Car-Parrinello Molecular Dynamics

Eric J. Bylaska HPCC Group

Moral: "A man dreams of a miracle and wakes up with loaves of bread"

Erich Maria Remarque

Molecular Dynamics Loop

(1) Compute Forces on atoms, $F_{I}(t)$ for current atomic configuration, $R_{I}(t)$

 $F_{I}(t) \leftarrow$ calculate using classical potentials (can do large systems and long simulation times) •calculate directly from first principles by solving manyelectron Schrödinger equations (can treat very complex chemistry, but simulations times are very long) (2) Update atom positions using Newtons laws

• $R_{I}(t+\Delta t) \leftarrow 2^{*}R_{I}(t) - R_{I}(t-\Delta t) + \Delta t^{2}/(M_{I})^{*}F_{I}(t)$

Ab Initio Molecular Dynamics – For Problems Beyond Classical MD Simulations

Systems with unusual chemical bonding

- Clusters, surfaces and defects
- Metallic and semiconductor liquids
- Diffusion of impurities and defects

Phenomena involving changes in electronic structure

- Band gap of semiconductors in liquid phase
- Solvation in polar liquids
- Chemical reactions

Application Goals - Study complex systems with ab initio dynamics

Al³⁺ Hydrolysis

Enzymatic Active Site

Chemical Reactions

Pacific Northwest National Laboratory U.S. Department of Energy 4

Comparison of Classical and Ab Initio Molecular Dynamics

Classical MD	First Principles MD
 Phenomenological potential	 Potential energy surface
energy surface	calculated directly from the
(typically restricted to two body	Schrodinger equation (many-body
contributions)	terms included automatically)
 Difficult to describe bond	 Describes bond
breaking/making	breaking/making
 Electronic properties are <u>not</u>	 Electronic spectra included in
available	calculation
 Can do millions of particles 	 Limited to 250 atoms with significant dynamics

Basic Features of Ab Initio Molecular Dynamics

Energy functional
$$E[n, R_{I}] = \sum_{i} \left\langle \psi_{i} \left| -\frac{1}{2} \nabla^{2} \right| \psi_{i} \right\rangle + \int V_{ext}(\mathbf{r}; R_{I}) n(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \iint \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + \int \varepsilon_{xc}(n) n(\mathbf{r}) d\mathbf{r}$$

Pacific Northwest National Laboratory U.S. Department of Energy 6

Pitfalls of Ab Initio Molecular Dynamics Expensive?

Energy Conservation – Born-Oppenheimer Error dE/dR = (∂E/∂c)(dc/dR) + ∂ E/∂R

"Attempts to implement such a dynamical scheme in a straightforward fashion prove to be unstable. Specifically, the atomic dynamics do not conserve energy unless a very high degree of convergence in the electronic structure calculation is demanded. If this is not done the electronic system behaves like a heat sink or source......"

-- Remler and Madden

Car-Parrinello Dynamics

Car and Parrinello suggested that ionic dynamics could be run in parallel with a ficticious electronic dynamics via the following Lagrangean

$$L = \sum_{i} \frac{1}{2} \mu \langle \dot{\psi}_{i} | \dot{\psi}_{i} \rangle + \sum_{I} \frac{1}{2} M_{I} \dot{R}_{I}^{2}$$
$$+ E[\{\psi_{i}\}, \{R_{I}\}, \text{constraints}]$$

Amazingly these equations of motion result in a conservative ionic dynamics that is extremely close to the Born-Oppenheimer surface.

The electronic system behaves quasi-adiabatically. That is the electonic system follows the ionic system and there is very little additional motion wandering away from the Born-Oppenheimer surface.

In order to solve the AIMD equations we need to expand the wavefunctions Ψ in a basis set

$$\psi_i = \sum_{\alpha} c_{\alpha} \varphi_{\alpha}$$

Atomic centered basis set (e.g. gaussians,)	Plane wave basis set
 All-electron (both core and valence electrons included in calculation) 	 Typically requires pseudopotentials (defined on following slide) but can be made all electron with PAW
 Forces are expensive to calculate 	• Forces can be calculated efficiently
•First principles MD expensive	•Efficient first principles MD

Elements of Ab Initio Molecular Dynamics

Local Density Functional Theory

$$E = \sum \int \psi_i^*(\mathbf{r}) [-1/2\Delta] \psi_i(\mathbf{r}) d\mathbf{r} + \int V_{ext}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$$

+ $(1/2) \int \int \frac{n(\mathbf{r}) n(\mathbf{r}') d\mathbf{r} d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} + E_{xc}[n, |\nabla n|]$

 $n(\mathbf{r}) = \sum \psi_i^*(\mathbf{r}) \psi_i(\mathbf{r}) \qquad \qquad \int \psi_i^*(\mathbf{r}) \psi_j(\mathbf{r}) d\mathbf{r} = \delta_{i,j}$

Elements of Ab Initio Molecular Dynamics

Car-Parrinello Equation - Local Density Functional Theory

 $\mu \dot{\Psi}_{i} = 0 \text{ then Kohn-Sham}$ $\mu \dot{\Psi}_{i} = \frac{\delta E}{\delta \Psi_{i}^{*}} - \sum_{j} \Lambda_{i,j} \Psi_{j}$ $\frac{\delta E}{\delta \Psi_{i}^{*}} = ((-1/2)\Delta + V_{ext} + V_{c} + V_{xc})\Psi_{i}$ need to be
efficient $\mathbf{F}_{I} = \sum_{i} \langle \Psi_{i} | \frac{\partial H}{\partial \mathbf{R}_{I}} | \Psi_{i} \rangle$

We use plane-waves and pseudopotentials $\psi_i(\mathbf{r}) = \sum c_k^i \exp(\iota \mathbf{k} \cdot \mathbf{r})$ $V_{ext} \rightarrow pseudopotentials$

$$\left[(-1/2) \Delta \Psi \right] + \left[V_{ext} \Psi \right] + \left[V_{c} \Psi \right] + \left[V_{xc} \Psi \right] = E \Psi$$
$$\left[\langle \Psi_i | \Psi_j \rangle = \delta_{i,j} \right]$$

Scaling for calculating $H\Psi + \Lambda\Psi$

- N_e*N_q diagonal in k-space
- (N_a*N_g + N_gLog N_g + N_e*N_g) + (N_a* N_e*N_g) diagonal in r-space and k-space
- N_e * N_gLog N_g + N_e *N_g + 2 N_gLog N_g + N_g + N_e * N_g diagonal in r-space
- N_e * N_gLog N_g + N_e *N_g + N_e *N_g diagonal in r-space
- Orthonormalization: N_e² *N_g + N_e³

Example 1b: S_2 molecule LDA Car-Parrinello Simulation.

```
title "S2 MD LDA/25Ry"
start s2.md
geometry
S 0.0 0.0 0.0
S 0.0 0.0 1.95
end
pspw
  car-parrinello
     time step 5.0
                  #Typically between 1 and 20
     fake mass 600.0 #Typically between 300 and and 1500
     loop 10 100
   end
   mult 3
end
set nwpw:minimizer 2
task pspw energy
task pspw car-parrinello
```

³2_g - S₂ Energy Surface from Car-Parrinello Simulation

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 15

Energy Conservation

Total Energy Conservation of triplet S2 simulation

Battelle

uboratory U.S. Department of Energy 16

Born-Oppenheimer Error

Pacific Northwest National Laboratory U.S. Department of Energy 17

Ionic and Ficticious Electronic Kinetic Energies

Pacific Northwest National Laboratory U.S. Department of Energy 18

A Closer look at Born-Oppenheimer and Car-Parrinello

Adiabicity is not built into the Car-Parrinello equations of motion. As pointed out by Remler and Madden

"equipartion principle tells us that the average kinetic energies of all degrees of freedom in the classical system will be equal at equilibrium. The adiabatic state, in which the ficticious system is at a very low temperature and the ionic system is hot is therefore metastable."

The metastable motion is the result of a good start-up procedure and the overlap of the ficticious electronic motion with the ionic motion must be small (i.e. Start simulation on BO surface! Also, standard CP works best for large band gap systems)

Total ionic momentum is NOT rigorously conserved

Na₅ Car-Parrinello Simulation – Electronic heating in Car-Parrinello

Electronic heating can be controlled with thermostats. However, this can result in a serious fluctuation of the total ionic momentum, especially in isolated systems.

Pacific Northwest National Laboratory U.S. Department of Energy 20

Ab Initio Molecular Dynamics References

- R. Car and M. Parrinello (1985), "Unified Approach for Molecular Dynamics and Density Functional Theory", Phys. Rev. Lett, 55(22), pages 2471-2474.
- R. Car and M. Parrinello (1989), "The Unified Approach for Molecular Dynamics and Density Functional Theory", in Simple Molecular Systems at Very High Density, vol. 186 of NATO ASI Series, series B, Physics, P.P. Loubeyre and N. Boccara (Eds.) (Plenum Press, NY) pages 455-476.
- D.K. Remler, and P.A. Madden (1990), "Molecular dynamics without effective potentials via the Car-Parrinello approach", Mol. Phys., 70(6), page 921-966.
- T. Morishita, S. Nose (1999), "Momentum conservation law in the Car-Parrinello method," Phys Rev. B., 59 (23) pages 15126-15132
- D. Marx and J. Hutter (2000), "Ab Initio Molecular Dynamics: Theory and Implementation", Modern Methods and Algorithms fo Quantum Chemistry, Proceedings, Second Edition, J. Grotendorst(Ed.), John von Neumann Institute for Computing, Julich, NIC Series, Vol. 3. (<u>http://www.fz-juelich.de/nic-series/Volume3/marx.pdf</u>)
- M. Valiev, E.J. Bylaska, A. Gramada, and J.H. Weare (2002), First Principle Molecular Dynamics Simulations using Density-Functional Theory, chapter 56, in <u>Reviews In</u> <u>Modern Quantum Chemistry: A Celebration Of The Contributions Of R. G. Parr, Ed. K.D.</u> Sen (World Scientific, Singapore).