diff --git a/R/LogicRegr.R b/R/LogicRegr.R index 7d84b52..ec60536 100644 --- a/R/LogicRegr.R +++ b/R/LogicRegr.R @@ -19,7 +19,6 @@ #' @param p.surv minimal survival probabilities for the features to be allowed to enter the next population #' @param ncores the maximal number of cores (and GMJMCMC threads) to be #' addressed in the analysis -#' @param pseudopar whether the ncores chains will run in sequentially (the only option under Windows OS) or in parallel #' @param n.mods the number of the best models in the thread to calculate #' marginal inclusion probabilities #' @param advanced should only be adrresed by experienced users to tune advanced @@ -45,7 +44,7 @@ LogicRegr = function( formula, data, family = "Gaussian",prior = "J",report.level = 0.5, d = 20, cmax = 5, kmax = 20, p.and = 0.9, p.not = 0.05, p.surv = 0.1, ncores = -1, - pseudopar = TRUE,n.mods = 1000, print.freq = 1000L, + n.mods = 1000, print.freq = 1000L, advanced = list( presearch = TRUE,locstop = FALSE, estimator = estimate.logic.bern.tCCH, @@ -116,7 +115,7 @@ LogicRegr = function( return( pinferunemjmcmc( - n.cores = ncores, mcgmj = ifelse(pseudopar,mcgmjpse, mcgmjpar), report.level = report.level, simplify = TRUE, + n.cores = ncores, report.level = report.level, simplify = TRUE, num.mod.best = n.mods, predict = FALSE, runemjmcmc.params = advanced ) ) diff --git a/R/mcgmj.R b/R/mcgmj.R index b5b5e98..bb9fe2e 100644 --- a/R/mcgmj.R +++ b/R/mcgmj.R @@ -3,4 +3,4 @@ mcgmjpar = function(X,FUN,mc.cores) parallel::mclapply(X= X,FUN = FUN,mc.preschedule = T,mc.cores = mc.cores) -mcgmjpse = function(X,FUN,mc.cores) ifelse(.Platform[[1]]=="unix",parallel::mclapply(X= X,FUN = FUN,mc.preschedule = T,mc.cores = mc.cores), lapply(X,FUN)) +mcgmjpse = function(X,FUN,mc.cores) if(.Platform[[1]]=="unix") parallel::mclapply(X= X,FUN = FUN,mc.preschedule = T,mc.cores = mc.cores) else lapply(X,FUN) diff --git a/inst/examples/LogicRegr_example.R b/inst/examples/LogicRegr_example.R index eb2f904..bb692b2 100644 --- a/inst/examples/LogicRegr_example.R +++ b/inst/examples/LogicRegr_example.R @@ -26,7 +26,7 @@ n_cores <- parallel::detectCores() - 1 res4G <- LogicRegr( formula = formula1, data = data.example, family = "Gaussian", prior = "G", report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01, - p.surv = 0.2, ncores = n_cores,pseudopar = TRUE + p.surv = 0.2, ncores = n_cores ) print(res4G$feat.stat) @@ -34,7 +34,7 @@ n_cores <- parallel::detectCores() - 1 res4J <- LogicRegr( formula = formula1, data = data.example, family = "Gaussian", prior = "J", report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01, - p.surv = 0.2, ncores = n_cores,pseudopar = TRUE + p.surv = 0.2, ncores = n_cores ) print(res4J$feat.stat) } diff --git a/man/LogicRegr.Rd b/man/LogicRegr.Rd index f154943..5109832 100644 --- a/man/LogicRegr.Rd +++ b/man/LogicRegr.Rd @@ -18,7 +18,6 @@ LogicRegr( p.not = 0.05, p.surv = 0.1, ncores = -1, - pseudopar = TRUE, n.mods = 1000, print.freq = 1000L, advanced = list(presearch = TRUE, locstop = FALSE, estimator = @@ -65,8 +64,6 @@ detections based on the marginal inclusion probabilities} \item{ncores}{the maximal number of cores (and GMJMCMC threads) to be addressed in the analysis} -\item{pseudopar}{whether the ncores chains will run in sequentially (the only option under Windows OS) or in parallel} - \item{n.mods}{the number of the best models in the thread to calculate marginal inclusion probabilities}