diff --git a/python-sdk/nuscenes/lidarseg/lidarseg_utils.py b/python-sdk/nuscenes/lidarseg/lidarseg_utils.py index f9036a2e..caee229f 100644 --- a/python-sdk/nuscenes/lidarseg/lidarseg_utils.py +++ b/python-sdk/nuscenes/lidarseg/lidarseg_utils.py @@ -1,10 +1,10 @@ # nuScenes dev-kit. # Code written by Fong Whye Kit, 2020. -import colorsys from typing import Dict, Iterable, List, Tuple import cv2 +import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas @@ -71,6 +71,9 @@ def plt_to_cv2(points: np.array, coloring: np.array, im, imsize: Tuple[int, int] mat = cv2.cvtColor(mat, cv2.COLOR_RGB2BGR) mat = cv2.resize(mat, imsize) + # Clear off the current figure to prevent an accumulation of figures in memory. + plt.close('all') + return mat @@ -149,3 +152,77 @@ def _array_in_list(arr: List, list_arrays: List) -> bool: filter_lidarseg_labels.append(i) return filter_lidarseg_labels + + +def create_lidarseg_legend(labels_to_include_in_legend: List[int], + idx2name: Dict[int, str], name2color: Dict[str, List[int]], + loc: str = 'upper center', ncol: int = 3, bbox_to_anchor: Tuple = None): + """ + Given a list of class indices, the mapping from class index to class name, and the mapping from class name + to class color, produce a legend which shows the color and the corresponding class name. + :param labels_to_include_in_legend: Labels to show in the legend. + :param idx2name: The mapping from class index to class name. + :param name2color: The mapping from class name to class color. + :param loc: The location of the legend. + :param ncol: The number of columns that the legend has. + :param bbox_to_anchor: A 2-tuple (x, y) which places the top-left corner of the legend specified by loc + at x, y. The origin is at the bottom-left corner and x and y are normalized between + 0 and 1 (i.e. x > 1 and / or y > 1 will place the legend outside the plot. + """ + + recs = [] + classes_final = [] + classes = [name for idx, name in sorted(idx2name.items())] + + for i in range(len(classes)): + if labels_to_include_in_legend is None or i in labels_to_include_in_legend: + name = classes[i] + recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=np.array(name2color[name]) / 255)) + + # Truncate class names to only first 25 chars so that legend is not excessively long. + classes_final.append(classes[i][:25]) + + plt.legend(recs, classes_final, loc=loc, ncol=ncol, bbox_to_anchor=bbox_to_anchor) + + +def paint_points_label(lidarseg_labels_filename: str, filter_lidarseg_labels: List[int], + name2idx: Dict[str, int], colormap: Dict[str, List[int]]) -> np.ndarray: + """ + Paint each label in a pointcloud with the corresponding RGB value, and set the opacity of the labels to + be shown to 1 (the opacity of the rest will be set to 0); e.g.: + [30, 5, 12, 34, ...] ------> [[R30, G30, B30, 0], [R5, G5, B5, 1], [R34, G34, B34, 1], ...] + :param lidarseg_labels_filename: Path to the .bin file containing the labels. + :param filter_lidarseg_labels: The labels for which to set opacity to zero; this is to hide those points + thereby preventing them from being displayed. + :param name2idx: A dictionary containing the mapping from class names to class indices. + :param colormap: A dictionary containing the mapping from class names to RGB values. + :return: A numpy array which has length equal to the number of points in the pointcloud, and each value is + a RGBA array. + """ + + # Load labels from .bin file. + points_label = np.fromfile(lidarseg_labels_filename, dtype=np.uint8) # [num_points] + + # Given a colormap (class name -> RGB color) and a mapping from class name to class index, + # get an array of RGB values where each color sits at the index in the array corresponding + # to the class index. + colors = colormap_to_colors(colormap, name2idx) # Shape: [num_class, 3] + + if filter_lidarseg_labels is not None: + # Ensure that filter_lidarseg_labels is an iterable. + assert isinstance(filter_lidarseg_labels, (list, np.ndarray)), \ + 'Error: filter_lidarseg_labels should be a list of class indices, eg. [9], [10, 21].' + + # Check that class indices in filter_lidarseg_labels are valid. + assert all([0 <= x < len(name2idx) for x in filter_lidarseg_labels]), \ + 'All class indices in filter_lidarseg_labels should ' \ + 'be between 0 and {}'.format(len(name2idx) - 1) + + # Filter to get only the colors of the desired classes; this is done by setting the + # alpha channel of the classes to be viewed to 1, and the rest to 0. + colors = filter_colors(colors, filter_lidarseg_labels) # Shape: [num_class, 4] + + # Paint each label with its respective RGBA value. + coloring = colors[points_label] # Shape: [num_points, 4] + + return coloring diff --git a/python-sdk/nuscenes/nuscenes.py b/python-sdk/nuscenes/nuscenes.py index e0cd50b6..6805beaa 100644 --- a/python-sdk/nuscenes/nuscenes.py +++ b/python-sdk/nuscenes/nuscenes.py @@ -12,7 +12,6 @@ import cv2 import matplotlib.pyplot as plt -import matplotlib.patches as mpatches import numpy as np import sklearn.metrics from PIL import Image @@ -22,7 +21,7 @@ from tqdm import tqdm from nuscenes.lidarseg.lidarseg_utils import filter_colors, colormap_to_colors, plt_to_cv2, get_stats, \ - get_key_from_value, get_labels_in_coloring + get_key_from_value, get_labels_in_coloring, create_lidarseg_legend, paint_points_label from nuscenes.utils.data_classes import LidarPointCloud, RadarPointCloud, Box from nuscenes.utils.geometry_utils import view_points, box_in_image, BoxVisibility, transform_matrix from nuscenes.utils.map_mask import MapMask @@ -409,19 +408,23 @@ def box_velocity(self, sample_annotation_token: str, max_time_diff: float = 1.5) else: return pos_diff / time_diff - def get_sample_lidarseg_stats(self, sample_token: str, sort_counts: bool = True, + def get_sample_lidarseg_stats(self, sample_token: str, sort_by: str = 'count', lidarseg_preds_bin_path: str = None) -> None: """ Print the number of points for each class in the lidar pointcloud of a sample. Classes with have no points in the pointcloud will not be printed. :param sample_token: Sample token. - :param sort_counts: If True, the stats will be printed in ascending order of frequency; if False, - the stats will be printed alphabetically according to class name. + :param sort_by: One of three options: count / name / index. If 'count`, the stats will be printed in + ascending order of frequency; if `name`, the stats will be printed alphabetically + according to class name; if `index`, the stats will be printed in ascending order of + class index. :param lidarseg_preds_bin_path: A path to the .bin file which contains the user's lidar segmentation predictions for the sample. """ assert hasattr(self, 'lidarseg'), 'Error: You have no lidarseg data; unable to get ' \ 'statistics for segmentation of the point cloud.' + assert sort_by in ['count', 'name', 'index'], 'Error: sort_by can only be one of the following: ' \ + 'count / name / index.' sample_rec = self.get('sample', sample_token) ref_sd_token = sample_rec['data']['LIDAR_TOP'] @@ -457,23 +460,25 @@ def get_sample_lidarseg_stats(self, sample_token: str, sort_counts: bool = True, for i in range(len(lidarseg_counts)): lidarseg_counts_dict[self.lidarseg_idx2name_mapping[i]] = lidarseg_counts[i] - if sort_counts: + if sort_by == 'count': out = sorted(lidarseg_counts_dict.items(), key=lambda item: item[1]) - else: + elif sort_by == 'name': out = sorted(lidarseg_counts_dict.items()) + else: + out = lidarseg_counts_dict.items() for class_name, count in out: if count > 0: idx = get_key_from_value(self.lidarseg_idx2name_mapping, class_name) - print('{:3} {:35} n={:12,}'.format(idx, class_name, count)) + print('{:3} {:40} n={:12,}'.format(idx, class_name, count)) print('=' * len(header)) def list_categories(self) -> None: self.explorer.list_categories() - def list_lidarseg_categories(self) -> None: - self.explorer.list_lidarseg_categories() + def list_lidarseg_categories(self, sort_by: str = 'count') -> None: + self.explorer.list_lidarseg_categories(sort_by=sort_by) def list_attributes(self) -> None: self.explorer.list_attributes() @@ -515,12 +520,14 @@ def render_sample_data(self, sample_data_token: str, with_anns: bool = True, nsweeps: int = 1, out_path: str = None, underlay_map: bool = True, use_flat_vehicle_coordinates: bool = True, show_lidarseg: bool = False, + show_lidarseg_legend: bool = False, filter_lidarseg_labels: List = None, lidarseg_preds_bin_path: str = None, verbose: bool = True) -> None: self.explorer.render_sample_data(sample_data_token, with_anns, box_vis_level, axes_limit, ax, nsweeps=nsweeps, out_path=out_path, underlay_map=underlay_map, use_flat_vehicle_coordinates=use_flat_vehicle_coordinates, show_lidarseg=show_lidarseg, + show_lidarseg_legend=show_lidarseg_legend, filter_lidarseg_labels=filter_lidarseg_labels, lidarseg_preds_bin_path=lidarseg_preds_bin_path, verbose=verbose) @@ -624,12 +631,18 @@ def list_categories(self) -> None: np.mean(stats[:, 2]), np.std(stats[:, 2]), np.mean(stats[:, 3]), np.std(stats[:, 3]))) - def list_lidarseg_categories(self) -> None: + def list_lidarseg_categories(self, sort_by: str = 'count') -> None: """ Print categories and counts of the lidarseg data. These stats only cover the split specified in nusc.version. + :param sort_by: One of three options: count / name / index. If 'count`, the stats will be printed in + ascending order of frequency; if `name`, the stats will be printed alphabetically + according to class name; if `index`, the stats will be printed in ascending order of + class index. """ assert hasattr(self.nusc, 'lidarseg'), 'Error: nuScenes-lidarseg not installed!' + assert sort_by in ['count', 'name', 'index'], 'Error: sort_by can only be one of the following: ' \ + 'count / name / index.' print('Calculating stats for nuScenes-lidarseg...') start_time = time.time() @@ -650,11 +663,17 @@ def list_lidarseg_categories(self) -> None: for i in range(len(lidarseg_counts)): lidarseg_counts_dict[self.nusc.lidarseg_idx2name_mapping[i]] = lidarseg_counts[i] - out = sorted(lidarseg_counts_dict.items(), key=lambda item: item[1]) + if sort_by == 'count': + out = sorted(lidarseg_counts_dict.items(), key=lambda item: item[1]) + elif sort_by == 'name': + out = sorted(lidarseg_counts_dict.items()) + else: + out = lidarseg_counts_dict.items() + # Print frequency counts of each class in the lidarseg dataset. for class_name, count in out: idx = get_key_from_value(self.nusc.lidarseg_idx2name_mapping, class_name) - print('{:3} {:35} nbr_points={:12,}'.format(idx, class_name, count)) + print('{:3} {:40} nbr_points={:12,}'.format(idx, class_name, count)) print('Calculated stats for {} point clouds in {:.1f} seconds.\n====='.format( len(self.nusc.lidarseg), time.time() - start_time)) @@ -809,16 +828,9 @@ def map_pointcloud_to_image(self, lidarseg_labels_filename = None if lidarseg_labels_filename: - points_label = np.fromfile(lidarseg_labels_filename, dtype=np.uint8) - - # A scatter plot is used for displaying the lidarseg points; however, the scatter plot takes in colors - # as an array of RGB values, and thus the colormap needs to be converted to the appropriate format for - # later use. - colors = colormap_to_colors(self.nusc.colormap, self.nusc.lidarseg_name2idx_mapping) - - if filter_lidarseg_labels: - colors = filter_colors(colors, filter_lidarseg_labels) - coloring = colors[points_label] + # Paint each label in the pointcloud with a RGBA value. + coloring = paint_points_label(lidarseg_labels_filename, filter_lidarseg_labels, + self.nusc.lidarseg_name2idx_mapping, self.nusc.colormap) else: coloring = depths print('Warning: There are no lidarseg labels in {}. Points will be colored according to distance ' @@ -901,13 +913,8 @@ def render_pointcloud_in_image(self, # Produce a legend with the unique colors from the scatter. if pointsensor_channel == 'LIDAR_TOP' and show_lidarseg and show_lidarseg_legend: - recs = [] - classes_final = [] - classes = [name for idx, name in sorted(self.nusc.lidarseg_idx2name_mapping.items())] - - # A scatter plot is used for displaying the lidarseg points; however, the scatter plot takes in colors - # as an array of RGB values, and thus the colormap needs to be converted to the appropriate format for - # later use. + # Since the labels are stored as class indices, we get the RGB colors from the colormap in an array where + # the position of the RGB color corresponds to the index of the class it represents. color_legend = colormap_to_colors(self.nusc.colormap, self.nusc.lidarseg_name2idx_mapping) # If user does not specify a filter, then set the filter to contain the classes present in the pointcloud @@ -916,14 +923,8 @@ def render_pointcloud_in_image(self, if filter_lidarseg_labels is None: filter_lidarseg_labels = get_labels_in_coloring(color_legend, coloring) - for i in range(len(classes)): - # Create legend only for labels specified in the lidarseg filter. - if filter_lidarseg_labels is None or i in filter_lidarseg_labels: - recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=color_legend[i])) - - # Truncate class names to only first 25 chars so that legend is not excessively long. - classes_final.append(classes[i][:25]) - plt.legend(recs, classes_final, loc='upper center', ncol=3) + create_lidarseg_legend(filter_lidarseg_labels, + self.nusc.lidarseg_idx2name_mapping, self.nusc.colormap) if out_path is not None: plt.savefig(out_path, bbox_inches='tight', pad_inches=0, dpi=200) @@ -1092,6 +1093,7 @@ def render_sample_data(self, underlay_map: bool = True, use_flat_vehicle_coordinates: bool = True, show_lidarseg: bool = False, + show_lidarseg_legend: bool = False, filter_lidarseg_labels: List = None, lidarseg_preds_bin_path: str = None, verbose: bool = True) -> None: @@ -1111,6 +1113,7 @@ def render_sample_data(self, setting is more correct and rotates the plot by ~90 degrees. :param show_lidarseg: When set to True, the lidar data is colored with the segmentation labels. When set to False, the colors of the lidar data represent the distance from the center of the ego vehicle. + :param show_lidarseg_legend: Whether to display the legend for the lidarseg labels in the frame. :param filter_lidarseg_labels: Only show lidar points which belong to the given list of classes. If None or the list is empty, all classes will be displayed. :param lidarseg_preds_bin_path: A path to the .bin file which contains the user's lidar segmentation @@ -1213,16 +1216,25 @@ def render_sample_data(self, lidarseg_labels_filename = None if lidarseg_labels_filename: - points_label = np.fromfile(lidarseg_labels_filename, dtype=np.uint8) - - # A scatter plot is used for displaying the lidarseg points; however, the scatter plot takes - # in colors as an array of RGB values, and thus the colormap needs to be converted to the - # appropriate format. - coloring = colormap_to_colors(self.nusc.colormap, self.nusc.lidarseg_name2idx_mapping) - - if filter_lidarseg_labels: - coloring = filter_colors(coloring, filter_lidarseg_labels) - colors = coloring[points_label] + # Paint each label in the pointcloud with a RGBA value. + colors = paint_points_label(lidarseg_labels_filename, filter_lidarseg_labels, + self.nusc.lidarseg_name2idx_mapping, self.nusc.colormap) + + if show_lidarseg_legend: + # Since the labels are stored as class indices, we get the RGB colors from the colormap + # in an array where the position of the RGB color corresponds to the index of the class + # it represents. + color_legend = colormap_to_colors(self.nusc.colormap, self.nusc.lidarseg_name2idx_mapping) + + # If user does not specify a filter, then set the filter to contain the classes present in + # the pointcloud after it has been projected onto the image; this will allow displaying the + # legend only for classes which are present in the image (instead of all the classes). + if filter_lidarseg_labels is None: + filter_lidarseg_labels = get_labels_in_coloring(color_legend, colors) + + create_lidarseg_legend(filter_lidarseg_labels, + self.nusc.lidarseg_idx2name_mapping, self.nusc.colormap, + loc='upper left', ncol=1, bbox_to_anchor=(1.05, 1.0)) else: colors = np.minimum(1, dists / axes_limit / np.sqrt(2)) print('Warning: There are no lidarseg labels in {}. Points will be colored according to distance ' @@ -1260,7 +1272,6 @@ def render_sample_data(self, # Limit visible range. ax.set_xlim(-axes_limit, axes_limit) ax.set_ylim(-axes_limit, axes_limit) - elif sensor_modality == 'camera': # Load boxes and image. data_path, boxes, camera_intrinsic = self.nusc.get_sample_data(sample_data_token, diff --git a/python-sdk/nuscenes/tests/test_lidarseg.py b/python-sdk/nuscenes/tests/test_lidarseg.py new file mode 100644 index 00000000..8b636d7f --- /dev/null +++ b/python-sdk/nuscenes/tests/test_lidarseg.py @@ -0,0 +1,41 @@ +import unittest +import os + +from nuscenes import NuScenes + + +class TestNuScenesLidarseg(unittest.TestCase): + def setUp(self): + assert 'NUSCENES' in os.environ, 'Set NUSCENES env. variable to enable tests.' + self.nusc = NuScenes(version='v1.0-mini', dataroot=os.environ['NUSCENES'], verbose=False) + + def test_num_classes(self) -> None: + """ + Check that the correct number of classes (32 classes) are loaded. + """ + self.assertEqual(len(self.nusc.lidarseg_idx2name_mapping), 32) + + def test_num_colors(self) -> None: + """ + Check that the number of colors in the colormap matches the number of classes. + """ + num_classes = len(self.nusc.lidarseg_idx2name_mapping) + num_colors = len(self.nusc.colormap) + self.assertEqual(num_colors, num_classes) + + def test_classes(self) -> None: + """ + Check that the class names match the ones in the colormap, and are in the same order. + """ + classes_in_colormap = list(self.nusc.colormap.keys()) + for name, idx in self.nusc.lidarseg_name2idx_mapping.items(): + self.assertEqual(name, classes_in_colormap[idx]) + + +if __name__ == '__main__': + # Runs the tests without throwing errors. + test = TestNuScenesLidarseg() + test.setUp() + test.test_num_classes() + test.test_num_colors() + test.test_classes() diff --git a/python-sdk/nuscenes/utils/color_map.py b/python-sdk/nuscenes/utils/color_map.py index 69329bd4..d9b1290f 100644 --- a/python-sdk/nuscenes/utils/color_map.py +++ b/python-sdk/nuscenes/utils/color_map.py @@ -38,7 +38,8 @@ def get_colormap() -> Dict[str, Iterable[int]]: "flat.other": [175, 0, 75], "static.manmade": [222, 184, 135], # Burlywood "static.vegetation": [0, 175, 0], # Green - "static.other": [255, 228, 196] # Bisque + "static.other": [255, 228, 196], # Bisque + "vehicle.ego": [255, 240, 245] } return classname_to_color diff --git a/python-sdk/tutorials/nuscenes_lidarseg_tutorial.ipynb b/python-sdk/tutorials/nuscenes_lidarseg_tutorial.ipynb index e477a6f2..d4258881 100644 --- a/python-sdk/tutorials/nuscenes_lidarseg_tutorial.ipynb +++ b/python-sdk/tutorials/nuscenes_lidarseg_tutorial.ipynb @@ -16,7 +16,7 @@ "metadata": {}, "source": [ "## Setup\n", - "To install the nuScenes-lidarseg expansion, please download the dataset from https://www.nuscenes.org/download. Unpack the compressed file(s) into `/data/sets/nuscenes` and your folder structure should end up looking like this:\n", + "To install the nuScenes-lidarseg expansion, download the dataset from https://www.nuscenes.org/download. Unpack the compressed file(s) into `/data/sets/nuscenes` and your folder structure should end up looking like this:\n", "```\n", "└── nuscenes \n", " ├── Usual nuscenes folders (i.e. samples, sweep)\n", @@ -66,7 +66,7 @@ "metadata": {}, "source": [ "## Statistics of lidarseg dataset for the v1.0-mini split\n", - "Let's get a quick feel of the lidarseg dataset by looking at what classes are in it and the number of points belonging to each class. The classes will be sorted in ascending order based on the number of points." + "Let's get a quick feel of the lidarseg dataset by looking at what classes are in it and the number of points belonging to each class. The classes will be sorted in ascending order based on the number of points (since `sort_by='count'` below); you can also sort the classes by class name or class index by setting `sort_by='name'` or `sort_by='index'` respectively." ] }, { @@ -75,7 +75,39 @@ "metadata": {}, "outputs": [], "source": [ - "nusc.list_lidarseg_categories()" + "nusc.list_lidarseg_categories(sort_by='count')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With `list_lidarseg_categories`, you can get the index which each class name belongs to by looking at the leftmost column. You can also get a mapping of the indices to the class names from the `lidarseg_idx2name_mapping` attribute of the NuScenes class." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "nusc.lidarseg_idx2name_mapping" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conversely, you can get the mapping of the class names to the indices from the `lidarseg_name2idx_mapping` attribute of the NuScenes class." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "nusc.lidarseg_name2idx_mapping" ] }, { @@ -83,7 +115,7 @@ "metadata": {}, "source": [ "## Pick a sample token\n", - "Let's pick a sample token to use for this tutorial." + "Let's pick a sample to use for this tutorial." ] }, { @@ -100,7 +132,7 @@ "metadata": {}, "source": [ "## Get statistics of a lidarseg sample token\n", - "Let's pick a lidarseg sample token and take a look at what objects are present in this particular sample." + "Now let's take a look at what classes are present in the pointcloud of this particular sample." ] }, { @@ -109,14 +141,14 @@ "metadata": {}, "outputs": [], "source": [ - "nusc.get_sample_lidarseg_stats(my_sample['token'], sort_counts=True)" + "nusc.get_sample_lidarseg_stats(my_sample['token'], sort_by='count')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "By doing ```sort_counts=True```, the classes and their respective frequency counts are printed in ascending order; On the other hand, ```sort_counts=False``` will print the classes and their respective frequency counts in alphabetical order." + "By doing `sort_by='count'`, the classes and their respective frequency counts are printed in ascending order; you can also do `sort_by='name'` and `sort_by='index'` here as well." ] }, { @@ -165,6 +197,25 @@ "Now only points in the pointcloud belonging to trucks and trailers are filtered out for your viewing pleasure. " ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition, you can display a legend which indicates the color for each class by using `show_lidarseg_legend`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "nusc.render_sample_data(sample_data_token,\n", + " with_anns=False,\n", + " show_lidarseg=True,\n", + " show_lidarseg_legend=True)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -185,8 +236,7 @@ " render_intensity=False,\n", " show_lidarseg=True,\n", " filter_lidarseg_labels=[9, 14, 18],\n", - " show_lidarseg_legend=True,\n", - " verbose=True)" + " show_lidarseg_legend=True)" ] }, { @@ -205,8 +255,7 @@ "source": [ "nusc.render_sample(my_sample['token'],\n", " show_lidarseg=True,\n", - " filter_lidarseg_labels=[9, 14, 18],\n", - " verbose=True)" + " filter_lidarseg_labels=[9, 14, 18])" ] }, { @@ -237,7 +286,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We then pass the scene token into ```render_scene_channel_lidarseg``` indicating that we are only interested in construction vehicles and man-made objects.\n", + "We then pass the scene token into ```render_scene_channel_lidarseg``` indicating that we are only interested in construction vehicles and man-made objects (here, we set `verbose=True` to produce a window which will allows us to see the frames as they are being random). \n", + "\n", + "In addition, you can use `dpi` (to adjust the size of the lidar points) and `imsize` (to adjust the size of the rendered image) to tune the aesthetics of the renderings to your liking.\n", "\n", "(Note: the following code is commented out as it crashes in Jupyter notebooks.)" ] @@ -251,8 +302,9 @@ "# import os\n", "# nusc.render_scene_channel_lidarseg(my_scene['token'], \n", "# 'CAM_BACK', \n", - "# filter_lidarseg_labels=[15, 30],\n", + "# filter_lidarseg_labels=[15, 24],\n", "# verbose=True, \n", + "# dpi=100,\n", "# imsize=(1280, 720))" ] }, @@ -273,8 +325,9 @@ "source": [ "# nusc.render_scene_channel_lidarseg(my_scene['token'],\n", "# 'CAM_BACK',\n", - "# filter_lidarseg_labels=[15, 30],\n", + "# filter_lidarseg_labels=[15, 24],\n", "# verbose=True,\n", + "# dpi=100,\n", "# imsize=(1280, 720),\n", "# render_mode='video',\n", "# out_folder=os.path.expanduser('~/Desktop/my_folder'))" @@ -300,11 +353,14 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [ "# nusc.render_scene_lidarseg(my_scene['token'], \n", "# filter_lidarseg_labels=[26, 9],\n", + "# verbose=True,\n", "# dpi=100,\n", "# out_path=os.path.expanduser('~/Desktop/my_rendered_scene.avi'))" ] @@ -316,7 +372,14 @@ "## Visualizing LIDAR segmentation predictions\n", "In all the above functions, the labels of the LIDAR pointcloud which have been rendered are the ground truth. If you have trained a model to segment LIDAR pointclouds and have run it on the nuScenes-lidarseg dataset, you can visualize your model's predictions with nuScenes-lidarseg as well!\n", "\n", - "You simply need to pass the path to the .bin file where your predictions for the given sample are to `lidarseg_preds_bin_path` for these functions:\n", + "Each of your .bin files should be a `numpy.uint8` array; as a tip, you can save your predictions as follows:\n", + "```\n", + "np.array(predictions).astype(np.uint8).tofile(bin_file_out)\n", + "```\n", + "- `predictions`: The predictions from your model (e.g. `[30, 5, 18, ..., 30]`)\n", + "- `bin_file_out`: The path to write your .bin file to (e.g. `/some/folder/_lidarseg.bin`)\n", + "\n", + "Then you simply need to pass the path to the .bin file where your predictions for the given sample are to `lidarseg_preds_bin_path` for these functions:\n", "- `list_lidarseg_categories`\n", "- `render_sample_data`\n", "- `render_pointcloud_in_image`\n", @@ -344,7 +407,6 @@ " show_lidarseg=True,\n", " filter_lidarseg_labels=[9, 14, 18],\n", " show_lidarseg_legend=True,\n", - " verbose=True,\n", " lidarseg_preds_bin_path=my_predictions_bin_file)" ] }, @@ -372,7 +434,7 @@ "\n", "# nusc.render_scene_channel_lidarseg(my_scene['token'], \n", "# 'CAM_BACK', \n", - "# filter_lidarseg_labels=[15, 30],\n", + "# filter_lidarseg_labels=[15, 24],\n", "# verbose=True, \n", "# imsize=(1280, 720),\n", "# lidarseg_preds_folder=my_folder_of_predictions)" @@ -403,7 +465,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.7.7" } }, "nbformat": 4,