forked from HadoopIt/rnn-nlu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_task_model.py
432 lines (362 loc) · 19.2 KB
/
multi_task_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 28 17:28:22 2016
@author: Bing Liu (liubing@cmu.edu)
Multi-task RNN model with an attention mechanism.
- Developped on top of the Tensorflow seq2seq_model.py example:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/rnn/translate/seq2seq_model.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.python.framework import dtypes
import data_utils
import seq_labeling
import seq_classification
import generate_encoder_output
class MultiTaskModel(object):
def __init__(self, source_vocab_size, tag_vocab_size, label_vocab_size, buckets,
word_embedding_size, size, num_layers, max_gradient_norm, batch_size,
dropout_keep_prob=1.0, use_lstm=False, bidirectional_rnn=True,
num_samples=1024, use_attention=False,
task=None, forward_only=False):
self.source_vocab_size = source_vocab_size
self.tag_vocab_size = tag_vocab_size
self.label_vocab_size = label_vocab_size
self.buckets = buckets
self.batch_size = batch_size
self.global_step = tf.Variable(0, trainable=False)
# If we use sampled softmax, we need an output projection.
softmax_loss_function = None
# Create the internal multi-layer cell for our RNN.
single_cell = tf.nn.rnn_cell.GRUCell(size)
if use_lstm:
single_cell = tf.nn.rnn_cell.BasicLSTMCell(size)
cell = single_cell
if num_layers > 1:
cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] * num_layers)
if not forward_only and dropout_keep_prob < 1.0:
cell = tf.nn.rnn_cell.DropoutWrapper(cell,
input_keep_prob=dropout_keep_prob,
output_keep_prob=dropout_keep_prob)
# Feeds for inputs.
self.encoder_inputs = []
self.tags = []
self.tag_weights = []
self.labels = []
self.sequence_length = tf.placeholder(tf.int32, [None], name="sequence_length")
for i in xrange(buckets[-1][0]):
self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name="encoder{0}".format(i)))
for i in xrange(buckets[-1][1]):
self.tags.append(tf.placeholder(tf.float32, shape=[None], name="tag{0}".format(i)))
self.tag_weights.append(tf.placeholder(tf.float32, shape=[None],
name="weight{0}".format(i)))
self.labels.append(tf.placeholder(tf.float32, shape=[None], name="label"))
base_rnn_output = generate_encoder_output.generate_embedding_RNN_output(self.encoder_inputs,
cell,
self.source_vocab_size,
word_embedding_size,
dtype=dtypes.float32,
scope=None,
sequence_length=self.sequence_length,
bidirectional_rnn=bidirectional_rnn)
encoder_outputs, encoder_state, attention_states = base_rnn_output
if task['tagging'] == 1:
self.tagging_output, self.tagging_loss = seq_labeling.generate_sequence_output(
self.source_vocab_size,
encoder_outputs, encoder_state, self.tags, self.sequence_length, self.tag_vocab_size, self.tag_weights,
buckets, softmax_loss_function=softmax_loss_function, use_attention=use_attention)
if task['intent'] == 1:
self.classification_output, self.classification_loss = seq_classification.generate_single_output(
encoder_state, attention_states, self.sequence_length, self.labels, self.label_vocab_size,
buckets, softmax_loss_function=softmax_loss_function, use_attention=use_attention)
if task['tagging'] == 1:
self.loss = self.tagging_loss
elif task['intent'] == 1:
self.loss = self.classification_loss
# Gradients and SGD update operation for training the model.
params = tf.trainable_variables()
if not forward_only:
opt = tf.train.AdamOptimizer()
if task['joint'] == 1:
# backpropagate the intent and tagging loss, one may further adjust
# the weights for the two costs.
gradients = tf.gradients([self.tagging_loss, self.classification_loss], params)
elif task['tagging'] == 1:
gradients = tf.gradients(self.tagging_loss, params)
elif task['intent'] == 1:
gradients = tf.gradients(self.classification_loss, params)
clipped_gradients, norm = tf.clip_by_global_norm(gradients,
max_gradient_norm)
self.gradient_norm = norm
self.update = opt.apply_gradients(
zip(clipped_gradients, params), global_step=self.global_step)
self.saver = tf.train.Saver(tf.all_variables())
def joint_step(self, session, encoder_inputs, tags, tag_weights, labels, batch_sequence_length,
bucket_id, forward_only):
"""Run a step of the joint model feeding the given inputs.
Args:
session: tensorflow session to use.
encoder_inputs: list of numpy int vectors to feed as encoder inputs.
tags: list of numpy int vectors to feed as decoder inputs.
tag_weights: list of numpy float vectors to feed as tag weights.
labels: list of numpy int vectors to feed as sequence class labels.
bucket_id: which bucket of the model to use.
batch_sequence_length: batch_sequence_length
bucket_id: which bucket of the model to use.
forward_only: whether to do the backward step or only forward.
Returns:
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, output tags, and output class label.
Raises:
ValueError: if length of encoder_inputs, decoder_inputs, or
target_weights disagrees with bucket size for the specified bucket_id.
"""
# Check if the sizes match.
encoder_size, tag_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
if len(tags) != tag_size:
raise ValueError("Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(tags), tag_size))
if len(labels) != 1:
raise ValueError("Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(labels), 1))
input_feed = {}
input_feed[self.sequence_length.name] = batch_sequence_length
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.tags[l].name] = tags[l]
input_feed[self.tag_weights[l].name] = tag_weights[l]
input_feed[self.labels[0].name] = labels[0]
# Output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [self.update, # Update Op that does SGD.
self.gradient_norm, # Gradient norm.
self.loss] # Loss for this batch.
for i in range(tag_size):
output_feed.append(self.tagging_output[i])
output_feed.append(self.classification_output[0])
else:
output_feed = [self.loss]
for i in range(tag_size):
output_feed.append(self.tagging_output[i])
output_feed.append(self.classification_output[0])
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], outputs[3:3+tag_size], outputs[-1]
else:
return None, outputs[0], outputs[1:1+tag_size], outputs[-1]
def tagging_step(self, session, encoder_inputs, tags, tag_weights, batch_sequence_length,
bucket_id, forward_only):
"""Run a step of the tagging model feeding the given inputs.
Args:
session: tensorflow session to use.
encoder_inputs: list of numpy int vectors to feed as encoder inputs.
tags: list of numpy int vectors to feed as decoder inputs.
tag_weights: list of numpy float vectors to feed as target weights.
batch_sequence_length: batch_sequence_length
bucket_id: which bucket of the model to use.
forward_only: whether to do the backward step or only forward.
Returns:
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, and the output tags.
Raises:
ValueError: if length of encoder_inputs, decoder_inputs, or
target_weights disagrees with bucket size for the specified bucket_id.
"""
# Check if the sizes match.
encoder_size, tag_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
if len(tags) != tag_size:
raise ValueError("Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(tags), tag_size))
# Input feed: encoder inputs, decoder inputs, target_weights, as provided.
input_feed = {}
input_feed[self.sequence_length.name] = batch_sequence_length
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.tags[l].name] = tags[l]
input_feed[self.tag_weights[l].name] = tag_weights[l]
# Output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [self.update, # Update Op that does SGD.
self.gradient_norm, # Gradient norm.
self.loss] # Loss for this batch.
for i in range(tag_size):
output_feed.append(self.tagging_output[i])
else:
output_feed = [self.loss]
for i in range(tag_size):
output_feed.append(self.tagging_output[i])
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], outputs[3:3+tag_size]
else:
return None, outputs[0], outputs[1:1+tag_size]
def classification_step(self, session, encoder_inputs, labels, batch_sequence_length,
bucket_id, forward_only):
"""Run a step of the intent classification model feeding the given inputs.
Args:
session: tensorflow session to use.
encoder_inputs: list of numpy int vectors to feed as encoder inputs.
labels: list of numpy int vectors to feed as sequence class labels.
batch_sequence_length: batch_sequence_length
bucket_id: which bucket of the model to use.
forward_only: whether to do the backward step or only forward.
Returns:
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, and the output class label.
Raises:
ValueError: if length of encoder_inputs, decoder_inputs, or
target_weights disagrees with bucket size for the specified bucket_id.
"""
# Check if the sizes match.
encoder_size, target_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
# Input feed: encoder inputs, decoder inputs, target_weights, as provided.
input_feed = {}
input_feed[self.sequence_length.name] = batch_sequence_length
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.labels[0].name] = labels[0]
# Output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [self.update, # Update Op that does SGD.
self.gradient_norm, # Gradient norm.
self.loss, # Loss for this batch.
self.classification_output[0]]
else:
output_feed = [self.loss,
self.classification_output[0],]
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], outputs[3] # Gradient norm, loss, outputs.
else:
return None, outputs[0], outputs[1] # No gradient norm, loss, outputs.
def get_batch(self, data, bucket_id):
"""Get a random batch of data from the specified bucket, prepare for step.
To feed data in step(..) it must be a list of batch-major vectors, while
data here contains single length-major cases. So the main logic of this
function is to re-index data cases to be in the proper format for feeding.
Args:
data: a tuple of size len(self.buckets) in which each element contains
lists of pairs of input and output data that we use to create a batch.
bucket_id: integer, which bucket to get the batch for.
Returns:
The triple (encoder_inputs, decoder_inputs, target_weights) for
the constructed batch that has the proper format to call step(...) later.
"""
encoder_size, decoder_size = self.buckets[bucket_id]
encoder_inputs, decoder_inputs, labels = [], [], []
# Get a random batch of encoder and decoder inputs from data,
# pad them if needed, reverse encoder inputs and add GO to decoder.
batch_sequence_length_list= list()
for _ in xrange(self.batch_size):
encoder_input, decoder_input, label = random.choice(data[bucket_id])
batch_sequence_length_list.append(len(encoder_input))
# Encoder inputs are padded and then reversed.
encoder_pad = [data_utils.PAD_ID] * (encoder_size - len(encoder_input))
#encoder_inputs.append(list(reversed(encoder_input + encoder_pad)))
encoder_inputs.append(list(encoder_input + encoder_pad))
# Decoder inputs get an extra "GO" symbol, and are padded then.
decoder_pad_size = decoder_size - len(decoder_input)
decoder_inputs.append(decoder_input +
[data_utils.PAD_ID] * decoder_pad_size)
labels.append(label)
# Now we create batch-major vectors from the data selected above.
batch_encoder_inputs, batch_decoder_inputs, batch_weights, batch_labels = [], [], [], []
# Batch encoder inputs are just re-indexed encoder_inputs.
for length_idx in xrange(encoder_size):
batch_encoder_inputs.append(
np.array([encoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Batch decoder inputs are re-indexed decoder_inputs, we create weights.
for length_idx in xrange(decoder_size):
batch_decoder_inputs.append(
np.array([decoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Create target_weights to be 0 for targets that are padding.
batch_weight = np.ones(self.batch_size, dtype=np.float32)
for batch_idx in xrange(self.batch_size):
# We set weight to 0 if the corresponding target is a PAD symbol.
# The corresponding target is decoder_input shifted by 1 forward.
# if length_idx < decoder_size - 1:
# target = decoder_inputs[batch_idx][length_idx + 1]
# print (length_idx)
if decoder_inputs[batch_idx][length_idx] == data_utils.PAD_ID:
batch_weight[batch_idx] = 0.0
batch_weights.append(batch_weight)
batch_labels.append(
np.array([labels[batch_idx][0]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
batch_sequence_length = np.array(batch_sequence_length_list, dtype=np.int32)
return batch_encoder_inputs, batch_decoder_inputs, batch_weights, batch_sequence_length, batch_labels
def get_one(self, data, bucket_id, sample_id):
"""Get a single sample data from the specified bucket, prepare for step.
To feed data in step(..) it must be a list of batch-major vectors, while
data here contains single length-major cases. So the main logic of this
function is to re-index data cases to be in the proper format for feeding.
Args:
data: a tuple of size len(self.buckets) in which each element contains
lists of pairs of input and output data that we use to create a batch.
bucket_id: integer, which bucket to get the batch for.
Returns:
The triple (encoder_inputs, decoder_inputs, target_weights) for
the constructed batch that has the proper format to call step(...) later.
"""
encoder_size, decoder_size = self.buckets[bucket_id]
encoder_inputs, decoder_inputs, labels = [], [], []
# Get a random batch of encoder and decoder inputs from data,
# pad them if needed, reverse encoder inputs and add GO to decoder.
batch_sequence_length_list= list()
#for _ in xrange(self.batch_size):
encoder_input, decoder_input, label = data[bucket_id][sample_id]
batch_sequence_length_list.append(len(encoder_input))
# Encoder inputs are padded and then reversed.
encoder_pad = [data_utils.PAD_ID] * (encoder_size - len(encoder_input))
#encoder_inputs.append(list(reversed(encoder_input + encoder_pad)))
encoder_inputs.append(list(encoder_input + encoder_pad))
# Decoder inputs get an extra "GO" symbol, and are padded then.
decoder_pad_size = decoder_size - len(decoder_input)
decoder_inputs.append(decoder_input +
[data_utils.PAD_ID] * decoder_pad_size)
labels.append(label)
# Now we create batch-major vectors from the data selected above.
batch_encoder_inputs, batch_decoder_inputs, batch_weights, batch_labels = [], [], [], []
# Batch encoder inputs are just re-indexed encoder_inputs.
for length_idx in xrange(encoder_size):
batch_encoder_inputs.append(
np.array([encoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(1)], dtype=np.int32))
# Batch decoder inputs are re-indexed decoder_inputs, we create weights.
for length_idx in xrange(decoder_size):
batch_decoder_inputs.append(
np.array([decoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(1)], dtype=np.int32))
# Create target_weights to be 0 for targets that are padding.
batch_weight = np.ones(1, dtype=np.float32)
for batch_idx in xrange(1):
# We set weight to 0 if the corresponding target is a PAD symbol.
# The corresponding target is decoder_input shifted by 1 forward.
# if length_idx < decoder_size - 1:
# target = decoder_inputs[batch_idx][length_idx + 1]
# print (length_idx)
if decoder_inputs[batch_idx][length_idx] == data_utils.PAD_ID:
batch_weight[batch_idx] = 0.0
batch_weights.append(batch_weight)
batch_labels.append(
np.array([labels[batch_idx][0]
for batch_idx in xrange(1)], dtype=np.int32))
batch_sequence_length = np.array(batch_sequence_length_list, dtype=np.int32)
return batch_encoder_inputs, batch_decoder_inputs, batch_weights, batch_sequence_length, batch_labels