-
Notifications
You must be signed in to change notification settings - Fork 219
/
array_set.rs
312 lines (271 loc) · 12.1 KB
/
array_set.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
use std::mem;
use crate::ssa::{
ir::{
basic_block::BasicBlockId,
dfg::DataFlowGraph,
function::{Function, RuntimeType},
instruction::{Instruction, InstructionId, TerminatorInstruction},
types::Type::{Array, Slice},
value::ValueId,
},
ssa_gen::Ssa,
};
use fxhash::{FxHashMap as HashMap, FxHashSet as HashSet};
impl Ssa {
/// Map arrays with the last instruction that uses it
/// For this we simply process all the instructions in execution order
/// and update the map whenever there is a match
#[tracing::instrument(level = "trace", skip(self))]
pub(crate) fn array_set_optimization(mut self) -> Self {
for func in self.functions.values_mut() {
func.array_set_optimization();
}
self
}
}
impl Function {
pub(crate) fn array_set_optimization(&mut self) {
let reachable_blocks = self.reachable_blocks();
if !self.runtime().is_entry_point() {
assert_eq!(reachable_blocks.len(), 1, "Expected there to be 1 block remaining in Acir function for array_set optimization");
}
let mut context =
Context::new(&self.dfg, matches!(self.runtime(), RuntimeType::Brillig(_)));
for block in reachable_blocks.iter() {
context.analyze_last_uses(*block);
}
let instructions_to_update = mem::take(&mut context.instructions_that_can_be_made_mutable);
for block in reachable_blocks {
make_mutable(&mut self.dfg, block, &instructions_to_update);
}
}
}
struct Context<'f> {
dfg: &'f DataFlowGraph,
is_brillig_runtime: bool,
array_to_last_use: HashMap<ValueId, InstructionId>,
instructions_that_can_be_made_mutable: HashSet<InstructionId>,
arrays_from_load: HashSet<ValueId>,
inner_nested_arrays: HashMap<ValueId, InstructionId>,
}
impl<'f> Context<'f> {
fn new(dfg: &'f DataFlowGraph, is_brillig_runtime: bool) -> Self {
Context {
dfg,
is_brillig_runtime,
array_to_last_use: HashMap::default(),
instructions_that_can_be_made_mutable: HashSet::default(),
arrays_from_load: HashSet::default(),
inner_nested_arrays: HashMap::default(),
}
}
/// Builds the set of ArraySet instructions that can be made mutable
/// because their input value is unused elsewhere afterward.
fn analyze_last_uses(&mut self, block_id: BasicBlockId) {
let block = &self.dfg[block_id];
for instruction_id in block.instructions() {
match &self.dfg[*instruction_id] {
Instruction::ArrayGet { array, .. } => {
let array = self.dfg.resolve(*array);
if let Some(existing) = self.array_to_last_use.insert(array, *instruction_id) {
self.instructions_that_can_be_made_mutable.remove(&existing);
}
}
Instruction::ArraySet { array, value, .. } => {
let array = self.dfg.resolve(*array);
if let Some(existing) = self.array_to_last_use.insert(array, *instruction_id) {
self.instructions_that_can_be_made_mutable.remove(&existing);
}
if self.is_brillig_runtime {
let value = self.dfg.resolve(*value);
if let Some(existing) = self.inner_nested_arrays.get(&value) {
self.instructions_that_can_be_made_mutable.remove(existing);
}
let result = self.dfg.instruction_results(*instruction_id)[0];
self.inner_nested_arrays.insert(result, *instruction_id);
}
// If the array we are setting does not come from a load we can safely mark it mutable.
// If the array comes from a load we may potentially being mutating an array at a reference
// that is loaded from by other values.
let terminator = self.dfg[block_id].unwrap_terminator();
// If we are in a return block we are not concerned about the array potentially being mutated again.
let is_return_block =
matches!(terminator, TerminatorInstruction::Return { .. });
// We also want to check that the array is not part of the terminator arguments, as this means it is used again.
let mut array_in_terminator = false;
terminator.for_each_value(|value| {
if value == array {
array_in_terminator = true;
}
});
if (!self.arrays_from_load.contains(&array) || is_return_block)
&& !array_in_terminator
{
self.instructions_that_can_be_made_mutable.insert(*instruction_id);
}
}
Instruction::Call { arguments, .. } => {
for argument in arguments {
if matches!(self.dfg.type_of_value(*argument), Array { .. } | Slice { .. })
{
let argument = self.dfg.resolve(*argument);
if let Some(existing) =
self.array_to_last_use.insert(argument, *instruction_id)
{
self.instructions_that_can_be_made_mutable.remove(&existing);
}
}
}
}
Instruction::Load { .. } => {
let result = self.dfg.instruction_results(*instruction_id)[0];
if matches!(self.dfg.type_of_value(result), Array { .. } | Slice { .. }) {
self.arrays_from_load.insert(result);
}
}
_ => (),
}
}
}
}
/// Make each ArraySet instruction in `instructions_to_update` mutable.
fn make_mutable(
dfg: &mut DataFlowGraph,
block_id: BasicBlockId,
instructions_to_update: &HashSet<InstructionId>,
) {
if instructions_to_update.is_empty() {
return;
}
// Take the instructions temporarily so we can mutate the DFG while we iterate through them
let block = &mut dfg[block_id];
let instructions = block.take_instructions();
for instruction in &instructions {
if instructions_to_update.contains(instruction) {
let instruction = &mut dfg[*instruction];
if let Instruction::ArraySet { mutable, .. } = instruction {
*mutable = true;
} else {
unreachable!(
"Non-ArraySet instruction in instructions_to_update!\n{instruction:?}"
);
}
}
}
*dfg[block_id].instructions_mut() = instructions;
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use im::vector;
use noirc_frontend::monomorphization::ast::InlineType;
use crate::ssa::{
function_builder::FunctionBuilder,
ir::{
function::RuntimeType,
instruction::{BinaryOp, Instruction},
map::Id,
types::Type,
},
};
#[test]
fn array_set_in_loop_with_conditional_clone() {
// We want to make sure that we do not mark a single array set mutable which is loaded
// from and cloned in a loop. If the array is inadvertently marked mutable, and is cloned in a previous iteration
// of the loop, its clone will also be altered.
//
// brillig fn main f0 {
// b0():
// v3 = allocate
// store [[Field 0, Field 0, Field 0, Field 0, Field 0], [Field 0, Field 0, Field 0, Field 0, Field 0]] at v3
// v4 = allocate
// store [[Field 0, Field 0, Field 0, Field 0, Field 0], [Field 0, Field 0, Field 0, Field 0, Field 0]] at v4
// jmp b1(u32 0)
// b1(v6: u32):
// v8 = lt v6, u32 5
// jmpif v8 then: b3, else: b2
// b3():
// v9 = eq v6, u32 5
// jmpif v9 then: b4, else: b5
// b4():
// v10 = load v3
// store v10 at v4
// jmp b5()
// b5():
// v11 = load v3
// v13 = array_get v11, index Field 0
// v14 = array_set v13, index v6, value Field 20
// v15 = array_set v11, index v6, value v14
// store v15 at v3
// v17 = add v6, u32 1
// jmp b1(v17)
// b2():
// return
// }
let main_id = Id::test_new(0);
let mut builder = FunctionBuilder::new("main".into(), main_id);
builder.set_runtime(RuntimeType::Brillig(InlineType::default()));
let array_type = Type::Array(Arc::new(vec![Type::field()]), 5);
let zero = builder.field_constant(0u128);
let array_constant =
builder.array_constant(vector![zero, zero, zero, zero, zero], array_type.clone());
let nested_array_type = Type::Array(Arc::new(vec![array_type.clone()]), 2);
let nested_array_constant = builder
.array_constant(vector![array_constant, array_constant], nested_array_type.clone());
let v3 = builder.insert_allocate(array_type.clone());
builder.insert_store(v3, nested_array_constant);
let v4 = builder.insert_allocate(array_type.clone());
builder.insert_store(v4, nested_array_constant);
let b1 = builder.insert_block();
let zero_u32 = builder.numeric_constant(0u128, Type::unsigned(32));
builder.terminate_with_jmp(b1, vec![zero_u32]);
// Loop header
builder.switch_to_block(b1);
let v5 = builder.add_block_parameter(b1, Type::unsigned(32));
let five = builder.numeric_constant(5u128, Type::unsigned(32));
let v8 = builder.insert_binary(v5, BinaryOp::Lt, five);
let b2 = builder.insert_block();
let b3 = builder.insert_block();
let b4 = builder.insert_block();
let b5 = builder.insert_block();
builder.terminate_with_jmpif(v8, b3, b2);
// Loop body
// b3 is the if statement conditional
builder.switch_to_block(b3);
let two = builder.numeric_constant(5u128, Type::unsigned(32));
let v9 = builder.insert_binary(v5, BinaryOp::Eq, two);
builder.terminate_with_jmpif(v9, b4, b5);
// b4 is the rest of the loop after the if statement
builder.switch_to_block(b4);
let v10 = builder.insert_load(v3, nested_array_type.clone());
builder.insert_store(v4, v10);
builder.terminate_with_jmp(b5, vec![]);
builder.switch_to_block(b5);
let v11 = builder.insert_load(v3, nested_array_type.clone());
let twenty = builder.field_constant(20u128);
let v13 = builder.insert_array_get(v11, zero, array_type.clone());
let v14 = builder.insert_array_set(v13, v5, twenty);
let v15 = builder.insert_array_set(v11, v5, v14);
builder.insert_store(v3, v15);
let one = builder.numeric_constant(1u128, Type::unsigned(32));
let v17 = builder.insert_binary(v5, BinaryOp::Add, one);
builder.terminate_with_jmp(b1, vec![v17]);
builder.switch_to_block(b2);
builder.terminate_with_return(vec![]);
let ssa = builder.finish();
// We expect the same result as above
let ssa = ssa.array_set_optimization();
let main = ssa.main();
assert_eq!(main.reachable_blocks().len(), 6);
let array_set_instructions = main.dfg[b5]
.instructions()
.iter()
.filter(|instruction| matches!(&main.dfg[**instruction], Instruction::ArraySet { .. }))
.collect::<Vec<_>>();
assert_eq!(array_set_instructions.len(), 2);
if let Instruction::ArraySet { mutable, .. } = &main.dfg[*array_set_instructions[0]] {
// The single array set should not be marked mutable
assert!(!mutable);
}
}
}