-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotating_dots.py
234 lines (184 loc) · 8.13 KB
/
rotating_dots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import math
import random
from PyQt5 import QtCore, QtGui, QtWidgets
class Dot(QtWidgets.QGraphicsItem):
CenterPoint = QtCore.QPointF(0.0,0.0)
def __init__(self):
super(Dot, self).__init__()
self.angle = random.random()*math.pi*2.0
self.speed = 1.0 + random.random()*10
self.mass = 1.0 + random.random()
self.radius= 5.0 + random.random()
self.angular= random.random()*math.pi*2.0
self.color = QtCore.Qt.green
self.newPos = None
self.calcBounding()
def calcBounding(self):
adjust = 0.5
self.BoundingRect = QtCore.QRectF(-self.radius - adjust, -self.radius - adjust, 2*self.radius + adjust, 2*self.radius + adjust)
self.BoundingShape = QtGui.QPainterPath()
self.BoundingShape.addEllipse(Dot.CenterPoint, self.radius, self.radius)
def boundingRect(self):
return self.BoundingRect
def shape(self):
return self.BoundingShape
def paint(self, painter, option, widget):
painter.setBrush(self.color)
painter.drawEllipse(Dot.CenterPoint, self.radius, self.radius)
painter.drawLine(QtCore.QPointF(0,0), QtCore.QPointF(self.speed*math.cos(self.angle), self.speed*math.sin(self.angle)))
def distance(self, item):
d= self.pos()-item.pos()
return math.sqrt(d.x()**2 + d.y()**2)
# todo:
# more correct simulation when for each particle the next step ( t = t + dt )
# is calculated simultaneously.
# also for each particle any intersecting path is calculated, and the exact moment of collision
# is used as reference point.
def calcNewpos(self):
for other in self.collidingItems():
self.collide(other)
sceneRect = self.scene().sceneRect()
newpos = self.mapToParent(self.speed*math.cos(self.angle), self.speed*math.sin(self.angle))
border= 0
if newpos.x() <= sceneRect.left():
border |= 1
elif newpos.x() >= sceneRect.right():
border |= 2
elif newpos.y() <= sceneRect.top():
border |= 4
elif newpos.y() >= sceneRect.bottom():
border |= 8
if border & 3:
# top/bottom bounce -> PI - angle
self.angle= math.pi - self.angle
elif border & 12:
# left/right bounce -> negate angle
self.angle= - self.angle
if border:
newpos = self.mapToParent(self.speed*math.cos(self.angle), self.speed*math.sin(self.angle))
newpos.setX(min(max(newpos.x(), sceneRect.left()), sceneRect.right()))
newpos.setY(min(max(newpos.y(), sceneRect.top()), sceneRect.bottom()))
self.newPos= newpos
def updatePos(self):
self.setPos(self.newPos)
self.newPos= None
def collide(a, b):
# m = mass
# I = moment of inertia : integral(r^2 * dm, over entire mass)
# ring: m*r^2, disk: 1/4*m*r^2
# conserve linear momentum:
# momentum = m*v
# conserve angular momentum:
# angular_momentum = I*v
# conserve energy:
# kinetic_energy = 1/2 * m * norm(v)^2
# rotational_energy = 1/2 * I * norm(v)^2
# sum(kinetic + rotational)[t] == sum(kinetic + rotational)[t+dt]
diff = a.pos() - b.pos()
phi = math.atan2(diff.y(), diff.x())
v1x = ( a.speed*math.cos(a.angle-phi)*(a.mass-b.mass)+2.0*b.mass*b.speed*math.cos(b.angle-phi) ) / (a.mass+b.mass) * math.cos(phi) \
+ a.speed*math.sin(a.angle-phi)*math.cos(phi+math.pi/2.0)
v1y = ( a.speed*math.cos(a.angle-phi)*(a.mass-b.mass)+2.0*b.mass*b.speed*math.cos(b.angle-phi) ) / (a.mass+b.mass) * math.sin(phi) \
+ a.speed*math.sin(a.angle-phi)*math.cos(phi+math.pi/2.0)
v2x = ( b.speed*math.cos(b.angle-phi)*(b.mass-a.mass)+2.0*a.mass*a.speed*math.cos(a.angle-phi) ) / (b.mass+a.mass) * math.cos(phi) \
+ b.speed*math.sin(b.angle-phi)*math.cos(phi+math.pi/2.0)
v2y = ( b.speed*math.cos(b.angle-phi)*(b.mass-a.mass)+2.0*a.mass*a.speed*math.cos(a.angle-phi) ) / (b.mass+a.mass) * math.sin(phi) \
+ b.speed*math.sin(b.angle-phi)*math.cos(phi+math.pi/2.0)
a.speed = math.sqrt(v1x**2+v1y**2)
a.angle = math.atan2(v1y, v1x)
b.speed = math.sqrt(v2x**2+v2y**2)
b.angle = math.atan2(v2y, v2x)
angular = ( a.mass * a.radius * a.angular + b.mass * b.radius * b.angular ) / (a.mass * a.radius + b.mass * b.radius)
a.angular = angular * a.mass * a.radius
b.angular = angular * b.mass * b.radius
class GraphWidget(QtWidgets.QGraphicsView):
def __init__(self):
QtWidgets.QGraphicsView.__init__(self)
self.colors= [QtCore.Qt.red, QtCore.Qt.blue, QtCore.Qt.green]
self.colorcycle= 0
self.paramfilter = None
self.colorfilter = None
scene = QtWidgets.QGraphicsScene(self)
scene.setSceneRect(-600, -600, 1200, 900)
scene.setItemIndexMethod(QtWidgets.QGraphicsScene.NoIndex)
self.timerId = self.startTimer(1000 // 25)
self.setScene(scene)
self.setRenderHint(QtGui.QPainter.Antialiasing)
self.setCacheMode(QtWidgets.QGraphicsView.CacheBackground)
self.setViewportUpdateMode(QtWidgets.QGraphicsView.BoundingRectViewportUpdate)
#self.setTransformationAnchor(QtWidgets.QGraphicsView.AnchorUnderMouse)
#self.setResizeAnchor(QtWidgets.QGraphicsView.AnchorViewCenter)
#self.setDragMode(QtWidgets.QGraphicsView.ScrollHandDrag)
self.setWindowTitle("Dots")
self.resize(1250, 950)
self.show()
def startCircle(self):
self.colorcycle += 1
dotCount = 48
scene = self.scene()
for i in range(dotCount):
dot = Dot()
dot.setPos(math.sin((i * 6.28) / dotCount) * 200,
math.cos((i * 6.28) / dotCount) * 200)
dot.color = self.colors[self.colorcycle % len(self.colors)]
scene.addItem(dot)
def keyPressEvent(self, event):
key = event.key()
if event.modifiers() & QtCore.Qt.ShiftModifier:
delta = 10
elif event.modifiers() & QtCore.Qt.AltModifier:
delta = 50
else:
delta = 1
print("key: %x, mod=%x" % (event.key(), event.modifiers()))
if key == QtCore.Qt.Key_1:
self.startCircle()
elif key == QtCore.Qt.Key_2:
self.scene().clear()
elif key == QtCore.Qt.Key_R:
self.colorfilter = QtCore.Qt.red
elif key == QtCore.Qt.Key_G:
self.colorfilter = QtCore.Qt.green
elif key == QtCore.Qt.Key_B:
self.colorfilter = QtCore.Qt.blue
elif key == QtCore.Qt.Key_M:
self.paramfilter= "mass"
elif key == QtCore.Qt.Key_D:
self.paramfilter= "radius"
elif key in (QtCore.Qt.Key_Plus, QtCore.Qt.Key_Equal):
self.modifyItems(delta)
elif key in (QtCore.Qt.Key_Minus, QtCore.Qt.Key_Underscore):
self.modifyItems(-delta)
def modifyItems(self, delta):
if self.paramfilter is None:
return
for item in self.scene().items():
if isinstance(item, Dot):
if self.colorfilter is None or item.color == self.colorfilter:
setattr(item, self.paramfilter, getattr(item, self.paramfilter) + delta)
item.calcBounding()
def timerEvent(self, event):
# first calc all updates
for item in self.scene().items():
if isinstance(item, Dot):
item.calcNewpos()
# then perform all updates
for item in self.scene().items():
if isinstance(item, Dot):
item.updatePos()
if __name__ == "__main__":
import sys
app = QtWidgets.QApplication(sys.argv)
QtCore.qsrand(QtCore.QTime(0,0,0).secsTo(QtCore.QTime.currentTime()))
widget = GraphWidget()
widget.show()
widget.raise_()
print("""
1 - start circle
2 - clear scene
r,g,b - select dots by color: red,green,blue
m - select mass
d - select radius
+.- - modify selected param for selected dots
""")
sys.exit(app.exec_())