtWVXjoNKJMBQNK8aJnlkBbVWwRhNsX6didkzUQFUd2jSZ0B5YbT11o0Ge6n5Vfzto8Snq7C8hjZNwuEh/JSD0Q1QQYhab9MYKZA508NdaEQBkRHVbQeZGHaDaJpvE7ykQS+tSKwEmA8dIP237v8yDWzFRQoOH8cq3YCXMjF8CE3oZaIR6qqQQ5uKxLGo62T8xCqq00PHY6zfVCQ93WP2tQ5OVWEEEIZR0OInwd/R4o7CKf7gyF3sfngN5pfQ4yMQwuxi9L9RqxnS2B4y/s0m2/9IYbQ9/IE43WyC9bkBPl2+DWs2RvaGNbbnVnh2cRTvaIbUtMK/tcTAnx9AXbWN5rjGT8QYOtDDqmuCuE3x+TalfR5erkPs+CJ6IB0tgXo++ns/X2G0ZCs21sT/+Rjm9i2gFN5YnnbRQOcyqFqTxt4cTs6hl1Lkj3QxvBCvlMVZrEPMwUr4lLc7xJcUS7ckyEwHmF3NwMfSWI0W9uFp/B0T2NMrfO7Q9Wx/vkq4dQJrtYEKEtQ2OQw9vMji64bZ+uc+zZEivb2a+NEYiUWN04A5VWQ+6ZNeVSQOxtAGxPcfR3d7jH15D3ajh9IW/kCCcDhNZWuM0jdmadyYw2lYZE/H6W0dxl6q0d5SoJsP8VOK6s2jJM/ObPTL/zcuwZLN5fqHpO8CEgDnq08x9kQOlUmhbYvKLTlS8z5+0qQ1aJF/voa5WAbLRNsWulwlNT9IZbtNaygKLpKrDVSnh3/tNrr5GE6lhzOzhp8w6EwVcE+tEH9uhpFgnKWbY8SXNcUXfFb3OqzckiE5mcRqRnkKJ+ZgPnMcJkbpXjtFbKGOuVrDXIm+6tq2WH7NOL2MYvmmGIYXw3ehN6AJEyFGRxFke/gJB6cKo587RWaxfxrxiP5gPnSAFOC9/iaWb3AILZi+L2DcGSa+0oNWm9b1k1FwMlNHNTs0Rww6+RiBo/mJtz/EdysTrHcSTKbL3Jo9TT1weXB5J4NPmFEQE2qMaoPESpZqxUGnfabfbJIcbEAYYi6Wqb5iCrOryR/q4P5YlYWjQ3i5gFtLZzlaG8I7msFdVTQnNLUY5J7dQmc4ydgjAYania11UD0fu9lF1ZrM3TdF8fkO5VdOknt0Bp2ME6bi0WiEmEH+D/dt9Esv/jbLJHQMxv78JDqbRqcTZI9UUR0Pp5qK/rNlGlj1aGBnuF5h6POjzL/eoz4dw/CiLHXmiTm8qaGoeaPjYNU6BEM5hj/voGbO0rt2M6uvyjL6hmlO7Z+g9HWPka/M0RvPk/vWKZbu3Ezu+jXKBwbpFTWJsxYT32xjVCoAzL15mNrd28gcKhM4KlpSWqoRpl2a4y7JxYDajaO0SwqUcX46evW6QTp5g9KTmoEDywTHTm7s6/39ZMmm/wTlMka7jVEsMPgnz9G7bRf1cQcVQG17muCqDK2Soj2kKTw3jOlpAjdqhOalDHqlNHokQ3mHQxBXjH1xBd3qkJxtY6410OsVwm4X96hFPjVG6vAazZ0FtAmlR1ZpTQ3QHHXIP1clrNaY//nrcNc1xYdmaF49guFncNY7GO2o6NbqaBopRWJJ0xyL+kS4a4qeZ5A5DfUpm/EPPAaArJCLf4j99acZ+3r0byOR4Mj/cxW5AzGc0c0kVnzmb7fgZyx6rTx37DjEgflxDM/k/z1wO1dtnqfRdfjO9HYe6+1EdRVhMuCX/v1X+MbD17L49qswemB6YNchtqnJ5EAFS4U89+/G2PaxGJkHj4FpEGwZZX3fMPEe/Mo7/ifvf+ytWK7P1a84gaE05W6Ct4w8x+Bb6vzJwi2MxGt854vXYjds3HWNWw6ojxdRAdhrLSp3uNQnNp3rkwIDJ33iX5CtvX2lXGX2Z3bi1DX+3q2MfHsdHbdpTiRw13pUp1wSyz7uagfV8ehM5XDnlwgchVE3aQ8ajH9umvbOEmEug3VsjtYtU1grcVSticqnMXxN/a7tdHIGVltz7PgoE98JCIpZukNx4tNV5v63beSe06zXB/EKAdfvOc0z3haWbk6TOxEjNBXKh9TZFr2hFF5SUdmVJv9X8yi3RHK+S22zC0D2ZIDVCVm9YwgvEbV9qG6DgaOKhdeXGJKApG/0bUACEHY6UK3RfN1VVLZajP/VCvgBK68s4ScUqbmQ9DQ0hw1UqCg+51HZYrN8I2SPx8gf7pA97ZE4uECYT6NsC3O9SXcyh51NAFDdlCQ13SLIJ/HjBkEMeqU0yWdmSMZdgnwK2m2Gn2hgnVkCpUg+v4BOJwhj5yZfNtvEqgGpGYWfUIS2xstEdSRKQ3wtpPjA/sv1e0RsoLDVYue/fvb8QMRjH72RWL6B71ns3TzHXDPLW7c+x2Rsjd965E0cnh1mYqhMJ9emdzbF1utmuaN4it/76hsYvlFTeL6Nvd4ijNv4bobkzR0OnR1BNy22/1GXys4ExpaddPIGjUmNU4OdbzzOZ+ZvxU13MYyQrNNhzK1gZkL2xOb45MKrOHRwktq2ZfyUJr4c1bCs7rXo5qM6kpP/PMd1rzhK/RcH0UdOAMiQx37k+wQxSB/0qE/YNLZn8V2F3QoxugHxtYBOwcTsOtiAs95BT41RePA01W1biZU17d3DLF/voIIYE38VkjhRjkZqAGpuGbuYoJe1aJWion+7bJI6topqdYifmUdvGqFd0igftv3BIkuvHebZ9Djuokm3AFXfRmlILoV0hlwaIxbZUz1aJZtwapTeYBytoPDoPJVbRmkOm+SOB3Szisx0QG2Tyfb/sc7xdwyQPinbfftJXwckAGGjQfLBw6SfzdPYWyJ5ssLgvlVqe/LUJ0zsuiZ/1KM5bLF8g83AiZD80XNbYoOQxJFVvE2DWEdn8HeMY3R9nLV2NAW1FKeXNjCaXRbuLtIuQWpG4yyfG+zXbqNW1ghDjdH20IUBwoSDUW4QJhz8lINVBbWyhlPO0xq0aI1oYmVFYEPmTEj+m6eioXayc0D8E2nvbyaR7vmvs9FYBa0JHBc35bLwySxDTg0n12EkV6PZc2hXXMxQcezsMEppcjvXmUsMMPllB+fMCsaaR6nt4T+fwf23PToVh8p/apH6sIX7zBkW37aDrTfMcPLABM/u38pb7nqaWwtneL46iheafPnsVVSW0zy/c5SZWo7dv3EWYg6p9kn43o4vy4qmV2uNUorGf8ugz56SXTR9LKhUCVxYud5h8otr1HYPoE0wOyFrVyUZONUlvtjDy8ZojkdbwDs5k2zSwWqBl1Kc+ekQy25iHk1S253D7GqSp6vRrkHLxD00hz1aoDmUITPj48cNmltzxBeaGJ0uRrVJ+nSWTlGxfPcwg/vrmJ001e0ava1JUEkRXw1xqj5WKyBX8/FSFvnHoq3J7kwVP5fAH8pi9kLScyFWw6M5aRFfVYx9bYXuSIbsUUXxk49t9Ev+d8i2336mNWG9jm63ab9qlF46T+7ZMtkDi8SX81S3uqztsbGbmsyZEBVqKlsdUJA9CebqOmY2SVipos1JUApjaQ2dSWGnot4fYcJBW5A5pckfrKNaHbSh0L0QI5uhfdcuemmTWCXA7AQYdoZuPurrZ3Z8wuu2U96ZILnkU99kY7Vg8FiP+KEF/KXlDX4BxcuJPzd/wdvKsjj969dzwt3DxLpHECuy+mMGt159gqVWmoLb5BX5E/z+F98IAwGzrzGwbp9EBaDNqMN00i5jTRvorYrGuMP6np3UN4eUj41ihWCMtPj66V1kP5ciVg1YBwqtgFKzQzm/iYyn8ReObcwLIi651IxG/+ga6k/alHcUGH3tDJ3fGyW+HlLbFCN3xMc9sUzjrnFCC9xKiPICrBbEKiHxZJd23cUb9Vj3bTrDASOP5EhNtzBXK4RTwwSuReFwhyBm4rY8QlPRGk9iDCeoj1sUv9tg+o1pyns1g0+HJBc9QttmPZ0gd6xHbLVNezSJUe1FmettI7S3D2HXelFLCA21rUkSyx6NUYfEjE/uoKKTV3TGMgSuyfA3F2T5vM/0f0ByjvZ9ckeadAZdtGWgwhB7rUkqZhBfM+mlox0tKgS7qTF8sBseuudh1tuEloXyQ8yVKrrdRpkmdtnBSDooPwQdRffaMsAPUK6Lsm3wfcxOiGUp7LqHtdoAI0rzadNAK0VjIo7V1YSOYvhJD7vWwzopwYh48WnfJ/ZXT51/2wQm3Ft4fnoXhg/LJjyf3I4yIV5sobUiFe/iBwa1ehzD0NSbLrEYbM+t8NSeAtoMcVcMBr8boM2A+ukkblmT+V8HLsjWaMB56W9ZvMiGPneERXsX3mgLqwmnD4xTTGpilWgienlXkqxtYrdCqptNBp8ow/wSvddehdlRJGIerZqLWY3+vMTnTdLHq4QJG4oDlHenCC0YemiBxp4hzJZPZVec9GyAU/HwdtlY8+ts+suQE29Pc+q+LIPPhsTXQia/HpI4vhoNhgw09akE4bbNuOsB3QETsxMwf1eaxJImd6gGSqGGbRZekSVwwV3TOJUu5noD/9SZjX2hxd9x2QQkADz+HKmJccJsKhrfbpuY3RB3oYGbjlHflMCu+SSnuxitHqpci/p5hCEqncZaaxAurWAMZNGeh7FaBbIQhqTmA5rDJn7Cxoyfm2qgFKrnEZuvEfOj7b30PDANjJRLN+PgJQ26WUVyKcBqhzjffk76iIgNFf/Ck4x/4cJz8//uDpqJVNRbJJ5ChZBYjSZim72oGPzp6UnsmiKxBPlDLdR3ngHAPfccl2kWWPyQgnKZdklh9HzaJc3Egz5mJ6Ax5mD4UNsCaJf0TI/SmkdnPIMTOzcdegsMWj4D+2MYPY3Z1aTmejQ3p0CDkXdYvUEzsmsZvtLBSxrE1jVWG6xmgFVuMfw4Ud8n10Ib4Kc1WkFti8ngM3603f36HNv+9REOfmYPXhJW3tBl9HMG63viNDcHdIsGhSe76LhD9mSL1RsSBMkQ4/Y64eEYup+DESlqvXz4M7OY7ha0m6Cbi7G+20ZbcSb/xylyc1ZUvOqHqPUqYaWKcmPRtrOES7iwjMpm0IUBVLONrjcwKibeWJ7Mt46RdWNgWXjjBcx6F6U17akchJrYviMwOUpr9yChpahNWrSHox8Ud1XR0iaFTz15uX4fiJe50f/7H7FW/vsv/nWIy8Pm3zvKzDt34q5Cu2iilcX6Xgjcc8FDV7O2N0ZyITjXoTpDeiYke6zBbH2Y/KyPVorEXOvc3C6T1IFZTv38FIl5qJ8eJuMfZ+C5NfB88m0fc2EVbBtrrUL3qgli3z3F9j8ZZ+nWNKvXadwVsOo9GtuzVLcY7Du1mbSKeu5o32D2R0IGR9exDxTJH9acedsQ7qpm6IkahWcUlZ0m5nM5jKf7e4OB1JBcZoLjpwhfdT2r19p4KY3VVJRfNUWs7NMctik+voLudDAGi+hMEmpNdKOJkR+gcfUIhhcSuFn8uIHVDkkfmCeYGgXLQB06hZVw0a4NbY/4czPobg/cGHg+67tsOkWN2Yk6x1otjVMPyf7R4xv9sgghxCURrK7Rvr7F9n95BOU4MFaiur2I1TRwqpA5WqOdz5I5VkNNLxK/ZgpnpszZt41itmHhJ3ts/l1NdUeS7IkWyaNr6G6Xqd88gN67jblXZwjHh1BHT6MsCzW/RPkt12B1Q4yeppc2cVNJzJUq3Vwao6sYfaiCUW2ihuJ0xj0MDem5qPu16QRYp2JUl4pkTkGsHJA5TdSfZLVK4avLLL9yis1/0ZYxG33ssgxIAIyHv8ummSkWXj9CY0pT2Wrgrtm0RhT1qSGG9udJ7jsBrRa9vZvoDtjEv7if+GCW0Daxa2DVOrC8TlgqYJyehZEhVDGPXliGLeNUrxukmx0iVtVkjlRYujOHl4T8wSin1s0Y2E0kGBFCvOxsffuz+K+4DqvcxismGH3Uw2r6WCt10JrRL9dYvWsc744B4qshq+9zmfy3C/hDGYIXLLysQXPEwF2L0dmaIP9dEzWY5+R9aQxPs3pThqKxGf3CCZTjkFjqUd0cY/DJdRIzC1DI0ZvM41ShOaZRXkDt+mG8hGLs65rYuoF7bJbOwCR+1SGzpEnNB5S3Wxh+9KfNfNsKx3dOEF9Q7P7IKsHh4xv8qv4jXaYZjot12QYkAP7psww9sEDJcai9YQ+NUROrBU5NR417bJuwmMN64jB2NkNoWxin5wl3TRK4Jr2BDMGOAdLPL6M9H51wUNPz0bbEwyfJHFGo8RHm3jRC5piB4UUV6PVJAzQUX/CJf/WZK/V7RwjxcqY1Vq1D+boB8l87GRXz57NQrdPbM45V75H/3LPU33g1mUdPkz2Uo721QOLQIjbQvGaE0Iq6tiYXw6gmr9pg2weXoinCKRd1bBpjbARvOIufNBk41YnGCkyOsvCqfPS7fC1E+Qb1nQP0kgadYtQUrZcyWLx1E2YXjK5BL6No9UycajR81exp5s7mYchjeJ9BePzM+cntfe0KriExNvoCLorW6G6XsF4n+81jtEc0rfGA5hisXpOkfc0EKgjAMPC3jWJMjsHwIGaji3tyhfhcnW7GYO7NIzTu3QuGgZoaxxwdRl+/E/+mXWCajH57nfZIEi+pQEEvo8kdC0j+9dELdh0IIcTLiT54PJqtYpkopVBdj3CyRC9r0R5OYJQGWd9j0rh9Cm0ZxJ+IMhD1G0dZ22Mzsq9D7Onj+HGTxvYsvW0lGq/ehXYsCEO6t+6gM1UADe5ii9aQg/IDusNJOoOwer0mvhZQPNhm9RqT6jZFaEPgQmNC0Zrw8W6vM/wY5I/4tEvRhOzWkEEnZ6ASPu60Q+qx0/K7+jJweQckf0tQLrPpS22cdZNYWWG1weiFqHINo5BHeUE0d8G1oqF7yTid0TSBG/VjcFd6dAZdvFwcb2SA0DKix6ddjPU6yzfY+Mmob8PYIz7ZJ+cIKtWNvm0hhHjR6CAg93yF8qumCCaG0OtlzMUy7ZzJ7GsNKjcNow2oj1sYy2VUOg2eR+p4lcIhj8A18fduJj7XZOE2E6Mb0EsbrF87QOhYxJabxA7OYM+vY5abDOybpbspj7PWIXXTKmZXYXghla0uvUxIb6pDfFlTerpD/lCAChSdWozKNoPpt0TdXeMLbQIXqtshedAldVZDePnse/xeUevFHpejl01AAmA8+gx289yk0zj0BqyoGNUyMSstlB9ACCiFNhVmNyC5FJA5G+CcWcEp9zCbHmati73ewl5tYLR6BMM5grgmVtYMnOySePQo/szsRt+uEEK8uLRGHz5FfMWjMRmN28AyKbzQIHXWoDtgkFjQKF/jTwyCaYBt42dckgeXQGvWdycIXQunpvBSNn48midjnVoAQCUToBS02mBbODNlMBWhBndFUZ9wWLsxZNu1s1jzMdxygNEJiK/2sGsGqXwLd1WTfcGm+IKHWW6SnI/+Ig893aX4Z88SrK1v1Cv4w9OX6LgMXdY1JD9IbE3TKSq6OUUva2H0SsRWOxgtD52IoW0Dr5TB8EPscgd7LYy6tVaq2J4HcRfdaqMS8eiHJAioX5XDXVE49RD78UMEnc5G36YQQrwktNcj9tRx7O0TYJqEmQR+yiY9E+DHFWZXs/AWj8Jhi/aOIXppE7OnMfwsVivA6lrMvyoJGjoFm8LzTSo7kgSbh+nmYyRO+lFtRzJO9aocdjMguX+a8ukphudCFl+pcUtN5r8yydCZgF7KwKmZxE4sU3pqlOZ0lsILLfyUjbPegfUK+QMOqdkksYMzBK3WRr+EPxTZ9vsyUviDfdR/6jbW9iraQ7CQsQidFNljYLejRj3NkomfgFhVM3CiG0Xknkdv+yjKD9FWHi99rkq7E+K7BtqEpTtD8l+OQ78HJIaJMk3g3ACzyyhdKYToP0GthrVWZ+2NO4iv+MRPrtEYK+HHFJlTbdIHkqxeBYPPNLEaHtZaM2og2egQy9pUdigypyA13UZ5ASrQdIouidkGfj6JVW2jWh16SUW7YOHOF4mtm1gdn8IBk9BKU/rrFbRp0prKYDU8vIkCoaVIrISs3JDEXQ9xz7QhCNBHT2EfVwSyxfey8rJasvme0Aazq3AqCqsVFaJWd0K7aLB2tUm7FD3OqWmMbsDa7cMYg0Vaww7aMTAbPdyVTvRxWx38ONR3+JdNGszaNI5/516C267CmprY6MsRQrwMhGtlDB/agxZBPkV5lyK16GPWuphdzfCj6wRxi17WQTWjAEN1PZJHVxn/dpf8wQZmq4cKNHZbo03wci7aVLSmsvTG8xSfKpNaCJh/dZbckZBOzsSph5QeWibIxlE9DxVo/JSN0Qtw1zycSvS7uZtRLL9qiGDHJNrrXb79RjZgyWZubo6f/umfplAoEI/Hufrqq3n66af/5pK05td+7dcYGRkhHo9zzz33cPz4pd9C/Y/OkHwj/Owl/+SXpV/c6AsQPyz53hXi4oX1OtkvH2T1J/aydnUKq6mY/hGDia9kKD7XJkjGCG2D+VdajIUjJI6tRHUhqQRaKczVGtp1wPNJH/HxcwlO/ZjL1v/ZorLVxm5YuBWH9KE1KluHWLtakZhXFJ9YRzXbBKNZGEiQOFNh9kcGaY457Pz4CtgW9oRDZTeUnggxDp8h3OgX62K8xNt+y+Uyd955J69+9av5yle+wuDgIMePHyeXy51/zG//9m/zO7/zO3z6059m8+bN/Of//J+59957OXToEK7r/gPP/sN52S3ZCCGEeHGE9TrFP3sWAO+WXcy9yqU5oknM9ujl47izdWLlPO2iheEVWbw1RumpLu5MFV2uoJJJdKcDStHdOsDQU6D8kNE/OgymwfobtrNy5yADJ3x81yBW8UApmteOEZ9rsHLzAIXnoux2p6iYe1OJkbecpfHtAtt+8yBhu0N4uWZGNshv/dZvMTExwQMPPHD+3ObNm8//W2vNRz7yEX71V3+VH/3RHwXgv//3/06pVOIv/uIv+Gf/7J9dsmt5WS7ZCCGEeHGErRZhq4X58HeJL2lCExbvGGBtb4wT/yIX9QlxFO0hm8SiplOwIQjwd09RuWOC9s1b6dywGafcY+D5dYxaG4YKqHTq3A5JRepElfIuA20qWKuQOLGOsbTO0F+vEMYs1q8LKTynGf+Tk8x8cxOTv/k0QaV6+S7T/C2XcttvrVa74Oj+gNfnL//yL7npppt429vextDQENdffz2f+tSnzr//9OnTLC4ucs8995w/l81mufXWW9m3b98lvXcJSIQQQvzwtGbw4/soPt+mti3Ev7tKclax6c8X6GUVnZwie6ZL+myLuTePcPJtcbIHy0zfa2JXutgrDVZvLuCVMnhDafzBDPnH5hj5+iKsltn851ErBn/bKJXrB6m8coqluwfxMha7PzhLarZLWG8w/oHHXl5Nzy5hDcnExATZbPb88cEPfvDvfLpTp07xsY99jO3bt/O1r32Nf/Wv/hX/5t/8Gz796U8DsLi4CECpVLrg40ql0vn3XSqyZCOEEOKfTH3nGbZ9B1o/div+LyzBVyBW1igNsdOrrLxqjPhKiLumUO0uW/+8jXHwFMHVW0ks+8y+Js74gy20ZaCTccKEQ/n2Er20ovhsi/KuOO1BRXs0YOuftbGX63R2DBN77gxBs7nRt9/XZmZmyGQy59+OxWJ/5zFhGHLTTTfxgQ98AIDrr7+eF154gY9//OO84x3veMmuFSRDIoQQ4hJIfP4JMm88ifJ82kMKbYButil+Z5Hkgkf2RIvD7x3GOjGPURrErHdpFy02332GlesTGN2oH4lRadJLKZJLAfZynaG/XmHyy+ts+nKI9exJgmMnsb61n2B1baNv+cVxCTMkmUzmguMHBSQjIyPs2bPngnO7d+9menoagOHhYQCWlpYueMzS0tL5910qEpAIIYS4ZPyzM4z+X49R3LcC+Syq0SK21CBIWCRnTFQ6SXtbkfnXFFh7Q4dQKxqTmvm7syy/oog3MoAKNemvHYoG8nW6GI0OzlefIqzXN/r2XnQvdev4O++8k6NHj15w7tixY2zatAmIClyHh4d58MEHz7+/VqvxxBNPcPvtt1+Se/4eWbIRQghxyQVHT/zNG4tLWAdh7GELncvhlNPYDRv7eJzZ5zcRD0H5UPrqDP7MLIN/HU354OjLPwDZaO9973u54447+MAHPsBP/uRP8uSTT/LJT36ST37ykwAopXjPe97Db/zGb7B9+/bz235HR0d561vfekmvRQISIYQQLwnt+wQrK7CyQv4pyH/f+/0Nuao+8xL3Ibn55pv5/Oc/z3/4D/+BX//1X2fz5s185CMf4e1vf/v5x/zyL/8yzWaTX/iFX6BSqfCKV7yCr371q5e0BwmA0lpfJv1HhRDiyvI6420bfQniEvv7GjXWajWy2Sy73/UBzNjF/aEPuh0O/95/pFqtXlDU2u8kQyKEEEL0i5c4Q9JPpKhVCCGEEBtOMiRCCCFEv7iCMyQSkAghhBB9Qp07LvY5LkeyZCOEEEKIDScZEiGEEKJfyJKNEEIIITbaD9tp9e97jsuRLNkIIYQQYsNJhkQIIYToF7JkI4QQQoi+cJkGFBdLlmyEEEIIseEkQyKEEEL0iSu5qFUCEiGEEKJfSA2JEEIIITaaZEiEEEL0nb9vVL0QL0cSkAghhBD9QpZshBBCCLHRruQlG9n2K4QQQogNJxkSIYQQol/Iko0QQgghNtwVHJDIko0QQgghNpxkSIQQQog+cSUXtUpAIoQQQvQLWbIRQgghhNg4kiERQggh+oTSGqUvLsVxsR+/USQgEUIIIfrFFbxkIwGJEEII0Seu5KJWqSERQgghxIaTDIkQQgjRL2TJRgghhBAbTZZshBBCCCE2kGRIhBBCiH4hSzZCCCGE2GiyZCOEEEIIsYEkQyKEEEL0C1myEUIIIUQ/uFyXXC6WLNkIIYQQYsNJhkQIIYToF1pHx8U+x2VIMiRCCCFEn/jeLpuLPf6pfvM3fxOlFO95z3vOn+t0Otx///0UCgVSqRT33XcfS0tLF3+z30cCEiGEEKJf6Et0/BM89dRTfOITn+Caa6654Px73/tevvjFL/LZz36Whx9+mPn5eX78x3/8n/ZJ/gESkAghhBBXuEajwdvf/nY+9alPkcvlzp+vVqv8wR/8AR/60Id4zWtew4033sgDDzzAY489xuOPP35Jr0ECEiGEEKJPqPDSHAC1Wu2Co9vt/r2f9/777+dNb3oT99xzzwXn9+/fj+d5F5zftWsXk5OT7Nu375LeuwQkQgghRL+4hEs2ExMTZLPZ88cHP/jBH/gp//RP/5QDBw78wPcvLi7iOA4DAwMXnC+VSiwuLl7kzV5IdtkIIYQQL0MzMzNkMpnzb8disR/4mF/6pV/iG9/4Bq7rvpSX93dIhkQIIYToE5dyl00mk7ng+EEByf79+1leXuaGG27Asiwsy+Lhhx/md37nd7Asi1KpRK/Xo1KpXPBxS0tLDA8PX9J7lwyJEEII0S9e4j4kr33ta3n++ecvOPfOd76TXbt28Su/8itMTExg2zYPPvgg9913HwBHjx5lenqa22+//eKu8/tIQCKEEEJcodLpNHv37r3gXDKZpFAonD//cz/3c7zvfe8jn8+TyWR497vfze23385tt912Sa9FAhIhhBCiT1xsY7PvPcel9OEPfxjDMLjvvvvodrvce++9fPSjH720nwRQWl+mPWaFEEKIl4larUY2m+XWN/9XLPviikt9r8MTX/rPVKvVC4pa+50UtQohhBBiw8mSjRBCCNEn+nHJ5qUiAYkQQgjRL67gab8SkAghhBB94krOkEgNiRBCCCE2nGRIhBBCiH7xt2bRXNRzXIYkIBFCCCH6hCzZCCGEEEJsIMmQCCGEEP0i1NFxsc9xGZKARAghhOgXV3ANiSzZCCGEEGLDSYZECCGE6BOKS1DUekmu5KUnAYkQQgjRL67gTq2yZCOEEEKIDScZEiGEEKJPXMl9SCQgEUIIIfrFFbzLRgISIYQQok8orVEXWQNysR+/UaSGRAghhBAbTjIkQgghRL8Izx0X+xyXIQlIhBBCiD4hSzZCCCGEEBtIMiRCCCFEv5BdNkIIIYTYcNKpVQghhBBi40iGRAghhOgT0qlVCCGEEBtPlmyEEEIIITaOZEiEEEKIPqHC6LjY57gcSUAihBBC9IsreMlGAhIhhBCiX1zBfUikhkQIIYQQG04yJEIIIUSfuJJn2UhAIoQQQvSLK7iGRJZshBBCCLHhJEMihBBC9AsNXOy23cszQSIBiRBCCNEvruQaElmyEUIIIcSGkwyJEEII0S80l6Co9ZJcyUtOMiRCCCFEv/jeLpuLPf6RPvjBD3LzzTeTTqcZGhrirW99K0ePHr3gMZ1Oh/vvv59CoUAqleK+++5jaWnpUt+5BCRCCCHElerhhx/m/vvv5/HHH+cb3/gGnufx+te/nmazef4x733ve/niF7/IZz/7WR5++GHm5+f58R//8Ut+LUrry7T6RQghhHiZqNVqZLNZXnP1r2CZsYt6Lj/o8q3nf4tqtUomk/mhPnZlZYWhoSEefvhh7rrrLqrVKoODg3zmM5/hJ37iJwA4cuQIu3fvZt++fdx2220Xda1/m2RIhBBCiD7xvV02F3tAFOT87aPb7f7/fv5qtQpAPp8HYP/+/Xiexz333HP+Mbt27WJycpJ9+/Zd0nuXgEQIIYToF5ewhmRiYoJsNnv++OAHP/gPfuowDHnPe97DnXfeyd69ewFYXFzEcRwGBgYueGypVGJxcfGS3rrsshFCCCFehmZmZi5YsonF/uGloPvvv58XXniBRx999MW+tB9IAhIhhBCiX1zCWTaZTOYfXUPyrne9iy996Us88sgjjI+Pnz8/PDxMr9ejUqlckCVZWlpieHj44q7z+8iSjRBCCNEvXuJtv1pr3vWud/H5z3+eb33rW2zevPmC9994443Yts2DDz54/tzRo0eZnp7m9ttvv2S3DZIhEUIIIa5Y999/P5/5zGf4whe+QDqdPl8Xks1micfjZLNZfu7nfo73ve995PN5MpkM7373u7n99tsv6Q4bkIBECCGE6B8hoC7Bc/wjfexjHwPg7rvvvuD8Aw88wM/+7M8C8OEPfxjDMLjvvvvodrvce++9fPSjH73Ii/y7pA+JEEIIscG+14fknh3vuyR9SL557EP/pD4kG0lqSIQQQgix4WTJRgghhOgXl3CXzeVGAhIhhBCiX4Qa1EUGFOHlGZDIko0QQgghNpxkSIQQQoh+IUs2QgghhNh4lyAgQQISIYQQQlyMKzhDIjUkQgghhNhwkiERQggh+kWouegll8t0l40EJEIIIUS/0GF0XOxzXIZkyUYIIYQQG04yJEIIIUS/uIKLWiUgEUIIIfrFFVxDIks2QgghhNhwkiERQggh+oUs2QghhBBiw2kuQUBySa7kJSdLNkIIIYTYcJIhEUIIIfqFLNkIIYQQYsOFIXCRjc3Cy7MxmgQkQgghRL+4gjMkUkMihBBCiA0nGRIhhBCiX1zBGRIJSIQQQoh+IZ1ahRBCCCE2jmRIhBBCiD6hdYjWF7dL5mI/fqNIQCKEEEL0C60vfsnlMq0hkSUbIYQQQmw4yZAIIYQQ/UJfgqLWyzRDIgGJEEII0S/CENRF1oBcpjUksmQjhBBCiA0nGRIhhBCiX8iSjRBCCCE2mg5D9EUu2ci2XyGEEEJcnCs4QyI1JEIIIYTYcJIhEUIIIfpFqEFdmRkSCUiEEEKIfqE1cLHbfi/PgESWbIQQQgix4SRDIoQQQvQJHWr0RS7ZaMmQCCGEEOKi6PDSHD+k3//932dqagrXdbn11lt58sknX4Sb+4dJQCKEEEJcwf7sz/6M973vfbz//e/nwIEDXHvttdx7770sLy+/pNchAYkQQgjRJ3SoL8nxw/jQhz7Ez//8z/POd76TPXv28PGPf5xEIsEf/uEfvkh3+YNJQCKEEEL0i5d4yabX67F//37uueee8+cMw+Cee+5h3759L8Yd/r2kqFUIIYToEz7eRTdq9fEAqNVqF5yPxWLEYrELzq2urhIEAaVS6YLzpVKJI0eOXNyF/JAkIBFCCCE2mOM4DA8P8+jiX12S50ulUkxMTFxw7v3vfz//5b/8l0vy/C8GCUiEEEKIDea6LqdPn6bX612S59Nao5S64Nz3Z0cAisUipmmytLR0wfmlpSWGh4cvybX8Y0lAIoQQQvQB13VxXfcl/ZyO43DjjTfy4IMP8ta3vhWAMAx58MEHede73vWSXosEJEIIIcQV7H3vex/veMc7uOmmm7jlllv4yEc+QrPZ5J3vfOdLeh0SkAghhBBXsJ/6qZ9iZWWFX/u1X2NxcZHrrruOr371q3+n0PXFpvTl2mNWCCGEEC8b0odECCGEEBtOAhIhhBBCbDgJSIQQQgix4SQgEUIIIcSGk4BECCGEEBtOAhIhhBBCbDgJSIQQQgix4SQgEUIIIcSGk4BECCGEEBtOAhIhhBBCbDgJSIQQQgix4SQgEUIIIcSG+/8AJJnE2ICmNsIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Multiply the data by the brain mask to remove spurious values that were not predicted\n", + "rmse = np.sqrt(np.mean(np.square(shell_data[..., idx]*brain_mask - _y_pred)))\n", + "_rmse_element = np.sqrt(np.square(shell_data[..., idx]*brain_mask - _y_pred))\n", + "\n", + "print(f\"RMSE: {rmse}\")\n", + "threshold = 10\n", + "n_error_thr = len(_rmse_element[_rmse_element > threshold])\n", + "ratio = n_error_thr / np.prod(_rmse_element.shape) * 100\n", + "print(f\"Number of RMSE values above {threshold}: {n_error_thr} ({ratio}%)\")\n", + "\n", + "# Plot the RSME\n", + "x_slice = _rmse_element[slice_idx[0], :, :]\n", + "y_slice = _rmse_element[:, slice_idx[1], :]\n", + "z_slice = _rmse_element[:, :, slice_idx[2]]\n", + "slices = [x_slice, y_slice, z_slice]\n", + "\n", + "fig, axes = plt.subplots(1, len(slices))\n", + "images = []\n", + "for i, _slice in enumerate(slices):\n", + " images.append(axes[i].imshow(_slice.T, cmap=\"viridis\", origin=\"lower\", aspect=\"equal\"))\n", + " axes[i].set_axis_off()\n", + "\n", + "plt.colorbar(images[-1])\n", + "plt.suptitle(\"RMSE\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}