-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsetup.py
41 lines (36 loc) · 1.31 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from setuptools import setup, find_packages
import torch
from torch.utils.cpp_extension import CppExtension, CUDAExtension, CUDA_HOME
ext_modules = [
CppExtension('sym3eig_cpu', ['cpu/sym3eig.cpp']),
]
cmdclass = {'build_ext': torch.utils.cpp_extension.BuildExtension}
if CUDA_HOME is not None:
ext_modules += [
CUDAExtension('sym3eig_cuda',
['cuda/sym3eig.cpp', 'cuda/sym3eig_kernel.cu'])
]
__version__ = '1.0.0'
#url = 'https://github.com/mrjel/pytorch_sym3eig'
install_requires = ['torchvision']
setup_requires = ['pytest-runner']
tests_require = ['pytest', 'pytest-cov', 'numpy']
setup(
name='torch_sym3eig',
version=__version__,
description='Implementation of batch-wise eigenvector/value computation for symmetric 3x3 matrices'
'Batchwise symmetric 3x3 eigencomputation in PyTorch',
author='Jan Eric Lenssen',
author_email='janeric.lenssen@tu-dortmund.de',
#url=url,
#download_url='{}/archive/{}.tar.gz'.format(url, __version__),
keywords=[
'pytorch', 'eigenvector', 'eigenvalue', 'batchwise-sym3eig', 'geometric-deep-learning', 'neural-networks'
],
install_requires=install_requires,
setup_requires=setup_requires,
tests_require=tests_require,
ext_modules=ext_modules,
cmdclass=cmdclass,
packages=find_packages(),
)