diff --git a/README.Rmd b/README.Rmd index 10810c5..65525ed 100644 --- a/README.Rmd +++ b/README.Rmd @@ -64,14 +64,8 @@ For nutrition survey datasets that include MUAC measurements, the IPC recommends The following diagram illustrates how this process/workflow using the `ipctools` functions: -```{r, results = "asis"} - "```mermaid - graph TD; - 'Process dataset using process_muac_data()' --> 'Check for missing data using check_missing_data()' - 'Check for missing data using check_missing_data()' --> 'A tibble showing number and proportion of missing data per variable' - 'Check for missing data using check_missing_data()' --> 'Check data quality using ipc_muac_checks()' - 'Check data quality using ipc_muac_checks()' --> 'A list of data quality checks performed and their results' - ```" +```{r ipctools-workflow, echo = FALSE, fig.align = "center"} +knitr::include_graphics("https://github.com/nutriverse/ipctools/assets/5742010/68f0425a-ec51-48f0-8cd2-c0ea50f18e6f") ``` The functions in `ipctools` are pipe-friendly hence the workflow described above can be done through piped operations as follows: diff --git a/README.md b/README.md index 7d4c5bb..d911dee 100644 --- a/README.md +++ b/README.md @@ -94,18 +94,7 @@ processed) to provide an assessment of data quality. The following diagram illustrates how this process/workflow using the `ipctools` functions: -``` r - "```mermaid - graph TD; - 'Process dataset using process_muac_data()' --> 'Check for missing data using check_missing_data()' - 'Check for missing data using check_missing_data()' --> 'A tibble showing number and proportion of missing data per variable' - 'Check for missing data using check_missing_data()' --> 'Check data quality using ipc_muac_checks()' - 'Check data quality using ipc_muac_checks()' --> 'A list of data quality checks performed and their results' - ```" -``` - -\[1\] -“`mermaid\n graph TD;\n 'Process dataset using process_muac_data()' --> 'Check for missing data using check_missing_data()'\n 'Check for missing data using check_missing_data()' --> 'A tibble showing number and proportion of missing data per variable'\n 'Check for missing data using check_missing_data()' --> 'Check data quality using ipc_muac_checks()'\n 'Check data quality using ipc_muac_checks()' --> 'A list of data quality checks performed and their results'\n`” + The functions in `ipctools` are pipe-friendly hence the workflow described above can be done through piped operations as follows: