
opam on Windows
Getting over the line

Picking an OCaml

• 4 officially supported OCamls to consider on Windows:
• MSVC PE + Microsoft C runtime; built with Microsoft’s C compiler
• mingw-w64 PE + Microsoft C runtime; built with mingw-w64 ported GCC
• Cygwin PE + Cygwin POSIX runtime; built with stock GCC
• LXSS (WSL) ELF + glibc; built with stock GCC

• The PE compilers exist in both i686 and x86_64 variants

Picking an environment

• The environment provides external commands and libraries
• In opam now, this is simply what is in PATH (and LIB/INC/etc.)
• On Windows:

• WinSDK Microsoft C compiler and Windows headers only
• Cygwin Full environment – mingw-w64 cross-compiler, make, bash, etc.
• MSYS2 (active) fork of Cygwin – mingw-w64 cross-compiler and more libs
• WSL Unaltered Linux distribution (initially Ubuntu only).

Experimental fork available; but presently only works as true
cross-compiler (i.e. using opam-cross repositories)

cmd vs PowerShell vs Cygwin vs MSYS2 vs WSL

• cmd – native Windows text shell/terminal (oldest)
• PowerShell – alternative Windows text shell; .NET implementation
• Cygwin – aims to provide a complete login shell experience
• MSYS2 – forks Cygwin to provide a complete mingw-w64 compiler set
• WSL – emulates Linux kernel (WSL1) or spins VM (WSL2). “Just a VM”

These choices have been ignored so far

• C compiler
gcc vs clang / 32-bit

• C runtime library
glibc vs musl

• OS package manager
MacPorts vs Homebrew

• Docker…

Windows users more actively need those choices!

Windows needs

• Switch invariants (done for 2.1!)
• Explicit dependencies
• Package parameters
• depext lifting to availability (done for 2.1!)
• layered switches
• Build environments

switch invariants

• opam 2.0
opam switch create playground ocaml-base-compiler.4.10.0

Installs 6 packages and locks the switch (base-bigarray.base, base-threads.base,
base-unix.base, ocaml.4.10.0, ocaml-base-compiler.4.10.0, ocaml-config.1)
• opam 2.1
./opam switch create playground --formula='"ocaml" {>= "4.10.0" & < "4.11.0~"}'

Requires an ocaml package in the 4.10 series which all upgrades must
satisfy

switch invariants – Windows

• Dynamic (shared) linking on Windows is hard
• Since OCaml 3.11, we use a custom linker called flexlink
• It’s written in OCaml…
• It can be upgraded separately from OCaml…
• … thanks to switch invariants, the compiler can depend on it but the

package can be upgraded in the normal way

Explicit dependencies

• New predicate {explicit} allowing, say, the ocaml package dependency to
be of the form

depends: ocaml-base-compiler | ocaml-system | ocaml-variants {explicit}

• The semantics are that the ocaml-variants is only a dependency if it’s
explicitly installed – the atom is removed from the formula otherwise.

• The effect is that opam install ocaml now cannot select ocaml-variants
(neither can opam upgrade).

• Only an explicit opam install ocaml-variants.4.10.0+32bit selects a version.
• Can be implemented with switch invariants, but in the depends field, not the

switch

Explicit dependencies – Windows

• Multiple C compilers available, which the ocaml-base-compiler will
need to depend on (e.g. conf-msvc | conf-gcc)

• Need the user’s choice to be stable – i.e. the solver shouldn’t
arbitrarily decide to change the C compiler

• However, the user could choose to: opam install conf-gcc should
upgrade (😉) OCaml from an msvc port to a mingw port and
recompile all packages

Package parameters

• A mechanism is needed to allow packages to receive information
from the user at installation

• Prototyped adding --set package:name=value as a parameter both to
opam switch create and opam install

• Package commands receive these as environment variables
• Packages can choose to persist them in .config files
• package.config files survive opam reinstall
• Many, many, many ocaml-variants packages get nuked
• Now: opam switch create ocaml-4.10-flambda ocaml.4.10.0 --set ocaml:flambda=true

Package parameters – Windows

• Used to be a key feature – in 2015 prototypes this was how ports
were selected

• Reducing the number of ocaml-variants is going to ease upstreaming
the Windows build instructions

• Its main use now is to specify the architecture (i.e. i686 or x86_64)
although this could also be done with a conf- package

depext lifting from depends to availability

• Need to be able to refer to depexts through availability, rather than
depends, so that the C compiler conf- packages get pulled in only if
available (i.e. msvc is either installed or it’s not)

• Should be doable with the opam 2.1 feature + extra probes (i.e.
Windows-specific parts of interrogating what’s installed)

• The key point for Windows is that opam install conf-msvc ocaml wants
to fail if MSVC is not installed already

Layered switches

• Basic idea is to allow binaries (i.e. programs) from a switch to be
available in PATH from other switches

• Proposal is that opam install --global ocamlformat puts bin files in gbin
• opam maintains a hierarchy of switch gbin directories underneath the

current switch’s bin directory (like opam remote)
• For Windows, this means that flexlink can be built in one switch and

used by all switches (speeds up switch creation)

Build Environments

• Currently, everything is run in the “system” build environment
(modulo the sandbox)

• Idea is to generalise this to allow a build environment to be attached
to a switch

• On Windows, would allow, for example, opam to maintain a separate
Cygwin installation for doing building, or to switch between Cygwin32
and Cygwin64 if required.

• On Unix (and indeed on Windows), it provides a principled way to
have the build for a switch done in a Docker container, with the
results exported (or on another build server, etc.)

Where are we now?

• fdopen’s fork provides:
• OCaml installations under the ocaml-variants for i686/x86_64 mingw/msvc

with/without flambda pre-compiled/from-source – i.e. 16 packages per
release (although he doesn’t build msvc flambda for some reason)

• A Cygwin installation (in C:\OCaml64)
• A patch on top of depext to drive Cygwin’s setup program to install libraries
• A command line utility (opam-env) in order to drive build systems outside

Cygwin

Upstream proposals:

• opam 2.2 would provide:
• ocaml-base-compiler and ocaml-system support (pre-compiled builds could

be officially supported in another remote)
• A build environment allowing Cygwin/MSYS2 to be in ~\.opam instead
• depext support for that build environment
• Native Windows opam, so no need for a shell wrapper. A first time Windows

users would not be expected at any point to see a bash terminal

What’s critical

• Native shell integration – dra27’s final patches
• Switch invariants – done!
• Explicit dependencies – can live without, but…
• Package parameters – … I’m not sure we’ll survive the package explosion
• depext lifting to availability – done!
• layered switches – less critical now for Windows, possibly more urgent elsewhere!
• Build environments – first-time experience (download opam, run opam init)

