-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprocess_input.py
executable file
·71 lines (61 loc) · 2.65 KB
/
process_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import json
def prepare_input_file(input_file_snli, input_file_multi, output_train, output_val):
f_train = open(output_train, 'w')
f_val = open(output_val, 'w')
split = int(550152 * 0.98)
multi_split = int(392702 * 0.97)
print("SNLI split: ", split)
print("Multi split: ", multi_split)
with open(input_file_snli, 'r') as f_in:
for idx, line in enumerate(f_in):
data = eval(line)
if idx < split:
f_train.write(data['sentence1_processed'] + '\n')
f_train.write(data['sentence2_processed'] + '\n')
else:
f_val.write(data['sentence1_processed'] + '\n')
f_val.write(data['sentence2_processed'] + '\n')
with open(input_file_multi, 'r') as f_in:
for idx, line in enumerate(f_in):
data = eval(line)
if idx < multi_split:
f_train.write(data['sentence1_processed'] + '\n')
f_train.write(data['sentence2_processed'] + '\n')
else:
f_val.write(data['sentence1_processed'] + '\n')
f_val.write(data['sentence2_processed'] + '\n')
'''
with open(input_multi_mismatched, 'r') as f_in:
for line in f_in:
data = eval(line)
f_out.write(data['sentence1_processed'] + '\n')
f_out.write(data['sentence2_processed'] + '\n')
'''
f_train.close()
f_val.close()
def process_text(text):
text = text.replace('(', '').replace(')', '')
return text.lower()
def process_snli(input_file, out_file):
f_out = open(out_file, 'w')
with open(input_file, 'r') as f_in:
for line in f_in:
data = eval(line)
s1_parsed = process_text(data['sentence1_binary_parse'])
s2_parsed = process_text(data['sentence2_binary_parse'])
data['sentence1_processed'] = s1_parsed
data['sentence2_processed'] = s2_parsed
json_str = json.dumps(data) + '\n'
f_out.write(json_str)
f_out.close()
multi_nli_train = '../datasets/multinli_1.0/multinli_1.0_dev_mismatched.jsonl'
snli_train = '../datasets/snli_1.0/snli_1.0_train.jsonl'
snli_train_processed = '../datasets/snli_1.0/snli_1.0_train_processed.jsonl'
multi_nli_train_processed = '../datasets/multinli_1.0/multinli_1.0_train_processed.jsonl'
output_train = '../datasets/nli_data/train.txt'
output_val = '../datasets/nli_data/valid.txt'
#process_snli(snli_train, snli_train_processed)
#print("SNLI done")
#process_snli(multi_nli_train, multi_nli_train_processed)
prepare_input_file(snli_train_processed, multi_nli_train_processed, output_train, output_val)
print("MultiNLI done")