forked from xinntao/Real-ESRGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_realesrgan_video.py
398 lines (342 loc) · 16.5 KB
/
inference_realesrgan_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import argparse
import cv2
import glob
import mimetypes
import numpy as np
import os
import shutil
import subprocess
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from os import path as osp
from tqdm import tqdm
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
try:
import ffmpeg
except ImportError:
import pip
pip.main(['install', '--user', 'ffmpeg-python'])
import ffmpeg
def get_video_meta_info(video_path):
ret = {}
probe = ffmpeg.probe(video_path)
video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])
ret['width'] = video_streams[0]['width']
ret['height'] = video_streams[0]['height']
ret['fps'] = eval(video_streams[0]['avg_frame_rate'])
ret['audio'] = ffmpeg.input(video_path).audio if has_audio else None
ret['nb_frames'] = int(video_streams[0]['nb_frames'])
return ret
def get_sub_video(args, num_process, process_idx):
if num_process == 1:
return args.input
meta = get_video_meta_info(args.input)
duration = int(meta['nb_frames'] / meta['fps'])
part_time = duration // num_process
print(f'duration: {duration}, part_time: {part_time}')
os.makedirs(osp.join(args.output, f'{args.video_name}_inp_tmp_videos'), exist_ok=True)
out_path = osp.join(args.output, f'{args.video_name}_inp_tmp_videos', f'{process_idx:03d}.mp4')
cmd = [
args.ffmpeg_bin, f'-i {args.input}', '-ss', f'{part_time * process_idx}',
f'-to {part_time * (process_idx + 1)}' if process_idx != num_process - 1 else '', '-async 1', out_path, '-y'
]
print(' '.join(cmd))
subprocess.call(' '.join(cmd), shell=True)
return out_path
class Reader:
def __init__(self, args, total_workers=1, worker_idx=0):
self.args = args
input_type = mimetypes.guess_type(args.input)[0]
self.input_type = 'folder' if input_type is None else input_type
self.paths = [] # for image&folder type
self.audio = None
self.input_fps = None
if self.input_type.startswith('video'):
video_path = get_sub_video(args, total_workers, worker_idx)
self.stream_reader = (
ffmpeg.input(video_path).output('pipe:', format='rawvideo', pix_fmt='bgr24',
loglevel='error').run_async(
pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
meta = get_video_meta_info(video_path)
self.width = meta['width']
self.height = meta['height']
self.input_fps = meta['fps']
self.audio = meta['audio']
self.nb_frames = meta['nb_frames']
else:
if self.input_type.startswith('image'):
self.paths = [args.input]
else:
paths = sorted(glob.glob(os.path.join(args.input, '*')))
tot_frames = len(paths)
num_frame_per_worker = tot_frames // total_workers + (1 if tot_frames % total_workers else 0)
self.paths = paths[num_frame_per_worker * worker_idx:num_frame_per_worker * (worker_idx + 1)]
self.nb_frames = len(self.paths)
assert self.nb_frames > 0, 'empty folder'
from PIL import Image
tmp_img = Image.open(self.paths[0])
self.width, self.height = tmp_img.size
self.idx = 0
def get_resolution(self):
return self.height, self.width
def get_fps(self):
if self.args.fps is not None:
return self.args.fps
elif self.input_fps is not None:
return self.input_fps
return 24
def get_audio(self):
return self.audio
def __len__(self):
return self.nb_frames
def get_frame_from_stream(self):
img_bytes = self.stream_reader.stdout.read(self.width * self.height * 3) # 3 bytes for one pixel
if not img_bytes:
return None
img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3])
return img
def get_frame_from_list(self):
if self.idx >= self.nb_frames:
return None
img = cv2.imread(self.paths[self.idx])
self.idx += 1
return img
def get_frame(self):
if self.input_type.startswith('video'):
return self.get_frame_from_stream()
else:
return self.get_frame_from_list()
def close(self):
if self.input_type.startswith('video'):
self.stream_reader.stdin.close()
self.stream_reader.wait()
class Writer:
def __init__(self, args, audio, height, width, video_save_path, fps):
out_width, out_height = int(width * args.outscale), int(height * args.outscale)
if out_height > 2160:
print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
'We highly recommend to decrease the outscale(aka, -s).')
if audio is not None:
self.stream_writer = (
ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}',
framerate=fps).output(
audio,
video_save_path,
pix_fmt='yuv420p',
vcodec='libx264',
loglevel='error',
acodec='copy').overwrite_output().run_async(
pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
else:
self.stream_writer = (
ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}',
framerate=fps).output(
video_save_path, pix_fmt='yuv420p', vcodec='libx264',
loglevel='error').overwrite_output().run_async(
pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
def write_frame(self, frame):
frame = frame.astype(np.uint8).tobytes()
self.stream_writer.stdin.write(frame)
def close(self):
self.stream_writer.stdin.close()
self.stream_writer.wait()
def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0):
# ---------------------- determine models according to model names ---------------------- #
args.model_name = args.model_name.split('.pth')[0]
if args.model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif args.model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif args.model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif args.model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif args.model_name == 'realesr-animevideov3': # x4 VGG-style model (XS size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth']
elif args.model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
]
# ---------------------- determine model paths ---------------------- #
model_path = os.path.join('weights', args.model_name + '.pth')
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
# model_path will be updated
model_path = load_file_from_url(
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
# use dni to control the denoise strength
dni_weight = None
if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1:
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
model_path = [model_path, wdn_model_path]
dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
# restorer
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=args.tile,
tile_pad=args.tile_pad,
pre_pad=args.pre_pad,
half=not args.fp32,
device=device,
)
if 'anime' in args.model_name and args.face_enhance:
print('face_enhance is not supported in anime models, we turned this option off for you. '
'if you insist on turning it on, please manually comment the relevant lines of code.')
args.face_enhance = False
if args.face_enhance: # Use GFPGAN for face enhancement
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=args.outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler) # TODO support custom device
else:
face_enhancer = None
reader = Reader(args, total_workers, worker_idx)
audio = reader.get_audio()
height, width = reader.get_resolution()
fps = reader.get_fps()
writer = Writer(args, audio, height, width, video_save_path, fps)
pbar = tqdm(total=len(reader), unit='frame', desc='inference')
while True:
img = reader.get_frame()
if img is None:
break
try:
if args.face_enhance:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=args.outscale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
writer.write_frame(output)
torch.cuda.synchronize(device)
pbar.update(1)
reader.close()
writer.close()
def run(args):
args.video_name = osp.splitext(os.path.basename(args.input))[0]
video_save_path = osp.join(args.output, f'{args.video_name}_{args.suffix}.mp4')
if args.extract_frame_first:
tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames')
os.makedirs(tmp_frames_folder, exist_ok=True)
os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png')
args.input = tmp_frames_folder
num_gpus = torch.cuda.device_count()
num_process = num_gpus * args.num_process_per_gpu
if num_process == 1:
inference_video(args, video_save_path)
return
ctx = torch.multiprocessing.get_context('spawn')
pool = ctx.Pool(num_process)
os.makedirs(osp.join(args.output, f'{args.video_name}_out_tmp_videos'), exist_ok=True)
pbar = tqdm(total=num_process, unit='sub_video', desc='inference')
for i in range(num_process):
sub_video_save_path = osp.join(args.output, f'{args.video_name}_out_tmp_videos', f'{i:03d}.mp4')
pool.apply_async(
inference_video,
args=(args, sub_video_save_path, torch.device(i % num_gpus), num_process, i),
callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
# combine sub videos
# prepare vidlist.txt
with open(f'{args.output}/{args.video_name}_vidlist.txt', 'w') as f:
for i in range(num_process):
f.write(f'file \'{args.video_name}_out_tmp_videos/{i:03d}.mp4\'\n')
cmd = [
args.ffmpeg_bin, '-f', 'concat', '-safe', '0', '-i', f'{args.output}/{args.video_name}_vidlist.txt', '-c',
'copy', f'{video_save_path}'
]
print(' '.join(cmd))
subprocess.call(cmd)
shutil.rmtree(osp.join(args.output, f'{args.video_name}_out_tmp_videos'))
if osp.exists(osp.join(args.output, f'{args.video_name}_inp_tmp_videos')):
shutil.rmtree(osp.join(args.output, f'{args.video_name}_inp_tmp_videos'))
os.remove(f'{args.output}/{args.video_name}_vidlist.txt')
def main():
"""Inference demo for Real-ESRGAN.
It mainly for restoring anime videos.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, default='inputs', help='Input video, image or folder')
parser.add_argument(
'-n',
'--model_name',
type=str,
default='realesr-animevideov3',
help=('Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |'
' RealESRGAN_x2plus | realesr-general-x4v3'
'Default:realesr-animevideov3'))
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
parser.add_argument(
'-dn',
'--denoise_strength',
type=float,
default=0.5,
help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. '
'Only used for the realesr-general-x4v3 model'))
parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video')
parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
parser.add_argument(
'--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
parser.add_argument('--ffmpeg_bin', type=str, default='ffmpeg', help='The path to ffmpeg')
parser.add_argument('--extract_frame_first', action='store_true')
parser.add_argument('--num_process_per_gpu', type=int, default=1)
parser.add_argument(
'--alpha_upsampler',
type=str,
default='realesrgan',
help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
parser.add_argument(
'--ext',
type=str,
default='auto',
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
args = parser.parse_args()
args.input = args.input.rstrip('/').rstrip('\\')
os.makedirs(args.output, exist_ok=True)
if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type(args.input)[0].startswith('video'):
is_video = True
else:
is_video = False
if is_video and args.input.endswith('.flv'):
mp4_path = args.input.replace('.flv', '.mp4')
os.system(f'ffmpeg -i {args.input} -codec copy {mp4_path}')
args.input = mp4_path
if args.extract_frame_first and not is_video:
args.extract_frame_first = False
run(args)
if args.extract_frame_first:
tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames')
shutil.rmtree(tmp_frames_folder)
if __name__ == '__main__':
main()