forked from optuna/optuna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chainer_integration.py
126 lines (99 loc) · 4.21 KB
/
chainer_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
Optuna example that demonstrates a pruner for Chainer.
In this example, we optimize the hyperparameters of a neural network for hand-written
digit recognition in terms of validation loss. The network is implemented by Chainer and
evaluated by MNIST dataset. Throughout the training of neural networks, a pruner observes
intermediate results and stops unpromising trials.
You can run this example as follows:
$ python chainer_integration.py
"""
import chainer
import chainer.functions as F
import chainer.links as L
import numpy as np
from packaging import version
import optuna
if version.parse(chainer.__version__) < version.parse("4.0.0"):
raise RuntimeError("Chainer>=4.0.0 is required for this example.")
N_TRAIN_EXAMPLES = 3000
N_VALID_EXAMPLES = 1000
BATCHSIZE = 128
EPOCH = 10
PRUNER_INTERVAL = 3
def create_model(trial):
# We optimize the numbers of layers and their units.
n_layers = trial.suggest_int("n_layers", 1, 3)
layers = []
for i in range(n_layers):
n_units = trial.suggest_int("n_units_l{}".format(i), 32, 256, log=True)
layers.append(L.Linear(None, n_units))
layers.append(F.relu)
layers.append(L.Linear(None, 10))
return chainer.Sequential(*layers)
# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
def objective(trial):
model = L.Classifier(create_model(trial))
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
rng = np.random.RandomState(0)
train, valid = chainer.datasets.get_mnist()
train = chainer.datasets.SubDataset(
train, 0, N_TRAIN_EXAMPLES, order=rng.permutation(len(train))
)
valid = chainer.datasets.SubDataset(
valid, 0, N_VALID_EXAMPLES, order=rng.permutation(len(valid))
)
train_iter = chainer.iterators.SerialIterator(train, BATCHSIZE)
valid_iter = chainer.iterators.SerialIterator(valid, BATCHSIZE, repeat=False, shuffle=False)
# Setup trainer.
updater = chainer.training.StandardUpdater(train_iter, optimizer)
trainer = chainer.training.Trainer(updater, (EPOCH, "epoch"))
# Add Chainer extension for pruners.
trainer.extend(
optuna.integration.ChainerPruningExtension(
trial, "validation/main/accuracy", (PRUNER_INTERVAL, "epoch")
)
)
trainer.extend(chainer.training.extensions.Evaluator(valid_iter, model))
trainer.extend(
chainer.training.extensions.PrintReport(
[
"epoch",
"main/loss",
"validation/main/loss",
"main/accuracy",
"validation/main/accuracy",
]
)
)
log_report_extension = chainer.training.extensions.LogReport(log_name=None)
trainer.extend(log_report_extension)
# Run training.
# Please set show_loop_exception_msg False to inhibit messages about TrialPruned exception.
# ChainerPruningExtension raises TrialPruned exception to stop training, and
# trainer shows some messages every time it receive TrialPruned.
trainer.run(show_loop_exception_msg=False)
# Save loss and accuracy to user attributes.
log_last = log_report_extension.log[-1]
for key, value in log_last.items():
trial.set_user_attr(key, value)
return log_report_extension.log[-1]["validation/main/accuracy"]
if __name__ == "__main__":
study = optuna.create_study(direction="maximize", pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=100)
pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED]
complete_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE]
print("Study statistics: ")
print(" Number of finished trials: ", len(study.trials))
print(" Number of pruned trials: ", len(pruned_trials))
print(" Number of complete trials: ", len(complete_trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
print(" User attrs:")
for key, value in trial.user_attrs.items():
print(" {}: {}".format(key, value))